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Abstract 

Background:  Interactions among cis-regulatory elements (CREs) play a crucial role 
in gene regulation. Various approaches have been developed to map these interac-
tions genome-wide, including those relying on interindividual epigenomic variation 
to identify groups of covariable regulatory elements, referred to as chromatin modules 
(CMs). While CM mapping allows to investigate the relationship between chromatin 
modularity and gene expression, the computational principles used for CM identifica-
tion vary in their application and outcomes.

Results:  We comprehensively evaluate and streamline existing CM mapping tools 
and present guidelines for optimal utilization of epigenome data from a diverse 
population of individuals to assess regulatory coordination across the human genome. 
We showcase the effectiveness of our recommended practices by analyzing distinct 
cell types and demonstrate cell type specificity of CRE interactions in CMs and their 
relevance for gene expression. Integration of genotype information revealed that many 
non-coding disease-associated variants affect the activity of CMs in a cell type-specific 
manner by affecting the binding of cell type-specific transcription factors. We provide 
example cases that illustrate in detail how CMs can be used to deconstruct GWAS 
loci, assess variable expression of cell surface receptors in immune cells, and reveal 
how genetic variation can impact the expression of prognostic markers in chronic 
lymphocytic leukemia.

Conclusions:  Our study presents an optimal strategy for CM mapping and reveals 
how CMs capture the coordination of CREs and its impact on gene expression. Non-
coding genetic variants can disrupt this coordination, and we highlight how this may 
lead to disease predisposition in a cell type-specific manner.
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Background
The genome inside the nucleus is spatially organized with every chromosome occupying 
its own territory. Each chromosome is coarsely divided into active (A) and inactive (B) 
compartments [1], and topologically associating domains (TADs) [2, 3]. Within TADs, 
fine-grained chromatin organization is established through interactions of non-coding, 
cis-regulatory elements (CREs; here defined as enhancers and promoters). Such CRE 
interactions are critical for gene regulation, as most promoters alone possess low intrin-
sic power for regulating gene expression [4], and active genes interact on average with 
2–4 enhancers [5, 6]. Depending on the context, perturbation of one or multiple enhanc-
ers can be sufficient to largely attenuate gene expression through disruption of regula-
tory CRE interactions [7–9].

CREs can be accurately mapped using epigenome profiling assays such as ATAC-
seq and ChIP-seq, and stratified into different categories according to their regulatory 
properties (enhancer vs promoter, weak vs strong, etc.) on a per cell type basis [10]. Fur-
ther epigenome-based studies on cohorts of non-related individuals in single cell types 
revealed that not every CRE harbors equal chromatin accessibility or activity across 
individuals [11]. Downstream association studies pairing this activity to commonly 
occurring genetic variants allowed to identify loci (i.e., quantitative trait loci; QTLs) 
that impact either CRE accessibility due to disruption of transcription factor (TF) bind-
ing site(s) or histone modification deposition [12, 13]. Such a “population epigenomics” 
approach has been used to link genetic variants to the activity of CREs and gene expres-
sion in a range of cell types and conditions [14–16]. While highly valuable, these studies 
mostly focused on individual CREs and thus did not explicitly assess how CREs interact 
to regulate the expression of nearby genes.

Chromosome conformation capture (3C) as well as microscopy-based approaches 
allows linking enhancers and promoters into units of functionally collaborating CREs, 
although this can be challenging in terms of resolution and throughput [17]. An orthog-
onal approach is to perform epigenome analyses on many different genotypes, enabling 
the identification of covariable CREs. This allows the grouping of CREs based on their 
interindividual variability into coordinated, epigenomic hubs within TADs, which are 
referred to as chromatin modules (CMs [17]). Such an approach allows the mapping of 
CRE coordination in a genome-wide manner and, as compared to Hi-C and microscopy 
assays, provides direct epigenomic readouts of CRE activity and therefore allows reveal-
ing the impact of genetic variation on epigenome regulation. Nevertheless, the meth-
ods for mapping of CMs are diverse in terms of underlying statistical principles (varying 
from hierarchical clustering of interindividual peak correlations to Bayesian modeling 
[17–21]), required input data and format and interpretation of output data. Effective 
implementation of these approaches requires a profound understanding of underlying 
computational techniques, including data standardization and experience with handling 
different data modalities, and accurate interpretation of the results. Moreover, broad 
application of these methods is hindered due to the lack of streamlined pipelines and 
associated methodological guidelines.

To address these challenges, we evaluated the existing approaches for CM mapping 
in terms of methodological and CM characteristics. We assessed the (dis)advantages 
of each of the methods and provided guidelines related to evaluation criteria, positive 
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controls and data and sample size. We provide executable code that will allow each 
researcher to execute DO you the workflows on their own data, leading to standard-
ized data output formats and convenient interpretation. Next, we leveraged our method 
benchmarking efforts to perform CM mapping in six different cell types, revealing that 
regulatory coordination, captured with CMs, is organized in a cell type-specific manner, 
with cell type-specific CREs embedded in CMs being hallmarked by binding sites for 
lineage-specific TFs. Through association with the underlying genotypes and focusing 
on distinct immune cell types, we identified multiple (autoimmune) disease-associated 
genetic variants that impact CM activity. These analyses complement canonical chroma-
tin QTL mapping efforts by providing regulatory insights into how non-coding variants 
contribute to disease by influencing CRE coordination and gene regulation in a cell type-
specific manner.

Results
Comparative mapping of CMs across individuals with bulk epigenome data

Chromatin modules (CMs) represent genomic regions where CREs display covariable 
activity for active histone marks such as H3K4me1 and H3K27ac [17] (Fig.  1a). CMs 
can be mapped using correlation-based approaches that quantify epigenome signal 

Fig. 1  Systematic mapping of chromatin modules (CMs) in LCLs. a Schematic representation of ChIP-seq 
profiles (H3K27ac in green, H3K4me1 in purple) for individuals with differential chromatin activity at the 
loci. ChIP-seq peaks are shown with purple and green rectangles, where color indicates different histone 
modifications. Only covariable peaks are used to define a CM, which is depicted with black rectangles at 
the bottom of the panel. b Schematic representation of the pipeline. We collected available H3K27ac and 
H3K4me1 ChIP-seq data for LCLs and associated genotypes for 317 individuals. We then used the data to map 
covariable regions with three approaches: correlation-based approaches (VCMtools, Clomics) that depend 
only on the epigenome data for CM mapping, and a Bayesian hierarchical method (PHM) that requires 
genotype information in addition to epigenome data. c The depicted UpSet plot shows the percentage of 
overlapping CM pairs by at least one base pair across different methods. Left panel: example of the most 
reproducible CMs across three methods in the MD21D2 gene locus. The top track represents peak-to-peak 
correlations in the locus. The tracks below show CMs mapped with Clomics (gray), VCMtools (orange), and 
PHM (green). The bottom tracks show ChIP-seq tracks for two individuals with the most differential CM signal 
(H3K27ac in dark green, H3K4me1 in dark blue). Right panel: example of the Clomics-specific CM (in gray) in 
the SPIC gene locus. The top track represents peak-to-peak correlations; the bottom tracks show ChIP-seq 
tracks for two individuals with the most differential CM signal
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covariability across individuals to group CREs into modules using either graph-based 
community detection ([18], which we will refer to as VCMtools [22]) or hierarchical 
clustering (Clomics [19, 20]). A complementary strategy (PHM [21]) uses interindivid-
ual variation to infer different modes of associations between peak pairs conditioned on 
the underlying genetic variant(s) (Fig. 1b). So far, there has been no systematic compari-
son of existing techniques for CM mapping. To address this, we downloaded available 
H3K4me1 and H3K27ac ChIP-seq data for 317 lymphoblastoid cell lines (LCLs [19]) 
together with respective genotype and RNA-seq data [19]. We performed peak calling 
on all chromosomes for H3K4me1 (218,542 peaks) and H3K27ac (127.060 peaks), and 
considered H3K4me1 and/or H3K27ac peaks as putative CREs.

We started method performance evaluation by mapping CMs with VCMtools, 
Clomics, and PHM using the smallest chromosome 22 to evaluate several aspects of 
computational performance (i.e., elapsed time, memory consumption), and CM-related 
quantitative outputs (i.e., the number of mapped CMs, median module length, and 
coefficient of variation of CM length) across various sample sizes (Additional file  1: 
Fig. S1.1a; “Methods”). Execution-wise, Clomics was the most user-friendly tool (i.e., it 
required the least input data formatting and was simple to use), the fastest (in terms 
of elapsed time), and the most efficient in terms of RAM usage, followed by VCMtools 
and PHM (Additional file 1: Fig. S1.1b, c). Overall, Clomics produced the largest num-
ber of CMs yielding two to three times more modules as compared to VCMtools and 
PHM (Additional file 1: Fig. S1.1d). The number of identified CMs and genetic associa-
tions scaled with the number of individuals with the relative gain of CMs reducing after 
~175 (Clomics and VCMtools), even though features such as median CM size remained 
relatively stable from 75 individuals onwards. PHM on another hand showed consistent 
linear trend with respect to the number of mapped CMs with increasing sample size 
(Additional file 1: Fig. S1.1d–g). Next, we devised a strategy to quantify the reproducibil-
ity of mapped CMs in terms of included CREs, and also quantified how well the meth-
ods preserve individual CM peak composition across randomized sample size groups 
with respect to the number of peaks in CMs (“Methods”). CMs mapped with VCMtools 
showed the highest average reproducibility across pairwise comparisons of CMs for dif-
ferent sample sizes (Additional file  1: Fig. S1.1h) and exhibited greater consistency in 
peak composition for smaller CM sizes (2–3 peaks) and lower sample cohorts (Addi-
tional file 1: Fig. S1.1i). Clomics and PHM showed a trend toward higher average scores 
for CMs with a larger number of peaks and larger sample sizes (Additional file 1: Fig. 
S1.1h, i). All methods revealed higher average reproducibility scores with larger cohort 
sizes, with the best average reproducibility scores achieved for > 175 (Clomics/VCM-
tools) or 250 (PHM) samples (Additional file 1: Fig. S1.1h, i). Together, these analyses 
highlight that CM identification robustness scales with the number of included individu-
als, only increases marginally when more than 250 individuals are included, and requires 
a minimum of ~50–75 individuals.

Evaluation of method and sequencing parameters for CM mapping

To facilitate the use of each method and provide the rationale behind the method selec-
tion, we comprehensively evaluated the robustness of each method by testing a range 
of critical parameters involved in CM mapping. We first assessed how sequencing 



Page 5 of 32Pushkarev et al. Genome Biology          (2024) 25:190 	

depth affects each method by downsampling BAM files for each individual to 25, 20, 
and 10 million reads and mapping CMs with each method (“Methods”). We observed 
that a large proportion of the CMs mapped across all chromosomes with the full set of 
reads can be identified with only 10 million reads (Additional file 1: Fig. S1.2a). How-
ever, the reproducibility scores for mapped CMs increase from 20 million reads onward 
(Additional file  1: Fig. S1.2b). The randomization strategy on chromosome 22 for the 
downsampled data allowed us to show the effect of varying the total number of indi-
viduals on the general CM characteristics. For example, the total number of mapped 
CMs and median CM length showed better resemblance with the full set of reads for 
higher sequencing depths, thus reinforcing the observation that sample number is a 
critical parameter for CM mapping for all methods (Additional file 1: Fig. S1.2c–e). We 
thus recommend to sequence at least 20 million reads per sample, which aligns with the 
ENCODE recommendations [23].

Next, we evaluated the effect of the two main parameters that can be varied when 
mapping CMs: (1) the genomic window size left and right of the tested peaks (tested 
at ranges from 10  kb to 1  Mb) and (2) the cut-off for significance of peak association 
(p value threshold, VCMtools; background correlation, Clomics; posterior probability, 
PHM). We observed that the number of identified CMs and their size scales inversely 
with the stringency of the significance cut-off for all methods. For VCMtools and PHM, 
we observed that the number of CMs and their size is proportional to increasing window 
sizes (Additional file 1: Fig. S1.3a–c). We complemented this analysis by intersecting the 
CMs for each parameter pair with their localization in or outside TADs or A/B compart-
ments. This revealed that, for example, with small window sizes (< 100  kb) VCMtools 
maps many CMs in B (inactive) compartments with limited TAD overlap (Additional 
file 1: Fig. S1.3d–f). We quantified the reproducibility of the mapped CMs within each 
method across the range of parameters, which indicated the robustness of Clomics 
outputs (i.e., an F1 score of overall average reproducibility = 0.545), as compared to 
VCMtools (F1 score = 0.208) and PHM (F1 score = 0.365). PHM showed the highest 
reproducibility scores for the posterior probability thresholds > 0.7 across all window 
sizes, indicating that the approach is robust under stringent cutoffs, whereas VCMtools 
requires more careful selection of both window sizes and p value cutoffs to allow for 
consistent detection of CMs (Additional file 1: Fig. S1.4). Based on these analyses, and 
the results summarized in Additional file 1: Figs. S1.2–S1.3, we determined the recom-
mended ranges (indicated with red rectangles in the respective figures) for the signifi-
cance cutoffs and window sizes yielding reproducible CMs with consistent descriptive 
statistics (Additional file 3: Table S2).

Functional relevance of CM localization and embedded genes

Considering the recommended parameter ranges, we mapped CMs on all chromosomes 
with the full set of individuals using VCMtools (n = 9071, window size = 0.5  Mb, p 
value ≤ 0.001), Clomics (n = 18,633, window size = 0.5 Mb, background correlation ≥ 3), 
and PHM (n = 5299, window size = 0.5 Mb, posterior probability ≥ 0.8) (Additional file 1: 
Fig. S1.5a, b; Additional file 2: Table S1; Additional file 3: Table S2). The methods showed 
high concordance with respect to previously reported CM characteristics [17–21], such 
as CM length (median 8.6–31.7 kb) and size (median 2–4 peaks) (Additional file 1: Fig. 
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S1.5a), localization (59.4–63.9% CMs fully contained in A (active), compared to 30.5–
33.3% for bootstrapped CMs; 25.7–31.9% CMs fully contained in B (inactive) compart-
ments, compared to 50.0–53.9% for bootstrapped CMs; 68.1–73.2% CMs fully contained 
within TADs, compared to 44.5–49.3% for bootstrapped CMs (Additional file  1: Fig. 
S1.3d–f, indicated with red rectangles)), enrichment in 3D interactions between CM-
embedded CREs (as inferred using either a Hi-C 500  bp or Micro-C 500  bp dataset; 
Additional file 1: Fig. S1.5d, e), and active chromatin states (Additional file 1: Fig. S1.5f–
h) (“Methods”).

Across all overlapping CMs in pairwise method comparisons, 42.4% were at least 
partially identified using all methods (UpSet plot, Fig. 1c; “Methods”), with the largest 
overlap between the correlation-based approaches Clomics and VCMtools (Additional 
file  1: Fig. S1.2b). A representative example of a highly reproducible CM comprises 
the MB21D2 locus that was previously reported to display high levels of cis-regulatory 
coordination [21, 24], displaying high or very low ChIP-seq signal in the CM-embedded 
regions (Fig. 1c, left).

A large proportion of CMs was identified only using Clomics (29.2%). Peaks of 
Clomics-specific CMs had comparable median statistics of average peak heights to 
peaks from CMs captured with at least two methods. Yet, peaks of Clomics-specific 
CMs showed a broader range of average peak heights and their standard deviation across 
individuals compared to VCMtools- or PHM-specific CM peaks. Together, this suggests 
that Clomics-specific modules may have a slightly higher power to detect overall smaller 
covariable peaks compared to VCMtools or PHM (Additional file 1: Fig. S1.5i). A repre-
sentative example of such a Clomics-specific CM is the SPIC locus. Although CM peaks 
in the SPIC locus showed lower average interindividual correlation (cor = 0.18) com-
pared to the CM peaks around MB21D2 (cor = 0.58), the normalized ChIP-seq signal 
clearly indicated co-presence or co-absence of CM-embedded peaks (Fig. 1c, right).

Clomics-specific CMs comprised the largest group of method-specific CMs (Fig. 1c, 
center; Additional file 1: Fig. S1.5c). To assess whether CMs, including method-specific 
CMs, can aid in advancing our understanding of gene regulation, we assessed the genes 
that were overlapped by CMs (20–50% among 26,362 protein-coding genes and lincR-
NAs; 75–80% of CMs overlapped a gene, Additional file 1: Fig. S1.5j, k). We observed 
that Clomics CMs overlapped in total more gene promoters and gene bodies, also when 
accounting for the relatively higher number of mapped CMs. Clomics as well captured a 
higher percentage of significant CM activity (captured as the first principal component 
of the PCA performed on the CM peak count matrix (aCM [18])) to gene expression 
correlations compared to VCMtools and PHM (Additional file 1: Fig. S1.6a), which also 
extends to the Clomics-specific CMs (Additional file 1: Fig. S1.6b). We noted that genes 
embedded within CMs showed higher coefficient of variation in gene expression with 
increasing CM size, higher standard deviation, average, and median expression as com-
pared to genes that did not overlap with CMs (Additional file  1: Fig. S1.6c, d). Genes 
embedded within CMs as well as showed enrichment in B cell and immunity-related 
terms (Additional file 1: Fig. S1.6e), which was consistent across all approaches. Intersec-
tion of the gene categories embedded in CMs (shared or specific to a particular method) 
revealed that cell type-specific genes are mainly captured in the “shared between meth-
ods” groups, and that only Clomics-specific CMs are associated with additional GO 
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terms, which may also be partly related to B cell biology, such as “chronic myeloid leu-
kemia” (Additional file 1: Figs. S1.6e and S1.7a–c). Together, this indicates that Clomics 
has higher power in detecting more subtle variation in covariable chromatin activity that 
is associated with changes in gene expression as compared VCMtools and PHM. This is 
likely due to the adaptive background-aware thresholding used in Clomics that allows 
to account for subtle yet important differences in local correlation changes compared 
to the chromosomal background [19, 20], as opposed to universal p value thresholding 
implemented in VCMtools [18].

We have benchmarked a range of thresholds for all CM mapping methods and provide 
recommended parameter values and ranges (Additional file 3: Table S2). We observed 
that Clomics was more robust compared to VCMtools for the parameter changes tested. 
Clomics further stands out by its ease of use and higher sensitivity toward identifying 
subtle yet putatively relevant chromatin covariation related to changes in gene expres-
sion. Together with high reproducibility scores between VCMtools and Clomics, simi-
larity in annotations of the captured genes, and enrichment of Clomics-specific genes 
in cell type relevant terms, we opt for Clomics over VCMtools among correlation-based 
approaches. PHM provides directional insights into CRE communication yet requires 
large sample cohorts and significant computational resources. Therefore, we sug-
gest using PHM as an auxiliary approach for the interpretation of CMs mapped with 
Clomics, which we will hereafter use for all downstream analyses.

Cell type specificity of interindividual variation

Understanding regulatory variation among individuals in different cell types and states 
is crucial both from a fundamental and translational perspective [25–27]. To explore 
cell type specificity of chromatin activity variation among individuals, we extended the 
LCL dataset with downloaded ChIP-seq (H3K27ac, H3K4me1), genotype (derived from 
SNP arrays or whole genome sequencing; “Methods”), and RNA-seq data for hundreds 
of individuals in five cell types: LCLs (n = 317), fibroblasts (FIB, n = 78), monocytes 
(n = 172), neutrophils (n = 164), and T cells (n = 93) [19, 28]. To facilitate downstream 
interpretation and ensure consistency in our analyses, we remapped ChIP-seq peaks to 
obtain a universal set of peaks for H3K27ac and H3K4me1 in all cell types (Fig. 2a, Addi-
tional file 1: Fig. S2.1a; Additional file 4: Table S3; “Methods”) and used this peak set to 
map CMs with all methods for the data completeness and availability (Additional file 1: 
Fig. S2.1b; see Availability of data and materials). Based on the preceding analyses, in 
this and following sections, we specifically focus on CMs mapped with Clomics in LCL 
(n = 18,633), FIB (n = 10,158), monocytes (n = 9002), neutrophils (n = 6604), and T cells 
(n = 4841) (Additional file 1: Fig. S2.1c; Additional file 5: Table S4).

To assess if read count differences were contributing to the differences in total num-
ber of identified CMs across cell types, we mapped CMs with the downsampled data 
of 10, 20, and 25 million reads. We observed that more CMs were mapped in LCLs and 
FIB than in other cell types, even when we used downsampled BAM files with 10 mil-
lion reads per sample (Additional file  1: Fig. S2.1d). This might be related to the fact 
that LCLs and FIB are culture-adapted and more homogeneous, while the primary blood 
cells (monocytes, neutrophils, and T cells) were taken directly from human donors and 
may thus be subject to more variability. With the complete set of reads, the highest 
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average similarity was observed for CMs mapped in monocytes and neutrophils, while 
fibroblasts tended to be the most distant cell type from the other ones, as expected based 
on its cell lineage (Additional file 1: Fig. S2.1e). We used pairwise cell type comparisons 
to coarsely categorize CMs into (1) universal CMs (similarity score > 0.7), (2) partially 
overlapping CMs (0 < similarity score ≤ 0.7), and (3) cell type-specific CMs (similarity 
score = 0). This showed that the majority of CMs are cell type-specific while some cell 
types, such as monocytes and neutrophils, have a relatively higher proportion of over-
lapping CMs (Additional file 1: Fig. S2.1f–j). Together, this demonstrates the prevalent 
lineage and cell type specificity of the regulatory landscapes captured in form of CMs. 

Fig. 2  Cell type specificity of regulatory variation and TF binding in CMs. a Schematic representation of the 
pipeline. ChIP-seq and genotype data were collected for hundreds of individuals for five cell types, namely, 
LCLs, monocytes, neutrophils, T cells, and fibroblasts (FIBs) [19, 28]. The collected ChIP-seq data was processed 
in a standardized way to obtain a count matrix for a universal peak set (see “Methods” for details), which was 
used for CM mapping. The downstream analysis included evaluation of cell type specificity of regulatory 
variation captured in the form of CMs and quantification of TFBS enrichment in specific CM peak types. b 
From left to right: 1. Example of a “universal” CM, here in the RHD gene locus where covariable peaks are 
present in all cell types. 2. Example of a lineage-specific CM in LCLs (blue) and T cells (light green), spanning 
the MB21D2 gene. 3. Example of an LCL-specific CM in the REL locus. Tracks depicting the ChIP-seq signal 
at these loci can be found in Additional file 1: Fig. S2.2. c TF classification according to TFBS enrichments in 
distinct categories stratified into anchor versus non-anchor CM CREs and cell type-restricted (CT-restricted) 
versus common CM CREs based on all pair-wise comparisons together (see “Methods” for details). Bottom: 
schematic representation of TFBS for different categories of TFs across partially overlapping CMs. d 
Example of an LCL-specific CM (in blue) in the TCL1A locus. Tracks below indicate TFBSs (vertical lines) for 
cell type-enriched TFs per cell type (from top to bottom: LCL: ATF2 (n = 1), EBF1 (n = 11), KLF1 (n = 1), PAX5 
(n = 5), monocytes: KLF4 (n = 1), neutrophils: KLF5 (n = 2), FIB: ERG (n = 2), NR2F2 (n = 1), TFEB (n = 1)). No T 
cell-specific TFBS were found in the locus. The bottom tracks show ENCODE ChIP-seq profiles for PAX5 and 
EBF1 binding in LCLs, CTCF and BHLHE40 tracks for LCLs (blue) and FIB (orange)
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Representative loci for each category are shown in Fig.  2b and Additional file  1: Fig. 
S2.2a, where cell type specificity is also reflected in the association between CM activity 
and gene expression (Additional file 1: Fig. S2.3a–c).

CM formation appears to be driven by functionally distinct groups of TFs

To identify candidate TFs associated with CREs embedded within CMs, we first per-
formed differential peak-based TF binding site (TFBSs, which represent the genomic 
locations of TF motifs matching TF binding sites as determined using ChIP-seq [29]) 
enrichment analysis between CREs embedded within CMs and non-CM CREs for each 
cell type (Additional file 1: Fig. S2.3d). We created a set of “simulated” CMs from the 
non-CM CREs that were size-, distance-, ChIP signal strength-, and GC-matched to the 
mapped CMs (“Methods”). The TFBS analyses revealed that CREs in CMs are signifi-
cantly enriched for TFBSs of known cell type-specific TFs, e.g., EBF1 in LCLs [30] and 
CEBPA/B in monocytes and neutrophils [31] (Additional file 1: Fig. S2.3e–i; “Methods”), 
with larger similarity between myeloid (monocytes and neutrophils) or lymphoid (LCLs 
and T cells) cell types (Additional file 1: Fig. S2.3j). Since CMs were mapped based on 
a universal peak set across cell types, this indicates that CM CREs are enriched for cell 
type-specific TFBSs.

To further characterize the cell type specificity of the CM-embedded CREs, we 
assessed the episomal regulatory activity of the CREs using available STARR-seq data 
from the GM12878 LCL cell line [32]. We performed pairwise comparisons between 
LCLs and every other cell type to stratify the CM-embedded CREs into those shared 
between the compared pair of cell types (i.e., CREs that we will refer to as “anchors”) and 
those specific to one of the cell types (i.e., CREs that we will refer to as “non-anchors”) 
(Additional file 1: Fig. S2.4a). For all pairwise comparisons of LCLs to other cell types, 
we observed significantly higher activity at anchor CREs, with the lowest average activity 
at non-anchors of non-LCL cell types (Additional file 1: Fig. S2.4b). This could indicate 
that CM CREs that are shared between cell types (anchor CREs) may have higher regula-
tory potential than non-anchor CREs, which themselves may have more secondary sup-
port functions as driven by cell type-specific TFs [33–35]. To test this hypothesis, we 
first assessed which TFBSs are enriched in non-anchor CREs in a cell type-dependent 
manner, which revealed the enrichment of TFs with well-known functions in the respec-
tive cell types, such as KLF4 in monocytes [36], KLF5 in neutrophils [37], the pioneer 
B-cell TF EBF1 in LCLs [30], and TWIST1 in FIBs [38] (Additional file 1: Fig. S2.4c–
d). These findings suggest that the TFBS enrichment that we observed when comparing 
the set of reference versus simulated CMs (Additional file 1: Fig. S2.3e–i; “Methods”) is 
driven by cell type-specific TFs that bind to non-anchor elements.

As a next step, we used all cell types in our pairwise TFBS enrichment analyses to 
define if non-anchor CRE-enriched TFBSs can also be detected in anchor CREs and if 
this depends on the assayed cell types. To do so, we specifically focused on the anchor 
CM CREs and contrasted these with a collection of non-anchor CREs between each cell 
type pair. Together with the comparison of non-anchor CREs, this allowed us to broadly 
categorize TFs into several groups based on (1) whether enrichment of their respective 
binding sites in CMs is specific to either anchors, non-anchors, or whether their bind-
ing sites can be found in both (with the latter representing “general” CM TFs), and (2) if 
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this TFBS enrichment is specific to one or few cell types (i.e., “cell type-restricted” (CT-
restricted)), or if this enrichment is present in all pairwise cell type comparisons (“com-
mon”) (Fig.  2c, Additional file  1: Fig. S2.4e). We identified a total of 165 TFs that are 
enriched in anchor and/or non-anchor CREs (Fig. 2c; Additional file 6: Table S5). The 
TFBSs for a total of 23 TFs were always enriched at anchors (indicated with green and 
brown colors). These TFs include more universally expressed regulators such as USF1/2 
and SP1/2, as well as proteins involved in regulating 3D chromatin organization such as 
CTCF and YY1 [3, 39, 40]. However, we found that the large majority of these 165 TFs 
(n = 130, dark gray, blue, and light blue colors) are enriched in a cell type-restricted fash-
ion in non-anchor or all CM CREs.

Altogether, these analyses suggest that CMs consist of both common regions (anchors) 
with higher regulatory activity that are preferentially bound by universally expressed TFs 
as well as CREs that are more cell type-specific and that are bound by TFs relevant to the 
respective cell type(s) (Additional file 1: Fig. S2.5a, b). A notable example that illustrates 
how CM formation may be driven by distinct classes of TFs is the B-cell-relevant TCL1A 
locus [41] where the respective gene is specifically expressed in B cells (Additional file 1: 
Fig. S2.5c). The TCL1A gene locus is enriched for binding sites of LCL-enriched TFs in 
the CM body, especially at the CM peaks, as compared to other cell types. This is exem-
plified by binding of cell type-specific TFs such as EBF1 and PAX5, as well as LCL-spe-
cific binding of CTCF and BHLHE40, at the locus (Fig. 2d, Additional file 1: Fig. S2.5d). 
Together, our analyses indicate putatively divergent functional roles of TFs in the context 
of CM formation.

Chromatin modules capture CREs associated with gene expression

We observed that Clomics allows detecting many significant associations of aCM score 
with gene expression (Additional file  1: Fig. S1.6a). Together with identified TFs that 
are enriched within CMs and that as such may contribute to their establishment, we 
next aimed to conceptually assess how CMs can aid in understanding gene regulation. 
It is conceivable that CMs offer several advantages compared to single CREs, since (i) 
they group CREs into collaborating hubs, (ii) the activity state of the CM (aCM) can be 
derived which reflects the compound activity of all CM-embedded CREs and thus that 
of the locus, and (iii) CREs are linked to genes based on co-activity profiles and thus do 
not require 3D information for this. We first aimed to assess to what extent the aCM 
score is associated to gene expression relative to that of individual CREs (Fig. 3a). Spe-
cifically, for each gene, we correlated its expression with (1) the height of the peak closest 
to the TSS but not part of the respective CM, (2) the height of the CM-embedded peak 
closest to the TSS, and (3) the activity score of the CM closest to the TSS (“Methods”). 
This revealed that CM CREs show higher (albeit still modest) correlations with expres-
sion of the closest gene at larger genomic distances compared to non-CM-embedded 
CREs (Fig.  3b, Additional file  1: Fig. S3.1a–d). This difference is more pronounced in 
the gain of significant associations to gene expression when using aCM scores (Addi-
tional file 1: Fig. S3.1e–i), which, we found, is unrelated to the total sequencing depth 
(Additional file 1: Fig. S3.1j) with overall associations being significantly higher when the 
promoter of the tested gene is embedded in the CM compared to the gene body or no 
overlap (Additional file 1: Fig. S3.1k). In addition, absolute correlation values between 
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aCM scores and expression of the closest genes were on average higher than absolute 
correlation values between the heights of individual CM peaks and expression of the 
closest genes, largely independent of which CM peak was assessed (Additional file 1: Fig. 
S3.1l–p). Together, by using multiple covarying CREs aggregated into this aCM score, 
the set of candidate genes for which their respective expression correlates with chroma-
tin state activity can be expanded by at least twofold (Fig. S3.2a–e).

CMs are detected by leveraging interindividual variation, so it is conceivable that 
genetic variation contributes to the activity of at least a portion of CMs [18, 19] and 
through the CM, affects gene expression. We therefore mapped not only histone mark 
(H3K4me1 and H3K27ac) QTLs (hQTLs; Additional file 7: Table S6), but also variants 
that affect the activity of CMs (cmQTLs; Additional file  8: Table  S7). While the total 
number of hQTLs is higher, QTLs could be mapped for a higher proportion of CMs 
compared to histone marks (~10% compared to ~40–50% for CMs; Additional file 1: Fig. 
S4.1a, b). We observed that ~60–70% of cmQTLs are also hQTLs or in LD (R2 > 0.8) with 
hQTLs, indicating that in a large number of cases, variants disrupt a CM by disrupt-
ing histone mark enrichment at one or multiple CREs (Additional file 1: Fig. S4.1c), and 
they do so in a largely cell type-specific manner (Additional file 1: Fig. S4.1d). While it 

Fig. 3  Chromatin modules capture CREs associated with gene expression. a Schematic representation 
of how we identified CM and non-CM peaks closest to the gene transcription start site (TSS) to test the 
strength of association of either peak height or aCM score with closest gene expression. For each gene, the 
correlations were computed between gene expression and heights of the closest not CM peaks or closest CM 
peaks or aCM scores. b Violin plots indicating the correlation between each gene expression (for n = 26,362 
genes) and the closest CM/not CM peak heights (left panel). Median absolute correlation values per category 
are closest CM peak, 0.063; closest not CM peak, 0.054; and strongest CM peak, 0.115. Distance to the closest 
peak center from gene transcription start site (TSS) (right panel). For each CM that had a peak closest to the 
gene, we also found the best-correlating CM peak, which is indicated as the “strongest CM peak” in light blue. 
c–e Examples of CMs spanning genes in various cell types having a cmQTL (red triangles). The tracks below 
CMs and genes show the association strength (adjusted R2 (Rsq) of the linear regression) between every peak 
in the locus and expression of the gene highlighted in dark blue
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is conceivable that variants in LD with cmQTLs affect other peaks, the majority of them 
are also located in peaks of the same CM and within a small genomic window of these 
focal cmQTLs (~600 bp for R2 = 1). This suggests that the observed variation of nearby 
peaks is not directly mediated by variants in LD with cmQTLs (Additional file 1: Fig. 
S4.1e), consistent with earlier observations [22]. Binning of the interindividual peak sig-
nal variability further showed that CREs with higher interindividual variation in peak 
signal are more likely to be associated to a QTL and/or embedded in a CM, and that 
CM mapping allows to capture almost twice as many variable peaks compared to con-
ventional hQTLs (Additional file  1: Fig. S4.1f ). This suggests that variable peaks that 
are less strongly associated with a genetic variant can still be captured in CMs through 
their dependency on the activity of another peak/CRE within the same CM. This is con-
sistent with observations based on in silico approaches which suggest that frequently 
one or two CREs may act as the “dominant” or “lead” element(s) resulting in increased 
chromatin activity at the lead element itself as well as at nearby CREs [21]. Given that 
approximately half of the CMs can be linked to a candidate causal variant (at least with 
the significance cut-off used here, Additional file  1: Fig. S4.1a, g–h), it is conceivable 
that such QTLs disrupt the lead CRE in a locus leading to both local and distal changes 
in the chromatin landscape. As is evident from the examples highlighted in Fig.  3c–e 
and Additional file 1: Fig. S3.2f–j, there are generally two or three CREs at which the 
ChIP-signal is strongest associated with expression of the nearby gene, in line with pre-
vious observations using CRISPR interference [42, 43]. The associated cmQTLs localize 
in one of the peaks with the strongest association (Adj. R2 of linear regression between 
peak height and gene expression; Fig. 3c–e; Additional file 1: Fig. S3.2f–j, red triangles), 
which therefore represents a putative “lead” regulatory element in a genomic region. For 
example, in the CD9 locus in neutrophils, we observed that six principal regions cor-
relate with CD9 expression (Adj. R2 > 0.4 and FDR < 0.05 in linear regression) (Fig. 3c). 
All these elements are embedded into a CM, and the genetic variant with the strongest 
association to CM activity localizes in the peak ~50 kb upstream of the CD9 promoter, 
indicating that this is the putative lead CRE for the CM. Another example comprises 
the LRRC8C locus, where we identified a cmQTL (rs519989) for the CM in neutrophils 
localized in an intergenic enhancer ~25  kb upstream of LRRC8C gene (Fig.  3d). The 
rs519989 variant was recently shown to impact PU.1 binding to this enhancer, leading to 
reduced enhancer-promoter connectivity and lower expression of LRRC8C [44]. These 
examples illustrate how CM mapping can aid in identifying causal variants, linking them 
to genes in the respective locus without any 3D chromosome conformation information 
and obtaining a fine-grained understanding of the regulatory mechanisms underlying 
(cell type-dependent) gene expression.

cmQTLs are associated with binding of cell type‑specific TFs

Next, we assessed the cell type specificity of cmQTLs and observed that hQTLs were 
more frequently hQTLs in another cell type (or in LD (R2 > 0.8) with hQTLs) compared 
to cmQTLs. For example, 31.6% of H3K27ac hQTLs vs 19.4% of cmQTLs were shared 
between monocytes and neutrophils, indicating that cmQTLs capture more cell type-
specific activity, as also revealed based on the enriched TFBSs (Fig. 2; Additional file 1: 
Fig. S4.1d). As both hQTLs and cmQTLs can provide regulatory cues by disrupting or 
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creating TFBSs, we compared histone QTLs that are also cmQTLs (which we will refer 
to as “hcmQTLs” for simplicity) to QTLs that are only associated with a histone modi-
fication peak (hQTLs). Both QTL types displayed a similar genomic distribution (Addi-
tional file 1: Fig. S4.1i) with hcmQTLs having on average a stronger association with the 
peak height (i.e., higher beta values in a linear regression of genotype and normalized 
peak counts; Additional file 1: Fig. S4.1j). Both QTL types were enriched in cell type-
specific open chromatin regions, with slightly higher specificity for hcmQTLs (Addi-
tional file  1: Fig. S4.1k), and hcmQTLs displayed stronger overlap (or in LD (R2 > 0.8) 
with cell type-specific expression QTLs (eQTLs; Additional file  1: Fig. S4.1l)). Given 
that CM CREs enriched for TFBSs associated with cell type-specific TFs, we assessed 
if hcmQTLs would also more often disrupt TFBSs for cell type-specific TFs compared 
to hQTLs. Comparison of the TF binding events that are disrupted by the QTLs using 
allele-specific binding (ASB) analysis [45] (“Methods”) revealed that a higher propor-
tion of hcmQTLs is associated with ASB in any cell type compared to hQTLs with 
associations of QTLs with ASBs being partially cell type-specific (Additional file 1: Fig. 
S4.2a). Notable examples include enrichments in ASB for the myeloid master regulator 
CEBPA/B in monocytes and neutrophils [31], for the mesoderm TF TCF21 in fibroblasts 
[46], and the T(h1) and lymphoid factor TBX21 in T cells [47] (Additional file  1: Fig. 
S4.2b). In addition, many of the ASB events were more frequent in the hcmQTL group 
(Additional file 1: Fig. S4.2b). We complemented these analyses by assessing which TFs 
are more often binding (based on ChIP-seq data in any cell type) in a 200 bp window 
around the hcmQTL compared to hQTLs [48]. This validated the ASB observations in 
terms of binding of cell type-enriched TFs at hcmQTLs, such as IRF4 and BCL6 TFs 
in LCL, JUN/FOS in fibroblasts, and C/EBP in monocytes and neutrophils (Additional 
file 1: Fig. S4.2c). Together, these observations further indicate that CMs tend to arise in 
a cell type-specific manner driven by the binding of cell type-related TFs.

Deconstructing regulatory hierarchies at autoimmune disease GWAS loci using CMs

Compared to hQTLs, we found that hcmQTLs have a stronger association with peak 
height, disrupt peaks that are most strongly associated with gene expression, and are 
more likely to overlap cell type-specific eQTLs. Given these attributes, we reasoned that 
hcmQTLs could be used to improve our understanding of disease predisposition. We 
computed the overlap (shared variants or in LD with R2 > 0.8) of hcmQTLs and hQTLs 
with variants in the GWAS catalog [49] and compared the observed/expected ratio for 
the two types of QTLs relative to the GWAS catalog. Several associations occurred more 
frequently for hcmQTLs in the tested cell type, such as “monocyte counts” in mono-
cytes, “lymphocyte counts” in T cells, and “neutrophil percentage of white cells” for 
neutrophils (Additional file 1: Fig. S4.3a), further underlining the cell type specificity of 
cmQTLs. To assess how cmQTLs can assist in understanding regulatory logic at disease 
loci, we focused on autoimmune disease as these have their origin in immune cell types 
and a large number of GWAS summary statistics is available. We used a list of 340 GWAS 
loci where co-localization of GWAS has been observed with at least an eQTL, hQTL, 
methylation QTL, or a splicing QTL [50]. We assessed co-localization of the cmQTLs 
on these loci with GWAS summary statistics for ankylosing spondylitis (AS), celiac dis-
ease (CEL), Crohn’s disease (CD), juvenile dermatomyositis (DM), inflammatory bowel 
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disease (IBD), multiple sclerosis (MS), primary biliary cirrhosis (PBC), psoriasis (PSO), 
rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), type 1 diabetes (T1D), 
and ulcerative colitis (UC) [51–61]. The majority of these loci (n = 275, 80.9%) contained 
a CM in at least one cell type (Fig. 4a). Bayesian co-localization analyses [62] revealed 
co-localization (posterior probability (PP) > 0.8 and p value 1e−5 for both cmQTL and 
GWAS association) of 59% (n = 161) of cmQTLs with GWAS signal for at least one auto-
immune disease (Fig. 4b; Additional file 1: Fig. S4.3b), with more than half of the mapped 
CMs and cmQTL-GWAS co-localization being cell type-specific and the large majority 
(in LD with) an eQTL [28] in at least one tested cell type (Fig. 4c, d). We aggregated the 
co-localizations on a per-gene basis as one gene can be associated with multiple GWAS 
variants, resulting in 106 GWAS gene—cmQTL co-localizations (Fig.  4e, some repre-
sentative examples of co-localizations in Fig. 4f ). A notable example is the SKAP2 locus 
with two candidate QTLs (rs2960785 and rs774267) associated with the aCM score and 
expression of the CM-embedded genes SKAP2 and HOXA1 in neutrophils (Fig. 4g, h). 
However, only rs2960785 localizes inside an intergenic enhancer region between SKAP2 
and HOXA1, indicating that rs2960785 is the likely cmQTL. In addition, the association 
of rs2960785 with gene expression is highly blood-enriched (Additional file 1: Fig. S4.3c); 
it creates a putative GABPA binding site (CGG​AAG​) [63] (which is a direct interactor of 
the myeloid TF CEBPA [64]) and is associated with ASB of CEBPA in AML [45]. These 
findings provide direct insights into the molecular mechanisms that likely underlie how 
this genetic variant may impact the locus in a cell type-specific manner. For the C3 and 
TNFSF14 locus, the cmQTL rs339392 localizes in the C3 promoter where it is associ-
ated with chromatin activity at the locus, the expression of C3 itself, and to some extent 
also the expression of TNFSF14 in LCLs (Fig. 4i, j). The variant is also an eQTL for C3 in 
LCLs (Additional file 1: Fig. S4.3c) and is predicted to create a PU.1/ETS binding motif 
(Additional file 1: Fig. S4.3d). Rs339392 was recently confirmed as a PU.1 binding QTL in 

(See figure on next page.)
Fig. 4  Mapping the regulatory logic at autoimmune disease risk loci using CMs. a The number of 
autoimmune disease-associated GWAS loci where a CM was mapped in any of the four immune cell types. 
b The number of loci where the cmQTL colocalized with a GWAS QTL for least one autoimmune disease 
(posterior probability (PP) > 0.8 and at least one variant that has a p value of 1e-5 for both GWAS and 
variant-aCM association). c The number of loci where a CM was mapped categorized per autoimmune 
disease. d The number of loci with a cmQTL-GWAS colocalization categorized per autoimmune disease. 
e Summary overview of autoimmune disease risk loci that harbor a CM with the associating cmQTL 
colocalizing with the GWAS variant for at least one disease. The color legend can be found at the lower 
left of the panel. Abbreviations are spondylitis (AS), celiac disease (CEL), Crohn’s disease (CD), juvenile 
dermatomyositis (DM), inflammatory bowel disease (IBD), multiple sclerosis (MS), primary biliary cirrhosis 
(PBC), psoriasis (PSO), rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), type 1 diabetes (T1D), 
and ulcerative colitis (UC). f Left: example of colocalization of rheumatoid arthritis (RA) GWAS signal and the 
cmQTLs at the CD40 locus in monocytes. Right: example of colocalization of systemic lupus erythematosus 
(SLE) GWAS signal and cmQTLs at the BLK locus in LCLs. g Example depicting the SKAP2 locus in neutrophils, 
one example individual per genotype. h CM activity, SKAP2 and HOXA1 expression stratified by genotype of 
the highest-ranked candidate-associated variant rs2960785. i Example depicting the C3 locus in neutrophils, 
one example individual per genotype. j CM activity, C3 and TNFSF14 expression stratified by genotype of the 
highest-ranked candidate-associated variant rs339392. k Example depicting the TRIM14 locus in monocytes, 
one example individual per genotype. l CM activity, TRIM14 and CORO2A expression stratified by genotype 
of the highest-ranked candidate-associated variant rs7867966. In g, i, and k, the red triangles represent the 
localizations of histone QTLs. In the boxplots, each dot represents one individual and p values were calculated 
using a Wilcoxon test. p value indications are non-significant (ns) for p value > 0.05, * for 0.01 < p value ≤ 0.05, 
** for 0.001 < p value ≤ 0.01, *** for 0.0001 < p value ≤ 0.001, and **** p value ≤ 0.0001
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LCL [65], and this impact on PU.1 binding extends to the other peaks embedded within 
the CM (Fig. 4i). This shows how a DNA base change can impact both histone modi-
fications and TF binding on the focal CRE as well as associated distal CM-embedded 
CREs. A final example is the TRIM14 locus, where the variant rs7867966 in the TRIM14 
promoter is associated with the aCM score and the expression of TRIM14 as well as the 
nearby gene CORO2A (Fig. 4k, l). Rs7867966 is an eQTL specific to blood cells (Addi-
tional file 1: Fig. S4.3c) and predicted to disrupt a C/EBP binding site (Additional file 1: 
Fig. S4.3e). Together, these example loci conceptually illustrate how mapping of CMs and 
associated QTLs can be used for the mechanistic interpretation of disease-associated 

Fig. 4  (See legend on previous page.)
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non-coding variants. In addition, it may allow to narrow down the number of candidate 
variants within a locus, as frequently more than one hQTL per locus can be identified 
(Fig. 4g, i, k; red triangles).

Chromatin modules reveal how genetic variants may impact expression of immune surface 

markers

Surface markers represent the molecules essential for immune cell interactions and con-
sequently function, and several associations between non-coding variants and cell sur-
face marker expression have already been reported [66]. Altered regulation of surface 
marker expression can affect how immune cells interact to combat infection and also 
impact the efficacy of treatment modalities that target these markers such as immuno-
therapy regimes. We aimed to use CMs to assess how QTLs may affect surface marker 
regulation and expression. We used a list of 185 surface markers consisting of all cluster 
of differentiation (CD) and tetraspanin molecules [67]. For 69 of these loci, we identified 
a CM in at least one cell type, and for 44 loci, a cmQTL was found in at least one cell 
type (Additional file 1: Fig. S4.4a). For example, for the CM spanning CD207 in mono-
cytes, the top associated cmQTL rs11126300 localizes in an intergenic enhancer region 
between CD207 and CLEC4F, where it modulates the epigenome of a range of putative 
CREs as well as the expression of both CLEC4F and CD207 (Additional file 1: Fig. S4.4b–
d). Another relevant example is the CD93 locus in neutrophils, where a CM spans sev-
eral genes. The top ranked cmQTL rs844881 localizes in a peak at the 3′ UTR of the 
lncRNA LINC00656 and has a strong association with the activity of the CM and the 
expression of THBD, CD93, and LINC00656. We did not observe an expression change 
for NXT1 and NAPB, which are adjacent genes that are not part of the respective CM 
(Additional file 1: Fig. S4.4e–g). The variant rs844881 shows a strong association with 
the development of varicose veins in the FinnGen cohort (p = 5.5e−5) [68]. This could 
be related to the impacted expression of the THBD gene, as altered THBD expression 
in neutrophils has been implicated in the development of venous thrombosis [69] and 
thus together provides a putative mechanism of how rs844881 could impact the risk on 
varicose veins by impacting THBD expression in neutrophils. Finally, another example 
of the CD9 locus shows that even though the same genetic variant impacts an intergenic 
enhancer in different cell types, it is only when adjacent CREs are included in the CM 
that this results in an impact on gene expression (Fig. 3c, Additional file 1: Fig. S4.4h, i).

Altogether, these analyses reveal how genetic variants could impact CMs around sur-
face markers and potentially result in functional variation in immune cell function and 
disease susceptibility.

Context‑dependent formation of CMs in chronic lymphocytic leukemia

Recent studies revealed that non-coding genetic variants can impact the prognosis of 
chronic (CLL) and acute (ALL) lymphocytic or myeloid (AML) leukemia [70–72]. A var-
iant in the AXIN2 locus was shown to activate multiple enhancers (within a CM), the 
expression of AXIN2, and was linked to better survival rates of CLL patients [22]. A vari-
ant in a GATA3 enhancer was shown to impact multiple regions around GATA3, result-
ing in higher GATA3 expression in cis and downstream 3D genome rearrangements 
[72]. We thus assessed if CMs capture CLL-specific-induced epigenome configurations. 
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We uniformly analyzed epigenome data from LCLs (immortalized B cells in a non-dis-
ease context, n = 317 individuals) and CLL (immortalized B cells in the context of can-
cer, n = 105 individuals) (Fig. 5a). As for the five initial cell types (Fig. 2a), we defined 

Fig. 5  Activation of genomic loci in a subset of CLL patients. a Strategy for mapping CMs using available 
ChIP-seq for H3K27ac in LCL (n = 317) and CLL (n = 105) samples. b Log2 ratio of interindividual variance 
of aCM activity (x-axis) and interindividual variance in expression of the gene(s) embedded within the 
CM. Colors represent whether the promoter of the gene is part of the CM. Correlation values are Pearson 
correlation. Boxplots represent the distribution of the interindividual variance. c Example depicting the 
OSBPL5 locus whose embedded gene’s expression is induced in a subset of CLL patients. d CM activity 
stratified by genotype of the candidate-associated variant rs895555. e Event-free survival of CLL patients 
stratified on OSBPL5 expression for both IGHV-mutated and -unmutated CLL status. p values were obtained 
using a log-rank test. p value indications are non-significant (ns) for p value > 0.05, * for 0.01 < p value ≤ 0.05, 
and ** for 0.001 < p value ≤ 0.01
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a common set of peaks based on H3K27ac and used these for CM mapping. We then 
calculated the variance of each CM in both LCL and CLL in combination with the inter-
individual variability in gene expression to identify genomic loci in which the local chro-
matin environment and expression of the embedded genes are distinct between LCL and 
CLL. This analysis, in combination with stringent filtering, allowed identification of 16 
prioritized candidate loci in CLL (Fig. 5b; Additional file 1: Fig. S5.1a, b), which include 
previously implicated genes such as CTLA4 and WNT3 [73, 74] (Fig. 5b). We found that 
the locus-gene combination most specific to CLL is the OSBPL5 locus (Fig. 5b), where 
the OSBPL5 promoter and several flanking enhancers are activated in a subset of CLL 
patients (Fig. 5c). Association to the underlying genotype (n = 35 individuals with both 
H3K27ac ChIP-seq and genotype data available [22]) identified a candidate non-coding 
germline variant (rs895555, MAF = 45%) in an OSBPL5 intron that is strongly associ-
ated with the activation of the locus (Fig. 5d, Additional file 1: Fig. S5.1c). The T allele of 
rs895555 creates the core of a putative Forkhead (FOX) TF binding site ((T/C)GTTT) 
(Additional file 1: Fig. S5.1d), which is of interest given the implication of this TF family 
in the development and progression of B cell malignancies [75]. OSBPL5 expression is a 
prognostic marker for overall survival in the context of mutated immunoglobulin heavy 
variable (IGHV) gene status (Fig. 5e) and was recently identified as the strongest predic-
tive gene expression marker for time to progression after CLL treatment [76]. The sec-
ond-highest variable gene-locus combination was the COBLL1 locus (Additional file 1: 
Fig. S5.2a–c), where the strongest associated variant is a common (MAF = 17%) intronic 
TATA duplication. COBLL1 expression is associated with survival in chronic lympho-
cytic leukemia (Additional file 1: Fig. S5.2d) and has also been linked to survival prob-
ability in several other cancer types including chronic myeloid leukemia [77]. Finally, we 
analyzed TF binding profiles in the CREs included in CLL or LCL CMs, compared to 
simulated reference CMs. We observed enrichment of many similar types of TFs, related 
to B cell function such as IRF, RUNX, and EBF1 (Additional file 1: Fig. S5.2e, f ), but also 
specific enrichment of factors such as FOXO1 (as also seen for rs895555) in CLL which 
have been implicated in CLL and harbor driver mutations [75]. Despite the limited num-
ber of genotypes available for CLL, we show that CMs can be used to identify candidate 
variants associated with CLL. Since CMs capture covariable CREs, such an approach 
provides a conceptual framework as to how genetic variants may molecularly impact 
gene expression and consequently cellular state.

Discussion
In this work, we established computational guidelines to map CMs and harmonize the 
output formats across the available methods VCMtools, Clomics, and PHM, which 
makes CM mapping accessible to the community (see Availability of data and mate-
rials). For each method, we provide recommendations regarding parameter ranges 
and optimal values (Additional file 3: Table S2). Based on the analyses presented here, 
we recommend to use Clomics as compared to VCMtools and PHM since it (1) has 
higher power also in the context of lower sample sizes and more subtle peak-peak 
associations; (2) identified CMs that  show no major dependency on parameter tun-
ing in terms of total number, size, or overlap with TADs and A/B compartments; (3) 
captures a higher percentage of aCM-gene expression correlations; and (4) is easier 
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and faster to run. VCMtools and PHM may still be used as confirmatory analyses to 
further define the most reproducible CMs, as the only limitation of Clomics is that 
the output CMs may show limited changes depending on the cohort of individuals 
included as evident in the sub-sampling analyses.

We thus used Clomics to comprehensively assess regulatory coordination in six cell 
types and hundreds of individuals in a genome-wide manner, which revealed exten-
sive cell type specificity of regulatory variation. We provide mapped CMs in an acces-
sible format (see Availability of data and materials) and show how these can be used 
to disentangle the different (epi)genomic modalities, starting from genetic variants 
to TFBSs, histone modifications on local and distal CREs and finally gene expression. 
Our results substantiate the hypothesis of cooperation between local and distal CREs 
within TADs, which we observed using both epigenome data and enrichment in 3D 
interactions. At the sub-TAD scale, we argue that mapping of CMs thus provides an 
approach complementary to 3C-based applications for determining CRE interactions 
within TADs in a genome-wide manner [17–19, 21]. An advantage of mapping CMs 
is that CREs are grouped into functional units, and that CMs therefore allow to pro-
vide mechanistic rationales regarding how non-coding variants can impact the epige-
nome of local and distal CREs as well as the expression of genes embedded within the 
respective CM. We provide examples of such analyses in the case of GWAS loci for 
autoimmune disease, surface marker expression variation on immune cells, and iden-
tification of candidate variants driving prognostic marker expression in CLL patients.

Ultra-resolution 3C-based assays or microscopy strategies have revealed in spe-
cific loci that the removal of the canonical proteins involved in regulating 3D genome 
architecture, such as CTCF and cohesin, has limited impact on the establishment of 
interactions between CREs [78–83]. Moreover, structural proteins such as CTCF are 
ubiquitously expressed and tend thus on themselves to be unable to define the cell 
type-specific CRE cooperativity within CMs. Together, this raises questions of how 
regulatory interactions within a TAD environment are established in a cell type-spe-
cific context. An attractive hypothesis is that this is mediated by cooperating TFs, 
which often are expressed in a cell type- or lineage-specific manner [84], followed 
by TF-mediated recruitment of general co-activators and chromatin modifiers [17]. 
The observations on the cell types assayed here suggest that CMs are established by 
classes of more ubiquitously expressed TFs that bind CM-embedded CREs that are 
shared across multiple cell types (here defined as anchors) in combination with cell 
type-specific TFs that bind CM-embedded CREs whose activity is restricted to one 
of just a few cell types. Such cooperative binding of cell type-/lineage-specific and 
core CM TFs [35] that reflect a specific cell state may thus mediate CRE interactions 
within and beyond the 3D genome organization established by CTCF and Cohesin. 
This observation is also consistent with the notion that cmQTLs frequently disrupt 
the binding sites of cell-type specific TFs, which then could affect histone modifica-
tion deposition and cooperation between CREs within a CM in a cell type-specific 
manner. This finding complements recent observations showing that genetic variants 
impact CRE interactions relevant for establishing gene expression through direct per-
turbation of TF binding to enhancers [85] and that TFs are the main drivers of gene 
expression cooperativity [86].
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Conclusions
Altogether, we demonstrate that CMs provide a means to shed light on the mechanisms 
underlying gene expression and gene regulatory variation with high-throughput epig-
enome data in a range of genetic backgrounds, provided the availability of a sufficient 
number of assayed samples. Future applications of CM mapping could include defining 
CM plasticity within closely related cell types during cellular differentiation, or rather 
in different species to assess how conserved local genome organization is. With the 
constantly decreasing cost of high-throughput sequencing and easy-to-implement epi-
genome tools, we advocate for the value of CM mapping in future studies where epig-
enome data is being generated in large sample cohorts as part of the overarching goal to 
understanding how regulatory variation contributes to complex traits and disease [18, 
19, 28, 66, 87]. We believe that the guidelines, executable code, and interpretable output 
provided here will highly facilitate this process.

Methods
ChIP‑seq, ATAC‑seq, and RNA‑seq data processing

Unpaired reads were removed using samtools [88] and duplicates were marked and 
removed using picard v2.17.8 [89]. To create a common set of peaks per cell type, we 
followed a commonly used strategy [19] and created a “meta” BAM file per epigenome 
assay (H3K4me1, H3K27ac, or ATAC) by merging (samtools merge) downsampled (15 
million reads per sample) bam files (for details on downsampling strategy, see next sec-
tion) for each individual. The resulting meta bam files of the different cell types were 
then merged per epigenome assay resulting in the creation of the final merged bam files. 
Peak calling was performed on these files using MACS2 [90] using parameters “--broad” 
“-f BAMPE” and a q value cutoff of 0.01. The obtained universal peak set was used to 
count the number of reads for the respective epigenome assays per individual per cell 
type using FastReadCounter (https://​github.​com/​Depla​nckeL​ab/​FastR​eadCo​unter). 
The resulting non-normalized count matrices were RPKM normalized using the rpkm 
function from edgeR v3.36.0 [91]. For data standardization, we used linear regression 
to remove the known covariates sex and age. As the LCL cohort consists of a merge of 
cohorts from individuals from different ancestries, the first 3 principal components of 
the genotypes (obtained using QTLtools pca [92]) were removed as well. To account for 
effects of unknown covariates, principal component analyses were performed on the 
RPKM-normalized count matrices and the first 10 PCs (in case of monocytes, neutro-
phils, T cells, and CLL) or the first 20 PCs (in case of LCL and FIB) were also removed 
during the regression [19]. The residuals from the linear regression were kept and nor-
malized using quantile normalization with the qqnorm function from the stats base 
R package. Throughout the manuscript, we considered all the peaks for H3K27ac and 
H3K4me1 that were determined using the strategy described above as CREs, as these 
chromatin marks in essence denote active regulatory regions. The common set of peaks 
we created is identical for all cell types. Hence, CREs (peaks) have the same coordinates 
across cell types, yet vary in their chromatin mark enrichment, which, as hypothesized, 
is driven by cell type-specific gene regulatory programs. The resulting matrices were 
used as input for mapping of QTLs and CMs.

https://github.com/DeplanckeLab/FastReadCounter
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RNA-seq.fastq files for LCL and FIB [19] were processed in a same way as the epi-
genome data, with variance stabilization using the DESeq2 R package (v 1.40.1) [93] 
instead of RPKM normalization. The normalized RNA-seq data for monocytes, neutro-
phils, and T cells was obtained from the original study (see below Availability of data and 
materials) [28].

To minimize inconsistencies in TF expression measurements in RNA-seq data from 
different studies and cell types, we used the Human Protein Atlas (HPA) data (see below 
Availability of data and materials) [84]. We used RNA Monaco immune cell gene data to 
extract TF expression values for the immune cell types as protein-transcripts per million 
(pTPM). Namely, for “naive CD4 T-cell” for T cells, “naive B-cell” for LCLs, “neutrophil” 
for neutrophils, “classical monocyte” for monocytes, and RNA GTEx tissue gene data to 
extract pTPM values for “skin” tissue, which we used as a proxy to FIBs.

ChIP‑seq downsampling and read statistics

Total read counts for BAM files were extracted using samtools idxstats [88], which was 
used to calculate the ratio between the target number of reads (10, 20, or 25 million) and 
the total read number (defined in Additional file 4: Table S3). If the BAM file contained 
less reads than the target read number, no downsampling was performed and BAM files 
were used as a whole. When more reads were present, the BAM files were downsam-
pled with samtools view using -s parameter with the ratio of the total to the target num-
ber of reads. The universal peak set was then used to generate the count matrix for the 
respective downsampled BAM files per individual per cell type using FastReadCounter 
(https://​github.​com/​Depla​nckeL​ab/​FastR​eadCo​unter). The resulting non-normalized 
count matrices were processed in the same way as the count matrices constructed for 
the original BAM files without downsampling (see above).

CM mapping

The methods used in this work required adjustments (or full implementation, as in the 
case of VCMtools).

•	 The CM mapping approach described in Waszak et  al. [18] was implemented in 
python (hereafter referred to as VCMtools) and adapted to account for the cell type-
specific background by using empirical p value correction followed by FDR thresh-
olding. Namely, for each chromosome, for two peaks, whose centers are located at 
the max distances of 500 kb from each other, we calculated and stored correlation 
values of the respective peak height profiles across individuals. Then, we calculated 
the average background correlation ( µbg ) and its standard deviation ( σbg ) for all peak 
pairs across all chromosomes. This allowed us to calculate the empirical p value as 
1—scipy.stats.norm.cdf (correlation, loc = µbg , scale = σbg ), which we further cor-
rected with the Benjamini-Hochberg procedure. CMs were identified by selecting 
isolated components after filtering peak-to-peak correlations based on the corrected 
p value threshold (p value ≤ 0.001).

•	 To map CMs with Clomics, we used the default window size of 200 peaks for calcu-
lating peak correlations and the default background correlation cut-off of 3. Clomics 

https://github.com/DeplanckeLab/FastReadCounter
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did not require major changes except for the conversion of the output tree file into a 
BED file format.

•	 We used the default window size for PHM (1  Mb centered at the focal peak) and 
by following the described methods in the supplementary section of Kumasaka et al. 
[21]. We implemented some of the key methods not included in the PHM package 
(https://​github.​com/​natsu​hiko/​PHM/), including the DAG construction for infer-
ence of hierarchies between peaks categorized into the causality hypothesis. In the 
current study, for the reconstruction of the hierarchies we considered peak pairs with 
posterior probability of causal interaction ≥ 0.8.

Data preprocessing and CM mapping scripts are available via GitHub (https://​github.​
com/​Depla​nckeL​ab/​Chrom​atin_​modul​es).

Randomization strategy for investigating the number of samples required to map CMs

The robustness of the CM mapping methods was evaluated with respect to the number of 
individuals in every LCL on the chromosome chr22. We chose the smallest chromosome 
chr22 and ran each method on a subset of samples of size s ∈ {x × 25|x = 1, 2, . . . , 12} , 
where each of the subsets was randomly sampled five times, resulting in 12 × 5 runs per 
method. For each execution run, we measured the number of CMs, elapsed time, mem-
ory consumption, median module length, coefficient of variation of CM length, and per-
centage of CMs with a cmQTL.

Parameter selection for CM mapping

For each method, there were two critical parameters to test: the maximum distance 
between a peak pair (CREs) that is considered for association testing and the strength of 
such association.

•	 To select the window size, we started with the commonly used distance of 0.5 Mb 
as the reference point. We would like to note here that in Additional file 1: Figs. S1.3 
and S1.4 the window size of 0.5 Mb refers to the distance from a focal peak to any 
another peak to its left or right, which is equivalent to using a 1 Mb window (e.g., in 
the PHM definition) centered at the focal peak. Therefore, the tested window sizes 
from 0.01 to 1 Mb to the left/right of the peak correspond to respectively 0.02–2 Mb 
windows centered at peaks. We selected the 0.25 Mb step to ensure a diverse range 
of window sizes while avoiding extensive search space due to its computational bur-
den in the case of multiple parameter combinations. Clomics is somewhat differ-
ent in concept in terms of how it is designed and it uses a defined number of peaks 
around a focal peak rather than a specific genomic window. To obtain a similar win-
dow search space to VCMtools and PHM, we picked the range from 25 to 400 peaks 
(with the default of 200 peaks approximating a 1 Mb window [19]).

•	 To choose the peak association threshold per method, we also aimed to test a range 
of options from the least to the more stringent ones. In case of VCMtools, we started 
with the 0.05 p value threshold and chose a few more stringent options up to 1e−6. 
One could possibly test intermediate thresholds, such as 0.005 and 0.0005, yet we 
decided to exclude those from consideration to speed up computations for all pair-

https://github.com/natsuhiko/PHM/
https://github.com/DeplanckeLab/Chromatin_modules
https://github.com/DeplanckeLab/Chromatin_modules
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wise combinations of tested parameters. Clomics background correlation thresholds, 
as well as the PHM ones, were also selected in such a way to ensure a broad range 
of tested values and respective outcomes. It is thereby important to note that in the 
original PHM study [21], the authors used a 0.5 posterior probability threshold to 
map causal peak interactions in ATAC-seq data for 100 LCL samples. To map such 
causal peak interactions in ChIP-seq data, however, we observed that such threshold 
is quite lenient, which motivated us to implement more stringent values and to select 
0.8 as our “default” option.

The current parameter search space allowed us to reach the low and high extremes of 
the measured statistics (e.g., for the distribution of sizes and number of mapped CMs). 
We also defined parameter combinations per method, which can be found in Additional 
file 3: Table S2.

Reproducibility analysis of mapped CMs across cell types and methods

To compare CMs, we followed the approach based on the harmonic mean score [94]. We 
started by calculating the Jaccard overlap between the peaks at the level of base pairs. 
Then, for each pair of overlapping CMs CMi,CMj  , where CMi = {p1i , p

2
i , . . . , p

n
i } and

CMj = {p1j , p
2
j , . . . , p
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j } , we created a matrix of size n×m , where n is the number of 
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 , where pki  and plj are defined as sets of unique genomic posi-

tions. For a pair of CMs, we first calculated the average of maximum values along the 
rows ( r) and columns ( c) of matrix J  , and then the final score (which we refer to as F1 
score) as a harmonic mean 2

1
r +

1
c

.

CM overlap with A/B compartments, TADs, chromatin state annotations, and genes

TAD and A/B compartment (start, end) coordinates (for GM12878, GSE63525) were 
overlapped with CM coordinates (CM start and end) using bedtools [95] function 
intersect with the –wo to report the base pair overlap of CMs with the regions of 
interest. Prior to intersecting CMs and TADs, overlapping or nested TADs were 
merged into a single TAD region by taking the minimum and the maximum coordi-
nates among the regions of interest. Next, based on the CM overlap size (with TADs 
or A/B compartments) with respect to the CM length, we split CMs into those that 
were fully located in TADs or A/B compartments, partially overlapping ones (part 
of a CM falls outside of the region yet overlaps it by at least one base pair) and the 
CMs completely falling outside the regions of interest. To see whether the statis-
tics for obtained overlaps are different from the expected values, we followed the 
bootstrapping strategy. Namely, we shuffled the CMs 1000 times along the genome 
using the bedtools [95] shuffle function with varying -seed parameter set to the itera-
tion number of the shuffling round. We also restricted the shuffling to individual 
chromosomes by using the -chrom parameter and prevented shuffled regions fall-
ing into blacklisted regions by using the -excl parameter followed by the list of 
regions (https://​github.​com/​Boyle-​Lab/​Black​list/​blob/​master/​lists/​hg19-​black​list.​
v2.​bed.​gz) [96]. The randomized CM coordinates were overlapped with TADs and 

https://github.com/Boyle-Lab/Blacklist/blob/master/lists/hg19-blacklist.v2.bed.gz
https://github.com/Boyle-Lab/Blacklist/blob/master/lists/hg19-blacklist.v2.bed.gz
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A/B compartments following the previously described strategy. Based on the aver-
age number of shuffled CMs overlapping TADs, or A/B compartments respectively, 
we obtained 95% confidence intervals (CI) for each method. The CIs for CMs fully 
falling into TADs per method were Clomics CI = [0.48, 0.49], VCMtools CI = [0.48, 
0.5], and PHM CI = [0.44, 0.47]. The CIs for CMs fully falling into A compartments 
per method were Clomics CI = [0.32, 0.33], VCMtools CI = [0.31, 0.33], and PHM 
CI = [0.3, 0.33]. The CIs for CMs fully falling into B compartments per method were 
Clomics CI = [0.52, 0.53], VCMtools CI = [0.52, 0.54], and PHM CI = [0.5, 0.53]. 
CRE annotations for LCLs (GM12878) were obtained from ChromHMM [10] and 
SCREEN (all human cCREs, hg38; coordinates were lifted to hg19) [97] databases. 
Annotated CRE coordinates were overlapped with CM and non-CM peaks with bed-
tools without restrictions on the overlap size. Then, per each CRE annotation cat-
egory and per peak, we calculated the fraction of peak length overlapping with the 
respective annotated CRE. For each CRE category, we performed Fisher’s exact test 
on the contingency table constructed for CM peaks and non-CM peaks in a category 
of interest (non-significant (ns) for p value > 0.05, * for 0.01 < p value ≤ 0.05, ** for 
0.001 < p value ≤ 0.01, *** for 0.0001 < p value ≤ 0.001, **** p value ≤ 0.0001).

Gene coordinates were downloaded from the GRCh37 (hg19) assembly. For every 
gene, we defined the promoter region as +−500 bp from the TSS, and gene body as 
gene coordinates without promoter region. Gene coordinates (promoter start, gene 
body end) were overlapped with CM peaks with bedtools [95] intersect with the –wo 
to report the base pair overlap of CMs with the gene coordinates, without restric-
tions on the overlap size (1 bp was considered sufficient). If CM peaks overlapped 
more than one gene, the statistics were calculated for every CM-gene pair. To cal-
culate the coefficient of variation (CV) of CM-embedded gene expression, we used 
counts per million ((CPM)-normalized counts). To explore the differences between 
standard deviation, mean and median gene expression of genes embedded within 
CMs or genes outside of CMs, and all other aCM-gene correlation analyses, we used 
regressed out, variance stabilized and DESeq2 normalized RNA-seq data (see “ChIP-
seq, ATAC-seq, and RNA-seq data processing”). For the aCM/peak height to gene 
correlation analyses, we found the closest gene TSS to the entry of interest with 
bedtools [95] closest, and then proceeded with correlating either the aCM score or 
peak height with the closest gene expression. If several genes were equidistant, we 
considered all of them in the analyses. We calculated the coefficient of correlation 
together with the associated p value (using scipy.stats.pearsonr), which were further 
corrected with the Benjamini-Hochberg procedure. Associations with the corrected 
p value ≤ 0.05 were considered significant.

Calculation of the CM activity score (aCM)

For each CM, the embedded peaks and associated counts per individual were 
extracted to create a separate peak by individual matrix, followed by principal com-
ponent analysis. Since the embedded peaks are correlated by definition, most vari-
ation in signal between the individuals is captured in the first principal component, 
and thus the values for this component were extracted and used as the aCM score.
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Quantification of peak interactions in Hi‑C and Micro‑C data

Micro-C data was aligned using BWA v0.7.17 [98]. Ligation events were determined 
using pairtools parse with parameters --min-mapq 40 --walks-policy 5unique --max-
inter-align-gap 30 [99]. PCR duplicates were removed using pairtools dedup followed 
by the generation of BAM and pairs files. The.pairs files were used to generate cooler 
files using cooler cload pairix with default parameters [100]. For the constructed set 
of paired mapped and simulated CMs, interaction frequencies for peaks in CMs were 
quantified in Hi-C and Micro-C data at 500  bp, 1  kb, and 5  kb resolutions by first 
fetching the bins overlapping individual peaks and then averaging the signal within 
the bin overlap area for all possible peak pairs in a CM.

Simulation strategy for CMs

To move away from a single or paired element-defined background, we devised a sim-
ulation strategy to construct a background set of CMs resembling mapped regions of 
covariable CREs in terms of their intrinsic properties, which include:

1.	 Number of regulatory elements in a CM
2.	 Length of a CM
3.	 Total base pair length of elements in a CM
4.	 Overall peak signal variability in a CM
5.	 H3K27ac peak fraction
6.	 CM location in A or B compartments and TADs (optional)

Prior to simulating the background set of CMs, we define the reference set of CMs 
as the set of all CMs if A/B compartment and TAD data (pt. 6) is not available. For the 
consistency of the analysis described in the paper, we did not use the A/B compart-
ment and TAD constraint since the data was not available for all cell types. In the 
case when this data is available, the reference set of CMs is defined by overlapping 
the mapped CMs with TADs and stratifying the CMs based on their localization in 
A/B compartments. This allows to narrow down the set of CMs to putative functional 
regions by conditioning on TADs and account for potential structural differences of 
CMs located in A or B compartments.

Every CM in the reference set is characterized by a vector of features described 
above in points 1–6. Then, for every CM from the reference set of size n, we randomly 
sampled a peak from the non-CM peak set, and n−1 peaks in the peak neighborhood. 
In the case of simulation of CMs for the PHM output, we started by randomly sam-
pling a peak classified into one of the single QTL hypotheses. The number of peaks 
per histone mark in the set of sampled non-CM peaks was perfectly matched with 
the respective reference CM histone mark peak frequencies. We repeated the pro-
cedure 10 times per CM, resulting in 10 sets of sampled peaks per CM, where each 
set represents a candidate simulated CM. These candidates for simulated CMs were 
characterized with the same feature set as for CMs. For every CM in the reference 
set, we searched for the five most similar simulated CMs among all generated candi-
dates of the same size (same number of peaks), with respect to the feature vector, by 
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applying Approximate Nearest Neighbors search (Annoy package https://​github.​com/​
spoti​fy/​annoy). After matching CMs with simulated CMs, we filtered out simulated 
CMs with more than 10% variation in GC content, CM length, and total base pair 
length of peaks as compared to the reference CM. This allowed us to obtain the final 
set of paired mapped and simulated CMs.

Differential TFBS enrichment and TF expression

We used command line UniBind TFBS differential enrichment tool (UniBind_enrich.sh 
script with twoSets parameter and hg38_robust_UniBind_LOLA.RDS motif set) [101]. 
Prior to running the script, peak coordinates were lifted from hg19 to hg38. Depending 
on the task, the background set was changed, e.g., for differential TFBS enrichment in 
actual CM peaks vs simulated CM peaks, we used simulated CM peaks as a background 
set.

For TFBS enrichment at CM peaks in cell type A vs cell type B (Additional file  1: 
Fig. S2.4), and classification of TFs into cell type-restricted/common anchors/non-
anchors, we considered all pairwise combinations of cell types. We started with split-
ting the peaks into CM and not CM peaks per cell type, and merged the overlapping 
peaks (e.g., coming from different histone modifications) into a single peak to prevent 
the same region being considered for TFBS enrichment several times. Based on the CM 
and not CM peaks in cell type A, and CM and not CM peaks in cell type B, we defined 
anchor and non-anchor peaks for a cell type pair of interest. Namely, if CMs peaks from 
two cell types were overlapping by at least 1 bp, we defined them as anchors, otherwise 
non-overlapping CM peaks between two cell types were defined as non-anchors. Prior 
to running the differential TFBS enrichment analysis, we lifted peak coordinates from 
hg19 to hg38. Next, we performed differential TFBS enrichment analysis with the UniB-
ind TFBS differential enrichment tool (UniBind_enrich.sh script with twoSets parameter 
and hg38_robust_UniBind_LOLA.RDS motif set) for (1) anchor vs non-anchor (union of 
cell type-specific) CREs, (2) non-anchor CREs in cell type A vs non-anchor CREs in cell 
type B, and (3) non-anchor CREs in cell type B vs non-anchor CREs in cell type A. A 
TFBS is considered significantly enriched by UniBind if the observed overlap in tested 
regions is greater than expected by chance, as compared to the background, defined as a 
merge of input sets. It is important to note that UniBind uses the same background set 
for differential enrichment analysis in both directions: cell type A vs cell type B and cell 
type B vs cell type A. Together with the intrinsic input dataset properties (cell types from 
close lineages), this methodological choice can lead to some TFs appearing significantly 
enriched in both comparisons. For each comparison group, we obtained a table with a 
TF and respective q value for enrichment in a given set vs defined background. Signifi-
cantly enriched TFBSs (q value ≤ 1e−06) obtained through this analysis were addition-
ally filtered based on TF expression (protein-transcripts per million (pTPM) > 2 in at 
least one cell type [84]). Finally, we overlapped the groups of TFs across all pairwise cell 
type comparisons to define the final TF categories (Fig. 2c).

Mapping of quantitative trait loci (QTLs)

VCF files with genotype information for LCL and FIB samples were created based on 
SNP arrays (8,245,940 SNPs [19]), and those for monocytes, neutrophils, and T cells 

https://github.com/spotify/annoy
https://github.com/spotify/annoy
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based on whole genome sequencing (6,914,843 SNPs [28]). Mapping of QTLs was done 
using QTLtools [92] in the QTLtools cis mode with the options --permute 1000 and 
--normal. For each peak or CM, all variants within a 1  Mb around the tested pheno-
type were considered. In practice, this means that several thousand genetic variants were 
tested for each phenotype. To account for the fact that genotype-phenotype associations 
are assayed for a large number of loci, the resulting FDR-adjusted p values were further 
corrected using q value correction using the qvalue R package (v2.24.0, https://​github.​
com/​Store​yLab/​qvalue). Variants with an FDR-q value corrected p value under 0.05 were 
considered significant.

Intersection of QTLs with GWAS

To allow for a complete overlap, the variants in linkage disequilibrium (LD) with the 
QTLs were determined using plink2 [102] based on the 1000G genotype file for individ-
uals with a European ancestry. All variants within a 1 Mb window were considered and 
those with R2 > 0.8 retained as LD variants. The GWAS catalog for hg19 with 392,271 
associations (release 2022-05-11) was downloaded from the UCSC table browser and 
only variants that were present in the genotype file and the GWAS catalog were consid-
ered for downstream analyses. To compare histone QTLs that were also cmQTLs with 
hQTLs, the hQTL files were split into variants that were also cmQTLs themselves or in 
LD (R2 > 0.8) with cmQTLs (from then on referred to as hcmQTLs) and only hQTLs. 
Then, variants were overlapped with the GWAS variant file and considered overlapping 
based on a direct match or LD (R2 > 0.8) with a GWAS variant. This yields the quantifi-
cation of how many overlaps there are of the tested QTL set with each GWAS variant. 
By comparing this with the QTL set size and the total occurrence in the GWAS file, this 
allows to obtain the observed/expected ratio for each QTL set individually. A Fisher’s 
exact test was used to compare this ratio between hcmQTL and hQTL sets to identify 
the enriched terms. For colocalization of cmQTLs with GWAS variants, each variant in 
a 500 kb window around the CM was tested for the association with the aCM score. The 
resulting variants were matched with those present in the summary statistics for each of 
the tested autoimmune disease-associated variants. Colocalization was performed using 
Coloc v5.2.2 [62]. Variants with a posterior probability (PP4) > 0.8 and a p value under 
1e−5 for both the cmQTL and GWAS associations were considered as colocalizing.

Intersection of QTLs with TF binding

QTLs were divided in hcmQTLs and hQTLs and 200 bp windows were created around 
each variant. The R package ReMapEnrich v0.99.0 [48] was used to identify TFs that 
were found to bind in these windows using ChIP-seq in any human cell type. Enrich-
ment was assessed using the hcmQTL set as input with the hQTL-only set as reference, 
thus serving as reference regions. Allele specific binding (ASB) events for 1073 TFs were 
downloaded from the Adastra database (release June 2022) [45]. For each TF, only ASB 
events with a reported FDR < 0.05 were retained. Identified hQTLs were stratified in 
hcmQTLs and hQTLs and intersected with the ASB events to identify the total number 
of ASB events for each TF for the two QTL groups. The number of ASBs for each TF was 
compared between the QTL groups using a Fisher’s exact test. Prediction of TF motif 
disruption by QTLs was done using position weight matrices (PWMs) [103].

https://github.com/StoreyLab/qvalue
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Enrichment of QTLs in open chromatin regions

QTLs were divided in hcmQTLs and hQTLs and analyzed using Forge2 [104] via the 
associated web server (https://​forge2.​altiu​sinst​itute.​org/) using default parameters. Con-
solidated Roadmap Epigenome DNAseI hypersensitive sites were used for the enrich-
ment analysis.
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