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Abstract 

Single-cell RNA-seq (scRNA-seq) is widely used for transcriptome profiling, but most 
analyses focus on gene-level events, with less attention devoted to alternative splicing. 
Here, we present scASfind, a novel computational method to allow for quantitative 
analysis of cell type-specific splicing events using full-length scRNA-seq data. ScASfind 
utilizes an efficient data structure to store the percent spliced-in value for each splicing 
event. This makes it possible to exhaustively search for patterns among all differen-
tial splicing events, allowing us to identify marker events, mutually exclusive events, 
and events involving large blocks of exons that are specific to one or more cell types.
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Introduction
Alternative splicing (AS) is an essential, ubiquitous regulatory mechanism in eukaryotes. 
Through AS, a single gene can yield multiple mRNA isoforms, greatly expanding the 
protein diversity encoded by eukaryotic genes [1]. Fine-tuned regulation of alternative 
splicing has a critical role in the development and function of a diversity of tissues and 
cell types, including muscles, neurons, and immune cells [2–6]. Splicing errors can also 
lead to an array of human diseases, such as neurodegenerative diseases, autoimmunity, 
and cancer [7–9].

Decades of research using bulk methods have shown that many AS events are tissue-
regulated [10], yet cell type-specific splicing remains incompletely understood. Using 
single cell RNA-seq (scRNA-seq), cell types can be comprehensively identified based on 
their expression profile, paving the way for studying splicing patterns. Although most 
scRNA-seq studies use droplet-based technologies such as 10X Chromium, which only 
profiles one end of the transcript, there are full-length scRNA-seq technologies, such 
as Smart-seq2 [11] and VASA-seq [12], that provide coverage of the entire transcript. 
Full-length technologies make it possible to conduct a local, event-level splicing quan-
tification per cell type. In an event-level AS quantification, transcripts can be split into 
non-overlapping exonic regions, referred to as splicing nodes [13–16]. Nodes are further 
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classified based on their behavior during splicing, e.g., core exons (CEs) or alternative 
donors (ADs). Then, the percent spliced-in (PSI) value for splicing nodes can be calcu-
lated based on reads spanning node junctions [13, 15, 17]. PSI is an informative indi-
cator of exon usage frequency, providing an intuitive and easily interpretable metric to 
describe complex splicing events.

There are plenty of computational methods for event-level splicing quantification 
in bulk RNA-seq, such as MISO [17], dSpliceType [18], rMATS [16], MAJIQ [15], and 
SUPPA2 [19], but they are poorly suited due to the high sparsity and large size of scRNA-
seq datasets. To overcome these issues, several methods aiming to detect and quantify 
AS in single-cell data have been developed. They include SingleSplice [20] which com-
pares biological variation and technical noise in a population of single cells to find genes 
with isoform usage differences. Expedition [21] is a suite of tools that can detect differ-
ences among the usage of splicing modalities. Huang and Sanguinetti have developed 
BRIE and BRIE2 [22, 23], which use Bayesian models for PSI estimation to overcome 
sparsity. SICILIAN [24] assigns probabilities to called splice junctions to improve preci-
sion for their detection, and SpliZ [25] generalizes PSI to enhance splicing quantification 
at the single-cell level. A recent software tool is MARVEL [26], which integrates splicing 
and gene expression analyses. However, MARVEL analysis is limited to splicing events 
involving a single exon and it can only detect differential splicing between pairs of cell 
types. None of the methods presented to date can leverage event-level splicing quan-
tification to comprehensively characterize cell type-specific splicing patterns, involving 
either single or multiple exons, without using a parametric model or imputing missing 
values.

To facilitate comprehensive de novo detection of cell type-specific AS events, we 
developed scASfind [27], a flexible and intuitive method for mining complex AS patterns 
in large single-cell datasets. scASfind is an open-source R package which is freely avail-
able at https:// github. com/ hembe rg- lab/ scASfi nd. scASfind uses a similar data com-
pression strategy as our previous work scfind [28] to transform the cell pool-to-node 
differential PSI matrix into an index. This efficient data structure enables rapid access to 
cell type-specific splicing events, making it possible to use an exhaustive approach when 
carrying out pattern searches across the entire dataset. Importantly, scASfind does not 
involve any imputation or model fitting, instead cells are pooled to avoid the challenges 
presented by sparse coverage. Moreover, there is no restriction on the number of exons, 
or the inclusion/exclusion events involved in the pattern of interest. Building on these 
fast searches, scASfind allows interactive searching of cell type specificity of splicing 
patterns, such as differential splicing, mutually exclusive exons, and coordinated splic-
ing events. We applied scASfind to mouse primary visual cortex [29], mouse embryonic 
development [12], and human fetal liver [30] to characterize cell type-specific splicing 
patterns.

Results
Data compression enables fast searching of splicing patterns

scASfind takes full-length scRNA-seq data, such as Smart-seq2 [31], RamDA-seq [32], 
Smart-seq3 [33], VASA-seq [12], and FLASH-seq [34], as input for splicing quantifi-
cation. Tag-based methods such as 10X Genomics Chromium are unsuitable since 
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they only capture the transcript’s 3′ or 5′ end, and typically do not provide enough 
reads that span splice junctions. It is assumed that the data has been clustered and 
annotated so that each cell is assigned a cell type. Several cells of the same type are 
first combined into cell pools to provide sufficient reads for robust and accurate PSI 
quantification with Whippet [13] using the MicroExonator workflow [35].

The size of cell pools is an important hyperparameter in the analysis, which should 
be carefully determined on a per-case basis. Pooling single cells aims to reduce the 
technical sparsity of scRNA-seq data, which could be due to technology or tissue. In 
our examples, the dataset by VASA-seq (mouse embryo) was two orders of magnitude 
sparser than the two Smart-seq2 datasets (mouse cortex, human fetal liver); therefore, 
we employed a much larger pool size (Table  1). Choosing a pool size needs to bal-
ance two aspects: ensuring a proper coverage for PSI quantification, while preserving 
enough cell pools per cell type to faithfully represent the variation of cell abundance 
and allow effective statistics tests in scASfind. An examination of the impact of pool 
size on scASfind results in the mouse cortex data can be found in the “Methods” 
section.

After obtaining a splicing node x cell pool matrix of PSI values (Fig. 1a), scASfind 
first centers each column of the matrix to obtain the deviation of PSI values from 
the dataset mean (default: |ΔPSI|> 0.2). This is to capture the biologically informa-
tive PSI variation across cells. The differential PSI matrix is further split into two to 
encode positive (spliced-in) and negative (spliced-out) PSI values. In both matrices, a 
non-zero value indicates that there is differential inclusion or exclusion of the splic-
ing node in that particular cell pool. By ensuring that the matrices are sparse, we can 
achieve a high compression rate and fast pattern matching, even for large datasets.

We adopted the indexing strategy in scfind [28] to compress the two sparse PSI 
matrices into two scASfind indexes, and we then combined them into a single meta-
index object. The index efficiently stores the splicing nodes that have a PSI value devi-
ated from the mean (see “Methods” for details about data compression into an index). 

Table 1 Datasets used in this study, parameters, on-disk size and the time of building scASfind 
index. Splicing nodes which had a PSI deviating from the dataset mean in at least one cell pool were 
encoded. The size of raw data includes the raw PSI matrix and relevant metadata objects, while the 
size of the scASfind index object involves the compressed PSI index and the same metadata objects 
(see "Methods"). Both sizes are on-disk file sizes. The time to build the scASfind index is calculated by 
running the index-building script in scASfind on a HPC cluster. UMI: unique molecular identifier; MB: 
megabyte; std: standard deviation

Dataset Number 
of single 
cells

Number 
of cell 
types

UMIs per single 
cell (mean ± std)

Cell pool 
size 
used

Number 
of cell 
pools

Number 
of 
encoded 
splicing 
nodes

Size of 
raw data 
(MB)

Size of 
scASfind 
index 
object 
(MB)

Time to 
build the 
scASfind 
index 
(seconds)

Mouse 
cortex 
[29]

1654 49 1,594,655 ± 491,715 5 339 90,834 14,142.8 55.5 1185

Mouse 
embryo 
[12]

33,662 37 14,936 ± 12,319 200 191 75,837 27,484.3 21.9 1366

Human 
fetal liver 
[30]

4503 23 451,901 ± 393,948 10 451 199,361 29,374.5 101.4 1864
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In addition to providing efficient storage, the scASfind index also allows for rapid 
access to the raw PSI values associated with each splicing node. In particular, it allows 
us to use AND or OR queries to find the set of cell pools that match a set of inclusion/
exclusion criteria, e.g., nodes 1, 2, and 3 need to be included well above mean while 
nodes 4 and 5 are excluded well below mean. By combining multiple queries, we can 
carry out more complex searches, and since each operation is fast it becomes possible 
to adopt an exhaustive approach to search the entire dataset.

In the following, we set out to demonstrate how the scASfind index allows for thor-
ough identification and characterization of cell type-specific splicing events. We used 
scASfind to analyze three technically and biologically distinct datasets: a mouse cortex 
data profiled using Smart-seq2 (hereafter referred to as mouse cortex) [29], a mouse 
embryonic development dataset profiled using VASA-seq (hereafter referred to as 

Fig. 1 Overview of scASfind. a Schematic of the scASfind workflow. Single-cell full-length transcriptome 
sequencing data such as Smart-seq2 or VASA-seq are suitable inputs for the scASfind workflow. Cells from 
the same cell type are pooled to increase the accuracy of splicing event detection (default 5 cells per pool) 
with MicroExonator [35]. The PSI value for each splicing node is calculated by Whippet [13] to obtain a splice 
node-by-cell pool PSI matrix, and we then build a scASfind index containing information about splicing 
events that are differentially spliced in or spliced out in each cell pool. Finally, we query the index to search 
for cell type-specific differential splicing events, mutually exclusive node pairs and consecutive nodes that 
are similarly spliced-in or coordinated splicing events. b The size of the file saved to disk containing either 
the raw PSI values and metadata objects or the scASfind index with metadata objects built with a two-bit 
quantization. c The elapsed time of searching all cells with increased inclusion, i.e., has a PSI no less than 0.2 
higher than the dataset mean, in any of five randomly selected splicing nodes. The process is repeated 30 
times. The bar in the boxplot shows the arithmetic mean, lower and upper hinges correspond to the first and 
third quartiles, whiskers extend from the hinge to the largest value no further than 1.5 * interquartile range 
from the hinge, and outliers beyond this range are plotted as individual data points. PSI, percent spliced-in
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mouse embryo) [12], and a human fetal liver dataset profiled using Smart-seq2 (hereaf-
ter referred to as human fetal liver) [30].

For all three datasets, the scASfind representation required two to three orders of 
magnitude less disk space (Fig. 1b) when using two bits for the quantizer. We also bench-
marked the search times: compared to an implementation using only standard data 
structures, scASfind was hundreds or thousands of times faster (Fig. 1c). For example, 
for the mouse embryo dataset, finding all pools that have increased inclusion of any of 
200 randomly selected nodes with scASfind took 0.24 s on average, compared to 112 s 
for the naive approach. scASfind was also highly robust to increased search size. One 
additional overhead for scASfind is the time to build the index, but this is relatively 
minor as none of the datasets took more than 30 mins (Table 1).

Splicing events are more precise markers of cell types

Cell types are typically associated with a set of marker genes, i.e., genes that are highly 
expressed compared to other cell types. Since the most widely used single cell protocols 
do not provide enough information to distinguish isoforms, transcripts are usually eval-
uated at the gene level. However, identifying a reliable set of marker genes can be chal-
lenging, especially for neuronal tissues with complex cell type taxonomy [36]. Since AS 
is known to be more prevalent in the brain [2, 37], we hypothesized that splicing events 
are more reliable for distinguishing cell types than gene expression. We refer to splicing 
nodes that are highly included or excluded in only one cell type as marker nodes in anal-
ogy with marker genes.

To identify cell type marker nodes, we used each cell type to query the scASfind index 
for nodes that have high or low inclusion. Benefiting from the speed at which these 
quantities can be extracted using the scASfind index, we carried out an exhaustive 
search to identify the best marker nodes for each cell type. Nodes were evaluated using 
the precision, recall, and F1 scores for their ability to detect the cell type of interest (see 
“Methods” for details). We used a similar procedure for marker genes using scfind, and 
we compared the quality of the markers by the precision, recall, and F1 scores. In the 
mouse cortex and the mouse embryo datasets, we observed higher F1 scores in splicing 
markers, compared with expression markers across the board (Fig. 2a, d). Interestingly, 
the higher F1 of splicing markers was largely driven by higher precision (Fig. 2b, e), sug-
gesting that they yielded few false positives. The F1 and precision of splicing and expres-
sion markers showed comparative scores in the human fetal liver dataset (Fig.  2g, h). 
The lack of benefit in using splicing markers for the human fetal liver suggested that the 
splicing landscape in this dataset was less complex compared to the mouse cortex and 
embryo, possibly due to the tissue. We conjecture that the poor recall (Fig. 2c, f, i) for 
splicing markers could be due to the sparsity of splicing quantification leading to a high 
number of false negatives as there is insufficient information to accurately quantify splic-
ing nodes in many pools.

Moreover, the inclusion or exclusion of splicing nodes was independent of increased 
or decreased expression, suggesting that splicing markers were largely independent of 
the expression level (Fig. 3). For instance, in astrocytes, Dtna_27 was excluded while the 
cell type had higher expression of the Dtna gene. On the other hand, astrocytes had sim-
ilar expression of the Hnrnpa2b1 gene with other cell types while it had higher inclusion 
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of Hnrnpa2b1_32 (Fig.  3a, b). Another example is glutamatergic neuron subtype L4_
Scnn1a (Fig. 3c, d), here we found both inclusion and exclusion splicing markers, while 
the expression levels of the corresponding genes could hardly distinguish this cell type 
from others. This was in line with observations by Wen et al. [26] that only a fraction 
of differentially spliced genes have expression changes in the same direction, indicating 
that differential splicing provides another layer of transcriptomics regulation that con-
tributes to cell type heterogeneity.

While 67%, 57%, and 62% of the top 20 splicing markers were from different genes 
in mouse cortex, mouse embryo, and human fetal liver datasets, respectively, a single 
gene could contribute a large portion of marker nodes in some cases. We observed 

Fig. 2 Comparing gene expression and splicing as cell type markers. The top 20 expression and splicing 
markers, ranked by F1 scores, and their precision, recall, and F1 scores are calculated via scfind [28] or 
scASfind for a–c mouse cortex, d–f mouse embryo, and g–i human fetal liver. We compare the mean scores 
per cell type and consider a 0.2 difference between expression and splicing to indicate a better marker (gray 
lines in the figure). The dots represent the mean, while the whiskers indicate the minimum and maximum 
for the 20 markers. Cell types with either better splicing or expression markers are colored (blue for splicing, 
red for expression). For visual clarity, cell types have score differences of 0.5, 0.6, or 0.2 for precision; 0.2, 0.3, or 
0.2 for recall; or 0.3, 0.4, or 0.2 for F1 in mouse cortex, mouse embryo, and human fetal liver data are labeled, 
respectively. These values are chosen based on the respective number of cell types with a better marker for 
each dataset
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that the Ttn gene, which encodes titin—the largest protein in the genome [38], con-
tributed most of the above splicing markers in the first heart field (Fig.  2f ) for the 
mouse embryo dataset. These results were consistent with previous analyses of Ttn 
splicing profiles that showed 50–219 exons to be developmentally regulated [5]. Taken 
together, this result suggested that splicing events frequently show higher cell type 
specificity than gene expression, and the splicing marker events reported by scASfind 
can be superior in terms of distinguishing cell types.

Fig. 3 PSI values of marker splicing nodes and expression levels of corresponding genes. a PSI values 
for astrocyte splicing markers from mouse cortex data, compared to the mean of all other cell types. b 
Expression levels for the same genes contribute to splicing markers in astrocytes. c PSI values for L4_Scnn1a 
neuron splicing markers from mouse cortex data. d Expression levels for the same genes in c. In all panels, 
each dot represents a cell pool, and the color scale shows the median PSI or gene expression level among 
the cell pools. PSI, percent spliced-in
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We compared our analysis of cell type-specific splicing markers with differentially 
spliced nodes calculated by MARVEL [26], a recent method focusing a combined anal-
ysis of expression and splicing in scRNA-seq data. Since MARVEL was designed for 
pairwise comparison, we also ran scASfind pairwise to detect differentially spliced CEs 
between all pairs of cell types in the mouse cortex data (see details in “Methods”). We 
saw a remarkable degree of consistency between the two tools. Among the 1176 pairs of 
cell types, MARVEL returned a total of 441 SE markers in 318 pairs of cell types. Among 
the MARVEL SE markers, 232 were ranked top 1 in scASfind and 330 were among the 
top 5 (Additional file 1: Fig. S1). For those marker nodes less significant in MARVEL, 
they also had a lower ranking and smaller F1 score in scASfind (Additional file 1: Fig. 
S1). The comparison suggested that MARVEL focused on returning the strongest sig-
nal while scASfind provided more information, reporting events in a custom range of 
F1 scores. Both tools were highly consistent in capturing the highest specificity splic-
ing nodes that maximally distinguish the pair of cell types. Nevertheless, scASfind could 
provide results for all cell type pairs while many of these pairs did not have significant 
differentially spliced SEs in MARVEL analysis.

We also evaluated the PSI values of scASfind node markers in the mouse cortex data 
in VastDB [10], an atlas of alternative splicing profiles based on bulk RNA-seq data. For 
some non-neuronal cell types, there were purified single cell type tissues in VastDB, 
making them directly comparable with scASfind marker nodes. We found that for 
microglia, oligodendrocytes, and OPCs, the top 10 scASfind marker nodes clearly exhib-
ited increased PSI in the respective VastDB cell type sample (Additional file 1: Fig. S2). 
Meanwhile, we observed that cortical, cerebellar, and whole brain data, which encom-
pass mixed neuronal and glial cell types, did not exhibit high PSI for these marker genes. 
Furthermore, a probabilistic principal component analysis using the VastDB PSI values 
for all cell type marker nodes in scASfind across all VastDB tissues showed that these 
nodes have neural specificity (Additional file 1: Fig. S3). In summary, scASfind results 
were well supported by the PSI quantification from purified cell types in VastDB. The 
analysis further highlights the enhanced resolution provided by single-cell results com-
pared to bulk RNA-seq from mixed cell types.

Detecting mutually exclusive exon pairs

Mutually exclusive splicing event is a special type of AS event where only one of two 
consecutive exons is included in the final mRNA product [39, 40]. In the largest study 
of mutually exclusive exons (MXEs) in bulk RNA-seq data carried out to date, Hatje 
et al. identified 855 exon pairs from 515 datasets [37, 39]. MXE splicing is known to 
be regulated by different molecular mechanisms that enable tissue-specific patterns 
[40–44]. We hypothesized that some of the observed tissue specific splicing profiles 
arise from the cumulative effects of cell type specific MXE preferences within each 
tissue. Hence, we leveraged scASfind to systematically discover MXEs and explore 
their cell type specificity.

We performed an exhaustive search of all three datasets to observe cell type specific-
ity for all exon pairs that could be MXEs (Fig. 4a). That is, for all consecutive exons, we 
identified cell types in which one of them is always included and the other excluded. To 
ensure high-quality results, several additional filters were employed. First, we required 
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the pair to have mean PSI values summing to 1 ± 0.1, and that PSI standard deviation 
scores differ by less than 0.1 across all cell pools in the dataset. Second, we required at 
least one cell type to be significantly enriched for the pattern when one exon is included, 
and the other is excluded. Statistical significance was determined using hypergeometric 
tests. Third, we considered MXEs detected in over half of the cell pools and having a 
difference of cell type mean PSI value between the two exons ≥ 0.5 as highly confident 
pairs. The default criteria we have used were rather stringent to obtain a small amount of 
highly confident results.

We detected 63, 17, and 35 significant pairs of MXEs in mouse cortex, mouse embryo, 
and human fetal liver data, respectively. Among these 14, 2, and 2 were adjacent and 
highly confident. The high-confidence pairs in the mouse cortex dataset are summa-
rized in Fig. 4b. Hierarchical clustering across cell types using the ∆PSI of these exons 
indicates that generally, cells of the same broad type have similar splicing patterns in 
these MXEs, with a few exceptions. This is concordant with the tissue-specific splicing 
observed in bulk RNA-seq. However, there are examples of cell types within each broad 
type that have distinctive MXE preferences, suggesting a more complex pattern.

A known example of MXEs can be found in the ionotropic glutamate receptor genes, 
AMPA 1/2/3 (Gria1, Gria2, Gria3), which have been studied extensively in mouse brain 
[45–47]. Reassuringly, the top candidates reported by scASfind include the three Gria 
genes. To the best of our knowledge, this is the first detailed study of cell type-specific 
MXE preferences for these genes (Fig. 5a). During development, some neurons switch 
from node 28 to using node 29, and this has important consequences for their responses 
to electric stimuli [48, 49]. We detected a significant preference for node 29 in gluta-
matergic neurons including L2 Ngb and L2/3 Ptgst, as well as L6a Car12, L6b Rgs 12 
and L6b_Serpinb11, GABA-ergic neurons including Vip_Sncg, Pvalb_Obox3, Smad3, 

Fig. 4 Summary of 14 high-confidence MXE pairs in mouse cortex data. a Schematic overview of how MXE 
pairs are identified. b High confidence adjacent MXE pairs detected by scASfind. The heatmap color scale 
indicates the difference in raw PSI value (∆PSI) between the downstream exon and the upstream exon in the 
pairs of MXEs. Cell types are grouped by their broad type; genes are organized by the number of cell types in 
which the pair is significant (decrease from left to right). MXE, mutually exclusive exon; PSI, percent spliced-in; 
CE, core exon; AA, alternative acceptor; AD, alternative donor; RI, retained intron; signif., significant
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Igtp and Pvalb_Wt1, as well as in oligodendrocytes Oligo_96_Rik. By contrast, several 
glutamatergic and GABA-ergic neurons included node 28, suggesting that the cell type-
specific pattern is complex. Another example was in the SNARE protein Snap25, whose 
MXE preference switches during mouse brain development [50, 51], and is related to 
regulating synaptic transmission and long-term synaptic plasticity [52, 53]. In our analy-
sis, glutamatergic neurons L5_Chrna6, L6b_Rgs12, L6b_Serpinb11; GABA-ergic neu-
ron Igtp, Ndnf_Car4, and oligodendrocyte progenitor cell OPC_Pdgfra showed a strong 
preference for node 9, while other cell types utilized node 10 (Fig. 5a). Taken together, 
our results recapitulate some of the complex cell type specific pattern of isoform switch-
ing for both the Gria genes and Snap25. In the mouse embryo data, we detected highly 
confident MXEs in Actn1 and Actn4. Actn1 has been found to have tissue-specific mutu-
ally exclusive splicing in adult mice. Compared to other tissues, muscle cells select an 
alternative exon which makes the protein’s EF-hand motif insensitive to Ca2 + , while 
brain cells include both exons [54, 55]. We were the first to describe the cell type prefer-
ence of this MXE pair in the mouse embryo (Fig. 5b). For Actn4, we found primitive_
heart_tube cells prefer Actn4_14 while first_heart_field and secondary_heart_field cells 

Fig. 5 PSI values of detected high confidence adjacent mutually exclusive exons. The mean PSI across cell 
pools in each cell type in aGria2 (left) and Snap25 (right) in the mouse cortex dataset, bActn1 in the mouse 
embryo dataset, and cP4HA2 in the human fetal liver dataset. PSI, percent spliced-in
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chose Actn4_13. Finally, for the P4HA2 gene in the human fetal liver dataset, Common_
Prog_cycling and Dend_cell_cycling selected node 47 or 48, respectively (Fig. 5c).

Observing the cell type mean PSI of high-confidence MXEs, we found that the mutu-
ally exclusive pattern is not strictly followed in some cell types (Fig.  5). For example, 
Sst_Cbln4 cells showed comparable PSI for nodes 28 and 29 in Gria2, whereas astro-
cytes included both exons. This is in parallel with previous observations of MXEs only 
being mutually exclusive in specific tissues but not in all tissues [1, 40, 56]. For example, 
TCL6 only shows exclusive patterns in specific tissues while on the basis of all known 
transcripts, the pattern is lost [1, 40, 56]. Similarly, our results concurred that MXEs can 
show a mutually exclusive pattern only in some cell types.

Identification of coordinately spliced exon blocks

By definition, the splicing nodes considered in scASfind only involve a single event. 
Though a single event can lead to drastic shifts of gene function [57], splicing events 
are often coordinated, resulting in multiple consecutive exons being simultaneously 
included or excluded. Hereafter we refer to such coordinated groups of splicing nodes 
as node blocks. Coordinated events are more likely to have a more substantial impact on 
protein function as a larger proportion of coding sequences are affected, but when using 
a splicing node representation, they are difficult to detect as one must find a stretch of 
consecutive nodes. Given the large number of nodes across the transcriptome and the 
high noise level of splicing quantification, this search can be very time-consuming.

We used scASfind to detect node blocks. For each gene, we first identify consecutive 
nodes of type “core exon” with similar mean and standard deviation of their PSI val-
ues (the default is to require the absolute differences for both to be < 0.1 for all exons in 
the block). Next, the search is expanded to identify additional neighboring nodes to find 
cell type specific blocks. Events where a block of nodes is coordinately spliced-in (the 
“above” events) and spliced-out (the “below” events) are detected separately. To ensure 
high quality results, we only keep blocks composed of at least three nodes from different 
actual exons. Cell type specific node blocks that are detected in over half of the cell pools 
are reported as high confidence blocks.

Overall, we detected 263 node blocks with lengths ranging from 3 to 21 in the mouse 
cortex dataset, with 8 high-confidence ones (3–5 splicing nodes long). For the mouse 
embryo data, we found 306 blocks containing 3–26 nodes and 14 high-confidence ones 
with lengths ranging from 3 to 6. For the human fetal liver data, there were 526 node 
blocks ranging from 3 to 37 nodes, 19 of which were high confidence with lengths from 
3 to 9 (Fig.  6a–f). For example, in the mouse cortex data, we found that node 5–7 in 
Haus7 is significantly spliced-out in L2_Ngb and L5_Pde1c while it is spliced-in in Sncg 
(Fig.  6d). Reassuringly, this is in line with two documented isoforms as shown in the 
GENCODE annotation [58, 59] (Additional file 1: Fig. S4). In the human fetal liver, we 
found a block of exons between chr2:95,895,399–95,901,206 in ANKRD36C that is 
spliced-in for dend_cell_cycling, also in concordance with known isoforms (Additional 
file 1: Fig. S5).

We proceed to analyze whether the detected highly confident node blocks cor-
respond to known isoforms, and what are their functional implications on protein 
domains in the mouse embryo data. We detected known coordinated events in Ttn in 
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primitive_heart_tube and first_heart_field. This corresponds to a regulated isoform 
switching event during heart development, upon which the stiffness of the protein 
changes [60, 61]. Another key gene for heart development is Dst. Here we found a block 
including 5 exons and spanning 3 of the 7 major protein domains significantly spliced-in 
in myofibroblasts (Fig. 7A). This event is in line with the documented muscle-specific 
Dst-b isoform [62]. Mutation studies have shown that Dst-b is essential for strained mus-
cle maintenance [63]. We have also found a node exclusion block in Myo18A, which is 
consistent with shorter annotated isoforms that are derived from an internal transcrip-
tion start site [64, 65] (Fig. 7B). One of these shorter isoforms, known as Myo18Aγ, lacks 
the PDZ-containing N-terminus but includes an alternative N-terminal extension [66] 
and showed well-marked cell type specific profile associated to primitive_heart_tube. In 

Fig. 6 Cell type-specific coordinated splicing. Overall, a 263 node blocks were detected in the mouse cortex 
dataset, b 306 in the mouse embryo, and c 526 in the human fetal liver. The gene name of highly confident 
node blocks, which include at least 3 nodes from different exons and were detected in ≥ 50% cell pools, 
are shown in d–f for each dataset. In d–f, “above” means that the node block is significantly spliced-in in the 
respective cell type and “below” means significantly splice-out of the node block
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general, the detected highly confident node blocks correspond well to known regulated 
isoforms. The analysis demonstrated the versatility of scASfind to detect diverse isoform 
switching events.

Even though some blocks are detected in < 50% of cell pools, they often match doc-
umented isoforms in the annotation. For example, in the human fetal liver, 20% of 
NK_cell cell pools did not include chr6:42,632,552–42,655,723 (14 splicing nodes) in 
the UBR2 gene, in line with an isoform corresponding to early termination (Additional 
file 1: Fig. S6). We also found that 25% of endothelial cells express a shorter isoform of 
TBC1D19 (Additional file  1: Fig. S7). Moreover, we have detected several high confi-
dence blocks that suggest undocumented isoforms. For example, four exons between 
chr7:44,864,913–44,865,509 in Ptov1 are shown to be coordinately included in all cell 
pools of Pro_Nephros in mouse embryos while there are no recorded isoforms of this 
gene in the GENCODE [59] annotation (Fig. 6f, Additional file 1: Figs. S8, 9). This could 
have relevance to human biology since PTOV1 has been associated with prostate can-
cer, and the splicing event is likely to have a disruptive impact on one of the two major 
domains involved in the interaction with multiple other genes [67].

Discussion
Splicing is a highly regulated process with a key role in cellular identity and function [5, 
68]. Here we present scASfind, a toolkit for mining cell type-specific splicing patterns 
from large, single-cell, full-length transcriptomics datasets. It is challenging to ana-
lyze splicing in scRNA-seq data due to the vast number of splicing nodes and the high 
degree of sparsity. To overcome these challenges, we utilized cell pooling and data com-
pression to build an index which can support efficient queries of the cell type pattern 
of splicing events. We demonstrate that an index for thousands of cells can be created 
in 20–30 min, resulting in compression by 2–3 orders of magnitude, while at the same 

Fig. 7 Coordinated inclusion of splicing nodes across mouse embryonic cell types. Sashimi plots showing 
the read coverage and splice site usage across A Dst and B Myo18a transcripts. Top schematics show domains 
annotated for these proteins and coordinated splice nodes are highlighted with a red segment (bottom). 
Different gray shades are meant to distinguish cell types. Mean ± SD of PSI values across all coordinated 
splice nodes are indicated in red. PSI, percent spliced-in; SD, standard deviation
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time speeding up queries by hundreds of folds. Building on this data structure, we pro-
vide functions for discovering cell type-specific splicing events such as finding marker 
nodes, mutually exclusive exons, or coordinately spliced node blocks. Using mouse cor-
tex, mouse embryonic development, and human fetal liver datasets, we demonstrated 
scASfind’s utility for carrying out tasks that would have been prohibitive without the 
tool.

Quantification of individual splicing events, compared with transcript-level analysis, 
is more tractable with short-read data and does not rely on complete annotation models 
[13, 15]. The PSI quantification used by scASfind comes from the event-level splicing 
quantification tool Whippet. Whippet is an established method which is efficient and 
showed high recall in a benchmark study [69]. However, the algorithm only detects and 
analyzes annotated AS events in its contiguous splice graphs index [13] and it is less 
effective on detecting events de novo [69]. Therefore, scASfind also only detected splic-
ing patterns of nodes existing in the Whippet index.

Current single-cell platforms typically focus on sequencing only the 3′ or 5′ ends of 
transcripts, leaving alternative splicing largely unexplored at the single-cell level. Our 
analysis of the scASfind splicing node markers strongly suggests that single-node splic-
ing patterns can provide higher cell type precision than gene expression. This is particu-
larly relevant to tracing rare cell types. By leveraging rare cell types identified through 
specialized algorithms [70, 71], we can explore specific splicing patterns using scASfind, 
offering potential for higher precision and experimental validation. For instance, studies 
have demonstrated subtype-specific splicing in neurons [72–74], reinforcing the utility 
of splicing patterns in distinguishing neuron subtypes. Understanding AS events with 
strong cell population specificity is crucial for effectively studying cellular heterogene-
ity. Additionally, the systematic identification of MXEs and tissue-specific coordinated 
splicing events provides insights into cell type-specific AS regulation, enriching our 
understanding of the regulatory landscape.

The development of high throughput full-length protocols such as VASA-seq [12] 
will likely open opportunities for splicing analysis in a diversity of biological systems. 
Moreover, several studies have utilized long reads technologies for single-cell studies 
[75–77], allowing an entire transcript to be captured by a single read. We believe that 
these advances will allow single-cell studies to quantify alternative splicing events, but 
for this to become feasible novel computational methods are required. Given its effi-
cient memory usage, low run times, and convenient search functionality, we believe that 
scASfind will be a valuable tool for researchers to decipher cell type-specific splicing 
using scRNA-seq data.

Conclusions
We provide scASfind, a freely available software for mining cell type-specific alternative 
splicing events in full-length scRNA-seq data. It utilizes an efficient data structure to 
detect marker splicing nodes and enables exhaustive searches of MXEs and node blocks.

Applying scASfind to three datasets from mouse and human demonstrated the high 
precision of marker splicing nodes compared to the more widely used marker genes. We 
also found known and novel MXEs and node blocks that show cell type specific splicing 
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patterns. Splicing analysis with scASfind facilitates discovery of cell type-specific splic-
ing events that may have functional implications.

Methods
AS quantification across cell types

To quantify AS events across cell types, we configured and ran MicroExonator’s single-
cell module, as described in [78]. As part of this workflow, MicroExonator qualifies AS 
events using Whippet [13] across cell pools derived from annotated cell clusters. Using 
this protocol, we processed mouse scRNA-seq data from brain visual cortex [29] and 
whole embryos [12], as well as scRNA-seq data derived from human immunophenotypic 
blood cells from fetal liver and bone marrow [30]. We used genome assembly mm10 and 
GENCODE transcript annotation v16 to process mouse scRNA-seq data. For human 
scRNA-seq analyses, we used genome assembly hg38 and GENCODE transcript annota-
tion v19.

Filter for confidently quantified events

Before encoding the PSI data, we first filter for confidently quantified events. The spar-
sity of scRNA-seq data often results in an insufficient number of reads spanning splicing 
junctions that can be used to calculate node PSI values. By default, we require at least 10 
reads available for PSI quantification. This gives roughly a confidence interval of PSI < 0.5 
from Whippet.

Create a scASfind index

scASfind builds four types of data structures from the input data, and together they form 
a queryable index.

1. The splicing node x cell pool differential PSI matrices

 For each node, we first calculate the mean PSI across all cell pools, then calculate the 
difference from the mean for all PSI values. A 0.2 deviation was used as the default 
threshold to select sufficiently deviated events. Secondly, we separate nodes with 
differential inclusion (the “above” events) and those with differential exclusion (the 
“below” events). Both metrics are then multiplied by 100 so that the value is in the 
range of 0, 100 for the compression.

 The splicing node x cell pool differential PSI (∆PSI) matrices are independently com-
pressed using the strategy in scfind [28]. The compression is a two-step process: (1) 
storing the positions of non-zero values are compressed by Elias-Fano encoding, and 
(2) the actual differential PSI value is represented as quantiles of a log-normal distri-
bution (Additional file 1: Fig. S10). The mean and variance of the log-normal distri-
bution, along with quantiles of the original ∆PSI values, are stored. The first step is 
lossless while the second step is lossy. The approximation of actual ∆PSI in the index 
makes it possible to retrieve the approximate PSI value when giving the user the abil-
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ity to tune the size of the storage based on the number of bits used for the quantiza-
tion (default 2 bits).

2. The mean and standard deviation PSI values per node
 We store the mean and standard deviation for each dataset and node for retrieval 

of raw PSI values and for speeding up searches of MXEs and node blocks based on 
expected patterns in mean and standard deviation.

3. The mask for NA values from PSI quantification
 Since we only encode differential PSI values, cell pools with PSI values close to 

the dataset-wise mean are excluded. However, cell pools where the PSI values are 
unquantified (NA) or below the required number of reads for confident quantifica-
tion are also excluded. Distinguishing these two circumstances is required to enable 
retrieval of raw PSI values from the index. For this purpose, we use a binary mask 
matrix. In this matrix, 1 indicates the cell pools with PSI value equal to the dataset-
wise mean and 0 indicates unquantified. Typically, unquantified events are more fre-
quent than equal mean events, resulting in a sparse matrix.

4. The annotation of nodes
 We use ENSEMBL [79] via the R package biomaRt (V2.46.3) to obtain annotations of 

all nodes included in the index to enable quick interpretation of results.
 In addition, metadata for each cell, providing information about its annotated cell 

type or state is required. The buildAltSpliceIndex function in scASfind takes the cell 
pool-by-splicing node differential PSI matrices and a table with the cell type annota-
tion to build an index object. The “above” and “below” index objects are stored as two 
datasets, and the three other metrics are stored in the metadata slot in the scASfind 
object.

Benchmark of file size, index build time, and node search time

We benchmark the efficiency of the scASfind index, compared with a basic approach uti-
lizing only R and Seurat functions. For file size, we take the sum of on-disk space taken 
by the raw PSI matrix (as.tsv files) and the three metadata objects (as.rds files) as “raw 
PSI,” and the complete scASfind index (as.rds object), including the same three metadata 
objects stored in the metadata slot as “scASfind index.” All file sizes are obtained with 
the “file.info” function in R. For index build time, we run the scASfind build index script 
on a high-performance computing cluster (Rocky Linux 8.5) for the three datasets with 4 
cores and maximum 2 GB memory, 10 processes, and 200 threads. The time to build the 
index naturally depends on the computational resources available. For differential events 
search time, we randomly select 5, 10, 50, 100, and 200 splicing nodes, and search for cell 
pools with an above-mean PSI of any of the nodes using either the naive approach or the 
scASfind index. The elapsed times were measured in 30 repetitions per query length.

Cell type marker node search

We use a precision-recall framework to search for nodes that are specific to different 
cell types. For each node, we count the number of cell pools with the relative inclusion/
exclusion of this node in a cell type of interest compared to all other cell types. We use 
precision, recall, and F1 scores to evaluate how well the node distinguishes the cell type 
of interest from all other cell types. A true positive (TP) is when a node is included or 
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excluded in a cell pool from the cell type of interest for spliced-in and spliced-out events, 
respectively. False positives (FP) are when the same node is included/excluded in cell 
pools of other cell types, and false negatives (FN) are cell pools from the same cell type 
in which the node is not detected as included or excluded. The precision score is calcu-
lated by:

The recall score is calculated by:

The F1 score is the harmonic mean of precision and recall score:

By default, we use F1 scores as a balanced metric to rank all nodes for each cell type to 
indicate the best marker nodes for either inclusion or exclusion events.

Comparing PSI and gene expression in splicing marker nodes

We calculate the top 20 gene expression markers (ranked by F1 score) using scfind in 
the mouse cortex data. For the genes containing splicing marker nodes, we used the R 
package Seurat (V4.1.0) to obtain the scaled expression values. Then, we used ggplot2 
(V3.3.3), viridislite (V0.4.0), and cowplot (V1.1.1) to create the violin plot of PSI and 
scaled expression values.

MARVEL analysis

We ran MARVEL [26] (v2.0.5) following the tutorial for plate-based sequencing meth-
ods (https:// wenwe ixiong. github. io/ MARVEL_ Plate. html). The function CompareVal-
ues were used to perform pairwise differential splicing analysis between cell types using 
the “ad” algorithm. Only exon-skipping type events were used to compare with CEs in 
scASfind.

VastDB comparison

We downloaded the main PSI table of the mouse data in VastDB [10] (mm10) 
(https:// vastdb. crg. eu/ wiki/ Downl oads# AS_ events_3). Splicing nodes that were cell 
type markers in scASfind analysis of the mouse cortex data were subtracted from 
this table and subjected to tissue specificity analysis. PPCA was performed using 
pcaMethods (v1.64.0).

Detect cell type‑specific mutually exclusive exons

Detection of cell type-specific MXEs is based on a hypergeometric test with the “hyper-
QueryCellTypes” function in scASfind. The hypergeometric distribution models the 
probability of k success in n draws without replacement, from a finite population with N 
subjects and K of them contains the pattern. In our case, k is the number of cell pools in 

(1)precision =
TP

TP + FP

(2)recall =
TP

TP + FN

(3)F1 =
2 ∗ precision ∗ recall

precision+ recall

https://wenweixiong.github.io/MARVEL_Plate.html
https://vastdb.crg.eu/wiki/Downloads#AS_events_3
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a cell type which have the splicing pattern, n is the number of cell pools in that cell type, 
K is the total number of cell pools in which the splicing pattern is detected, and N is the 
total number of cell pools. A pattern with a hypergeometric test P value ≤ 0.05 in a cell 
type is considered significant.

We use a mutually exclusive combination of splicing nodes (include one and exclude 
the other) as the pattern in the hypergeometric test to detect MXEs. The query is per-
formed exhaustively for all pairs of exons in the dataset. To reduce the search space, we 
first filter all the possible node pairs by (1) having a mean PSI sum of 1 ± 0.1 and (2) hav-
ing a < 0.1 difference in the PSI standard deviation. Then, we query for significant cell 
types for the potential pairs of MXEs. Pairs with at least one cell type significant in one 
of the two possible patterns are kept as candidates.

Further filters are applied for candidate MXE pairs. First, we require the MXE pattern 
to be found in ≥ 50% of the pools in the significant cell type. Then, we require the differ-
ence of absolute PSI value in the pair to be ≥ 0.5 to be considered high confidence.

Detecting cell type‑specific coordinately spliced‑in exons

We scan all genes from the 5′ of all annotated “core exon” nodes in the scASfind index 
to find coordinately spliced-in exons. We extend an exon block by requiring the next 
exon to have at most ± 0.1 difference with both the mean and standard deviation of 
the PSI of the previous block of exons. If this criterion is not fulfilled, we initiate a new 
block, and the previously constructed block is tested for cell type specificity using the 
hypergeometric test as described previously. Blocks significant in at least one cell type 
are kept. Finally, we use a node-to-exon mapping table from Whippet [13] to combine 
nodes belonging to the same actual exon. If the resulting block contains at least 3 exons, 
we propose it as a potential coordinated sliced-in exon block. We also require the block 
to be found in > 50% of the pools in the significant cell type for it to be highly confident.

The impact of pool size on PSI quantification and scASfind results

We ran Whippet, followed by scASfind, using a cell pool size of 5, 10, 15, and 20 on the 
mouse cortex data. This was specified in the config file with cells_pseudobulks in the 
MicroExonator workflow.

First, we examined the percentage of nodes quantified among all annotated nodes 
(Additional file 1: Fig. S11a). We found that despite a slight increase in the total percent-
age of nodes quantified as the pool size increased, the percentage of confidently quanti-
fied nodes (with ≥ 10 reads) remained stable and saw a slight decrease at pool size 20. 
This is further supported by the fact that the coverage distribution of confidently quanti-
fied nodes remained similar across the pool sizes (Additional file 1: Fig. S11b). Addition-
ally, comparing the percentage of nodes quantified among all nodes in the three datasets 
suggested that the selected pool sizes gave comparable numbers of confidently quanti-
fied nodes: 20.47 ± 4.30, 30.63 ± 13.78, and 15.72 ± 5.63 (mean ± stddev).

In summary, using a pool size 5 for the mouse cortex data ensures a balance between 
achieving sufficient coverage for PSI quantification and retaining the abundance varia-
tion between cell types.
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