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Background
Diseases are complex and dynamic processes, with different organs, tissues, and cell 
types undergoing unique changes that often manifest at the transcriptional level. Sin-
gle-cell genomics provides a sensitive and unbiased lens for identifying how cell type-
specific phenotypes change following a perturbation or in disease [1–3]. To perform a 
comparative analysis between conditions, it is necessary to employ a case–control exper-
imental design that requires the existence of several replicates from the control (typically 
healthy or wild type samples) condition together with replicates with the case pheno-
type (typically disease or perturbation). The standard workflow to identify potential 
case-specific phenotypes involves the batch-corrected embedding of all samples on the 
same low-dimensional space followed by comparative analysis between “comparable,” 
transcriptionally similar cells (e.g., within the same cell type) [4–6]. Examples of such 
comparative analyses include differential abundance (DA) testing—a framework to esti-
mate whether different cell types change their relative abundance between conditions, 
and differential expression (DE) analysis, in which individual genes that are expressed at 
different levels between conditions are identified.

Abstract 

Single-cell RNA-sequencing enables testing for differential expression (DE) 
between conditions at a cell type level. While powerful, one of the limitations of such 
approaches is that the sensitivity of DE testing is dictated by the sensitivity of clus-
tering, which is often suboptimal. To overcome this, we present miloDE—a cluster-
free framework for DE testing (available as an open-source R package). We illustrate 
the performance of miloDE on both simulated and real data. Using miloDE, we identify 
a transient hemogenic endothelia-like state in mouse embryos lacking Tal1 and detect 
distinct programs during macrophage activation in idiopathic pulmonary fibrosis.
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DE analysis, at both the bulk and single-cell level, has yielded valuable insights into the 
mechanisms of numerous diseases [7–9] and enabled the identification of drug targets 
[10, 11]. Accordingly, numerous methods for differential expression testing have been 
proposed and benchmarked [12–16]. Methods originally developed for bulk RNA-seq, 
such as limma-voom [17], edgeR [18–20], and DESeq2 [21], were adapted for scRNA-seq 
analysis, by aggregating mRNA counts from transcriptionally similar cells, yielding so-
called “pseudo-bulk” counts. As scRNA-seq has become increasingly popular, methods 
designed to handle specific properties of scRNA-seq data have been proposed (SCDE, 
scDD, D3E, MAST, DECENT, etc.) [22–26]. The main factor distinguishing these meth-
ods is the assumed underlying distribution of the expression counts (the main being the 
Poisson and the Negative Binomial, as well as the zero-inflated versions of those). Finally, 
a recently proposed approach, lvm-DE, uses a Bayesian framework leveraging posterior 
distributions estimated from deep generative models, which is suggested to be suitable 
for the complex, non-linear experimental designs that are particularly relevant for per-
forming DE analysis between groups in extensive cohort studies with complex metadata 
[27].

Importantly, all of these methods require that cells are grouped into presumably 
homogenous, transcriptionally similar clusters (i.e., cell types). This minimizes variabil-
ity in gene expression counts between cells within a sample, mitigates the inflation of 
p-values, and increases the power to detect differential expression for lowly expressed 
genes [28]. However, performing statistical tests at the cell type level (i.e., asking whether 
a gene is differentially expressed between conditions within a specific cell type) is ulti-
mately limited and dictated by the sensitivity and resolution of the cell type annotation, 
which is a highly subjective and study-dependent process. As a result, genes that are 
DE only within a certain homogenous sub-region within the cell type (with the cell type 
either consisting of several discrete subpopulations, continuous trajectories, or a com-
bination of both), will often be undetected. On the other hand, if sub-cell type composi-
tion differs between case and control samples, genes that are specific in their expression 
to a local sub-region of a cell type (in both conditions) might get falsely identified as 
showing significant DE when, in fact, they “mark” DA sub-regions. Finally, due to poten-
tially substantial differences in cell type abundances, the power to identify statistically 
significant differences in expression can vary across cell types.

These shortcomings motivate the development of frameworks that are more sensitive 
to the local transcriptional structure, and that will learn the per gene DE on the manifold 
rather than separately for each annotated cell type. For example, the recently proposed 
computational suite Cacoa incorporates a DE framework that is performed at a single-
cell level [29]. However, it does not account for potential confounding covariates and 
batch effects, making it challenging to apply in many settings, including cohort studies 
and complex experimental designs which are becoming increasingly popular.

To overcome these limitations, we present miloDE—a cluster-free framework for DE 
testing. We extend Milo, a method for cluster-free DA testing, where cell abundance 
is estimated over overlapping neighborhoods on the k-Nearest Neighbors (henceforth 
kNN) graph representation of scRNA-seq data [30]. We address key differences between 
DA and DE testing at both the neighborhood assignment level and when performing the 
statistical testing and multiple hypothesis testing correction, allowing us to perform DE 
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detection for each gene and each neighborhood. Importantly, the fine neighborhood res-
olution of miloDE unlocks a suite of methods tailored for scRNA-seq analysis, enabling 
the detection of co-regulated transcriptional modules containing genes that change their 
expression in a coordinated manner. Finally, we demonstrate the performance of miloDE 
in both simulated data and in different biological contexts. miloDE is an open-source R 
package, available at https:// github. com/ Mario niLab/ miloDE.

Results
Overview of the method

miloDE is a cluster-free framework for differential expression (DE) testing that lever-
ages a graph representation of scRNA-seq data (Fig. 1). To construct a graph recapitulat-
ing distances between cells, we require count matrices and a pre-calculated joint latent 
embedding across all the replicates from tested conditions (Fig. 1, step 1). Following the 
graph construction, we assign cells in the neighborhoods, by randomly selecting a subset 
of cells as neighborhood centers (referred to as index cells), subsequently assigning each 
index cell along with its neighbors to a single neighborhood (Fig.  1, steps 2–3; Meth-
ods). On a biological level, a single neighborhood represents a small group of highly 
similar transcriptional cells (i.e., one transcriptional state). Therefore, a neighborhood 

Fig. 1 Schematic overview of the method. As input the algorithm takes a set of samples with given labels 
(case or control) alongside a joint latent embedding (step 1). Next, we generate a graph recapitulating the 
distances between cells and define neighborhoods (step 2) using the 2nd-order kNN graph (inset). We then 
refine the neighborhood assignment and discard redundant neighborhoods (step 3). In step 4, we index 
our neighborhoods, and then proceed with DE testing within each neighborhood. As an output, we return 
four [gene × neighborhood] matrices, corresponding to logFC and statistics, raw and corrected either across 
genes or across neighborhoods. Results for each gene can be visualized using neighborhood plots (step 5), in 
which each neighborhood (circle) is colored with the estimated logFC if significant

https://github.com/MarioniLab/miloDE
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assignment provides a representation of single-cell data as a set of local transcriptional 
states. We note that neighborhood representation is different from metacell representa-
tions such as MetaCell [31] or SEAcells [32] since it overcomes the limitation of discre-
tization and allow neighborhoods to overlap (i.e., each cell can be assigned to multiple 
neighborhoods). This provides a more continuous and connected representation of tran-
scriptional states.

Once neighborhoods are assigned, we test for DE within each neighborhood (Fig. 1, 
steps 4–5). To do so, for each neighborhood, we sum the counts for each replicate and 
use the edgeR framework—a scalable and highly performant DE detection method that 
utilizes a generalized linear model framework that allows the incorporation of covari-
ates and complex experimental designs [18, 33]. As an output, we return [gene × neigh-
borhood] matrices containing the estimated log2 Fold Change (logFC) and statistics 
indicating the significance of each comparison within each neighborhood. We then per-
form multiple testing corrections in two directions: for each neighborhood, we correct 
across all tested genes, and for each gene we correct across all tested neighborhoods, 
accounting for neighborhood sizes (i.e., the number of cells per neighborhood) and the 
overlap between neighborhoods (see Methods). This dual correction scheme allows the 
identification of both DE-neighborhoods for specific genes and DE genes for specific 
neighborhoods.

Having outlined the method, it is essential to recognize that DE detection is depend-
ent on how we group cells prior to testing. Below we discuss in greater detail some key 
aspects of the neighborhood assignment (steps 1–3) and how they potentially affect DE 
detection.

Choice of the latent embedding

As mentioned above, we require a pre-calculated latent embedding as an input. 
Although the choice of the embedding/integration technique is left to the user, we note 
that “supervised” and “unsupervised” approaches result in neighborhood assignments 
that impact DE detection in different ways. We suggest that in the “supervised” settings 
(e.g., Azimuth [4] and scArches [5]), in which underlying variance is learned solely from 
the control samples followed by the transfer of the case samples using the learned model, 
the input from case-specific variance to the embedding is minimized. In contrast, in the 
“unsupervised” settings, where variance is jointly learned from control and case samples 
(e.g., mutual nearest neighbors (MNN) [34] and scVI [35]), the case-specific variance 
may contribute to the embedding. The potential consequence of this is that cells will 
separate on the embedding by the aforementioned case-specific variance thus hindering 
our ability to aggregate them in the same neighborhoods and detect DE for this specific 
variance. Combined, we hypothesize that “supervised” integration approaches are more 
suitable for sensitive DE detection. Moreover, we show via simulations that DE detection 
in the “supervised” embeddings is quantifiably more sensitive (see in-depth discussion 
and supporting analysis in Additional file 1: Supplementary Note 1 [36–38]).

Graph construction

By design, miloDE aims to detect DE on a local level, within individual transcrip-
tional states. Having more cells within the neighborhoods increases the probability of 
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generating more heterogeneous neighborhoods, thus hindering the ability to capture 
distinct transcriptional states. Accordingly, ideal neighborhood assignments should con-
tain neighborhoods of the smallest possible size. On the other hand, the power to detect 
DE using pseudo-bulk approaches such as edgeR is highly dependent on and scales with 
the number of tested cells [14]. We explore the importance of a sufficient number of 
cells as well as other parameters such as the number of tested replicates on DE detection 
in Additional file 1: Supplementary Note 2 (summarized in Additional file 2: Table S1). 
Importantly, we estimate that if the total number of tested cells is around 350, the sensi-
tivity to detect logFC = 1 is ~ 65% (~ 85% for logFC = 2). Therefore, if we aim to achieve 
sensitivity above 65%, ideally we would require our neighborhoods to contain several 
hundred cells on average. A standard approach for constructing a graph representa-
tion is to use a kNN graph, in which each cell is connected with its k nearest neighbors 
in the latent space. Since the number of cells per neighborhood scales nearly linearly 
with k, to achieve several hundred cells per neighborhood, we would require k to be in 
the same range. However, since kNN graph has limited sensitivity to the local density, 
having high values of k is likely to compromise the homogeneity of the neighborhoods. 
In other words, if k is high enough, cells from rare cell types (i.e., less abundant than 
the chosen k) are prone to get connected (and therefore assigned to the same neigh-
borhoods) with transcriptionally similar but more abundant cell types. Accordingly, if 
a certain transcriptional change is restrained to such rare cell types, we hamper sensi-
tive DE detection in the neighborhoods containing the mixture of the cell types. Previ-
ously, several methods have been developed to improve kNN graph representation to 
better recapitulate local density [31, 39, 40]. These methods aim to identify phenotypi-
cally distinct, non-overlapping, fine-grained cell states. Motivated by this, we introduce 
a 2nd-order kNN graph representation in which a standard (hereafter referred to as a 
1st-order) kNN graph is amended with additional edges between any 2 cells that share 
at least one neighboring cell (Fig. 1, Step 2, inset). We suggest that the 2nd-order kNN 
representation returns more homogenous neighborhoods than the 1st-order kNN, while 
controlling for the average neighborhood size. Specifically, as k increases, the average 
neighborhood size for the 2nd-order kNN graph increases considerably faster than it 
does for the 1st order (Additional file 3: Fig. S1). Importantly, as k reaches 20–25 in the 
2nd-order setting, the method will result in sufficiently large average neighborhood size 
(higher than 350, Additional file 3: Fig. S1). Importantly, we assume that, specifically for 
rare cell types, the corresponding neighborhoods will be smaller in size but considerably 
more homogeneous, when compared to the 1st-order kNN graph, and this is potentially 
more important for DE testing than neighborhood size.

To quantitatively assess the detection differences between the assignments using either 
1st- or 2nd-order kNN graphs, we used a chimeric mouse embryo dataset, in which 
tdTomato + mouse embryonic stems cells containing a Tal1 knock out were injected into 
wild type blastocysts [41]. We used an atlas of wild type (WT; i.e., non-chimeric) gas-
trulating mouse embryos as a “control” (henceforth referred to as WT), and the wild 
type cells from the chimeric embryos were used as the “case” (henceforth referred to 
as ChimeraWT). We assigned neighborhoods using different order and k combinations 
while restricting order-k values such that the average neighborhood size was within the 
low hundreds cell target (Additional file 3: Fig. S2A). Additionally, a certain degree of 
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stochasticity, owing to the random selection of index cells, invariably impacts into any 
neighborhood assignment, potentially propagating into discrepancies in the DE detec-
tion. To address this, in the following simulations, for each [order-k] combination (here-
after referred to as an assignment) we repeated the assignment 10 times.

First, we compared the homogeneity of the neighborhoods between 1st- and 2nd-
order assignments. To do so, we derived two complimentary metrics that we refer to as 
relative cell type enrichment and cell type purity. To calculate the cell type enrichment 
score, we first annotated each neighborhood with its most enriched cell type before cal-
culating the fraction of cells from the neighborhood that is annotated with the assigned 
enriched cell type. We suggest that higher cell type enrichment distribution across all 
cell types reflects “more homogenous” assignments that more effectively segregate cell 
types between each other. Additionally, it provides a per cell type estimate of how well 
it is segregated from the other cell types. The second metric—cell type purity score—is 
defined as the percentage of cells from the neighborhood that have the cell type label in 
question. We formulated the cell type purity metric in this way since we hypothesized 
that for a perturbed cell type, neighborhoods with higher cell type purity score (for a 
given cell type) will have higher sensitivity of DE detection. We also expect that a 2nd-
order kNN assignment is more likely to return more neighborhoods with higher cell type 
purity score for all of the cell types, including rare ones. In contrast, we assumed that a 
1st-order assignment will likely “merge” rare cell types with transcriptionally similar but 
more abundant cell types thus making it more challenging to detect DE within those rare 
cell types. Following the definition of the metrics, within each neighborhood assignment 
and each tested cell type (Additional file 3: Fig. S2B, Methods), we calculated the relative 
cell type enrichment score (Additional file 3: Fig. S2C) and maximum cell type purity 
score (Additional file 3: Fig. S2D). We consistently observe higher cell type purity scores 
for the 2nd-order assignments for rare cell types, across a wide range of average neigh-
borhood sizes and replicates of the assignments. We observe no comparable difference 
for the more abundant cell types, regardless of how well these cell types are segregated 
from the other cell types (estimated by cell type enrichment score).

Finally, we examined how the identified difference in cell type purity affects the sensi-
tivity of DE detection. To do this, we synthetically introduced “ground truth DE” by per-
turbing the expression of a small number of genes per cell type (see Methods). We then 
applied miloDE for each neighborhood assignment and asked how the DE detection (i.e., 
fraction of “perturbed” genes that are detected as DE) depends on cell type purity as well 
as the absolute number of cells from the cell type. To do so, for each neighborhood and 
each “perturbed” cell type, we calculated the following measurements: cell type purity, 
the number of cells from the cell type, and DE detection power (Additional file 3: Fig. 
S3A). As expected, DE detection power scales with both cell type purity and the number 
of cells from the cell type. Importantly, for the rarest cell type—primordial germ cells 
(PGCs)—we achieve considerably high detection only for highly pure neighborhoods, 
which are only present in the 2nd-order assignments (maximum detection = 0.78 in 
2nd-order against 0.63 in 1st-order). When we calculate the maximum DE detection 
power for each assignment and each cell type, we observe a small but consistently higher 
detection power in the two most rare cell types—PGCs and Blood progenitors—for the 
2nd-order assignments (Additional file  3: Fig. S3B). Interestingly, the detection power 
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for these cell types, on average, decreases with higher neighborhood sizes, likely because 
rare cell types start to get “mixed” with other cells. Overall, we conclude that 2nd-order 
assignments increase the power to detect DE in rare cell types while preserving the same 
power for the more abundant cell types, and therefore is a more suitable choice for our 
framework.

Refinement of the neighborhood assignment

Scalability is an important aspect of any algorithm, and it is important to minimize the 
computing time for better usability. To decrease the computing time we want to mini-
mize the number of tests (i.e., the total number of neighborhoods) while ensuring that 
all cells are assigned to at least one neighborhood (i.e., for each cell, there is at least one 
neighborhood that it belongs to). In the original Milo approach, once the graph is con-
structed, the number of assigned neighborhoods is controlled by the parameter prop—
the initial proportion of cells selected as index cells (Methods). Since it is unclear how 
to select the lowest prop while ensuring “complete coverage” (i.e., maximize the prob-
ability that all cells are assigned while avoiding the computationally demanding task of 
constructing a neighborhood for each cell), we introduce post hoc neighborhood refine-
ment (Fig. 1, step 3), in which we first assign a high enough number of neighborhoods 
(we use prop = 0.2, but this can be increased by the user) to maximize the probability of 
the complete coverage, followed by sorting the neighborhoods in decreasing order of 
size and iteratively discarding neighborhoods where all cells are included in previously 
assigned neighborhoods (Methods). To test how post hoc filtering performs compared 
to selecting an optimal prop, we used the mouse gastrulation dataset introduced previ-
ously, constructed neighborhoods with prop = 0.2 (i.e., used 20% of cells as index cells), 
and performed post hoc filtering. Based on the number of neighborhoods after refine-
ment, we then selected a considerably lower prop that resulted in a comparable number 
of neighborhoods (without the refinement step). We observe that in the original, “unre-
fined” neighborhood assignments around 10% of cells are consistently unassigned to 
any neighborhoods, whereas all cells are assigned in the refined assignment (Additional 
file 3: Fig. S4).

miloDE enables sensitive and precise DE detection in simulated data

We next assessed the performance of miloDE in synthetically perturbed data. We 
used the same WT-ChimeraWT dataset introduced previously and perturbed the 
expression of 5 genes in one condition and in one selected cell type (henceforth 
“perturbed cell type”) (Methods, Fig. 2A). To ensure that the selected genes are not 
DE elsewhere on the manifold, we chose the genes from a pool of candidate genes 
that are not DE in any cell type. We assigned neighborhoods and performed miloDE 
testing using k = 20, 25, 30 (2nd-order kNN), and for each k generated 5 replicates, 
i.e., independent neighborhood assignments (Fig.  2B). Next, for each neighborhood 
assignment, we calculated the per neighborhood cell type purity, i.e., how many cells 
from a neighborhood have the perturbed cell type label. We define neighborhoods as 
“ground truth” DE if cell type purity for these neighborhoods exceeds a certain cell 
type purity threshold for the perturbed cell type. Finally, for any “perturbed” gene 
and any cell type purity threshold, we can calculate the detection power for this gene 
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(i.e., sensitivity and false discovery rate (FDR)) based on the overlap between “ground 
truth” DE neighborhoods and neighborhoods in which the gene is identified as DE. 
We then assessed how sensitivity and FDR change as a function of the cell type purity 
threshold (Fig.  2C). Consistent with the expectation that the probability of detect-
ing DE in a neighborhood scales with both the fraction of “altered” cells as well as 
the effect size, we observe that sensitivity and FDR increase as a function of both cell 
type purity threshold and estimated logFC. Specifically, when using a cell type purity 
threshold of 0.1 (i.e., all neighborhoods in which at least 10% of cells belong to the 
perturbed cell type are flagged as “ground truth” DE), we observe average sensitivity 
0.73 with logFC > 2. Therefore, we suggest that even a small fraction of perturbed cells 
in one condition is sufficient for a test result to be flagged as significant. Importantly, 
we report high sensitivity with well-controlled FDR (average FDR 0.06 with logFC > 2, 

Fig. 2 miloDE yields sensitive and precise detection in simulated data. A Schematic representing how 
detection power is estimated for each gene and cell type purity threshold. The top left panel illustrates 
single-cell data, embedded in UMAP space, with highlighted cell type, in which we will alter the counts. The 
top middle panel represents the “in silico” perturbation we introduce to the selected cells, and the top right 
panel represents neighborhood assignment, followed by per neighborhood quantification of whether the 
selected gene is identified as DE. The bottom left panel represents per neighborhood quantification of the 
cell type “purity.” The bottom middle panels represent how “ground truth” DE neighborhoods are selected 
based on cell type purity threshold. The bottom right panel illustrates the final quantification of DE detection 
(i.e., sensitivity + FDR). B Boxplots representing the distribution of cell type purity score across neighborhoods 
for each neighborhood assignment replicate and for k = 20, 25, and 30. Dashed lines correspond to selected 
cell type purity thresholds. C Boxplots representing how sensitivity and FDR change with estimated logFC, k, 
and cell type purity threshold. Each box represents data across 5 replicates for a single k 
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for the cell type purity threshold 0.1). Moreover, these trends are robust across differ-
ent levels of k and independent neighborhood assignments.

We next sought to compare the performance of miloDE to another cluster-free DE 
method Cacoa [29]. To do so, we generated several simulations, by varying the frac-
tion of the perturbed cell group (imitating the cases in which only a subset of cells 
or a sub-cell type exhibits DE) and the number of case and control replicates (Addi-
tional file 3: Fig. S5A,B, Methods). For miloDE, we performed several neighborhood 
assignments (k = 20, 25, 30; 5 independent assignments for each level of k). For each 
simulation, we selected several genes and added counts in silico to the case samples 
to create a set of “ground truth” DE genes with a wide range of the estimated effect 
size. In Cacoa, DE is estimated for every cell, and for each cell, the estimated logFC is 
returned alongside the z-score statistic (both raw and adjusted for the multiple test-
ing correction).

Since the outputs of miloDE and Cacoa are not directly comparable (miloDE 
returns statistics per neighborhood while Cacoa returns statistics per single cell), 
we approached the comparison in two ways. First, we aggregated the z-scores across 
the neighborhoods assigned with miloDE (using the neighborhood assignments with 
k = 25, for each neighborhood—average across all the cells from the neighborhood). 
In the absence of “ground truth” DE for the neighborhoods, we used two thresholds 
(0.1 and 0.25) for the perturbed group fraction purity (akin to cell type purity) to 
decide which neighborhoods contain enough cells to be considered “ground truth” 
DE. This allowed us to estimate the area under the curve (AUC) for each approach, 
perturbed gene, and the designated perturbed group purity threshold (we aggregated 
AUCs across different neighborhood assignments for the same k, Additional file  3: 
Fig. S6A). Overall, for miloDE, we observe high AUCs across all tested conditions 
(average AUC 0.95 for the purity threshold 0.1 and 0.99 for the purity threshold 0.25), 
except for a dataset with only 4 replicates in total and an extremely small percent-
age of cells (0.5%) being perturbed. Additionally, given the stochasticity in the neigh-
borhood assignments due to the random selection of index cells, we assessed the 
robustness of the performance for different neighborhood assignments for the same 
k (Additional file 3: Fig. S7). We observe highly similar performance across most of 
the conditions, with the exception of genes with low effect size in datasets with a very 
low number (below 5) of “ground truth” DE neighborhoods (Additional file  3: Fig. 
S7A). We suggest that in these settings, even a small change in the number of “ground 
truth” DE neighborhoods is expected to greatly skew the sensitivity of the detection.

As for Cacoa, we observe a striking difference when we compare the performance 
using raw or adjusted z-scores. Cacoa returns extremely high AUCs (higher than mil-
oDE) while using raw z-scores, reflecting the fact that the aggregation of z-scores 
across cells within a neighborhood is more sensitive to the fraction of perturbed cells 
in a neighborhood. However, the multiple testing correction in Cacoa appears to be 
highly sensitive to the overall fraction of perturbed cells, highlighting the challenging 
task of the correction across a large pool of tests (i.e., across every cell). We observe 
that for datasets with a perturbed fraction below 5%, adjusting z-scores in Cacoa 
eliminates any significance (AUC = 0.5), while AUCs in miloDE remain high even for 
the datasets with the smallest perturbed fraction.
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We also aimed to compare miloDE and Cacoa on a single-cell level. For this, we 
“decomposed” the output of miloDE to return the statistic for each cell. To do so, we 
estimated a z-score for each cell from miloDE output, by first transforming corrected 
across neighborhoods p-values into z-scores, and then, for each cell, taking the average 
z-score across all neighborhoods to which it was assigned (Additional file 3: Fig. S6B). In 
this comparison, cells with ground truth DE are directly known from the simulations. By 
design, Cacoa returns a z-score equal to 0 for cell/gene combinations with no expression, 
and so to perform a fairer comparison, we further estimated Cacoa’s performance using 
only case perturbed cells as ground truth DE or using all cells from the perturbed group 
as ground truth DE. We note that, as above, we observe the same significant drop in 
the performance of Cacoa while using adjusted z-scores. As for the raw z-scores, using 
only case perturbed cells as ground truth DE returns higher AUCs (average AUC 0.87 
for case cells against average AUC 0.72 for all cells); however, they are still lower than the 
AUCs estimated for “decomposed” output from miloDE (average AUC 0.93). We suggest 
that this can be potentially explained by the sensitivity of Cacoa to the inherited noise in 
single-cell data. In contrast, miloDE allows to estimate “local” DE while simultaneously 
controlling for such single-cell noise, thus providing a certain rigor in the analysis.

Finally, we compared the performance of miloDE to the pseudo-bulk approach (Addi-
tional file 3: Fig. S8, Methods). As expected, when the fraction of perturbed cells is small 
(below 5%), even a high effect size cannot be detected by the pseudo-bulk approach 
(Additional file 3: Fig. S8A). Moreover, even when a perturbed gene is detected as signifi-
cant for the datasets with a higher fraction of the perturbed cells, the reported effect size 
is considerably smaller than the designed effect size for the perturbed group (Additional 
file 3: Fig. S8B). Such genes might rarely get prioritized in real-life analyses since it is 
common to discard genes with the low effect sizes. On the other hand, while we estimate 
the per-gene sensitivity of miloDE detection (across neighborhoods), we observe that we 
can successfully detect most genes as DE in the neighborhoods in which we expect them 
to be DE (i.e., high sensitivity, based on the “perturbed group purity” threshold). We also 
observe that the reported effect sizes match considerably better the expected effect size 
than the pseudo-bulk approach.

Overall, we conclude that miloDE provides robust, sensitive, and precise DE detection 
across a wide range of effect sizes.

Identification of hemogenic endothelial‑like cells undergoing ectopic cardiomyogenesis 

in the absence of TAL1

Having established the good performance of miloDE, we applied it in the context of con-
tinuous developmental trajectories, where discrete clustering and cell type annotation 
is suboptimal. Tal1 (SCL) is a DNA-binding transcription factor that plays a key role in 
hematopoiesis, with mouse embryos that carry a double knockout of Tal1 dying around 
embryonic day E9.5 from severe anemia [42]. Previously, the molecular function of Tal1 
has been investigated using chimeric mouse embryos where Tal1 − / − mouse embry-
onic stem cells are injected into wild-type blastocysts; the wild type blastomeres are 
able to generate blood cells, meaning that the cell-intrinsic impact of Tal1 can be effec-
tively studied [41, 43]. As shown previously, in Tal1 − chimeras the Tal1 mutant cells are 
depleted of erythroid cells (Fig. 3A, Additional file 3: Fig. S9A). Additionally, a laborious 
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Fig. 3 miloDE is suitable for continuous trajectories and recovers a transient transcriptional state of 
hemogenic endothelia. A UMAP representing a manifold of chimera mouse embryos, colors correspond 
to the cell types contributing to a blood lineage, and facets correspond to whether cells carry a knockout 
of Tal1. B Neighborhood graphs covering hematoendothelial progenitors and endothelial cells, colored by 
enriched cell type (left), differential abundance (middle) and distance to blood progenitor cells in PC space 
(right). C Top left panel: Barplot representing how many genes are associated with each module. Top right 
panel: Distribution of fraction of significantly DE neighborhoods for each module. Bottom panel: Distribution 
of correlation between logFC and distance to blood progenitors for each module. D Jitter plot representing 
the relationship between gene modules and cell types. Each facet corresponds to one module, each 
point corresponds to one neighborhood. X-axis corresponds to a fraction of genes from the gene module 
that are significantly DE in the corresponding neighborhood, color corresponds to the average logFC. E 
Left: Neighborhood plot for the 1st gene module, size of the nodes correspond to the fraction of genes 
from the gene module that are significantly DE in the corresponding neighborhood, color corresponds to 
average logFC. Right: UMAPs representing hematoendothelial progenitors and endothelial cells, colored by 
representative genes from the 1st module that are associated with angiogenesis and lipoxygenase activity. 
F Left: Neighborhood plot for the 2nd gene module, size of the nodes correspond to the fraction of genes 
from the gene module that are significantly DE in the corresponding neighborhood, color corresponds to 
average logFC. Right: UMAPs representing hematoendothelial progenitors and endothelial cells, colored by 
representative genes from the 2nd module that are associated with cardiomyogenesis
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annotation of endothelial cells revealed that mutant cells that transcriptionally resemble 
hemogenic endothelia (which in the wild-type environment would have contributed to 
the second wave of hematopoiesis) do not express hemogenic markers and instead show 
signs of cardiomyogenesis.

To investigate if miloDE could provide further insight into this biological process, 
we first applied it to the whole manifold (i.e., all cell types) to identify which cell types 
show signs of extensive transcriptional changes upon the perturbation. To rank cell 
types by “degree of perturbation,” for each neighborhood, we calculated the number of 
DE genes as well as the number of DE genes that are highly specific to this neighbor-
hood (see Methods), followed by grouping neighborhoods by the cell type they primarily 
contained (Additional file 3: Fig. S9B,C). Reassuringly, neighborhoods that are enriched 
for cells directly contributing to the blood lineage (i.e., endothelial and hematoendothe-
lial progenitors) rank highest for both metrics (except for one neighborhood, contain-
ing a mixture of rare cell types that are only present in one condition, Additional file 3: 
Fig. S9D), with all other cell types showing a considerably lower degree of perturbation. 
This observation supports the expectation that while endothelia and hematoendothelial 
progenitors are present in both conditions in similar quantities, the absence of Tal1 still 
results in transcriptional changes that we can identify and characterize using miloDE.

To systematically assess how hematopoiesis is disrupted in cells contributing to the 
blood lineage, we next applied miloDE only to cells annotated as hemoendothelial pro-
genitors and endothelia (Fig.  3A). To characterize DE-patterns, we calculated various 
statistics on the assigned neighborhoods, including cell type enrichment, differential 
abundance and average distance to blood progenitors (Methods, Fig.  3B). To further 
explore DE patterns within the selected cells, we applied the WGCNA framework on 
logFC vectors and retrieved transcriptional modules of co-perturbation—sets of genes 
that show similar magnitude of DE across the neighborhoods and are thus likely to be 
co-regulated ([44–46], Methods). We identified 6 co-regulated modules, containing dif-
ferent numbers of genes (Fig.  3C). Most modules contain genes that are differentially 
expressed in coherent sub-regions of the manifold (Fig. 3C, Additional file 3: Fig. S10). 
Additionally, for several modules, the associated regions of DE (i.e., neighborhoods in 
which the majority of the genes from the module are DE) contain neighborhoods asso-
ciated with both endothelia and hematoendothelial progenitors (Fig.  3D). This likely 
reflects the limitation of using discrete clustering approaches to summarize the continu-
ous trajectory of endothelial maturation.

Next, we focused on the first two modules, which are “complementary” to one another. 
Specifically, for each gene, we calculated the correlation between its logFC and distance 
to blood progenitors (across neighborhoods), and based on it, we suggest that mod-
ule one contains genes that are downregulated (in Tal1 − cells) and module two con-
tains genes that are upregulated in the neighborhoods that are most proximal to blood 
progenitors. Importantly, their “location” in the manifold suggests that they may be 
enriched for cells that give rise to blood lineage (Methods, Fig. 3B–D). Consistent with 
this, we find that the first module contains the hematopoietic marker Itga2b [47, 48] as 
well as genes associated with angiogenesis and vasculature development (Rras, Hmox1, 
Npr1, and others; Fig. 3E, Additional file 4: Table S2) and the regulation of cell migra-
tion (Rhob, Dpysl3, Ldb2, Bst2, and others; Fig. 3E, Additional file 4: Table S2), which is 
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characteristic of the endothelial to hematopoietic transition [49]. The second module, 
containing genes that are upregulated in Tal1 − cells, is heavily enriched for genes asso-
ciated with cardiomyogenesis (Tnnt2, Tnni1, Bmp5, Nkx2-5, Gata5, and others; Fig. 3F, 
Additional file  4: Table  S2). This is consistent with the observations from the original 
study as well as previous reports suggesting an alternative, cardiac, cell fate specifica-
tion in mesodermal cells that lack Tal1 [41, 50–52]. The functional annotation of the 
first two modules, together with the fact that associated neighborhoods are transcrip-
tionally “close” to blood progenitors, strongly suggests that these neighborhoods consist 
of hemogenic endothelia that in normal circumstances give rise to blood cells during 
the second wave of hematopoiesis. In agreement with this, we observe a strong corre-
lation between the distance to blood progenitors and enrichment and DA. Specifically, 
neighborhoods that are most proximal to blood progenitors neighborhoods are sig-
nificantly enriched for Tal1 + cells, which in turn are “preceded” by the neighborhoods 
that are significantly enriched for Tal1 − cells. This pattern likely reflects the inability of 
Tal1 − endothelial cells to commit to a hemogenic identity, followed by the block in their 
development and acquisition of cardiac fate. Combined, our findings confirm the sen-
sitivity of miloDE to identify transient cell states in continuous manifolds, within and 
across individual cell types.

miloDE reconstructs a functionally meaningful timeline of macrophage activation 

during idiopathic pulmonary fibrosis (IPF)

To showcase the power of miloDE in the context of complex diseases and datasets, we 
next applied it to study transcriptional changes that arise in idiopathic pulmonary fibro-
sis (IPF). IPF is a severe, irreversible lung condition that starts with persistent inflam-
mation of epithelial cells, which in turn triggers an inflammatory response resulting in 
constant wound healing and scarring of the epithelial tissues of the lungs (fibrosis) [53].

At the cell type level, macrophages are one of the key players in IPF. Macrophages are 
phenotypically plastic cells, with their transcriptional make-up being highly depend-
ent on their environment and the external stimulant. Consistent with this, their func-
tion and role in fibrosis changes with disease progression [54–56]. At the early stages 
of the disease, characterized by the inflammation of epithelial cells lining the airways, 
“classically activated” macrophages are observed (Fig. 4A). As a direct response to the 
inflammation, these macrophages are activated by Interferon-gamma (IFN-γ) or lipopol-
ysaccharides and produce pro-inflammatory cytokines. In turn, a persistent inflamma-
tory response triggers aberrant wound healing and fibrotic remodeling, associated with 
“alternatively activated” macrophages that can be activated by IL-4/13.

On a molecular level, one axis of macrophage variability in IPF is associated with 
the expression of the fibrotic marker Spp1 [8, 57, 58]. The abundance of an Spp1-high 
subpopulation has been repeatedly observed in IPF patients; however, Spp1-high mac-
rophages also exist in healthy patients (albeit at a lower abundance and absolute Spp1 
expression). We propose that miloDE is a suitable tool to study complex DE patterns 
with respect to various axes of disease-driven variability such as DA (by paired Milo—
miloDE analyses) or Spp1 expression. Additionally, while using miloDE output, we can 
employ clustering algorithms to characterize various “co-regulated” DE patterns arising 
in this population of cells during disease progression.
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To this end, we analyzed an existing lung atlas available within Azimuth, considering 
four datasets that contain cells from healthy and IPF donors (Fig. 4B). In each of these, 
we only considered cells annotated as macrophages. First, we assessed DA across neigh-
borhoods within the macrophage manifold, observing (as expected) differences in abun-
dance that are highly correlated with average Spp1 expression (Fig. 4C), suggesting that 
the logFC of DA can be used as a proxy for disease progression.

We then applied miloDE and characterized different DE patterns by applying Lou-
vain clustering to group genes upregulated in at least 25% of neighborhoods into gene 
sets, using their logFC values across neighborhoods as a feature vector ([59], Methods). 
This analysis identified 5 gene sets (Fig.  4D, Additional file  5: Table  S3); interestingly, 
neighborhoods strongly associated with most of the gene sets were enriched for spe-
cific stages of disease progression (Fig.  4E, first panel). Specifically, all “neighborhood 
markers” for the IPF-1 gene set have positive logFC-DA (enriched in healthy donors), 
and “neighborhood markers” for the IPF-2 and IPF-3 gene sets have logFC-DA around 0 
(neither enriched for IPF nor healthy donors). “Neighborhood markers” for the remain-
ing gene sets are mainly enriched in IPF donors. To further characterize gene sets sta-
tistically with respect to DA, we assigned each gene into one of three groups: DE in 
neighborhoods that are enriched for IPF cells, DE in neighborhoods that have both 
IPF and healthy cells in comparable amounts, and DE in both groups of neighborhoods 
(Fig.  4E, second panel; Methods). We observe that gene sets that are associated with 
neighborhoods that are strongly enriched for IPF cells (i.e., IPF-4 and IPF-5) mostly con-
tain genes that are identified as DE predominantly in IPF-enriched regions of the mani-
fold, whereas the first three sets contain a mixture of genes from different groups.

Of note, even though we focused our analysis on genes that are upregulated in at 
least 25% of the neighborhoods, ~ 21% of the genes that we used for Louvain clustering 

(See figure on next page.)
Fig. 4 miloDE enables sufficient resolution to discover macrophage-specific gene sets, specific for different 
points of the IPF progression. A Schematic cartoon (based on a figure from Zhang et. al, 2018) representing 
the phenotypical heterogeneity of activated macrophages upon the response to injuries in epithelial tissues. 
B Barplot representing donor composition across different datasets and conditions. C Top left panel: The 
neighborhood graph covering macrophages in both healthy and IPF patients, each node is colored by 
estimated differential abundance. Bottom left panel: The neighborhood graph covering macrophages in 
both healthy and IPF patients, each node is colored by average Spp1 expression. Middle right panel: High 
negative correlation (across neighborhoods) between differential abundance and average SPP1 expression 
reflects enrichment of SPP1 fibrotic macrophages in IPF patients. D Neighborhood graphs representing 
transcriptional profiles for IPF-upregulated gene sets. For each gene set, the size of the nodes corresponds 
to the fraction of genes from the gene set that are significantly DE in the corresponding neighborhood, and 
color represents the average logFC. E First (leftmost) panel: Boxplots representing the distribution across 
“marker” neighborhoods for each cluster (y-axis) with respect to logFC of the differential abundance (x-axis). 
The asterisks signify a significant difference between groups of gene sets (p-value < 0.05, Wilcoxon rank test). 
Second panel: Barplot representing a composition of different gene categories across gene sets. Third panel: 
Barplots representing whether genes are detected as DE in the pseudo-bulk (across whole cell type) testing. 
Fourth panel: Boxplots representing the distribution of the fraction of significantly DE neighborhoods for 
each gene, grouped by gene set. F Dotplot representing, for each gene set, its aggregated DE pattern along 
the fibrotic phenotypical progression (fibrotic progression is estimated from logFC of differential abundance 
testing). Color of the dots corresponds to aggregated average logFC and the size of the dots corresponds to 
the average fraction of genes from the gene set that are significantly DE in the corresponding neighborhood. 
G A heatmap representing functional annotation across gene sets. Y-axis corresponds to enriched gene 
ontologies, x-axis corresponds to the gene sets, and color corresponds to the significance of the gene 
ontology (GO) enrichment for the corresponding cluster
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were identified as not significant when DE was performed on the pseudo-bulk level 
(38 out of 176 genes, FDR > 0.1, across all macrophages), and this under-calling is par-
ticularly prominent in the first two gene sets (Fig. 4E, third panel; Additional file 3: Fig. 
S11). This “undercalling” is likely due to these genes being DE only in a subset of mac-
rophages (Fig. 4E, fourth panel). Additionally, we systematically observe that the effect 
size detected by miloDE (averaged across significantly DE neighborhoods) is higher than 
the effect size estimated from the pseudo-bulk approach (Additional file  3: Fig. S11). 
Among these genes are members of the immunoglobulin family (Iglc2, Ighg1, Ighg3, 
Ighg4), genes associated with the defense response against bacteria (Plac8, Defb1), and 
chemokine response genes (Ccl4, Ripor2). Overall, we detect that around 1000 genes 
that are significantly DE in at least 5% of neighborhoods are not detected as significant 
while using the pseudo-bulk approach (Additional file 3: Fig. S12A, Methods). On the 
other hand, for 1400 genes that are identified as significantly DE with the logFC > 0.5 

Fig. 4 (See legend on previous page.)
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while using the pseudo-bulk approach, we do not detect any significant neighborhoods 
with miloDE. We suggest that there are several potential factors contributing to this dis-
crepancy. On the one hand, the DE detection power of miloDE is limited by the number 
of cells in the neighborhoods as well as the burden of multiple testing correction across 
neighborhoods, and these aspects can be “partially salvaged” by aggregating more cells 
as inherently done within a pseudo-bulk approach. On the other hand, pseudo-bulking 
across many cells can be affected by the sporadic high counts in a limited and randomly 
distributed (across latent space) number of cells, and using miloDE will at least partially 
control for this (since each neighborhood is less likely to get a sufficient number of such 
sporadically expressed cells). To assess how likely it is that detected genes are sporadi-
cally expressed, we split genes detected as DE while using pseudo-bulk in two classes 
based on whether or not we detect any significantly DE neighborhoods in miloDE (cor-
rected across neighborhoods p-value < 0.1), and for each gene, we calculated in how 
many healthy and disease cells we detect an expression. Strikingly, we observe that genes 
that are “not detected” in miloDE (i.e., 0 significant neighborhoods) show a considerably 
smaller number of expressed cells (Additional file 3: Fig. S12B). This is consistent while 
controlling for the logFC reported from the pseudo-bulk analysis. On the other, to esti-
mate whether genes that are not detected in miloDE “showed signs” of DE (even though 
not detected while using corrected across neighborhoods p-values < 0.1 criteria), for 
each gene we calculated in how many neighborhoods we observe raw p-value < 0.05 (we 
denote those as “weakly DE”). We then split the 1400 genes (detected as DE in pseudo-
bulk but no significant neighborhoods in miloDE) into several bins based on how many 
neighborhoods are weakly DE and in how many cells we detect the expression (Addi-
tional file 3: Fig. S12C). We observe two main classes of genes: genes with a very low 
number of cells with expression (< 300, 0.15%) and no weakly DE neighborhoods, and 
genes with a rather high number of expressed cells (> 1000) and more than 2% of weakly 
DE neighborhoods. We also observe an intermediate class of genes with a small number 
of weakly DE neighborhoods and a low number of expressed cells (200–1000). Interest-
ingly, genes with a very low number of expressed cells show considerably higher effect 
size, thus identifying a burden of sporadic expression as an important limitation in the 
pseudo-bulk approach. Finally, it is also possible that genes marking differentially abun-
dant cell states (e.g., Spp1-high cells against Spp1-low cells) may falsely be detected as 
DE while using a pseudo-bulk approach. To quantify the “DA marking potential” for each 
gene, we split cells into Spp1-high and Spp1-low populations, and performed pseudo-
bulk DE between these groups, separately for healthy and disease cells (Additional file 3: 
Fig. S12D, Methods). Therefore, genes with higher absolute logFC in one or both tests 
are likely to be DE between DA sub-regions. As before, we split genes detected as DE 
in the pseudo-bulk analyses into two classes based on whether or not we detect any sig-
nificantly DE neighborhoods in miloDE. However, we do not observe that genes that are 
not identified in miloDE show higher “DA/Spp1-marking potential” (Additional file 3: 
Fig. S12E), suggesting that in this particular dataset, this factor does not contribute to 
the discrepancy between pseudo-bulk DE and miloDE. Combined, we suggest that both 
sporadic expression and limitation of testing for a low number of cells contribute to dif-
ferences in DE detection between miloDE and pseudo-bulk. We want to emphasize that 
miloDE is not intended as a substitute for the standard pseudo-bulk approach. Instead, 
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a joint analysis using both levels of granularity provides the most comprehensive and in-
depth read-out of the alternative regulation of the disease.

Finally, to systematically assess the relevance of each gene set along the pheno-
typic progression of fibrotic macrophages, we used the logFC-DA to combine neigh-
borhoods into 50 bins, and calculated the average fraction of significant genes and 
average logFC (Fig.  4F). The first 2 sets contain genes that when combined, are 
“uniformly” DE (both for the average logFC and a fraction of genes being DE) along 
DA axes (Fig. 4F; Additional file 3: Fig. S13). Next, the IPF-3 gene set also contains 
genes that are systematically and strongly (in terms of effect size) DE across all mac-
rophages, with the effect size steadily increasing with the disease progression. This 
set contains a few of the known fibrotic macrophage markers such as Fn1, Mmp7, 
Mmp10, Ppbp, Il1rn and Spp1 [8, 57]. Finally, IPF-4 and IPF-5 contain genes that are 
DE specifically in the later stages of the disease (particularly IPF-5), with IPF-4 con-
taining some of the other known fibrotic markers such as Csf1, Ctsk, Gpc4, Mmp9, 
and Sparc.

When we perform functional annotation of the gene sets (Fig. 4G), we observe the 
enrichment of different biological processes in different gene sets, with the overall 
agreement with the previously suggested functional “timeline” of macrophage acti-
vation. IPF-2 set shows strong enrichment for genes associated with lipid biosyn-
thetic process (Cyp51a1, Msmo1, Dhcr24) and “initial” antibacterial defense (Defb1, 
Wfdc2). Lipid metabolic reprogramming is suggested to play a role in the onset of 
IPF, and targeting lipid metabolism is potentially a relevant therapeutic strategy for 
IPF [60]. In addition, the response against pathogens is consistent with the observa-
tion that pathogenic bacteria are one of the drivers of IPF progression [61, 62]. Inter-
estingly, although IPF-1 and IPF-3 exhibit distinct patterns along the DA axis, they 
“share” most of the enriched pathways, including some of the hallmarks of early and 
mid fibrosis. Thus, both IPF-1 and IPF-3 contain genes associated with inflamma-
tory response and chemokine signaling (Ccl23, Ccl4, Cybb in IPF-1 and Ccl24, Il1rn, 
Ccl7, and Ppbp in IPF-3). We also detect enrichment for neutrophil degranulation 
(Plac8, Itgam, Cybb, S100P, and Retn for IPF-1 and Chit1, Clec5a, Chi3l1 for IPF-3), 
consistent with the notion that neutrophils are among the first immune cells to be 
recruited for the site of inflammation [63]. Moreover, Il1rn and chemokines Ccl23, 
Ccl4, and Ccl24 are associated with cellular response to interleukin-1, coherent with 
the observation that classically activated macrophages release IL-1beta chemokines 
[55, 64]. In contrast to the first 3 gene sets, IPF-4 and IPF-5 are associated with the 
more fibrotic phenotypes, specific to later stages. As mentioned previously, most of 
the previously suggested fibrotic markers belong to IPF-4, and consistent with this, 
IPF-4 is associated with the hallmark fibrotic processes such as platelet degranu-
lation (Sparc, Timp3, A2M), extracellular matrix disassembly (Mmp9, Ctsk) and 
macrophage differentiation (Csf1, Mmp9). Finally, IPF-5 contains genes marking 
pathogenic, late-stage fibrosis such as wound healing (Rhoc, Arhgap24) and collagen 
fibril organization (Col4a2, Itga6, Rhoc). Combined, we illustrate that miloDE ena-
bles the discovery of subtle differences in gene regulation, with potentially impor-
tant implications for how scRNA-seq data can be used to study the early stages of 
disease. 
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Discussion and conclusions
The amount and diversity of scRNA-seq data is revealing ever more complex and subtle 
patterns that characterize processes ranging from normal development through to the 
onset and progression of disease. While broadly applied clustering strategies can provide 
high-level annotation of the heterogeneity within individual organs and tissues, their dis-
crete nature is suboptimal for analyzing more granular changes in expression, including 
in the context of continuous trajectories. miloDE addresses this challenge in the context 
of testing for differential expression. Leveraging overlapping cell neighborhoods over-
comes the tedious, frequently inaccurate, and time-consuming step of clustering and cell 
type annotation. Consequently, miloDE allows an in-depth characterization of various 
DE patterns, both across the whole dataset and within individual cell types. Given the 
rapid advances of extensive cohort atlas studies and large-scale CRISPR screens, miloDE 
is a timely computational tool, which successfully leverages a large number of replicates 
to enable sensitive and specific DE detection, while accounting for complex experimen-
tal designs.

While miloDE approximates gene regulation as a more continuous function of the 
manifold, it is important to acknowledge that it leverages the same principle of cell 
grouping as standard per cell type approaches. Therefore, in cases where a manifold is 
comprised of fairly distinctive, homogenous cell types, high-resolution clustering cou-
pled with a per bulk DE approach will likely yield very similar results to miloDE. Simi-
larly, in the case of continuous trajectories, a per bulk approach combined with the 
inclusion of a continuous covariate representing a pseudotime (or, perhaps, a more com-
plex and bespoke approach such as tradeSeq[65]) might also yield similar results and 
resolution to miloDE. Moreover, differential pseudotime analysis such as Lamian and 
others can provide the insights for how certain lineages are affected, both in abundance 
and expression, during the disease or perturbation [66, 67]. While powerful in some 
cases, the trajectory-based branch of methods assumes that the manifold is continuous. 
In reality, a single-cell manifold is typically comprised of an intricate and complex com-
bination of discrete and continuous cell types, and, moreover, it is often unclear whether 
the annotated cell types contain further heterogeneity. Combined, we suggest that mil-
oDE allows the user to overcome laborious and bespoke analysis for each individual cell 
type using an elegant and straightforward approach.

Of note, we want to highlight two scenarios in which we believe miloDE, coupled 
together with Milo, is a powerful discovery tool. The first scenario is exemplified in 
our Tal1 − analysis and it represents cases in which a disruption of the developmental 
process leads to a severe DA and depletion of cells of a certain cell type (which can be 
detected by Milo). We suggest that such depletion is often downstream of more subtle 
transcriptional changes that can be captured with miloDE. In addition, in clinical con-
texts, by coupling the analysis of DE and DA, it is possible to build a functional timeline 
for the disease progression and identify potential drug targets that are likely to be alter-
natively regulated early in the disease. Overall, we suggest that joint analysis by Milo 
and miloDE provides a powerful framework to characterize transcriptional changes and 
describe biological processes that are happening in the cells upon a perturbation.

Since miloDE leverages the principle of cell grouping, it is prone to similar pitfalls 
as standard per cell type approaches. To enable sensitive DE detection, we require 



Page 19 of 39Missarova et al. Genome Biology          (2024) 25:189  

that neighborhoods exceed a certain size, which in turn can compromise the homoge-
neity of the cells in the neighborhoods. Within miloDE, we address this by introduc-
ing a 2nd-order kNN graph representation that provides an improved estimation for 
the local graph density. However, given the target number of cells per neighborhood, 
it is impossible to guarantee that transcriptionally distinct cells will not get assigned 
to the same neighborhood. This challenge can be partially mitigated by focusing on 
genes with strong effect sizes and by decreasing k.

Another important limitation that stems from using overlapping neighborhoods 
is the potential propagation of false positives. Specifically, while this approach over-
comes limitations associated with discrete clustering, single cell(s) with an altered 
transcriptional makeup can dominate DE results in multiple tested groups. In other 
words, if even one cell has an extremely high (potentially sporadic) expression of a 
certain gene, some of the tested groups including this cell might be indicated as DE 
for this sporadic gene. Importantly, the issue scales with the increase in k (which 
results in a higher degree of overlap between the neighborhoods), but it is also par-
tially relieved by the neighborhood refinement step and can further be controlled by 
using a larger number of biological replicates. Another inevitable source of false posi-
tives is the extensive number of tests we perform—while the relative number of false 
positives (after multiple testing correction) is likely to be low (Fig.  2), the absolute 
number can still be substantial. Importantly, while individual gene-neighborhood 
combinations might result in false identification of DE and will require a manual 
examination and orthogonal verification, we suggest that the true exploratory power 
of miloDE lies in its ability to identify subtle and local patterns of co-regulated genes 
(thus minimizing the input from random FPs).

In this work, we adapted two readily available approaches for identifying DE-pat-
terns—WGCNA and Louvain clustering. While they both have proved useful and 
have aided in biological discoveries, it is important to highlight their limitations. 
The WGCNA-based approach is an exclusive process meaning that only a fraction of 
genes will be assigned to any module, and therefore it is possible that interesting DE 
patterns will be excluded. In addition, the WGCNA-adapted approach to detect co-
regulated gene modules is highly sensitive to input data, thus impeding the interpre-
tation of the modules. On the other hand, the Louvain-adapted approach is inclusive 
of all input genes. However, clustering can be driven by a handful of neighborhoods, 
with the rest of the manifold being incoherently DE within individual gene clusters, 
thus rendering the characterization of the clusters challenging. Nonetheless, the com-
bination of the suite of analysis methods allows for a flexible and tailored interpreta-
tion of the miloDE output.

Finally, moving forward, we suggest that in parallel with the emergence of novel 
cluster-free computational approaches for comparative analysis, it is crucial to con-
template how we will handle and interpret such complex outputs. One, nearly 
philosophical, conundrum is the decoupling between differential abundance and 
expression. While a mild change in expression for a certain gene in a certain tran-
scriptional region can be detected as DE, it is possible that a stronger change in the 
expression will lead to the transition between transcriptional changes (i.e., DA). How-
ever, this depends on whether the gene in question contributed to the embedding in 
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the first place. miloDE is uniquely able to analyze DE and DA in parallel by combining 
the original Milo approach with miloDE. In sum, we believe that miloDE is a good 
stepping stone toward continuous comparative analysis, which is where the field of 
single-cell analysis is heading.

Methods
Code availability

Scripts to generate data and to perform the above analysis are available at https:// github. 
com/ Mario niLab/ miloDE_ analy sis. It also contains the folder session_info listing all 
package versions. R Version is 4.2.3.

miloDE pipeline

miloDE is a cluster-free Differential Expression (DE) framework that leverages a graph 
representation of single-cell data. In the first step of the pipeline, miloDE performs the 
assignment of cells to (overlapping) neighborhoods; each neighborhood contains neigh-
boring cells, estimated from the graph representation. Once neighborhoods are assigned, 
DE testing is carried out for each neighborhood individually, and for each neighborhood 
and gene that was tested in this neighborhood, we return a logFC and p-value. Once the 
testing is concluded, we perform multiple testing correction in two directions: for each 
gene, across tested neighborhoods, and for each neighborhood, across tested genes. The 
final output consists of 4 [gene × neighborhood] matrices, containing logFC estimated, 
uncorrected p-value, corrected p-value across neighborhoods, and corrected p-value 
across genes.

Below we provide more details for each step:

1. Neighborhood assignment

1. Input

 As input, the algorithm takes a SingleCellExperiment object [68] containing a 
count matrix for all the samples combined. We require that the colData slot con-
tains entries that identify sample IDs (used as replicates in DE testing) and con-
ditions to be tested. We also require that a pre-calculated joint latent embedding 
is provided in the reducedDim slot.

2. Graph construction and neighborhood assignment
 We use 1st- or 2nd-order kNN graphs to represent transcriptional relationships 

between cells and assign neighborhoods (the order of the graph is specified by 
the user, default is 2). We define a 1st-order kNN graph as a standard kNN-
graph, and the 2nd-order kNN graph as a 1st-order kNN graph augmented with 
edges between cells if they share at least one cell within their neighbors. Neigh-
borhoods with the center cell c are defined as all cells (including c) that are con-
nected with it by the edge. To define neighborhoods on a graph representation, 
we first select index cells (or cells that we will use as neighborhood centers in 
order to assign neighborhoods). Since the computational complexity of identify-
ing index cells scales with the average density of the graph, and the 2nd-order 

https://github.com/MarioniLab/miloDE_analysis
https://github.com/MarioniLab/miloDE_analysis
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graphs on average are anticipated to be dense, we perform graph assignment 
and search for the index cells in parallel. Specifically, neighborhood assignment 
procedure goes as follows:

 1. We construct 1st-order (i.e., standard) kNN graph on all the cells, with k = 
min(50, k), where k is an input of the algorithm and has to be provided by the user.

2. We then use this graph to select index cells using the waypoint sampling algorithm 
used in Milo2.0 [30, 69–71]. Specifically, we first select a random subset of cells, and 
the proportion of selected cells is defined by the parameter prop during the call of 
the corresponding function (default = 0.2). Then for each randomly selected cell (c), 
we extract the induced subgraph that consists of c and all the neighbors of cell c(and 
all the edges between the vertices of the subgraph). We then calculate the number of 
3-step cyclic random walks (triangles), and we select the vertex with the highest num-
ber of triangles as an index cell. Note that the number of selected index cells might 
be smaller than the number of initially randomly selected cells since following the 
described procedure, we can select the same index cell for several initially selected 
cells. This procedure allows to define a representative set of cells in the manifold 
rather than a simple random selection of the cells. Index cells are recorded, and we 
will use them later (step 5) as the neighborhood centers.

3. Once index cells are selected, we recalculate the 1st-order kNN graph on all the cells 
if k > 50. If k <= 50, we use 1st-order kNN graph constructed in the 1st step. We note 
that implement step 1 first to create a “shallow” graph (i.e., with low k) on all of the 
cells that allows for fast implementation of step 2.

4. If order = 2, we have an additional step 4 in which add edges between vertices of the 
graph from step 3 if they share at least one vertex as their neighbor.

5. Once the graph is constructed (graph from step 3 for the 1st-order kNN or step 4 
for the 2nd-order kNN), for each index cell selected in the 2nd step, we assign all its 
neighbors (and index cell itself ) into a single neighborhood. In this way, each neigh-
borhood is bijectively associated with its index cell.

6. As an output of this step, we return the [cell × neighborhood] matrix with boolean 
identifiers of cell inclusion in the neighborhood. Note that cells, including index cells, 
might belong to several different neighborhoods. It is also possible that some cells are 
not “assigned” (i.e., none of the assigned neighborhoods contain the cell).

3. Neighborhood refinement
 Graph refinement is optional, but a recommended step, during which we 

identify neighborhoods that can be discarded without any cells being unas-
signed to at least one remaining neighborhood. The graph refinement process 
represents a case of the NP-hard “set cover problem.” Accordingly, we use a 
heuristic greedy implementation to solve the cover problem provided by the 
Rcpp::greedySetCover function [72, 73]. Within this implementation, we use 
neighborhoods as sets and cells as elements that can belong to the sets (i.e., a 
given cell is included in a given neighborhood). In this implementation of “set 
cover problem,” sets are first sorted in decreasing order of their power (i.e., how 
many elements they contain), and then iteratively a set is included if it includes 
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at least one element (i.e., cell) that does not belong to any previously included 
sets. In the context of miloDE neighborhood refinement, we first assign an 
excessive number of neighborhoods to maximize the probability that all cells are 
assigned to at least one neighborhood; we use neighborhoods as sets and cells as 
elements.

2. DE testing

1. Selection of neighborhoods to be tested

 As an optional step of the algorithm, we perform a selection of neighbor-
hoods that show signs of “expression shifts” and therefore are recommended 
to be tested for DE. Discarding “unperturbed” (i.e., with no signs of “expression 
shifts”) neighborhoods is computationally beneficial for downstream steps of the 
pipeline as well as facilitating the burden of multiple testing correction. To iden-
tify potentially “perturbed” neighborhoods, we adapt Augur, an approach that 
was originally designed to rank cell types by the degree of their perturbation in a 
specified condition [74].

 Specifically, for each cell type, Augur builds a Random Forest classifier that pre-
dicts the condition to which a cell belongs, and for each cell type returns AUCs. 
To adapt Augur in the context of miloDE, for each neighborhood we return the 
AUC from the classifiers implemented by Augur. The user can then select their 
own AUC threshold to decide which neighborhoods should be supplied further 
for DE testing. We performed simulations and assessed how AUC distribution 
depends on the existence of DE between cell groups (Additional file 1: Supple-
mentary Note 3). Note that our simulations show that in the presence of unbal-
anced batch effects nearly all neighborhoods, regardless of whether simulations 
contained DE genes or not, had AUC > 0.5 (which is a recommended default 
value for the AUC threshold). Since this step can be time-consuming, we rec-
ommend including it only in cases where the batch effect is anticipated to be 
minimal.

2. Selection of genes to be tested
 Following the same rationale of a priori discarding uninformative tests to 

reduce computing time and facilitate the burden of multiple testing correc-
tion, we provide an option to select genes to be tested. To do so, we employ 
edgeR::filterByExpr to determine which genes have sufficient counts to be con-
sidered for DE testing. The user can tune the minimum count required for at 
least some samples by changing the min_count parameter (default is 3). This 
procedure is performed for each neighborhood separately, which might result 
in different sets of genes being tested within each neighborhood. Note that min_
count can be set to 0, and in this case, no gene selection will be performed.

3. DE testing within neighborhood
 To carry out DE testing, we use quasi-likelihood testing from edgeR, which was 

originally designed to perform DE testing on bulk RNA-seq. Specifically, to per-
form DE within each neighborhood, the algorithm proceeds as follows:
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 • We filter out all samples that contain less than min_n_cells_per_
sample parameter, specified by the user (default is 3).

• For each sample present in the neighborhood (i.e., biological replicate), we 
aggregate counts to create pseudo-bulks that mimic bulk RNA-seq data.

• We select genes as described above, and using total sum counts across 
selected genes as a proxy for library size, calculate offset factors 
(edgeR::calcNormFactors) to correct for compositional biases.

• We use the experimental design provided by the user. We allow the incor-
poration of covariates that are stored in the metadata of the count matrix.

• We estimate the Negative Binomial dispersions as a function of gene abun-
dance (edgeR::estimateDisp).

• We estimate quasi-likelihood dispersions (edgeR::glmQLFit). The quasi-
likelihood dispersion models variability of the per gene estimated vari-
ances.

• We perform DE testing using a generalized linear model 
(edgeR::glmQLFTest). As an output, we get a table, where rows correspond 
to the tested genes, and columns contain estimated logFC, p-value, and 
FDR (i.e., p-values corrected across tested genes).

4. Multiple testing correction across neighborhoods
 Once tests for each neighborhood are performed, for each gene we correct cal-

culated p-values across the tested neighborhoods. To do so, we adapt the spatial 
correction approach originally introduced in CYDAR [75] and further devel-
oped in Milo [30]. Specifically, we leverage the graph representation used to 
assign cells to neighborhoods, and apply the weighted Benjamini-Hochberg cor-
rection approach, where p-values for each neighborhood are weighted by the 
reciprocal of their local density. As a proxy for the local density for each neigh-
borhood, we use a weighted sum across all cells in the neighborhood, where 
weights are calculated as the number of neighborhoods to which a cell belongs. 
Note that graph-based estimation for neighborhood density was developed after 
the original Milo publication and is available in the Bioconductor version 3.16 
(BiocManager::install(version = “3.16”)). Finally, we only perform the correction 
across the neighborhoods for which testing for the gene was carried out. For 
neighborhoods for which testing was not performed, we return NaN.

Above we described each step of the pipeline. To facilitate the appropriate use of 
the algorithm, we combined the recommendations for the optimal selection of the 
hyperparameters of the algorithm (Additional file 3: Fig. S14 and Additional file 4: 
Table S2). We suggest that the most appropriate parameters to consider are the dif-
ferent order-k combination which define the distribution of neighborhood sizes 
and thus impact the sensitivity of DE detection. Additional file 4: Table S2 provides 
a reference table that allows DE to be estimated as a function of effect size, num-
ber of tested cells and replicates. Additionally, to estimate how neighborhood size 
distribution depends on order-k for any specific dataset, a corresponding function 
miloDE::estimate_neighbourhood_sizes is available within the R package.
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Analysis of interplay between differential abundance (DA) and differential expression (DE) 

in “unsupervised” and “supervised” embedding schemes using simulations

1. Base simulation

 To generate base simulation (i.e., no DE and no DA between the conditions), we used 
the R package splatter that simulates scRNA-seq counts with the desired properties 
[76]. To estimate parameters for the simulations, we used WT mouse embryo data 
from a single sample of developmental stage E8.5. We restricted the analysis to 1000 
highly variable genes (parameters are listed in Additional file 6: Table S4). To simulate 
two cell types, we simulated two cell groups with 10% of genes being DE. Henceforth 
we refer to these genes as genes contributing to shared variance or “shared” genes. 
In total, we simulated 4 batches (i.e., replicas), and split batches in half, with one half 
being assigned as condition A and another half assigned as condition B. Finally, for 
genes that are originally DE in the base simulation (i.e., genes that contribute to the 
difference between the cell types), we calculated the average expression level in cell 
type 1 and cell type 2, and we discarded genes with absolute difference between aver-
age levels of expression lower than 0.5. To calculate log-normalized counts, we used 
scuttle::logNormCounts [77].

2. “Perturbed” simulations
 To generate perturbed simulations, in which we introduce DE and/or DA between 

two conditions, we altered counts for cells from cell type 1 and condition B. We con-
trolled this synthetic perturbation such that altered cells from cell type 1 will acquire 
a transcription profile more similar to those from cell type 2. Specifically, we varied 
the number of altered “not shared” genes as well as the magnitude of the expres-
sion shift for all “shared” genes. To select an appropriate shift for “shared” genes (and 
thus enable cells from cell type 1 to “move” toward cells from cell type 2), for each 
“shared” gene we calculated the median of expression in cell type 1 and multiplied 
it by the effect size of their initial DE (i.e., the difference between cell type 2 and cell 
type 1) multiplied by the magnitude of the shift (a variable that we varied between 0 
and 1). This calculated value is referred to as range, and for each “perturbed” cell we 
manually added random counts, sampled from the vector c(0, range). Intuitively, if 
the magnitude of the shift is 0, then no perturbation is applied. On the other hand, if 
the magnitude of the shift is 1, most cells from cell type 1 acquire an average pheno-
type of cells from cell type 2. For a magnitude of the shift between 0 and 1, perturbed 
cells will acquire an intermediate phenotype between cell type 1 and cell type 2. To 
alter “not shared” genes, for each “not shared” gene, we calculated its range as its 
base expression in cell type 1 multiplied by 0.5. In total we used a 2-dimensional grid: 
for the magnitude of shift for all “shared” genes, we used a grid c(0, 0.02, 0.05, 0.1, 
0.15, 0.2, 0.4, 0.5, 0.75, 1), and for the number of altered “not shared” genes we used a 
grid c(0, 2, 5, 10, 15, 20, 30, 40, 50, 100). To calculate log-normalized counts, we used 
scuttle::logNormCounts.

3. “Supervised” and “unsupervised” embeddings
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 To perform “supervised” and “unsupervised” embedding in this controlled setting, 
we calculated principal component analysis (henceforth PCA) either only on “shared” 
genes (for the “supervised” embedding) or on all genes (“unsupervised” embedding). 

4. Neighborhood assignment
 For each dataset and embedding, we generated a kNN graph (k = 100, order = 1) 

and assigned cells to neighborhoods. We then discarded redundant neighborhoods 
as described above. Additionally, to assess whether the difference between embed-
ding approaches and perturbations is robust to neighborhood assignment, we per-
formed 3 independent neighborhood assignments.

5. DA analysis
 We used Milo [30] to assess the degree of DA in each dataset, neighborhood assign-

ment, and embedding type. We then calculated the fraction of neighborhoods with 
SpatialFDR lower than 0.1.

6. DE analysis
 We used miloDE to assess the degree of DE in each dataset, neighborhood assign-

ment, and embedding type. We then calculated the average fraction (across all per-
turbed “not shared” genes) of neighborhoods with a corrected across neighborhoods 
p-value < 0.1.

Analysis of the effect of embedding approaches on miloDE performance

1. Dataset

 We use the mouse gastrulation scRNA-seq data from [41]; data downloaded using 
the MouseGastrulationData() package (Griffiths and Lun, 2022). As WT cells, we use 
all samples from the E8.5 developmental stage. As ChimeraWT cells, we use all cells 
from the WT chimera (i.e., no knock out is introduced) mouse embryos (which are 
also from developmental stage E8.5). Next, we concatenated counts from both exper-
iments, and embeddings were calculated on log-normalized counts (in a batch-aware 
manner, using batchelor::multiBatchNorm [34]).

2. Embeddings
 We analyze several embedding approaches, covering several widely used methods, 

both “unsupervised” and “supervised” settings, and different selections of highly 
variable genes (HVGs). Specifically, we used MNN [34], Azimuth [4], scVI [35] and 
scANVI [78]. We also implemented a “supervised” version of MNN, and for the 
“supervised” versions of scVI and scANVI, we used scArches [5]. For the “unsuper-
vised” version of Azimuth we used only its first step of anchor-based integration [79] 
while using all the samples regardless of whether they are coming from reference or 
query condition. To select HVGs, we used either reference data or the union of refer-
ence and query data. All approaches perform batch-aware embedding, and sample 
ID was used as the batch. For all embeddings, except scVI and scANVI, we calculate 
a 30-dimensional latent space. For scVI and scANVI, we use the provided default 
(10). Below we introduce more detailed descriptions for each approach.

• MNN is an “unsupervised” approach that performs batch-aware PCA correction 
followed by MNN correction. The MNN-based latent space is sensitive to the 
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selected genes for which we perform PCA. Accordingly, we select 3000 highly var-
iable genes using scran::getTopHVGs [80], and the selection is performed using 
either only WT data; only ChimeraWT data; WT + ChimeraWT data.

• Reference-projected MNN is a “supervised” variation of the original MNN. 
Specifically, we first perform batch-aware PCA on control data using 
batchelor::multiBatchPCA. As an output, we get batch-corrected PCs for the con-
trol data as well as the matrix of rotation vectors that we can apply to calculate 
PCA on scaled case data. Finally, we concatenate the calculated PCs and perform 
MNN correction using batchelor::reducedMNN.

• Azimuth integration follows the pipeline for the reference-based mapping intro-
duced by [4] and is employed by the Azimuth web application for reference-based 
single-cell analysis (https:// azimu th. hubma pcons ortium. org/). To perform inte-
gration, we follow the provided by the Azimuth mapping pipeline.

• scArches integration follows the pipeline from [5].

3. Chimera-specific DE genes
 To identify chimera-specific genes that are systematically upregulated across all cell 

types, we performed DE testing for each cell type and selected genes that have nega-
tive logFC (i.e., upregulated in ChimeraWT) and are significantly DE (FDR < 0.1) in 
at least 75% of all cell types. We then selected 3 genes with a variable base expression 
(i.e., expression in reference cells).

4. Neighborhood assignment and estimation of neighborhood homogeneity. For each 
embedding, we generated a kNN graph (k = 100, order = 1) and assigned cells to 
neighborhoods. We then discarded redundant neighborhoods as described above. 
Additionally, to assess whether the difference between embedding approaches is 
robust to stochasticity in neighborhood assignments, we performed 5 independ-
ent neighborhood assignments. To assess the homogeneity of the neighborhoods, 
for each embedding and each chimera-specific DE gene, we calculated the standard 
deviation of log-normalized counts within each neighborhood across ChimeraWT 
cells.

5. Estimation of logFC for chimera-specific DE genes.
 To estimate logFC distribution for each embedding and each chimera-specific DE 

gene, we performed miloDE for each embedding (neighborhood assignment based 
on kNN graph, k = 100) and aggregated logFC estimates across all neighborhoods. 

6. Estimation of the fraction of significantly DE neighborhoods for chimera-specific DE 
genes

 To estimate the fraction of significantly DE neighborhoods,  for each embedding and 
each chimera-specific DE gene, we calculated the fraction of neighborhoods with 
corrected (across neighborhoods) p-value lower than 0.1.

Simulations to estimate the relationship between the number of tested cells and DE 

detection

To assess how DE detection using quasi-likelihood testing from edgeR depends on 
the number of cells, we used the R package splatter that simulates scRNA-seq counts 
with the desired properties [76]. To estimate parameters for the simulations, we used 
wild type (WT) mouse embryo data from a single sample of developmental stage E8.5. 

https://azimuth.hubmapconsortium.org/
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Additionally, we restricted the analysis to 4000 highly variable genes (parameters are 
listed in Additional file 6: Table S4). We then simulated the two main datasets (one with-
out batch effect between replicates and one with), which contained two cell groups (imi-
tating control and case samples, the probability to be assigned in each group is 50%) in 
which we assigned 25% of genes to be DE (mean logarithm of the effect size was assigned 
to 1). Additionally, we required both cell groups to have 10 batches (i.e., replicates). To 
estimate how the number of replicates affects the detection, we subsampled 5 datasets 
from each of the two main datasets (with and without batch effect), by randomly select-
ing either 2, 4, 6, 8 or 10 replicates per each condition. In addition, to estimate how the 
imbalance of the number of replicates between control and case groups affects the detec-
tion, we subsampled 7 datasets from the main dataset without batch effect, by keeping 
the total number of replicates across both conditions as 12 and randomly selecting either 
2, 3, 4, 6, 8, 9 or 10 replicates from the control condition (and, respectively, selecting 10, 
9, 8, 6, 4, 3, 2 random replicates from the case condition). For each subsampled dataset, 
we then subsampled a random number of cells (higher than 50 and lower than min(3000, 
number of cells in the dataset)) and estimated DE detection for the selected cells (all 
genes that had p-value < 0.05 were assigned as detected). For each subsampled dataset, 
we downsampled cells 2000 times, and to estimate the overall trend between the num-
ber of cells and DE detection parameters (sensitivity, specificity, FDR), we calculated the 
running median across 2000 downsamplings. Finally, to assess how DE detection scales 
with the effect size, we performed a similar procedure, but when varying the meanlog 
parameter in range c(1, 2, 3).

Estimation of the relationship between the assignment (i.e., order‑k) and neighborhood 

size distribution

To estimate how neighborhood size distribution depends on the neighborhood assign-
ment, we used WT mouse embryo data (developmental stage E8.5; using the provided 
MNN-corrected PCs as latent space) and for a wide range of [order-k] combinations per-
formed neighborhood assignment. Specifically, for order = 1, we used k = seq(50, 500, 
50), and for order = 2, we used k = seq(5, 50, 5). 

Analysis of how different orders affect the sensitivity of DE detection

1. Dataset

 We used mouse gastrulation scRNA-seq data from [41]. As WT cells (control), we 
use all samples from the development stage E8.5. As ChimeraWT cells (case), we 
use tD-tomato negative cells from Tal1− chimera mouse embryos (which are also 
assigned with developmental stage E8.5). Accordingly, we concatenated counts from 
both experiments, and embeddings were calculated on log-normalized counts (in a 
batch-aware manner, using batchelor::multiBatchNorm). For the latent embedding, 
we used scArches integration.

2. Selection of cell types
 We selected all cell types with at least 20 cells in each condition.
3. Neighborhood assignments
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 We used the following range of [order-k] combinations to assign cells to neighbor-
hoods: for order = 1, k = c(75, 150, 200, 250, 300, 350, 400, 450); for order= 2, k = 
c(10, 15, 20, 25, 30, 35, 40, 45). For each [order-k] combination, we performed 10 
separate neighborhood assignments.

4. Per neighborhood estimation of cell type purity
 For any given cell type, we calculated a per neighborhood cell type purity score as the 

fraction of cells from the neighborhood annotated with the cell type (relative to the 
total number of cells in the neighborhood). For any given neighborhood assignment, 
we then calculated the maximum cell type purity score (across all neighborhoods 
from the assignment) as a proxy of how specifically the assignment results in group-
ing the cells from the cell type in question.

5. Per neighborhood estimation of relative cell type enrichment
 To calculate the relative cell type enrichment score, we first annotated each neigh-

borhood with its most abundant cell type, and then for each neighborhood we calcu-
lated the fraction of cells that are annotated as being from that cell type.

6. Simulation of counts to supply ground truth DE
 To simulate differences in counts in a targeted manner, for each of the selected cell 

types, we first identified candidate genes that are not DE between the conditions 
across all tested cell types. For each cell type, we then selected 60 “candidate” genes 
and added a random integer number of counts (from 0 to 2) to cells from the control 
condition in the cell type. We note that for some pairs of cell types we selected the 
same gene(s), and in these cases, we augmented the count matrix with copies of the 
gene(s) and treated each gene copy as a separate copy per selected cell type. In addi-
tion, to ensure a wide range for logFC, we ensured a varying base expression for the 
selected genes. Finally, we estimated logFC for each gene/cell type and focused the 
analysis on genes for which the absolute estimated logFC varies between 1 and 6 (45 
genes per cell type on average). 

7. Analysis of how sensitivity in DE detection depends on cell type purity and the abso-
lute number of cells from the cell type

 We applied miloDE for each neighborhood assignment and, for each neighborhood 
and “perturbed” cell type, we estimated its cell type purity, the absolute number of 
cells from the cell type, and DE detection power (i.e., fraction of associated “per-
turbed” genes that show p-value < 0.05).

Analysis of the comparison between standard and refined neighborhood assignments

To assess whether refined neighborhood assignment minimizes the number of neigh-
borhoods while ensuring complete coverage of cells with at least one neighborhood, 
we used WT mouse embryo data (developmental stage E8.5; using the provided MNN-
corrected PCs as latent space). We fixed order = 2 and for k = seq(10, 50, 10) performed 
neighborhood assignments, followed by the refinement step (for each k, we performed 
the procedure 5 times). Then, for each neighborhood assignment, we calculated the total 
number of neighborhoods and performed matched (for the number of neighborhoods) 
assignments without the refinement step. For each comparison (i.e., each k), we calcu-
lated the fraction of cells that did not get assigned to any neighborhoods.
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Analysis of how AUC distribution from Augur‑based classifiers depends on DE

To assess how the AUC distribution depends on whether DE is present between two 
tested groups, we used the R package splatter to simulate scRNA-seq counts [76]. 
To estimate parameters for the simulations, we used WT mouse embryo data from a 
single sample of developmental stage E8.5. Additionally, we restricted the analysis to 
4000 highly variable genes (parameters are listed in Additional file 6: Table S4). We 
then simulated several datasets (54 in total), containing two tested conditions; we 
used 5 replicates for each condition:

• Fraction of DE genes = 0, 5 or 25%.
• Fraction of cells in control condition = 25, 50 or 75%.
• Effect size (de_facLoc) = 1,2.
• Without batch effect, with balanced batch effect (identical for one case–control 

replicate pair), and with unbalanced batch effect. For the unbalanced batch effect, 
we subsetted datasets with a balanced batch effect by randomly discarding 2 case 
and 2 control replicates.

For each dataset, we then randomly sampled cells 100 times (ensuring that the sam-
ple size lies between 75 and 500), and for each subsampling, we calculated the AUC 
for the classifiers that separate two conditions.

Analysis of the performance of miloDE on simulated data

1. Dataset

 We utilized the mouse gastrulation scRNA-seq data from [41]. As WT cells, we 
considered all samples from the E8.5 development stage. As ChimeraWT cells, we 
use tD-tomato negative cells from Tal1− chimera mouse embryos (which are also 
sampled from E8.5). We concatenated counts from both experiments, and embed-
dings were calculated on log-normalized counts (in a batch-aware manner, using 
batchelor::multiBatchNorm). For the latent embedding, we used scArches.

2. Simulation of counts to supply ground truth DE
 We first sub-clustered cells annotated as Forebrain/Midbrain/Hindbrain using Lou-

vain clustering, and based on the expression of known marker genes Shh, Rax,Six3, 
Otx2, En1, Hoxb2, Hoxa2, Gbx2 [81–86], we annotated brain sub-clusters with one 
of the following (sub)cell types: Forebrain, Midbrain, Hindbrain and Floor plate. To 
simulate differences in counts in a targeted manner, we first selected a sub-cell type 
(Floor plate) in which to perturb the counts for several genes. We then identified 
candidate genes as genes that are not DE between the conditions (i.e., not DE within 
all abundant cell types (number of cells > 50)), and then selected 50 genes and added 
a random integer number of counts (from 0 to 2) to cells from the control condition. 
In addition, to ensure a wide range of logFCs was tested, we considered genes with a 
wide range of base expression levels. Finally, we randomly selected 5 genes with vary-
ing effect sizes, ranging from 1 to 4.5.
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3. Assessment of DE detection per neighborhood assignment, cell type purity threshold, 
and “perturbed” gene

 Within each neighborhood assignment, we calculated the cell type purity score per 
neighborhood as the fraction of cells in each neighborhood annotated as being from 
the cell type of interest. Accordingly, for each cell type purity threshold, all neigh-
borhoods with cell type purity exceeding the designated threshold are annotated as 
“ground truth” DE. Next, for each “perturbed” gene we identified neighborhoods as 
DE if corrected across neighborhoods p-value was less than 0.1. We then assessed 
DE detection power by estimating sensitivity and FDR.

Comparison of the performance between miloDE and Cacoa

1. Simulation of the base datasets

 We used the R package splatter to simulate scRNA-seq counts [76]. To estimate 
parameters for the simulations, we used wild type (WT) mouse embryo data from 
a single sample of developmental stage E8.5. Additionally, we restricted the analysis 
to 3000 highly variable genes (parameters are listed in Additional file 6: Table S4). 
Since the goal of the benchmark is to compare the ability of both methods to sensi-
tively and accurately detect DE in a subset of cells (imitating DE restricted to a sub-
cell type), we simulated several datasets, where each contained varying fractions of 
two groups (i.e., two sub-cell types). Specifically, we simulated seven datasets, where 
the fraction of the group to which we later will “apply the perturbation” (we denote 
it as perturbed group), varied in the range c(0.005, 0.01, 0.025, 0.05, 0.1, 0.25, 0.5). 
For each value from this range, we manually adjusted the number of DE (between 
groups) genes and the effect size in such a way, that the simulated groups are not 
entirely separated in the latent space while using graph representation and neighbor-
hood assignment from miloDE (i.e., there are neighborhoods that contain cells from 
both groups). For each dataset, we generated 5 batches (i.e., replicates) per condition. 
To assess how the performance scales with the number of replicates per condition, 
for each dataset, in addition to the dataset itself, we generated 3 downsamplings, by 
restricting the number of batches per case or condition or both to 2. In total, we gen-
erated 28 datasets, with varying fractions of perturbed group and numbers of repli-
cates. To construct a latent space, we used MNN-corrected PCs (10 PCs).

2. Simulation of counts to supply ground truth DE
 For each dataset, we first identified candidate genes as genes that are not DE between 

two simulated groups. For each dataset, we then selected 200 “candidate” genes and 
added a random integer number of counts (from 0 to 3) to cells from the case condi-
tion in the perturbed group. We then selected 9 genes for which we estimated the 
expected effect size (by pseudo-bulk comparison between the conditions for the per-
turbed group) to lie in range c(1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5). 

3. miloDE
 We applied miloDE in 15 neighborhood assignments (k varying in range c(20, 25, 

30), and to assess robustness across different assignments, for each k we performed 
5 independent neighborhood assignments). Additionally, since we preselected 3000 
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variable genes for the simulation, we removed the requirement of having a minimum 
expression level per neighborhood. 

4. Cacoa
 We implemented Cacoa using the tutorial from the Github page. Similar to mil-

oDE, Cacoa also requires a graph representation to aggregate the information across 
neighbors. We generated such a graph representation using Seurat::FindNeighbors. 
For each dataset, we generated 4 graph representations, by varying k for 
Seurat::FindNeighbors in the range c(25, 50, 100, 200).

5. Comparison of the performance between miloDE and Cacoa
 Since the statistical outputs of miloDE and Cacoa are not directly comparable (p-val-

ues for miloDE and z-score for Cacoa), and it is not entirely clear which threshold 
for z-score in Cacoa to use as a cut-off of significance, we used the AUC to compare 
performance. Moreover, since Cacoa estimates DE for each cell (in which ground 
truth is provided in the simulations), and miloDE estimates DE per neighborhood 
(for which ground truth is unknown and instead could be estimated with the thresh-
old for the Group purity), we approached the estimation of AUC on the neighbor-
hood and single-cell level. For the neighborhood-level estimation, we aggregated the 
z-scores across the neighborhoods assigned with miloDE (using the neighborhood 
assignments with k = 25, for each neighborhood we aggregated the average z-score 
(raw or adjusted) across all the cells from the neighborhood). We used two thresh-
olds (0.1 and 0.25) for the perturbed group fraction to decide which neighborhoods 
contain enough cells to be considered positive. This allowed us to estimate the AUC 
for each approach, perturbed gene, and the designated “perturbed group fraction” 
threshold. For the single-cell-level comparison, we “deconvolved” the output of mil-
oDE to return the statistic for each cell. To do so, we estimated a z-score for each 
cell from miloDE output, by first transforming p-values into z-scores for each neigh-
borhood (using stats::qnorm, lower.tail = FALSE), and then, for each cell, taking the 
average z-score across all neighborhoods to which it was assigned. In this compari-
son, cells with ground truth DE are directly known from the simulations. By design, 
Cacoa returns a z-score equal to 0 for cell/gene combinations with no expression, 
and we further estimated Cacoa’s performance using only case perturbed cells as 
ground truth DE or using all cells from the perturbed group as ground truth DE.

Comparison of the performance between miloDE and pseudo‑bulk approach

We used the same datasets described earlier to benchmark miloDE against Cacoa. We 
evaluated the performance of miloDE and pseudo-bulk approach (edgeR) on a bigger set 
of genes, with the estimated effect size for the perturbed group from the range seq(1, 4, 
0.25). Since the outputs between miloDE and the pseudo-bulk approach are not directly 
comparable, we estimated the sensitivity of the pseudo-bulk approach for the selected 
genes as a boolean (FDR < 0.1) whereas the sensitivity of miloDE for each gene was esti-
mated across the neighborhoods. To do so, for each assignment and each group purity 
threshold, we estimated sensitivity as the number of true positive neighborhoods (i.e., 
neighborhoods purity is higher than a designated threshold and corrected p-value across 
neighborhoods < 0.1) over the number of all positive neighborhoods (neighborhoods 
purity is higher than a designated threshold).
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Comparing Tal1 + and Tal1 − embryonic cells

1. Dataset

 We used mouse gastrulation scRNA-seq data from [41], specifically Tal1 chi-
mera data, that can be loaded with Tal1ChimeraData(). We used tomato-td row 
to identify Tal1+ and Tal1− cells. We calculated log-normalized counts using 
scuttle::logNormCounts [77]. For the latent embedding, we first selected 3000 highly 
variable genes for Tal1+ cells, and then we used MNN on batch-corrected PCs on 
the selected genes. 

2. Cell type ranking by the extent of transcriptional shifts
 To assess how different cell types are affected by the lack of Tal1, we first 

assigned neighborhoods across the whole dataset (order = 2, k = 25). We then 
retained only variable genes (by selecting genes with positive variance based on 
scran::modelGeneVar estimates), and applied miloDE testing; within each neighbor-
hood, we tested only for genes that were expressed in at least some cells (using min_
count = 3). To estimate the extent of the transcriptional shift for each neighborhood, 
we calculated two metrics: the number of DE genes (corrected across genes p-value 
< 0.1) and the number of “specifically” DE genes. To calculate the number of specifi-
cally DE genes, for each gene we first z-normalized corrected across the neighbor-
hoods p-values. Accordingly, a gene-neighborhood combination is denoted as spe-
cifically DE, if its z-normalized p-value is below −3, and for each neighborhood we 
calculated the total number of genes with a z-normalizedp-value < −3. Note, that for 
all gene-neighborhoods combinations that were not tested, we assigned p-value to 1. 
Finally, we assigned each neighborhood the most enriched cell type label across the 
neighborhood’s cells, and for each cell type, we calculated the distribution (across 
corresponding neighborhoods) of the number of DE genes (total and neighborhood-
specific).

3. miloDE analysis of cells contributing to blood lineage
 To systematically assess how the absence of Tal1 transcriptionally manifests in cells 

contributing to a blood lineage, we selected cells annotated as hematoendothelial 
progenitors or endothelium and assigned neighborhoods (order = 2, k = 20). We 
then retained only variable genes (by selecting genes with positive variance based 
on scran::modelGeneVar estimates), and applied miloDE testing; within each neigh-
borhood we tested only for genes that were expressed in at least some cells (using 
min_count = 3).

4. Per neighborhood estimation of the proximity to blood progenitors
 For each cell annotated as hematoendothelial progenitors or endothelium, we cal-

culated the minimum distance (in PC space) to cells that were annotated as blood 
progenitors. Accordingly, for each neighborhood, we calculated the average (across 
its cells) of these minimum distances.

5. Identification of co-regulated gene modules
 We adapted the WGCNA framework to identify gene modules consisting of co-reg-

ulated genes. Instead of expression vectors, we used logFC values (across neighbor-
hoods). Additionally, to minimize the input from the neighborhoods that are not DE, 
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we assigned all logFC values to 0 if the corrected across neighborhoods p-value > 
0.1. Additionally, for each gene-neighborhood combination that was not tested, we 
assigned logFC values to 0 and p-values to 1. We restricted our analysis to genes that 
are DE in at least 2 neighborhoods. Finally, to identify gene modules, we used the 
R package scWGCNA which is specifically tailored to handle scRNA-seq data [46]. 
Specifically, we employed scWGCNA::run.scWGCNA using neighborhoods instead 
of single cells (and therefore skipping the calculation of pseudocells), otherwise with 
the default settings.

6. Gene ontology enrichment analysis
 To assess which biological processes are enriched across different gene modules, we 

used enrichR::enrichr (within GO_Biological_Process_2021 database) [87, 88]. For 
each gene module, all gene ontologies with adjusted p-value < 0.1 were assigned as 
significantly enriched.

Analysis of macrophage‑specific transcriptional shifts upon idiopathic pulmonary fibrosis

1. Dataset

 Four datasets, containing cells from both healthy and IPF donors [8, 57, 58, 89], were 
downloaded from the original source and mapped onto the Azimuth lung reference 
using scripts available at https:// github. com/ satij alab/ azimu th- refer ences/ tree/ mas-
ter/ human_ lung.  Azimuth lung reference consists of 65,662 human lung cells from 
(https:// app. azimu th. hubma pcons ortium. org/ app/ human- lung, [90]) (a processed 
dataset that is immediately suitable for the Azimuth mapping is available at https:// 
zenodo. org/ recor ds/ 48954 04).

2. Neighborhood assignment and DE testing
 To characterize macrophage-specific transcriptional shifts, we selected all cells 

annotated as macrophage, and assigned neighborhoods (order= 2, k = 30). We 
then retained only variable genes (by selecting genes with positive variance based 
on scran::modelGeneVar estimates), and applied miloDE testing, using the dataset 
ID as a covariate. Within each neighborhood, we tested genes that are expressed in 
macrophage annotated cells (gene selection was performed based on the output of 
edgeR::filterByExpr, min_count = 3). Additionally, within each neighborhood we dis-
carded donors, for whom we had less than 3 cells in the neighborhood.

3. Identification of gene sets
 To identify macrophage-specific gene sets, we clustered genes using Louvain cluster-

ing. We restricted the analysis to genes that were strongly upregulated in IPF donors. 
Specifically, we selected genes that satisfied the following criteria:

• Corrected across neighborhoods p-value < 0.1 in at least 25% of the neighbor-
hoods.

• Absolute average logFC across significant (i.e., corrected across neighborhoods 
p-value < 0.1) neighborhoods > 1.

• Gene is upregulated in IPF donors (i.e., has negative logFC) in at least 75% of 
neighborhoods. 

https://github.com/satijalab/azimuth-references/tree/master/human_lung
https://github.com/satijalab/azimuth-references/tree/master/human_lung
https://app.azimuth.hubmapconsortium.org/app/human-lung
https://zenodo.org/records/4895404
https://zenodo.org/records/4895404
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 As a vector for each gene, we use logFC (across neighborhoods), with logFC 
being set to 0 if the corrected across the neighborhoods p-value > 0.1 (henceforth 
referred to as corrected logFC). We then computed the shared nearest neighbors 
graph (on the first 5 PCs, using scran::buildSNNGraph) and Louvain clustering 
was calculated using igraph::cluster_louvain [59, 69] (resolution = 1).

4. Per gene set discovery of “marker” neighborhoods
 To identify the neighborhoods in which genes between different gene sets are DE, we 

used scran::findMarkers on logFC vectors (across neighborhoods; using corrected 
logFC). We then selected the “top” 3 neighborhoods per gene set, where top neigh-
borhoods were defined by the “Top” column in scran::findMarkers output and repre-
sent a minimal number of neighborhoods required to separate any cluster from any 
other cluster (specified by pval.type = “any”).

5. Characterization of DE patterns based on the prevalence of DE neighborhoods in dif-
ferent stages of fibrotic progression

 To characterize whether a gene is DE preferably in the neighborhoods that are sig-
nificantly enriched for IPF cells or in the neighborhoods that contain a comparable 
number of cells from healthy and IPF donors, we restricted the analysis to neighbor-
hoods with negative logFC according to the DA test and split them into two groups: 
neighborhoods that are significantly enriched for IPF cells (SpatialFDR for DA test 
< 0.1) and neighborhoods that contain a comparable number of cells from healthy 
and IPF donors (SpatialFDR for DA test ≥ 0.1). Then, for each gene, we extracted 
the number of DE neighborhoods (p-value corrected across neighborhoods < 0.1) 
in each of the groups and performed a Fisher test to assess whether any of the two 
neighborhood groups contain significantly more DE neighborhoods. We performed 
a Fisher test for all genes that we used for the Louvain clustering and used a cor-
rected p-value (cutoff of 0.1) to decide whether the difference is significant or not. 
Accordingly, we split all genes into 3 classes: genes that are DE significantly more 
frequently in either of the two groups and genes that are DE relatively equally in both 
groups.

6. Comparison with per cell type DE estimation
 To assess whether genes that we identify with miloDE as upregulated in IPF are also 

DE on a whole cell type level, we implemented the same edgeR framework but across 
all macrophages (we performed testing only for genes that we used for the clustering, 
i.e., genes that are strongly upregulated in IPF donors). We then assigned genes with 
FDR < 0.1 as significantly DE on the cell type level. We identify detection in miloDE 
as the existence of neighborhoods for which corrected across neighborhoods p-value 
< 0.1 and being “weakly DE” in miloDE is defined by the existence of neighborhoods 
with raw p-value < 0.05. To retrieve per-gene estimates of “DA-marking capacity,” we 
split all cells into Spp1-low and Spp1-high cells (Spp1-low if normalized log-counts 
< 0.25), and we performed DE between two groups using pseudo-bulk edgeR. This 
procedure was done separately for healthy and disease cells, and donor identity was 
used as a covariate.

7. Per gene set characterization of average DE pattern along the fibrosis progression
 To characterize per gene set DE patterns along the fibrosis progression, we grouped 

neighborhoods based on their logFC for the DA test into 50 equal-sized bins. For 
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each set and logFC-DA bin, we then calculated the average (across all aggregated 
neighborhoods and genes from the gene set) corrected logFC across all genes from 
the set and the average (across all aggregated neighborhoods) fraction of genes (from 
the gene set) that are significantly DE in the corresponding neighborhood.

8. Gene ontology enrichment analysis
 To assess which biological processes are enriched across different gene modules, we 

used enrichR::enrichr (within GO_Biological_Process_2021 database). For each gene 
set, we then selected the top 5 gene ontologies (based on adjusted p-value) and for 
the union of all top gene ontologies, we estimated how significantly each of them is 
enriched in each gene set.
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