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Abstract 

Background:  Although disease-causal genetic variants have been found 
within silencer sequences, we still lack a comprehensive analysis of the association 
of silencers with diseases. Here, we profiled GWAS variants in 2.8 million candidate 
silencers across 97 human samples derived from a diverse panel of tissues and devel-
opmental time points, using deep learning models.

Results:  We show that candidate silencers exhibit strong enrichment in disease-asso-
ciated variants, and several diseases display a much stronger association with silencer 
variants than enhancer variants. Close to 52% of candidate silencers cluster, form-
ing silencer-rich loci, and, in the loci of Parkinson’s-disease-hallmark genes TRIM31 
and MAL, the associated SNPs densely populate clustered candidate silencers rather 
than enhancers displaying an overall twofold enrichment in silencers versus enhanc-
ers. The disruption of apoptosis in neuronal cells is associated with both schizophrenia 
and bipolar disorder and can largely be attributed to variants within candidate silenc-
ers. Our model permits a mechanistic explanation of causative SNP effects by identify-
ing altered binding of tissue-specific repressors and activators, validated with a 70% 
of directional concordance using SNP-SELEX. Narrowing the focus of the analysis 
to individual silencer variants, experimental data confirms the role of the rs62055708 
SNP in Parkinson’s disease, rs2535629 in schizophrenia, and rs6207121 in type 1 
diabetes.

Conclusions:  In summary, our results indicate that advances in deep learning models 
for the discovery of disease-causal variants within candidate silencers effectively 
“double” the number of functionally characterized GWAS variants. This provides a basis 
for explaining mechanisms of action and designing novel diagnostics and therapeutics.

Keywords:  Deep learning, Disease-causal single-nucleotide polymorphisms (SNPs), 
Dual functional regulatory elements, Gene regulation, Silencers

Introduction
A common but often elusive goal of biological investigations is to uncover the genetic 
basis of disease phenotypes [1, 2]. This is challenging due to the inherent complexity 
of human genetics. Although genome-wide association studies (GWASs) offer valuable 
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genetic insights into diseases and disorders, they struggle to pinpoint causative variants 
due to linkage disequilibrium among genetic variants. Notably, a significant majority of 
GWAS variants, exceeding 90%, occur within noncoding genomic regions [3]. To accu-
rately map disease-causal variants, it is vital to characterize the function of non-coding 
regions. Up to now, the investigations have primarily focused on well-characterized non-
coding regulatory elements including enhancers, promoters, and insulators [4–8]. These 
studies consistently underscore the impact of regulatory elements on disease.

Evidence has also indicated pathological roles of silencers, however. For instance, a 
rare silencer variant disrupts the binding of NR2F1 and affects the expression of GATA2 
in neurons leading to hereditary congenital facial paresis type 1 [9]. Another variant 
deactivates a silencer in breast cells, causing the overexpression of ESR1 and RMND1 in 
breast cancer [10].

Despite these and a few similar discoveries, silencers have been underexplored in 
genetic and genomic research, in general, primarily due to the difficulties in system-
atically profiling these elements across the whole genome [11]. Recent advancements 
in massively parallel reporter assays (MPRAs) and computational analysis tools have 
allowed genome-wide mapping of silencers [12–16], opening doors to in-depth investi-
gations into the association of silencers with diseases and phenotypic traits in humans.

Understanding the regulatory effects of non-coding variants is a key challenge in 
genetic research, essential to discovering molecular causes of diseases [17, 18]. Here, we 
apply a deep learning framework to a diverse collection of 97 biological samples (biosa-
mples), building a deep learning model in each biosample to detect biosample-specific 
candidate silencers. Our results demonstrate that candidate silencers are enriched in 
disease-associated regulatory single-nucleotide polymorphisms (SNPs), but their dis-
ease-association profiles differ from those of enhancers. We demonstrate how silencer 
modeling can be used to predict the regulatory impact of variants within candidate 
silencers and to identify disease-causal variants.

Results
Genome‑wide silencer landscape in 97 cell types

We trained two-phase deep learning TREDNet models [19] to predict enhancers and 
silencers, building a multi-class classifier for each of the biosamples collected by the 
ENCODE project (see “Methods”). Albeit lower than the 0.96 enhancer area under 
receiver operating characteristic curve (AUROC), the accuracy of silencer prediction 
was on par with our prior models (0.84 AUROC) [14] and was significantly better than 
AUROC = 0.77 of our prior support vector machine (SVM) models [20]. While these 
SVM models employ DNA sequences and gene expression profiles for silencer predic-
tion, TREDNet models are DNA sequence-based, and thus can be readily extended to 
additional biosamples. These AUROC values exhibit a positive correlation with GC 
content levels and a negative correlation with repeat density (Fig.  1A). This partially 
explains lower classification performance on silencers than on enhancers since enhancer 
sequences (defined as DNase-seq and H3K27ac ChIP-seq peaks) generally feature 
higher GC content and lower repeat density than silencers (defined as DNase-seq and 
H3K27me3 ChIP-seq peaks that lack overlap with H3K27ac peaks, see “Methods”). With 
the trained TREDNet models, we identified enhancers and silencers in each biosample, 
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and conservatively selected 97 biosamples with over 5000 candidate enhancers and 
silencers in them for further investigation (Additional file 1: Table S1). These biosamples 
encompass a diverse array of human cell types, including but not limited to 22 immune 
biosamples (20 including blood cells, spleen, and thymus), 16 digestive, metabolic, and 
endocrine biosamples, and 7 biosamples from the central nervous system (Fig. 1B and 
Additional file 1: Table S1). Among them, 20 (20%) biosamples are from cancer cell lines.

We identified a total of 2.8 million candidate silencers and 5.8 million enhancers (see 
“Data and tools in Methods”), collectively spanning approximately 37.6% of the human 
genome. In cancer biosamples, 10% exhibit a higher count of silencers than enhanc-
ers, a proportion notably lower than the 16.5% of all examined biosamples (binomial 
test p = 0.007 , Additional file  2: Fig. S1). This finding is consistent with gene over-
expression in cancer cells [21], which might be due to silencer loss or deactivation in 
cancer. On average, 57.7% of candidate silencers and 42.9% of candidate enhancers are 
located within intergenic regions (binomial test p < 10−10 , Additional file  2: Fig. S2). 
Nonetheless, silencers and enhancers exhibit comparable distances to their nearest 

Fig. 1  Profiling candidate silencers across 97 biosamples from diverse origins. A Classification performance 
(AUROCs) of TREDNet models for silencers and enhancers in analyzed biosamples. AUROCs exhibit a 
correlation with GC contents and repeat densities of training sequence sets. Each dot represents a set of 
enhancers or silencers. B Distribution of 97 biosamples across cell types. C Distance of candidate silencers 
and enhancers to their nearest TSSs. D Expression of genes proximal to candidate silencers and enhancers. 
Markers and their flanking lines represent the medians and standard deviations of gene expression levels. 
Blue and orange asterisks on the top represent the significantly low and high expression levels, respectively, 
compared to all genes ( p < 0.05 ). E MPRA scores of candidate silencers and enhancers in three biosamples. 
F Performance of the TREDNet model on MPRA silencers. G Densities of TF ChIP-seq peaks within candidate 
silencers and enhancers across biosamples. ∗∗ : p < 10−10
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transcriptional start site (TSS), with approximately half of them residing within 26 kb of 
their nearest TSS (Fig. 1C).

Examining the evolutionary conservation, we noticed that an average of 8.7% of can-
didate silencer sequences and 10.6% of enhancer sequences overlap genomic regions 
conserved across 30 primate species (Siepel et al. 2005), significantly exceeding the 5.7% 
expectation stemming from the whole human genome (Student’s t test p < 10−10 , Addi-
tional file 2: Fig. S3). This underscores the negative selective pressure imposed on func-
tional genomic regions to preserve their biological function (Siepel et al. 2005), but also 
reflects a rapid turnaround of regulatory elements in vertebrates [22]. In 63.6% (14/22) 
of immune biosamples, candidate silencers are more conserved than enhancers, signif-
icantly higher than the 34% of all biosamples (binomial test p = 3× 10−9 ). This find-
ing highlights the significance of candidate silencers in an immunological context. For 
example, the loci of PCDH genes, which are highly conserved in vertebrates [23] and 
play an important role in epithelial barrier formation and repair, display the enrichment 
in candidate silencers, but not enhancers, in immune biosamples (Additional file 2: Fig. 
S4). The trend is also evident in the highly conserved loci of HOXA and HOXD clusters 
(Additional file 2: Fig. S4), developmentally essential genes associated with embryonic 
development [24].

Functional evaluation of silencer predictions

To assess the impact of candidate silencers, we initially analyzed the expression of genes 
located near these elements across 66 biosamples with available gene expression pro-
files from the ENCODE project (see Additional file 1: Supplementary Notes) since genes 
associated with active silencers are likely to be lowly expressed. Across all examined 
biosamples, genes neighboring candidate silencers exhibit significantly lower expression 
than all assayed genes ( p < 0.05 , Fig. 1D). Similarly, genes targeted by candidate silenc-
ers, as determined by Hi-C chromatin loops [25], consistently display low expression 
across all tested biosamples ( p < 0.05 , Additional file 2: Fig. S5).

Furthermore, we directly evaluated the activity of candidate silencers by utilizing the 
experimental results from MPRA platforms designed to measure the silencing or acti-
vating impact of genomic regions. In K562 and HepG2 biosamples, candidate silencers 
frequently exhibit negative scores reported by the Sharpr-MPRAs [26]. These scores are 
significantly lower than those observed in enhancers and all tested regions (Wilcoxon 
rank-sum test p ≤ 0.05 , Fig. 1E), supporting the active silencing function of candidate 
silencers. Similarly, in GM12878, significant negative ATAC-STARR-seq scores, which 
represent “silent” genomic sequences [27], are enriched among candidate silencers 
( p = 4 × 10−16 vs all tested sequences, Fig. 1E).

Additionally, we compiled 7701 K562 silencers from two independent MPRA stud-
ies based on ReSU [13] and STARR-seq [12]. Of them, 541 overlap with K562 predicted 
silencers, which represents a significant enrichment compared to the DNase-seq peaks 
randomly selected from alternative biosamples and H3K27me3 ChIP-seq peaks not pre-
dicted as silencers in K562 cells (binomial test p < 10−10 , Additional file 2: Fig. S6A). 
Similarly, in HepG2  cells, predicted silencers are significantly enriched with silencers 
detected by the ReSU MPRA [13] ( p < 10−10 , Additional file 2: Fig. S6B).
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Moreover, we validated the TREDNet silencer model on an independent experimen-
tal dataset of MPRA silencers. After excluding MPRA silencers overlapping sequences 
used for training the TREDNet model, we had 6999 K562 MPRA silencers remaining for 
validation. On this subset of MPRA silencers, the TREDNet model demonstrates a clas-
sification performance of AUROC = 0.74 and AUPRC = 0.30 with the 1:9 ratio of posi-
tive to control samples. It shows a marginal improvement over our prior CNN classifier 
[14] and significantly outperforms our prior SVM model [20] and general H3K27me3 
signal profiles (Fig. 1G). Furthermore, the TREDNet silencer model can effectively dis-
tinguish both H3K27me3 and non-H3K27me3 MPRA silencers from control sequences 
(Additional file 2: Fig. S7). These results reaffirm that the TREDNet silencer model can 
identify active silencers with respectable accuracy.

To further investigate whether candidate silencers actively suppress gene expression 
as opposed to being genomic regions of repressed chromatin, we analyzed the abun-
dance of transcription factor binding sites (TFBSs) and chromatin contacts, under the 
assumption that repressed chromatin regions host significantly fewer TFBSs and chro-
matin contacts than active enhancer and silencer regions. In each of tested biosample 
with ChIP-seq data for more than 50 TFs available from the ENCODE project, candidate 
silencers contain, on average, 3.5 times as many TF ChIP-seq peaks as H3K27me3 ChIP-
seq peaks lacking candidate silencers (Wilcoxon rank-sum test p < 10−10 , Fig.  1E). 
Additionally, the density of Hi-C chromatin contacts within predicted silences is 1.5 
times greater than the corresponding density within H3K27me3 ChIP-seq peaks lacking 
candidate silencers (binomial test p < 0.05 , Additional file 2: Fig. S8).

Overall, these results support that the TREDNet predicted silencers predominantly act 
as active silencers and not simply heterochromatic regions of the genome. Therefore, we 
refer to them as candidate silencers.

Candidate silencers are associated with development

To evaluate biological functions associated with candidate silencers, we turned to their 
nearby genes. Genomic proximity to a specific class of genes, although not comprehen-
sive enough to capture long-range chromatin interactions, is commonly used to exam-
ine biological functions of regulatory elements [28]. We defined the locus of a gene as 
its gene body along with the entire intergenic areas between this gene and its nearest 
neighbors. On average, 6.3% of gene loci are enriched in candidate silencers with a 
significance of p < 10−5 compared to the whole genome (referred to as “silencer-rich 
gene loci”). This percentage is substantially higher than the 4.7% of gene loci showing 
enhancer enrichment (Student’s t test p = 0.0007 , Fig. 2A). Across biosamples, silencer-
rich loci harbor 51.7% of all silencers, notably higher than the 25.8% of enhancers found 
in enhancer-rich loci (Student’s t test p = 2× 10−22 , Fig. 2A), suggesting a pronounced 
trend of candidate silencer accumulation in specific gene loci.

Among the gene loci displaying the highest frequency of candidate silencer enrich-
ment across biosamples are PAX2, PAX7, EN2, HIF1AN, and LHX5 (Fig. 2B). All of them 
are known as essential for development. Gene loci significantly enriched in candidate 
silencers in over-9 biosamples from different groups are denoted as multi-biosample 
silencer-rich gene loci. In total, there are 2775 such gene loci (Fig.  2C). These genes 
are associated with fundamental developmental processes and neurological system 
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development (DAVID p < 10−6 , indicated by blue arrows, Fig.  2D) [29]. Additionally, 
these gene loci are notably associated with immune system regulation ( p = 0.002 ). For 
example, the loci of cell-differentiation regulators TCF3 and GATA2 show elevated den-
sities of candidate silencers in 90 and 54.6% of examined biosamples, respectively. The 
IRF4 locus, crucial for the immune system, displays a significant enrichment in candi-
date silencers in 71.4% of CNS cells.

On the other hand, multi-biosample enhancer-rich gene loci are involved in house-
keeping biological processes such as signal transduction, cell–cell adhesion, and protein 
phosphorylation ( p < 10−3 , Fig.  2D). Furthermore, there are a total of 709 gene loci 
that are both multi-biosample enhancer-rich and silencer-rich, thus termed as multi-
biosample enhancer-silencer-rich (Fig. 2C). These genes often take part in tissue-specific 
developmental processes (indicated by green arrows in Fig. 2D). For example, the locus 
of GATA4, a key factor in heart, pancreatic and hepatic development, is enhancer-rich 
in cardiovascular biosamples but silencer-rich in 50% of other biosamples (Fig. 2E). The 
locus of WNT7B, encoding a signal protein crucial for tissue development, is silencer-
rich in 79.4% of biosamples and enhancer-rich in 53.6% of them. In summary, candi-
date silencers are preferentially distributed in the proximity of the genes controlling 
fundamental and tissue-specific developmental processes, significantly associated with 
the regulation of these genes. These results suggest that the regulation of developmental 

Fig. 2  Candidate silencers are significantly associated with development and immunity. A Fractions of 
silencer-rich or enhancer-rich gene loci are shown in the left panel. Proportions of candidate silencers 
located within silencer-rich loci and enhancers located within enhancer-rich loci are shown in the right 
panel. B Frequency of gene loci exhibiting silencer-richment (blue line) or enhancer-richment (orange 
line) across biosamples. Top-frequency silencer-rich gene loci are listed, among which developmental loci 
are highlighted in pink. C Numbers of multi-biosample silencer-rich and enhancer-rich gene loci. Notably, 
709 gene loci are both multi-biosample silencer-rich and enhancer-rich. D Heatmap illustrating biological 
processes significantly associated with different gene sets. SL and EN represent multi-biosample silencer-rich 
and enhancer-rich gene loci, respectively. ENSL represents the intersection of SL and EN sets. Biological 
processes in embryonic and central nervous system (CNS) development are indicated by blue arrows, 
while immunity regulation and tissue-specific development are by red and green arrows, respectively. E 
Enrichment of candidate silencers and enhancers in six gene loci. The dashed lines represent the threshold 
( p = 1.9× 10−6 ) for significant enrichment. DME represents digestive, metabolic, and endocrine biosamples. 
The upper and lower whisker edges in these boxplots represent approximately 25 and 75% quartiles of the 
presented data
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genes is often tightly orchestrated with an array of enhancer and silencer elements estab-
lishing a complex multi-cellular regulatory profile.

Silencer‑to‑enhancer transitions are a hallmark of cellular differentiations

Functional transitions between enhancers and silencers across biological contexts are 
pivotal in the precise and expeditious regulation of developmental processes [14, 30]. A 
substantial portion of candidate silencers and enhancers reported here have dual func-
tions. Specifically, 55% of candidate silencers and 42% of enhancers are dual functional 
regulatory elements (DFREs), acting as enhancers in certain biosamples but as silencers 
in others (Additional file 2: Fig. S9).

Moreover, 68% of candidate silencers of H1 human embryonic stem cells (H1-hESCs) 
are converted to enhancers in partially or fully differentiated biosamples examined in 
this study. These enhancers contain significantly more TFBSs than other enhancers in 
five out of six tested biosamples ( p < 10−10 , Fig. 3A). This significance remains evident 
even when compared to the enhancers that are converted from H1-hESC poised enhanc-
ers (PEs, defined as H3K4me1 ChIP-seq peaks carrying no H3K27ac modification sig-
nals in H1-hESCs). For example, in K562 cells, each hESC-silencer-converted enhancer 
harbors an average of 58 TF ChIP-seq peaks, significantly more than the 35 found in all 
K562 enhancers and the 42 in K562 hESC-PE-converted enhancers ( p < 10−10 ). Moreo-
ver, compared to other enhancers (including PE-converted enhancers), hESC-silencer-
converted enhancers are enriched in TF ChIP-seq peaks of dual functional TFs like YY1 
and chromatin organizers such as CTCF, RAD21, and ZNF143. On the other hand, these 
enhancers lack TF ChIP-seq peaks of cell-specific transcriptional activators like CEBPB 
in HepG2 cells, ESR1 and NEUROD1 in MCF-7 cells, BACH1 and EBF1 in K562 cells, 

Fig. 3  hESC-silencer-converted enhancers anchor chromatin loops. A Enrichment of ChIP-seq TFBSs in 
hESC-silencer-converted and hESC-PE-converted enhancers in comparison to all enhancers. The numbers 
in parentheses are the number of TFs examined in this study. B Enrichment of TFBSs for individual TFs. 
The blank cells indicate an absence of TF ChIP-seq data. C Enrichment of CTCF ChIP-seq TFBSs across 69 
biosamples. D Numbers of chromatin contacts per element (the top panel) and the fractions of elements 
having > 2 contacts (the bottom panel) in hESC-silencer-converted enhancers. Additional results are 
presented in Additional file 2: Fig. S10. E Enrichment of GWAS SNPs within hESC-silencer-converted 
and hESC-PE-converted enhancers in comparison to all enhancers across biosamples. ∗ : p < 0.01 and 
∗∗ : p < 10−10
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and IRF4 and BCL11A in GM12878 cells (Fig. 3B). Furthermore, in 94% (65/69) of the 
biosamples for which CTCF ChIP-seq data are available in the ENCODE project (Addi-
tional file  1: Table  S2), hESC-silencer-converted enhancers show significantly higher 
densities of CTCF ChIP-seq peaks compared to all enhancers, including hESC-PE-con-
verted ones (Fig. 3C), with an average enrichment fold of 1.8. The pronounced enrich-
ment in TF ChIP-seq peaks, particularly for CTCF, hints that hESC-silencer-converted 
enhancers frequently serve as anchors for chromatin loops, a crucial aspect in chromatin 
organization [31].

To further verify this interpretation, we analyzed chromatin contacts of enhancers (as 
defined by Hi-C data, see “Methods”). In the biosamples where over 20% of enhancers 
have reported Hi-C contacts, hESC-silencer-converted enhancers display the highest 
density of Hi-C contacts ( p < 10−10 , Fig. 3D). Importantly, they hold at-least-3 chroma-
tin contacts more frequently than other enhancers ( p < 10−10 ). In HepG2 cells, 21.5% 
of hESC-silencer-converted enhancers have at-least-3 chromatin contacts, significantly 
higher than the 15.8% of all enhancers and the 17.1% of hESC-PE-converted enhanc-
ers ( p < 10−10 , Fig.  3D). These trends persist in biosamples where fewer than 20% of 
enhancers have Hi-C contacts, although statistical significance diminishes possibly due 
to limited detection of chromatin contacts (Additional file  2: Fig. S10). These results 
reaffirm that hESC-silencer-converted enhancers often serve as anchors for chromatin 
loops.

To further assess the functional significance of hESC-silencer-converted enhanc-
ers, we utilized the single-nucleotide polymorphisms (SNPs) annotated in GWASs. We 
downloaded GWAS SNPs documented in the National Human Genome Research Insti-
tute (NHGRI) catalog [32] and in the UK Biobank release 2 cohort [33]. After the inclu-
sion of the SNPs in tight linkage disequilibrium (LD r2 > 0.8 ) with GWAS SNPs, a total 
of 2.2 million GWAS SNPs were compiled, which are associated with 1116 distinct traits 
(Additional file 2: Fig. S11, see “Methods”). HESC-silencer-converted enhancers exhibit 
a significant increase ( p < 0.01 ) in the density of GWAS SNPs compared to all enhanc-
ers in 75% (69/92) of differentiated biosamples (Fig.  3E). This increase remains signif-
icant even when compared to H1-hESC-PE converted enhancers ( p < 10−10 ). In 73% 
(67/92) of differentiated biosamples, GWAS SNP densities in hESC-silencer-converted 
enhancers are significantly higher than those in hESC-PE-converted enhancers. These 
findings support the functional importance of these enhancers, partially due to their role 
as anchors for chromatin loops.

GWAS studies suggest a critical role of candidate silencers in neurological and autoimmune 

disorders

We further utilized GWAS SNPs to assess the phenotypic impact of all candidate silenc-
ers. On average, candidate enhancers and silencers in examined biosamples harbor 3.4 
and 3.0 NHGRI GWAS SNPs per 1 kb, respectively. Both values are significantly higher 
than the 2.4 whole genome GWAS SNPs density (Student’s t test p < 10−20 , Fig. 4A).

Similarly, candidate silencers exhibit significant enrichment in expression quantitative 
trait loci (eQTLs) obtained from the GTEx project [34] compared to the whole genome 
across 28 out of 40 examined biosamples (Additional file 2: Fig. S12A and Supplemen-
tary Notes). Additionally, candidate silencer eQTLs achieve significance levels akin to 
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enhancer eQTLs across these biosamples (Additional file 2: Fig. S12B). Silencer eQTLs 
are, however, more tissue-specific than enhancer eQTLs in 90% of examined biosamples 
(36/40; p < 0.05 , Additional file 2: Fig. S12C). Furthermore, we explored the distribu-
tion of GWAS SNPs deposited to the ClinVar archive [35]. Candidate silencers host 1.47 
ClinVar SNPs per 1 kb. This density exceeds 1.29 ClinVar SNP per 1 kb within enhancers, 
with both densities significantly surpassing the expected 0.76 ClinVar SNP per 1 kb base-
line from the whole genome ( p < 10−5, Additional file 2: Fig. S13A). We also examined 
the distribution of cancer somatic variants compiled in the ICGC database [36]. These 
cancer variants show significant enrichment within candidate silencers in the matched 
biosamples for seven out of eight examined cancers (Additional file  2: Fig. S13B). For 
example, the density of myeloid cancer variants in K562 candidate silencers is 1.3 times 
that expected from the whole genome baseline. Taken together, these findings suggest an 
observable phenotypic impact of candidate silencers.

Notably, GWAS SNPs associated with different traits have varying enrichment levels 
in candidate silencers and enhancers across biosamples (Additional file 1: Table S3). For 

Fig. 4  Candidate silencers exhibit the enrichment for GWAS SNPs. A Numbers of GWAS SNPs per 1 kb in 
candidate silencers and enhancers across biosamples. The dashed line represents the number of GWAS SNPs 
per 1 kb in the whole genome. B Enrichments of SNPs associated with brain volume, PD, and Alzheimer’s 
disease within candidate silencers and enhancers across biosamples. Asterisks indicate the significant 
difference between candidate silencers and enhancers. C Enrichments of PD-associated SNPs within 
candidate silencers and enhancers in individual gene loci. Only gene loci having significant enrichments are 
included here. D Enrichments of SNPs associated with TAK and T1D within candidate silencers and enhancers. 
In B and D, enrichment folds are estimated in comparison to the whole genome. Significant enrichments 
are denoted by solid markers ( p < 10−5 ). The results on other autoimmune diseases are presented in 
Additional file 2: Fig. S16. E Enrichment of T1D-associated SNPs within candidate silencers and enhancers 
in individual gene loci. In C and E, gene loci are clustered based on the enrichment profiles of associated 
SNPs. SL/EN represents the gene loci where the associated SNPs are enriched exclusively in candidate 
silencers/enhancers, while ENSL denotes the gene loci where the associated SNPs are enriched in both 
candidate silencers and enhancers. F Functional analysis results for T1D-associated gene clusters defined in E. 
∗∗ : p < 10−5 and ∗ : p < 0.01
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example, SNPs associated with Alzheimer’s disease are predominantly located in CNS 
and immune system enhancers ( p < 10−10 versus the whole genome as marked by a 
solid symbol, Fig.  4B). In contrast, SNPs associated with Parkinson’s disease (PD) are 
preferentially located in candidate silencers in five out of six brain biosamples (p < 10−5 
versus the whole genome and enhancer counterparts) and within enhancers in immune 
biosamples (Fig. 4B). SNPs associated with brain volume traits, such as intracranial, hip-
pocampal, thalamus, and subiculum volume, are notably biased toward candidate silenc-
ers in four out of six brain biosamples ( p < 10−5 versus the whole genome and enhancer 
counterparts, Fig. 4B).

To further dissect the genetic basis of PD, we evaluated the enrichment levels of asso-
ciated SNPs within candidate silencers and enhancers in each gene locus (see “Meth-
ods”). In the locus of TLR9, a gene known for its involvement in the degeneration of 
dopamine neurons in PD [37], PD-associated SNPs mainly cluster in brain enhancers 
(Fig. 4C). In contrast, the TRIM31 locus, responsible for metal ion binding, harbors a 
total of 104 PD-associated SNPs, a number significantly higher than the genome-wide 
average ( p < 10−30 ). Of these SNPs, 18 are located within SK-N-SH candidate silencers, 
which is notably higher than 8 SNPs as expected in the TRIM31 locus. Interestingly, no 
PD-associated SNPs are found within the TRIM31 SK-N-SH candidate enhancers. This 
pronounced bias to brain candidate silencers is also observed in the loci of MAL and 
MAPT, both associated with neurogenesis (Fig. 4C). These findings consistently under-
score the significant role of brain candidate silencers in PD, particularly in relation to 
metal ion binding and neurogenesis, two factors closely linked to PD (Additional file 2: 
Fig. S14) [38, 39].

We also analyzed the genetic mechanisms underlying differences in brain volume. The 
SNPs associated with brain volume are enriched within candidate enhancers in the loci 
of CTBP2 and ZRANB1 in brain biosamples and KANSL1 in immune biosamples. These 
SNPs are enriched in candidate silencers in the locus of DMRAT2 in brain biosamples 
(Additional file 2: Fig. S15). DMRTA2 is key in controlling the cell cycle during neuronal 
differentiation. Its dysregulation may lead to severe microcephaly [40], suggesting the 
crucial contribution of brain candidate silencers to brain volume measurement and, 
more broadly, the development of the brain.

Similarly, across autoimmune disorders, candidate enhancers and silencers in immune 
and endocrine biosamples show varying enrichments for GWAS SNPs. For example, 
while enriched within both candidate enhancers and silencers ( p < 10−5 vs the whole 
genome), SNPs associated with rheumatoid and system lupus erythematosus (SLE) 
exhibit a distinct predilection for immune enhancers but for endocrine candidate silenc-
ers (silencers vs enhancers: p < 10−5 , Additional file  2: Fig. S16). On the other hand, 
osteoarthritis-associated SNPs  are biased toward  candidate silencers over enhancers 
in immune system biosamples (silencers vs enhancers: 2.3 vs 2.0 of the average enrich-
ment, binomial test p = 10−20 ). Takayasu’s arteritis (TAK) associated SNPs are pref-
erentially situated within candidate silencers in immune system biosamples (silencers 
vs enhancers: 3.9 vs 2.4 of the average enrichment, p = 10−11 , Fig.  4D). Especially, in 
the MICA locus, TAK-associated SNPs are clustered within candidate silencers, rather 
than enhancers, in immune system biosamples (Additional file 2: Fig. S17). Given that 
the upregulation of the MIC family in blood vessels contributes to the stimulation of 
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natural killer cells in TAK [41], it is plausible that the deactivation of candidate silencers 
in immune system biosamples could underlie the etiology of TAK.

Interestingly, SNPs associated with type 1 diabetes (T1D), a T-cell-mediated auto-
immune disease that attacks pancreatic β cells [42], are notably prevalent within both 
candidate silencers and enhancers across immune system and endocrine biosamples 
(Fig. 4D). However, these SNPs display varying preferences for candidate silencers and 
enhancers within individual gene loci (Fig. 4E). Gene loci enriched with T1D-associated 
enhancer SNPs govern immune processes and/or the activity of receptors (Fig.  4F). 
Instances include IRF4, CD5, CD6, and CTSH. In contrast, T1D-associated silencer 
SNPs congregate conspicuously within the loci of INS, IGF2, and several other genes 
responsive to or producing hormones, notably insulin. Overexpression of IGF2 renders 
pancreas islets susceptible to immune onslaught, thereby potentially serving as a key 
biomarker of T1D pathogenesis [43]. Our finding proposes that silencer variants in IGF2 
locus may contribute to T1D risk and identify a handful of specific silencer SNPs, which 
could be targeted in follow-up clinical and biochemical studies.

In short, candidate silencers and enhances, thought governing distinct functions, 
jointly drive crucial biological progress in complex diseases, as exemplified here by PD, 
T1D, and TAK. However, silencers’ contributions to these diseases are not identical to 
those of enhancers.

Candidate silencers underlie the genetic difference between bipolar disorder 

and schizophrenia

To demonstrate the application of candidate silencer (and enhancer) profiles in a dis-
ease genetic study, we investigated regulatory mechanisms of bipolar disorder (BPD) 
and schizophrenia (SCZ). These two neurodevelopmental disorders, with a genetic 
correlation of over 0.6 based on common SNPs [44], share substantial overlap in both 
genetics and symptomology. The identification of shared and distinct genetic compo-
nents between SCZ and BPD constitutes a fundamental stride toward deciphering the 
mechanisms of these diseases and formulating targeted therapeutic interventions [45]. 
To address this objective, we utilized candidate silencer and enhancer profiles in brain, 
immune system, and endocrine biosamples, given the notable involvement of endocrine 
and immune systems in these disorders [46, 47]. SNPs associated with SCZ and/or BPD 
are enriched in candidate silencers and enhancers across endocrine and immune biosa-
mples (Fig. 5A). SCZ-associated SNPs are enriched in brain candidate enhancers, while 
BPD-associated SNPs are preferentially distributed within brain candidate silencers 
( p < 0.001 vs the whole genome, Fig. 5A).

To further elucidate genetic factors contributing to SCZ and BPD, we analyzed the dis-
tribution of their associated SNPs in each gene locus. Both SCZ- and BPD-associated 
SNPs display enrichment within enhancers in the loci of genes responsible for house-
keeping biological activities like intrinsic apoptosis and hyaluronan metabolic pro-
cess ( p < 0.01 , Fig. 5B). In contrast, these SNPs are commonly found within candidate 
silencers in the loci of brain-specific genes, particularly those controlling the apoptosis 
of neuronal cells and brain development. For example, the locus of KCNB1, a key gene 
in the voltage-gated potassium channel crucial for neuron development and apoptosis 
[48], harbors 38 SCZ-associated SNPs and 21 BDP-associated SNPs. These numbers 
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significantly exceed the expected by chance from the whole genome ( p < 10−22 ). Among 
38 SCZ-associated SNPs in the KCNB1 locus, 10 (21.1%) are located within astrocyte 
candidate silencers, a notable preference as compared to the mere 1.2% of all SCZ-asso-
ciated SNPs found in astrocyte candidate enhancers (binomial test p = 10−11 ). Similarly, 
in the KCNB1 locus, 8 (38.1%) of the BDP-associated SNPs are located within astrocyte 
candidate silencers, significantly higher than the 2.9% observed for all BPD-associated 
SNPs across the whole genome (binomial test p = 10−7 ). The significant association of 
SCZ and BDP with neuron development and apoptosis, consistent with the previous 
findings [49, 50], emphasizes the crucial role of silencer variants in the susceptibility to 
BPD and SCZ (Fig. 5B).

Interestingly, despite an insignificant enrichment in brain candidate silencers on a 
genome-wide level, SCZ-associated SNPs exhibit a distinct enrichment within candidate 
silencers in the loci of genes controlling the differentiation of GABAergic interneuron 
cells and hippocampus development (Fig. 5C). Aberrant activity of GABAergic neurons 
has been reported as a key site of SCZ pathology [51]. Our finding proposes that this 
anomaly is greatly attributable to the variants in CNS candidate silencers, thereby offer-
ing a lead for further biological examinations.

On the other hand, BPD-associated SNPs are enriched within both candidate silenc-
ers and enhancers in the loci of genes regulating corticosterone secretion and long-term 
synaptic depression. These two biological processes have been observed to be dysregu-
lated in BPD patients [52, 53]. In summary, analyzing candidate silencer and enhancer 
profiles alongside GWAS results can unveil the biological mechanisms that differentiate 
diseases with similar origins, as demonstrated by the analysis of BPD and SCZ here.

Fig. 5  Candidate silencers distinguish SCZ from BPD. A Enrichments of SNPs associated with BPD and SCZ 
within candidate silencers and enhancers across biosamples. Enrichment folds are estimated in comparison 
to the whole genome. Significant enrichments are denoted by solid markers ( p < 10−5 ). Asterisks above 
markers indicate the significant difference between candidate silencers and enhancers. B Heatmap depicting 
the clusters of gene loci associated with SCZ and/or BPD, based on the enrichment profiles of associated 
SNPs within candidate silencers and enhancers. Each column represents the enrichment of SCZ or BPD 
associated SNPs within candidate silencers or enhancers in a biosample. The biosamples presented here are 
the same as those in A. C Functional analysis of gene clusters defined in B. ∗ : p < 0.001 and ∗∗ : p < 10−5
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Disease‑associated silencer variants alter binding affinities of TFs

Our investigation next proceeded to the analysis of individual SNPs, aiming to identify 
disease-causal or trait-determining non-coding variants among GWAS SNPs [14, 17]. 
We quantified the impact of SNPs on gene regulation by comparing prediction scores 
from a trained TREDNet model between SNP alleles, denoted as �repression (see “Meth-
ods”). A positive �repression suggests a decrease in repressive activity due to a given 
SNP. SNPs with a significant �repression are marked as regulatory-activity-alternating 
SNPs (raSNPs, see “Methods”). RaSNPs are more frequently found in TF ChIP-seq peaks 
than common SNPs across seven biosamples (binomial test p < 10−10 , Fig. 6A). To pre-
vent possible bias of raSNPs toward specific TFs, all seven biosamples examined in this 
study include ChIP-seq peaks for more than 50 TFs (see “Methods”). In HepG2, a can-
didate-silencer raSNP coincides with an average of 2.1 TF ChIP-seq peaks, which is 1.22 
times the average for all common SNPs within candidate silencers ( p < 10−10 , Fig. 6A). 
Similarly, in enhancers, TF ChIP-seq peak densities at raSNPs are 1.33 times those at all 
common SNPs ( p < 10−10).

We then evaluated allele-specific TF-binding affinities of raSNPs. Allele-specific TF-
binding affinities of SNPs were measured in a multiplex protein-DNA binding assay, 
known as systematic evolution of ligands by exponential enrichment (SNP-SELEX), 
for 270 TFs in the HepG2 cell line [54]. Significant SNP-SELEX scores, which indicate 
substantial difference in binding affinities between SNP alleles, frequently occur among 
raSNPs across all examined biosamples. The occurrence rates of significant SNP-SELEX 
scores at raSNPs are over 1.26 times those at SNPs with insignificant-�repression scores, 
within either candidate silencers or enhancers (binomial test p < 10−10 , Fig.  6B, see 
“Methods”). These high occurrence frequencies, together with the enrichment of raSNPs 
in TF ChIP-seq peaks, highlight the significant possibility of raSNPs altering TF binding 
affinities.

Importantly, �repression scores positively correlate with SNP-SELEX scores of tran-
scription repressors. For the repressors FOXP1 and SNAI1/2 [55], these positive 

Fig. 6  �repression significantly correlates with SNP-SELEX scores. A Enrichments of raSNPs in TFBSs (as 
defined in TF ChIP-seq peaks) in seven biosamples. B Enrichments of significant SNP-SELEX scores among 
raSNPs. C Correlations between �repression and SNP-SELEX scores for each TF across biosamples. D Numbers 
of biosamples exhibiting significantly positive (above zero line) and negative (below zeros line) correlations 
between �repression and SNP-SELEX scores for each TF. TF names are displayed along the top x-axis in C and 
the bottom x-axis in D combined. ∗∗ : p < 10−10
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correlations are significant (linear regression p < 0.05 ) in over-50 biosamples (Figs. 6C, 
D). Of the raSNPs having significant SNP-SELEX scores for FOXP1, 69% show the direc-
tional concordance between �repression and SNP-SELEX scores (Additional file 2: Fig. 
S18). This concordance rate is over 65% for SNAI1/2. In contrast, �repression scores 
negatively correlate with SNP-SELEX scores of transcription activators. For prominent 
activators like JUN, CREB5, ELF1/2, CEBPE, NFE2, and SPIB, these negative correla-
tions remain significant in over-50 biosamples. On average, the directional discord-
ance rates between �repression and SNP-SELEX scores for these TFs is 67%. As positive 
SNP-SELEX scores indicate a reduction in binding affinity from wild-type to mutant 
alleles, these substantial positive or negative correlations (and directional concordance 
or discordance rates) underscore the effectiveness of �repression scores in capturing 
the impact of SNPs on binding affinity for both transcriptional repressors and activa-
tors. Additionally, bifunctional TFs like YY2 and PAX5, which act as both activators and 
repressors, rarely present a significant �repression-SNP-SELEX correlation in examined 
biosamples (Figs. 6C, 6D and Additional file 2: Fig. S18).

For example, the SNP rs11065189, associated with SCZ but not BPD, is situated within 
a candidate silencer in brain microvascular endothelial cells. The substitution from G to 
A results in a significant decrease in the binding affinity of the transcriptional activators 
MAF, MAFG, and NRL. These measurements align with �repression = −0.49 , the high-
est magnitude within its 5 kb vicinity (Additional file 2: Fig. S19).

In summary, these three lines of TF-binding-based evidence consistently substantiate 
the functional potency of raSNPs and the accuracy of �repression scores in evaluating 
the influence of SNPs on TF-binding affinity.

The role of silencer SNPs in PD, SCZ, and other neurological diseases

To directly evaluate the relationship between �repression scores and raSNPs, we 
resorted to the outcomes of MPRA experiments that assess allele-specific impacts of 
SNPs on gene regulation. Although these MPRA platforms were not specifically tai-
lored for silencer SNPs, they provide valuable insights. For example, in SuRE MPRA 
experiments conducted in K562 cells [56], 19,237 SNPs were reported to significantly 
alter regulatory activity, known as reporter assay QTLs (raQTLs). These raQTLs are 
extremely enriched in K562 enhancers, consistent with previous findings [56]. Never-
theless, we also observed a significant enrichment of raQTLs in candidate silencers and 
K562 MPRA silencers compared to the whole genome and H3K27me3 ChIP-seq peaks 
not classified as silencers (binomial test p < 10−10 ), although these silencer enrichment 
levels are notably lower than that in enhancers ( p < 10−10 , Additional file 2: Fig. S20A), 
as expected from the nature of the experimental data. This enrichment further supports 
the active state of K562 candidate silencers. In addition, �repression s are positively 
correlated with raQTL scores, irrespective of whether these raQTLs are in silencers or 
enhancers (Additional file 2: Fig. S20B). Taken together, MPRA scores by which the dif-
ference in regulatory influence between SNP alleles are quantified, though not specifi-
cally designed for silencer SNPs, can be used to examine the performance of �repression 
s in prioritizing disease-risk SNPs within candidate silencers.

To directly evaluate the regulatory impacts of raSNPs in candidate silencers in brain 
biosamples, we utilized their MPRA scores for dementia GWAS SNPs [57]. Positive/
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negative MPRA scores directly indicate increased/decreased regulatory activation due 
to sequence variants. In neuronal stem cells, SNPs with significant MPRA scores have 
a plateau distribution of �repression scores, unlike insignificant-MPRA-score SNPs 
(Fig.  7A). More precisely, 52.4 and 42.3% of significant-MPRA-score enhancer and 
silencer SNPs were labeled as a raSNP, significantly higher than the 12.8% of all insignifi-
cant-MPRA-score SNPs ( p < 10−10 , Fig. 7B) and the 18.9% of insignificant-MPRA-score 
within enhancers and silencers ( p < 10−5).

Notably, �repression scores in neuronal stem cells positively correlate with 
MPRA scores. This positive correlation remains significant regardless of MRPA 
scores and SNP locations ( p = 0.04, r = 0.03 among insignificant-MRPA-
score SNPs; p = 0.0001, r = 0.58 among significant-MPRA-score silencer and 
p = 4 × 10−8, r = 0.72 among significant-MPRA-score enhancer SNPs, Fig. 7A).

Among significant-MPRA-score silencer SNPs, �repression scores are directionally 
concordant to the corresponding MPRA scores in over two-thirds of instances (Fig. 7B). 
This concordance rate is significantly higher than the 50% for insignificant-MPRA-score 
SNPs (binomial test p = 0.04 ). The robust correlation between �repression scores and 
MPRA scores is also evident in other brain biosamples. In these biosamples, the con-
cordance rate is 67.5% among raSNPs ( p = 10−9 vs 51.0% of insignificant-MPRA-score 
SNPs, Additional file 2: Fig. S21). Altogether, these findings strongly support the high 
accuracy of �repression scores in gauging the regulatory effects of variants, at least in 
brain biosamples.

Fig. 7  Brain raSNPs have a strong regulatory impact. A Correlation between �repression and dementia 
MPRA scores in a neuronal stem cell. The top panel illustrates �repression score distributions for different 
SNP groups. The bottom panel plots �repression and MPRA scores of SNPs. SNP groups here are 
insignificant-MPRA SNPs, significant-MPRA silencer, and enhancer SNPs. The analysis results in other brain 
biosamples are presented in Additional file 2: Fig. S21. B Fractions of raSNPs (the left panel) and directional 
concordance between �repression and MPRA scores (the right panel) across SNP groups. In the left panel, 
the numbers of all examined SNPs and raSNPs among these SNPs are listed in the bars. C Epigenetic profile 
of silencer SNPs associated with PD in MAPT locus. TF binding motif mapping results on example SNPs are 
also presented. In the track of “SNP,” black and red bars represent tag PD SNPs and their LD SNPs, respectively. 
D �repression scores of SCZ-associated SNP rs2533629 in brain biosamples. E Analysis of TF binding motif 
mapping at rs2533629. ∗ : p < 0.05 and ∗∗ : p < 10−5
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Focusing on specific SNPs, we started with the SNP rs62055708, which is associated 
with PD and many other neurological traits, including autism, bipolar disorder, brain 
volume measurement, and intelligence. It is a SNP located within candidate silencers 
in most brain biosamples except the middle frontal area (Fig. 7C). The C to A change 
at this SNP has �repression = 0.20 in neuronal stem cells, aligning with an MPRA-
score of 0.42. Also, this SNP corresponds to reduced significance in binding motif 
mapping for transcriptional repressors SMARCC1 (the allele C vs A: p = 6× 10−6 vs 
0.0003 ) and BATF ( p = 4 × 10−5 vs 0.0004 , Fig. 7C, see “Methods”) [58, 59]. Addition-
ally, as predicted by SNP-SELEX deltaSVM [54], the change from the allele C to A at 
this SNP gains a binding site for NFE2, a transcriptional activator as discussed above 
(Fig.  6). Another PD-associated SNP is rs75104593. Consistent MPRA-score =  − 1.28 
and �repression = −0.32 in neuronal stem cells suggest that the substitution at this SNP 
(from T to G) boosts the repressive effect, which could be supported by the increased 
significance of binding motif mapping for REST, a well-known repressor TF (Fig. 7C). It 
is worth noting that both REST and NFE2 are widely recognized as PD-associated fac-
tors [60, 61], further strengthening the connection between these two raSNPs and PD.

At a SCZ-associated rs2535629, a substitution from G to A has been experimentally 
confirmed to increase the binding affinity of CTCF in a ChIP‐Allele‐Specific‐qPCR assay 
and diminish the suppressive impact in a dual‐luciferase reporter gene assay [62]. This 
SNP is a raSNP located within candidate silencers in four out of six examined brain 
biosamples. The �repression scores in brain biosamples are significantly higher than in 
non-brain biosamples (Student’s t test p = 10−21 , Fig. 7D). TF-motif-mapping analysis 
also shows increased binding affinity of FOXC2 due to the G to A change at this SNP 
(Fig.  7E). FOXC2 is a transcription activator contributing to gene overexpression in 
various cancers, like glioblastoma [63]. This finding provides an additional mechanistic 
clue to understanding the potential role of rs2535629 in the development of SCZ. The 
strong agreement of �repression with MPRA scores and TF binding affinity prediction 
underscores the high accuracy of �repression scores in assessing the regulatory impact 
of genetic variants.

T1D and other autoimmune diseases are linked to variants in candidate silencers

To assess �repression scores in immune biosamples, we compared them with MPRA 
scores measured in lymphoblastoid cell lines from two independent studies, i.e., the mul-
tiplex MPRAs, denoted as mMPRA below [64] and the variant-based MPRAs, referred 
to as vMPRA [65].

SNPs with significant mMPRA scores show a higher magnitude of �repression than 
insignificant-mMPRA-score SNPs (Fig. 8A and Additional file 2: Fig. S22). Specifically, 
37 and 36% of significant-mMPRA-score SNPs in candidate silencer and enhancer 
are raSNPs in immune biosamples, significantly surpassing the 19% of insignificant-
mMPRA-score SNPs ( p < 10−10 , Fig. 8B). Notably, �repression scores in immune cells 
are significantly positively correlated with mMPRA scores across different SNP sets 
( p < 10−10 across insignificant-mMPRA-score and candidate silencer/enhancer signif-
icant-mMPRA-score SNPs).

Furthermore, 64.1% of raSNPs in candidate silencers have a �repression score direc-
tionally concordant to their mMPRA scores, significantly exceeding the 49.4% as 
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expected from randomly shuffling �repression scores, as well as the 51.4% of SNPs 
with insignificant MPRA scores ( p < 0.01 , Fig.  8C). This concordance rate further 
increases to 72.3% among the SNPs where mMPRA and vMPRA scores directionally 
align, although these increases are not significant most likely due to the shrinking size 
of the analyzed SNP set (Fig. 8C). Similar trends are mirrored among enhancer SNPs. 
Additionally, �repression scores exhibit significant positive correlations with vMPRAs 
in immune biosamples ( p < 0.0005 , Figs. 8D and Additional file 2: S23). For example, 
33 and 26% of significant-vMPRA-score SNPs in candidate silencers and enhancers 
are raSNPs in immune biosamples, significantly surpassing the 14% of insignificant-
vMPRA-score SNPs ( p < 1010 , Fig. 8E). These significant correlations and high con-
cordance rates are in the line with the observations on dementia MPRAs (Fig.  7), 
generalizing the high validity of �repression scores in evaluating regulatory effects of 
variants across different biosample groups.

For example, rs6207121, a SNP associated with T1D, exhibits significant scores 
in mMPRA and vMPRA. This SNP, with �repression = −0.4 , is detected as a raSNP 
within a candidate silencer in CD4 + alpha–beta T cells, holding the highest mag-
nitude within its 4  kb vicinity. This �repression score directionally aligns with the 

Fig. 8  Immune raSNPs within candidate silencers have a strong regulatory impact. A Correlations between 
�repression and mMPRA scores in SNP groups. Silencer-concordant represents the silencer SNPs where 
significant mMPRA and vMPRA scores directionally align. B Fractions of raSNPs among insignificant-mMPRA, 
significant-mMPRA silencer/enhancer SNPs. C Concordance rate between �repression and mMPRA 
score across SNP groups. “All” represents all significant-mMPRA SNPs in candidate silencers or enhancers. 
“Concordant” is as denoted in A. Numbers alongside each marker indicate the count of SNPs where 
�repression and mMPRA scores are directionally concordant, as well as the total number of SNPs considered. 
The dashed line represents the expectation for randomly shuffling �repression scores. D Correlations 
between �repression and vMPRA scores. E Fractions of raSNPs among insignificant-vMPRA, significant-vMPRA 
silencer/enhancer SNPs. F �repression , mMPRA, vMPRA scores on the T1D-associated rs62057121 and its 
neighboring SNPs. In the top panel, red/gray stars indicate significant/insignificant mMPRA or vMPRA scores, 
respectively. All significant scores are listed next to the corresponding markers. In addition, the TF binding 
motif analysis on this SNP is presented. ∗ : p < 0.05 and ∗∗ : p < 10−8
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corresponding mMPRA and vMPRA scores (Fig. 8F). Moreover, the analysis of bind-
ing motif mappings suggests that this variant potentially disrupts a binding site for 
NFKB1, a key TF known for dual repressive and activating functions in the immune 
system [66] and in the development of T1D [7].

Another example is the rs242561 SNP, which has been linked to a range of immune 
and neurological disorders, including T1D, BPD, and Parkinson’s disease. This SNP is 
predicted as a raSNP in both immune and brain biosamples. The significantly negative 
�repression scores in brain biosamples correlate with the negative dementia MPRA 
score (Additional file 2: Fig. S24). Interestingly, this SNP is located within a DFRE, act-
ing as a silencer in immune biosamples but an enhancer in CNS biosamples, likely by 
recruiting different TFs in immune cells and in neurons.

Discussion
Here, we report 2.8 million candidate silencers in 97 human biosamples representing 
diverse origins, collectively spanning 19.4% of the human genome. More than half of 
candidate silencers (55%) are DFRE, acting as enhancers in alternative biosamples, which 
evidences the widespread presence of DFREs. Furthermore, the majority (67%) of hESC 
candidate silencers function as DFREs, which could still increase after additional human 
biosamples are explored. In differentiated cells, the hESC-silencer-converted enhanc-
ers exhibit a notable enrichment in TFBSs of CTCF, RAD21, and ZNF143, as well as in 
chromatin contacts, suggesting they frequently act as anchors for chromatin contacts.

This study demonstrates the vital role of candidate silencers in complex diseases with 
a strong genetic basis. This new perspective goes beyond GWAS, uncovering how indi-
vidual disease-associated genes are regulated during pathogenesis. For example, SCZ 
and BPD have been linked through GWAS to the dysregulation of neuronal differentia-
tion and apoptosis. Our analysis shows that this dysregulation may primarily stem from 
variants within brain candidate silencers. Moreover, the disruption of the GABAergic 
interneuron has been reported as a key cause in SCZ [67]. Our analysis further under-
pins that the variants within brain candidate silencers could be responsible for this dis-
ruption. Similarly, in the gene loci of INS and IGF2, T1D-associated SNPs are greatly 
concentrated within candidate silencers, implying the pivotal roles that candidate silenc-
ers play in regulating these genes in the immune system. Silencer variants thereby greatly 
account for the dysregulation of these two genes in the context of T1D [42]. Collectively, 
silencers represent fundamental components underlying the development of many com-
plex diseases. The profiles of silencers (along with enhancers) can facilitate the unrave-
ling of the genetic basis of these diseases.

It is important to note that this study is centered around silencers, with enhancers 
serving as a reference point. The goal is to underscore the significance of silencers in dis-
ease research, rather than to provide an exhaustive genetic portrait of diseases. Genetic 
components of diseases that go beyond these elements are not within the scope of this 
study. For example, we do not delve into LILR genes, which host TAK-associated vari-
ants in their promoters [41]. Evidently, a comprehensive understanding of a polygenic 
disease requires the exploration of diverse regulatory elements, along with protein-cod-
ing variants, which is the motivation of this study.



Page 19 of 25Huang and Ovcharenko ﻿Genome Biology          (2024) 25:184 	

We further extended the analysis to the level of individual genetic variants. High cor-
relations with the experimental results from MPRA and SNP-SELEX studies validate the 
accuracy of  �repression scores in predicting the regulatory impact of SNPs across differ-
ent biosamples. RaSNPs, the SNPs having a significant �repression score, frequently hold 
significant MPRA scores and SNP-SELEX scores, confirming the substantial impact of 
these variants on disease susceptibility. Prioritizing disease-causal SNPs is the initial step 
to reveal molecular mechanisms underlining polygenic diseases. Delineating the cascading 
effects of these SNPs, such as how they alter TF binding affinity, chromatin organization, 
and gene expression, represents the subsequent challenge. It is noteworthy that, although 
we present experimental and computational results of TF binding affinities of raSNPs here, 
this issue will remain incompletely addressed until experimental profiling of TF binding 
expands to many more TFs and spans additional cell types across multiple developmen-
tal time points. For example, as demonstrated here, experimental results from SNP-SELEX 
assays are restricted to a small proportion of SNPs, possibly due to their cell specificity [54].

Here, silencer identification primarily relies on H3K27me3 ChIP-seq peaks. While this 
histone mark is a well-characterized and widely accepted proxy of repressive regulatory 
influence, our candidate silencer profiles might be incomplete due to the existence of non-
H3K27me3 silencers [12, 13]. The strong association of candidate silencers with develop-
mental genes, particularly those active during embryonic stages, aligns with the established 
role of H3K27me3 in developmental processes [68]. This association may also hint at a 
possible bias toward H3K27me3 among candidate silencers. Currently, the detection of 
non-H3K27me3 silencers is limited to few cell types [13, 15, 69] and/or confined to certain 
genomic regions [70, 71], which largely hampers the investigation of these silencers. Fur-
thermore, although MPRA results and gene expression analysis have shown that candidate 
silencers suppress gene transcription in several biosamples, additional experimental exami-
nations on candidate silencers across more biosamples and/or using different biotechnolog-
ical platforms (such as CRISPR) will be beneficial for future silencer investigations. Despite 
these constraints, our analysis underscores the significance of silencers in controlling key 
biological processes and highlights their profound influence on disease susceptibility.

Conclusions
This study examined silencers and the contribution of silencer variants to human diseases. 
We developed a series of deep learning models to identify silencers across a wide range of 
human biosamples and demonstrated that the identified silencers are significantly enriched 
in disease-associated variants. Predicted silencer-disrupting variants are well aligned with 
the MPRA experimental validation. Furthermore, we report that the developed silencer 
models can be used for profiling the genetic etiology of complex diseases. For example, the 
disruption of apoptosis associated with SCZ and BPD can largely be attributed to variants 
in brain silencers. While silencers have been largely overlooked in gene regulation studies, 
our research highlights the important role of silencer variants in diseases and underscores 
the need for more studies focusing on silencer-based gene regulation to achieve a com-
prehensive understanding of polygenic diseases. Moreover, the silencer datasets and deep 
learning models generated in this study are likely to serve as a valuable resource for future 
investigations.
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Methods
Identification of candidate silencers

We trained the TREDNet model, a two-phase deep learning model [19] to predict 
enhancers and silencers. We downloaded DNase-seq peaks, H3K27ac and H3K27me3 
ChIP-seq peaks (“narrow peak”) for 111 biosamples from ENCODE project (https://​
www.​encod​eproj​ect. org/, Additional file  1: Table  S1). Enhancer training sequences 
were defined as the DNase-seq peaks overlapping H3K27ac ChIP-seq peaks but not 
H3K27me3 peaks in the central 400 bp. Silencer training sequences were defined as the 
DNase-seq peaks overlapping H3K27me3 peaks but not H3K27ac peaks in the central 
400 bp as well as the H3K27me3 peaks not overlapping H3K27ac peaks. To accommo-
date this multi-label classification task, the output layer of TREDNet models consists of 
three nodes with the activation function of “softmax,” representing silencer, enhancer, 
and control samples, respectively. The cost function used here is “categorical cross 
entropy.” We held out chromosomes 7 and 8 for testing. All other autosomes were used 
for building the classification model [19]. Consequently, testing sequences, having no 
overlap with training sequences, provide an unbiased computational evaluation on the 
performance of the TREDNet models.

For silencer prediction, 1-kb-long input sequences were evaluated by silencer predic-
tion scores. The cutoff for labeling silencers (say ts ) was set as a false positive rate (FPR) 
of 0.1 in test samples, with control to positive samples in the ratio of 9:1. DNase-seq 
peaks or H3K27me3 ChIP-seq peaks that have a silencer score greater than ts were pre-
dicted as silencers. Similarly, the cutoff for labeling enhancers (say te ) was set as a false 
positive rate (FPR) of 0.1 in test samples, again with control to positive samples in the 
ratio of 9:1. DNase-seq peaks that have an enhancer score greater than te were predicted 
as an enhancer. The sequences marked as both enhancers and silencers were consid-
ered as “uncertain,” which account for less than 1% of silencers or enhancers in all tested 
biosamples and were excluded from further analysis. To this end, 97 biosamples have 
over-5000 candidate enhancers and over-5000 candidate silencers, which were investi-
gated in this study.

Each candidate enhancer/silencer is 1 kbp long. A candidate silencer in a biosample 
was considered as a DFRE if it overlaps with an enhancer in another biosample by over-
200 bp. Similarly, an enhancer was considered as a DFRE when it overlaps with a candi-
date silencer in another biosample by over-200 bp.

GWAS SNP enrichment in individual gene loci

We assess the significance of GWAS SNPs associated with a disease ( i ) in a gene locus 
( j ), pij , in comparison to the whole genome using the binomial test. The gene loci having 
a pij < 10−8 are regarded as associated with the disease i . Similarly, in a disease-associ-
ated locus (say j ), the enrichment of given GWAS SNPs within silencers, psij , is assessed 
by using the binomial test. That is,

where π0 is the ratio of the locus length to the whole genome. N  and k are the total num-
ber of given GWAS SNPs within the candidate silencers and the number of given GWAS 

(1)psij =
N

m=k

N
m

π0
m
(1− π0)

N−m,

https://www.encodeproject
https://www.encodeproject
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SNPs within the candidate silencers in the locus j . The enrichment of given GWAS SNPs 
in candidate enhancers in the locus j is evaluated by replacing N  and k in Eq. (1) with 
the number of given GWAS SNPs within the enhancers in the whole genome and in the 
locus j , respectively.

To evaluate the regulatory impact of a variant with the wild type (wt) and mutant allele 
(mu), we input the 1-kb-long sequences centering at this variant to a trained TREDNet 
model. We then obtained the silencer and enhancer prediction scores for all alleles. The 
false positive rates of silencer prediction scores (denoted as FPRs ) are evaluated based 
on test samples with the ratio of control to positive samples = 9:1. Similarly, the false 
positive rates corresponding to enhancer prediction scores (represented by FPRe ) are 
evaluated based on test samples. The regulatory alteration between these alleles is then 
estimated as

A positive �repression indicates a decrease in the repressive impact due to the 
mutation.

In a biosample, we evaluated the significance p value of a �repression score by com-
paring with �repression scores on all common SNPs documented in dbSNP as of 2017 
[72]. A �repression score is regarded as significant if p < 0.05 among all common 
SNPs. A SNP is marked as raSNP if the corresponding �repression score is significant. 
When analyzing the correlation between �repression and MPRA scores (Figs. 7 and 8), 
SNPs are considered as silencer SNPs either when they are located within a candidate 
silencer or when they overlap with a H3K27me3 ChIP-seq peak and have FPRs

wt < 0.05 . 
Similarly, SNPs are considered as enhancer SNPs either when they are located within 
a candidate enhancer or when they overlap with a H3K27ac ChIP-seq peak and have 
FPRe

wt < 0.05.

Data and tools

We downloaded GWAS SNPs curated in the National Human Genome Research Insti-
tute (NHGRI) catalog [32] and in UK Biobank release 2 cohort [33] in 2022. All the 
GWAS SNPs associated with the same trait, according to their Experimental Factor 
Ontology ID [73], were merged into one SNP set. We extended trait-associated SNP 
sets by including the SNPs in tight linkage disequilibrium (LD r2 > 0.8 ) to GWAS SNPs 
based on the EUR population in 1000 Genomes Project. We used the webtool SNiPA 
(https://​www.​snipa.​org/​snipa3/) [74] to identify LD SNPs in hg19 and then mapped 
them to hg38. To this end, we retrieved a total of 2.2 million GWAS SNPs, which are 
associated with 2212 distinct traits. Among these traits, 1166 traits are linked to more 
than 80 SNPs and thus used in our investigation.

Hi-C chromatin contacts were detected from the study by Salameh et  al. [25] and 
downloaded from http://​3dgen​ome.​fsm.​north​weste​rn.​edu/​publi​catio​ns.​html. We used 
the Hi-C loops reported in hg38. Brain volume measurements include intracranial, hip-
pocampal, thalamus and subiculum volume measurement. The sets of GWAS SNPs 

�repression

�repression =

(

log10FPR
s
mu − log10FPR

s
wt

)

−

(

log10FPR
e
wt − log10FPR

e
mu

)

.

https://www.snipa.org/snipa3/
http://3dgenome.fsm.northwestern.edu/publications.html
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associated with these traits significantly overlap among each other (Jaccard similar-
ity > 0.65), and therefore were merged as brain-volume-associated SNPs in this study.

We evaluated the correlations between �repression and SNP-SELEX scores for each 
TF in each tested biosample. In a biosample, TFs having at least 10 SNPs holding sig-
nificant SNP-SELEX and significant �repression scores were included to ensure a robust 
estimation on the correlation between �repression and SNP-SELEX scores.

TF ChIP-seq data used here were downloaded from the ENCODE project (Additional 
file  1: Table  S2). TF binding motifs were downloaded from the MEME Suite (https://​
meme-​suite.​org/​meme/​db/​motifs). Find Individual Motif Occurrence (FIMO), with the 
default setting, was used to find the mappings of binding motifs in given sequences [75].

A TREDNet model is a two-phase model [19]. The pre-trained phase-one model has 
been deposited at https://​doi.​org/​10.​5281/​zenodo.​81616​21  [76]. The phase-two mod-
els built in this study, as well as silencers and enhancers predicted by these models, are 
available at https://​doi.​org/​10.​5281/​zenodo.​12523​205 [77].
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