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Abstract 

Identifying viruses from metagenomes is a common step to explore the virus composi‑
tion in the human gut. Here, we introduce VirRep, a hybrid language representation 
learning framework, for identifying viruses from human gut metagenomes. VirRep 
combines a context‑aware encoder and an evolution‑aware encoder to improve 
sequence representation by incorporating k‑mer patterns and sequence homologies. 
Benchmarking on both simulated and real datasets with varying viral proportions 
demonstrates that VirRep outperforms state‑of‑the‑art methods. When applied to fecal 
metagenomes from a colorectal cancer cohort, VirRep identifies 39 high‑quality viral 
species associated with the disease, many of which cannot be detected by existing 
methods.

Keywords: Virus identification, Human gut metagenomes, Language representation 
learning

Background
Viruses, especially bacteriophages (viruses that infect bacteria and archaea), are essential 
players of microbial communities within the ecosystem of the human gut, with signifi-
cant impact on regulating the structure and function of microbial communities through 
phage predation, lysogeny and horizontal gene transfer [1, 2]. The gut virome has also 
been implicated in many human diseases, including inflammatory bowel disease [3, 4], 
type 2 diabetes [5, 6], and severe acute malnutrition [7], to name just a few. Yet, our 
knowledge about the viral genomic diversity in the human gut increases at a slow pace 
for decades due to the difficulty in virus isolation, particularly for those with uncultiva-
ble hosts. Therefore, identifying viruses from metagenomic samples is becoming a more 
efficient way to explore gut virome, where metagenomic sequencing can detect both 
prokaryotes (bacteria and archaea) and viruses together.

Recently, some computational approaches have been presented to identify viruses from 
metagenomes, which can be generally grouped into three categories: alignment-based 
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approaches, alignment-free approaches, and hybrid approaches. The alignment-based 
approaches discriminate viral sequences from prokaryotic ones based on the align-
ment results of sequences against the viral marker protein database [8–10]. However, 
the alignment-based methods may fail to work on viruses of short sequence length. In 
addition, the scarceness of high-quality reference genomes and well annotated marker 
genes makes the alignment-based methods fail to discover novel viruses. The alignment-
free approaches leverage machine learning or deep learning techniques to automatically 
learn complex genomic features to discriminate viruses from prokaryotes [11–15]. Com-
pared with the alignment-based methods, the alignment-free approaches are more effec-
tive for shorter viral sequences and those exhibiting limited sequence similarity with 
known virus families. Nevertheless, they often demonstrate higher false positive rates 
[16]. Recently, a hybrid computational framework, geNomad [17], was proposed to com-
bine the strength of both alignment-based and alignment-free approaches. However, the 
performance of geNomad depends on the reference database with more computational 
cost.

Here, we present VirRep, a novel hybrid language representation learning framework 
for identifying viruses from human gut metagenomes. VirRep combines a context-aware 
encoder (semantic encoder) and an evolution-aware encoder (alignment encoder) to 
integrate both k-mer patterns and sequence homologies to represent sequences. We 
proposed a multi-step training strategy based on the pre-train-fine-tune paradigm to 
optimize the sequence representations, which combines a natural language process-
ing framework with biological prior knowledge. Benchmarking on multiple datasets 
and simulated metagenomes with varying viral proportions demonstrates that VirRep 
significantly outperforms state-of-the-art methods and their combinations in terms of 
both effectiveness and efficiency. Applying VirRep to human gut metagenomes from a 
colorectal cancer (CRC) cohort, we identified 39 viral species with high-quality genomes 
that showed significant relevance to the disease. Remarkably, 23 of these viral species 
were ignored by at least half of the competing methods, and 2 by all the other methods.

Results
Overview of the VirRep framework

VirRep is a hybrid language representation learning framework designed for identifying 
viruses from human gut metagenomes. As shown in Fig. 1a, it takes a 1-kb-long DNA 
sequence and its reverse complementary strand as input, where a longer sequence will 
be split into 1-kb-long sequence segments. VirRep first converts each sequence segment 
and its reverse complementary strand into short sequences of consecutive 7-mers. Tak-
ing the tokenized 7-mer sequences as input, a siamese neural network will generate the 
probability that the 1-kb-long sequence segment belongs to a virus, where the probabil-
ity is calculated based on the average of the virus scores from its both strands. For a 
sequence longer than 1 kb, VirRep defines the prediction as the mean of the virus proba-
bilities from all its segments. Given that temperate phages often integrate their genomes 
into the host and are prevalent in the human gut, VirRep also introduces an iterative 
segment extension mechanism to detect viral regions within host genomes (Additional 
file 1: Fig. S1, “Methods”).
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VirRep combines a context-aware encoder (semantic encoder) and an evolution-
aware encoder (alignment encoder) to leverage the strength of both k-mer patterns 
and sequence homology to improve classification performance (Fig. 1b, Methods). The 
semantic encoder is a BERT-like [18] neural network, which generates a global contex-
tualized representation by capturing dependencies between k-mers at different positions 
within the sequence. The alignment encoder utilizes the BiLSTM [19, 20] network as the 
backbone, which yields an evolutionary representation by implicitly encoding sequence 
similarity between the input sequence and the prokaryotic genomes. VirRep integrates 
these two representations to generate an informative sequence representation.

Fig. 1 Schematic overview of the VirRep framework. a Workflow of VirRep for predicting viruses from 
metagenomes. b The detailed model architecture of VirRep. c The multi‑step training strategy based on the 
pre‑train‑fine‑tune paradigm to train VirRep
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We compiled a large non-redundant dataset of human gut microbial genomes to train 
VirRep, including ~ 140,000 viral genomes from GVD [21], GPD [22], CHVD [23], and 
MGV [24] (collectively referred to as GGCM), along with more than 4600 genomes of 
different bacterial and archaeal species from UHGG [25] (“Methods”). We trained Vir-
Rep based on the pre-train-fine-tune paradigm, which works in multi-steps: pre-train-
ing, the first-stage fine-tuning, and the second-stage fine-tuning (Fig.  1c, “Methods”). 
During pre-training, we trained the semantic encoder and the alignment encoder 
independently based on self-supervised learning. In the first-stage fine-tuning, we 
constructed two additional tasks and fine-tuned the two encoders separately in a super-
vised way. In the second-stage fine-tuning, we appended a classification layer to the 
sequence representation layer, and fine-tuned it along with the two encoders for virus 
identification.

VirRep enables robust detection of viruses of various sequence lengths

We first evaluated VirRep on multiple human gut virome datasets, where the viruses 
from each dataset were divided into 5 groups according to their sequence lengths 
(1.5  k–3  k, 3  k–5  k, 5  k–10  k, 10  k–20  k, > 20  k). These datasets include (1) a left-out 
test set from the union of GVD [21], GPD [22], CHVD [23], and MGV [24] collection 
(denoted as GGCM-test); (2) a subset of the virus genome marked as human intestinal 
origin in the IMG/VR database v3 (IMG/VR-gut) [26]; (3) the Danish Enteric Virome 
Catalog (DEVoC) [27]; (4) the gut phage isolation collection (GPIC) [28]; (5) the union 
of complete and high-quality crAss-like phages from two studies [29, 30]; and (6) Lak-
phages in the human and mammalian gut [31] (“Methods”). As negative control, an 
equal number of prokaryotic sequences assembled from human gut metagenomes were 
also collected (“Methods”). We compared VirRep against several popular virus identifi-
cation methods, including the recently proposed hybrid method (geNomad [17]), two 
alignment-based methods (VIBRANT [9] and VirSorter2 [10]), and five alignment-free 
methods (VirFinder [11], DeepVirFinder [12], PPR-Meta [13], Seeker [14] and INHERIT 
[15]). For a fair comparison, we retrained the alignment-free methods on the same data-
sets used for training VirRep.

We first assessed the performance of each method on the GGCM-test dataset. Vir-
Rep significantly outperformed the other methods with the highest MCC (Matthews 
correlation coefficient) values for viral sequences of different lengths (1.5  k–3  k: 0.90, 
3  k–5  k: 0.92, 5  k–10  k: 0.94, 10  k–20  k: 0.96, > 20  k: 0.98; see Fig.  2a and Additional 
file 1: Table S1). With more evaluation metrics (including F1, precision and recall), we 
noticed that VirRep achieved higher recall while maintaining lower false positive rates 
(Additional file 1: Fig. S2-4 and Table S1), thereby leading to better overall performance. 
For instance, compared to the second-best method, geNomad, VirRep enhanced virus 
detection rates by 2.5–44.2% for sequences shorter than 10 kb while maintaining com-
parable precision. It also demonstrated an improvement in precision ranging from 2.5 
to 6.8% with similar recall as compared to INHERIT, the best-performing alignment-
free method. The similar results can be found on the other three datasets, i.e., IMG/
VR-gut, DEVoC, and GPIC datasets, where VirRep outperforms all the other approaches 
(Fig. 2b–d, Additional file 1: Fig. S2-4 and Table S2-4).
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We additionally evaluated VirRep and the other methods on two particular viral clades 
in the human gut, i.e., crAss-like phages and Lak-phages. CrAss-like phages represent 
the most abundant and prevalent viral family in the human gut microbiota [29, 30, 32], 
while Lak-phages are inferred to be widespread in the gut microbiomes of the popu-
lations consuming non-Western (i.e., high-fiber and low-fat) diets [31]. In general, all 
the methods performed well on the crAss-like phage dataset, with VirRep and geNomad 
ranking the top two (Fig. 2e). However, VirRep consistently outperformed geNomad and 
achieved the best performance on the Lak-phage dataset. The MCC values of VirRep 
exceeded 0.96 across the five length intervals, exhibiting an improvement ranging from 
2.3 to 62.0% for sequences no longer than 20 kb compared to geNomad (Fig. 2f ). The 
improved performance can be attributed to VirRep’s significantly higher virus detection 

Fig. 2 Performance of VirRep and other methods on multiple human gut virome datasets. a–f The MCC 
values of VirRep and the eight popular methods on the GGCM‑test dataset (a), IMGVR‑gut dataset (b), DEVoC 
dataset (c), GPIC dataset (d), crAss‑like phage dataset (e), and Lak‑phage dataset (f) at various sequence 
length intervals. g The runtime of each method across the five sequence length intervals, where the average 
runtime is represented by the bar height and the error bars depict the 95% confidence intervals
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rate, as VirRep demonstrated a recall enhancement over geNomad ranging from 3.0 to 
74.7% (Additional file 1: Fig. S4f and Table S6).

We further looked at the runtime of each method across the five groups of different 
lengths on the GGCM-test dataset. Each method was run on 5000 sequences five times 
at each length interval. VirRep and the four alignment-free methods (i.e., INHERIT, 
DeepVirFinder, PPR-Meta, Seeker) were accelerated on a NVIDIA A100 GPU, whereas 
geNomad and the two alignment-based methods (VirSorter2 and VIBRANT) were run 
with 16 threads. Generally, VirRep was approximately 3–6 times faster than geNomad, 
12–13 times faster than the best-performing alignment-free method (IHERIT), and 
33–130 times faster than the best-performing alignment-based method (VirSorter2) 
(Fig. 2g, Additional file 1: Table S7). Overall, the results suggest that VirRep can effec-
tively and efficiently identify viral genomes of various lengths in the human gut and out-
perform the state-of-the-art virus identification methods.

Dedicated representation learning improves sensitivity and specificity of virus 

identification

To examine the contributions of the two encoders, pre-training and the first-stage fine-
tuning to the model performance, we conducted several ablation experiments. Firstly, 
we compared different versions of VirRep, including the full implementation, the fine-
tuned semantic-encoder-based classifier and the fine-tuned alignment-encoder-based 
predictor, on the six test sets (GGCM-test, IMG/VR-gut, DEVoC, GPIC, crAss-like 
phages, and Lak-phages) mentioned above. The full implementation of VirRep signifi-
cantly outperformed the other two variants according to MCC (0–8.6% improvement), 
precision (0–4.2% improvement), and specificity (0–4.7% improvement) (Fig. 3a, Addi-
tional file 1: Fig. S5-9). Besides, we also noticed that the semantic encoder demonstrated 
0–7.4% higher recall compared to the alignment encoder, while the alignment encoder 
performed better in terms of controlling false positive rates, with its specificity 0.8–4.0% 
higher than that of the semantic encoder. Such observations indicate that the semantic 
encoder contributes to improve the sensitivity of virus identification, while the align-
ment encoder helps to reduce the false positives. The two dedicated encoders together 
can effectively combine the learned k-mer patterns and the sequence homology to bet-
ter represent a sequence, thus enabling more precise and sensitive identification of viral 
genomes.

We next explored the necessity and benefits of pre-training and the first-stage fine-
tuning. We first compared the performance of three versions of VirRep: without pre-
training, with pre-training but without first-stage fine-tuning, and with complete 
training through all stages. Both pre-training and the first-stage fine-tuning contrib-
uted to improving model performance (Fig.  3b). The differences were statistically sig-
nificant (all P-values < 0.05) and numerically pronounced. The MCC values of the 
fully trained version of VirRep were on average 1.1–4.6% higher than those of the pre-
trained-only version across the five sequence length intervals, while the MCC values of 
the pre-trained-only version increased by 1.2–3.9% compared to the version without 
pre-training. These results demonstrate the benefits of pre-training and the first-stage 
fine-tuning on improving the model performance. We subsequently investigated the 
necessity of pre-training for each encoder by examining the scenarios where only one of 
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the two encoders was pre-trained. We found that VirRep with both encoders pre-trained 
obtained significantly (all P-values < 0.01) higher MCC values than the other two vari-
ants where only the semantic encoder (with an average improvement of 2.3–3.8%) or the 
alignment encoder (with an average improvement of 0.6–4.2%) was pre-trained (Addi-
tional file 1: Fig. S10). Finally, we explored the benefits of individually fine-tuning each 
encoder during the first stage. Once again, the results revealed that VirRep, with both 
encoders fine-tuned during the first stage, consistently achieved higher MCC values (all 
P-values < 0.01), surpassing the two variants with only the semantic encoder or the align-
ment encoder fine-tuned by an average of 2.0–3.2% and 1.3–2.1%, respectively (Addi-
tional file 1: Fig. S11).

In conclusion, the two dedicated encoders can effectively integrate the learned k-
mer patterns and sequence homology to generate informative sequence representa-
tion, thus enabling more sensitive and precise virus identification by taking advantage of 
both alignment-free and alignment-based methods. Pre-training facilitates the learned 

Fig. 3 The ablation experiments of the two encoders, pre‑training, and the first‑stage fine‑tuning. a Radar 
plots showing the MCC, precision, recall, and specificity achieved by the full implementation of VirRep, the 
semantic‑encoder‑based classifier, and the alignment‑encoder‑based predictor on the GGCM‑test dataset. b 
The distribution of MCC values for VirRep with complete training through all stages (full training) compared 
to the version without pre‑training, and the version with pre‑training but without first‑stage fine‑tuning. 
Comparisons are shown across five sequence length intervals on the GGCM‑test, IMGVR‑gut, DEVoC, GPIC, 
crAss‑phage and Lak‑phage datasets. Significance levels are denoted as ****: P ≤ 0.0001 , ***: P ≤ 0.001 , **: 
P ≤ 0.01 , *: P ≤ 0.05 , based on the paired t‑test. Each point represents a test dataset
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general rules of k-mer composition patterns to be quickly transferred and adapted to 
the downstream tasks. The first-stage fine-tuning enables VirRep to learn multi-view 
sequence representations. The two encoders together with pre-training and the first-
stage fine-tuning profoundly enhance the overall performance of VirRep.

VirRep is well applicable to both bulk and VLP‑enriched human gut metagenomic samples

Viral genomes can be identified from either bulk metagenomes or virus-like particle 
(VLP)-enriched sequencing data, in which the proportions of viral DNA can vary from 
5% (~ 5.8% in bulk metagenomic samples in human gut [33]) to > 90% (e.g., in VLP-
enriched samples). We thus examined whether VirRep is applicable to all these samples 
from simulated metagenomic datasets with varying viral proportions (Methods).

We first evaluated the performance of VirRep and the other methods on the bulk 
metagenomes (i.e., datasets with viral proportions at 5 and 10%; Fig. 4a). We found that 

Fig. 4 Comparing VirRep’s performance with that of other methods and method combinations on simulated 
metagenomic samples with varying viral proportions. a Precision‑recall curves for VirRep, geNomad, and the 
six alignment‑free methods at viral proportions of 5, 10, 50, and 90%. Numbers show the AUPRC (area under 
the precision‑recall curve) values. b Average F1 score, precision and recall for VirRep, geNomad, and the five 
method combinations composed of VirSorter2 and one alignment‑free method at viral proportions of 5, 
10, 50, and 90%. c Average F1 score, precision and recall for VirRep, geNomad, and method combinations 
composed of VIBRANT and one alignment‑free method at viral proportions of 5, 10, 50, and 90%. Error bar 
shows the 95% confidence intervals over 5 replicates
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VirRep notably outperformed the other methods on these two datasets with low-viral 
proportions. The average AUPRC (area under the precision-recall curve) values for Vir-
Rep exceeded 0.94, which outperforms the recently proposed hybrid method, geNomad, 
by 3.0 and 2.0% and the best-performing alignment-free method, INHERIT, by 8.1 and 
4.6%. We also tested VirRep on two datasets with viral sequences made up equal or more 
than half of the whole community. These datasets were built to simulate VLP-enriched 
metagenomes. Although most of the evaluated methods performed well in these two 
cases, VirRep achieved the highest AUPRC scores (Fig. 4a). Together, these results show 
that VirRep can be well applied to both bulk and VLP-enriched human gut metagenomic 
samples across a broad range of viral proportions.

Furthermore, we compared VirRep against several approaches that combined at least 
two methods, where each approach combines at least one alignment-based method and 
one alignment-free method. Strikingly, VirRep alone obtained better or comparable 
results compared to such combinatorial approaches (Fig. 4b, Additional file 1: Table S8). 
The improvement was especially remarkable in the low-viral proportion samples (i.e., 
typical in bulk metagenome data). For instance, VirRep achieved F1 scores of 0.91 and 
0.94 on datasets with viral proportions at 5 and 10%, which outperformed the best com-
bination (VirSorter2 + INHERIT) by 8.7 and 6.2%, respectively. The higher F1 scores 
were attributed to VirRep’s stronger capacity to identify more viruses with less false pos-
itives, as we observed the sensitivity and precision of VirRep were elevated by 2.3–12.4% 
and 8.0–15.5% compared to the combinatorial methods, respectively. For the VLP-
enriched metagenomes, VirRep still achieved the best overall performance, although 
the improvement was not as pronounced as on the bulk metagenomic samples. Similar 
results were also observed when VirSorter2 was replaced with another alignment-free 
method, VIBRANT (Fig. 4c, Additional file 1: Table S9).

In summary, VirRep outperformed the state-of-the-art methods and their combina-
tions regardless of the viral proportions in the samples, suggesting that it is well suited 
for viral genome identification from both bulk and VLP-enriched metagenomic samples.

VirRep identifies viral species associated with colorectal cancer

Recent studies have implicated the gut microbiome in the development of colorectal 
cancer (CRC) [34–38], while little is known whether the gut virome is involved in the 
disease. Motivated by the effectiveness of VirRep in identifying human gut viruses, we 
applied VirRep to scan the real human gut metagenomes from 74 patients with CRC and 
54 healthy individuals [34].

After removing flanking host regions and performing dereplication, we obtained a 
non-redundant collection comprising 18,067 viral populations (VPs, at the species level) 
using VirRep, which represented an increase of 22.3–4285.2% compared to the compet-
ing methods (Fig. 5a). We employed CheckV [39] to assess the completeness of each VP. 
As a result, VirRep identified the highest number of complete and high-quality (com-
pleteness > 90%) viral genomes (Fig. 5a). We next assessed the potential false positives by 
looking at the 3240 genomes annotated as not-determined by CheckV, and found that 
about half (~ 50.6%) of them showed evidence to be present in the established human 
gut virome database (i.e., exhibiting more than 90% nucleotide identity over half of their 
lengths with those in the virome database; Additional file 1: Fig. S12a). Moreover, more 
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than 80% of these genomes encode an equal or greater number of viral genes than the 
host genes and demonstrated an enrichment of viral and unknown genes (Additional 
file 1: Fig. S12b, c). Considering that viruses may contain their host genes [40], we addi-
tionally assessed the level of host gene enrichment based on the highly conserved uni-
versal single-copy orthologs [41] (USCO) of archaea, bacteria, and eukaryota. We chose 
the threshold 0.067 as suggested in ref. [21] to be the acceptable baseline of USCO ratio 
in viral genomes. Only a tiny part (~ 3.5%) of these genomes showed a USCO ratio 

Fig. 5 Application of VirRep to 128 real human gut metagenomes from 74 colorectal cancer patients and 
54 healthy controls. a The number of viral populations of each category (x‑axis) obtained by each method 
(y‑axis). The maximum value in each column is highlighted in bold red font. b The significance  (log10 
transformed q‑values) of viral populations (VPs) is given by the bar height. Horizontal line shows FDR at the 
level of 0.05. VPs with P < 0.001 and q < 0.05 are colored in dark gray, while others are colored in light gray. 
Shown are the top 90 significant VPs. c The average accuracy of tenfold cross‑validation (repeated 10 times) 
of the logistic regression models versus the size of the marker set for each method. d Genome maps for 
viruses VP1279 and VP2811. e The phylogenetic tree of viruses VP1279 and VP2811



Page 11 of 24Dong et al. Genome Biology          (2024) 25:177  

greater than 0.067 (Additional file 1: Fig. S12d). Upon further investigation to the over-
lap of these four assessment results, we found that a significant majority (~ 80.1%) of the 
not-determined genomes passed at least three out of the four viral filters (Additional 
file  1: Fig. S12e). These observations indicate that VirRep is capable of identifying a 
greater number of viral genomes while controlling the prokaryotic contamination at a 
low level.

Concentrating on the complete and high-quality VPs, we explored the presence of 
key VPs associated with CRC. We performed differential analysis using the blocked 
Wilcoxon rank-sum test [42] (Additional file  1: Fig. S13, Methods). Controlling the 
P < 0.001 and FDR < 0.05, we identified 39 CRC-associated viral species out of the 2076 
complete and high-quality VPs (Fig. 5b). Following the same pipeline, we also identified 
a set of VPs linked to the disease for each of the competing methods. We first evalu-
ated these viral markers by investigating their potential in CRC diagnosis. To achieve 
this, we developed logistic regression models with LASSO regularization and evaluated 
the model performance through tenfold cross-validation. Notably, VirRep identified the 
most CRC-associated VPs, and the models developed on this marker set achieved the 
highest diagnostic efficacy (Fig. 5c). We next proceeded to investigate whether VirRep 
had identified CRC-associated viral populations that were not detected by other meth-
ods. As a result, we found 23 out of the 39 viral species remained undetected by at least 
half of the competing methods, among which 2 were missed by all of them (Additional 
file  1: Fig. S14). These two viruses were both prophages, as they were identified from 
longer genome fragments. One of them, VP1279, was observed to be enriched in CRC 
patients, while the other, VP2811, was more abundant in healthy individuals (Addi-
tional file 1: Fig. S15). Both of them encode several viral hallmark genes, including the 
terminase large subunit, the major capsid protein and the portal protein (Fig. 5d). Phy-
logenetic analysis indicated that they both fell into the unclassified families within the 
class Caudoviricetes (Fig. 5e). We additionally predicted the hosts of the two viruses by 
assigning taxonomy to the genome fragments from which they were identified. The two 
viruses were predicted to infect Peptostreptococcus stomatis (VP1279) and an unknown 
species within the genus Ruminococcus (VP2811), respectively. While previous studies 
[35, 38] have suggested an association between these two bacteria and CRC, our findings 
indicate the need for further investigation into the role of virus-host interactions con-
cerning these two bacteria in the progression of CRC.

Discussion
Existing alignment-free methods generally train their models using isolate genomes 
from NCBI. Although this strategy allows for straightforward access to ground 
truth, it covers a very limited spectrum of microbial species, particularly viruses, 
in the human gut, which significantly hampers model performance. In contrast, we 
pre-trained and fine-tuned VirRep using metagenome-assembled genomes from 
several collections of human gut microbiome. These collections vastly expanded the 
genomic diversity of the known human gut microbiome, fulfilling the data require-
ments for pre-training. The two fine-tuning stages require ground truth for each 
training sequence and may therefore be sensitive to data quality. To address this 
issue, we implemented stringent quality control for the genomes used in fine-tuning 
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VirRep to eliminate potential contamination (Methods). Additionally, we curated a 
high-quality genome collection that includes viral genomes classified as complete 
or high-quality by CheckV [39], as well as prokaryotic ones marked as isolated or 
those with completeness > 90% and contamination < 5% according to the metadata 
provided by UHGG [25]. We retrained VirRep exclusively using this high-quality 
genome collection during the two fine-tuning stages. The performance of the two 
versions of VirRep is similar, with average AUC values of less than 0.03% difference 
( P > 0.05 ; Additional file 1: Fig. S16), and the scores from both models demonstrate 
strong correlations (Pearson correlation coefficient > 0.98,  P < 8× 10−263 ; Addi-
tional file  1: Fig. S17). Similar results are observed when examining the semantic 
encoder and the alignment encoder individually (Additional file 1: Fig. S18-S21).

VirRep works under the assumption that the input sequences predominantly con-
sist of viral and prokaryotic genome fragments with few misassemblies. Therefore, 
a reliable metagenome assembly is critical for downstream virus identification. In 
our previous work [43], we have systematically evaluated computational strategies 
for reconstructing high-quality human gut metagenomes, providing empirical guid-
ance based on the availability of sequencing data, which involves both short and 
long reads. In principle, sequencing reads derived from human genomes, along with 
adaptors and low-quality bases need to be removed in the preprocessing step. For 
metagenome assembly, we recommend metaSPAdes [44] for short-read assembly, 
metaFlye [45] for long-read assembly, and OPERA-MS [46] for hybrid assembly. 
Notably, the hybrid assembler can recover high-contiguity genomes for species with 
as low as ∼ 10× long-read coverage, while the long-read assembler performs best 
with read coverage > 30×.

Despite the inspiring performance of VirRep, there is still space to improve. Firstly, 
VirRep is now dedicated to human gut metagenomic samples. While a preliminary 
assessment on the IMG/VR datasets demonstrated the promising outcomes of Vir-
Rep across diverse non-human-gut environments (Additional file  1: Fig. S22), it is 
imperative to conduct more comprehensive evaluations. Besides, the effectiveness 
of VirRep to other biomes could be further elevated by fine-tuning it on that biome-
specific data. For example, considering the intricate and largely unexplored impact 
of urban microbiomes on human health, further pre-training and fine-tuning Vir-
Rep with global urban microbial genomes [47] presents a promising direction for 
its application. Secondly, the size of the semantic encoder has been significantly 
reduced compared to the original version of the BERT-base model in order to 
enhance running efficiency. However, the reduction in size inevitably results in a 
compromise of the model performance. In the future, the knowledge distillation [48] 
in the form of teacher-student framework can be used for better model compression. 
Finally, the skip-gram method utilized for pre-training the alignment encoder fails 
to reflect the edit distance between two k-mers. The skip-gram method works on 
the assumption that the greater similarity between two k-mers, the more likely they 
share identical contexts (i.e., surrounding k-mers). Nevertheless, the contexts of a 
given k-mer may also be affected by the k-mer usage preferences of specific species. 
The efficacy of pre-training could be further enhanced by explicitly incorporating 
measurement of the edit distance between two k-mers into the training framework.
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Conclusions
Here, we present VirRep, a hybrid language representation learning framework, 
for virus identification from human gut metagenomes. VirRep combines a seman-
tic encoder and an alignment encoder to integrate the k-mer patterns and sequence 
homology to represent sequences. Ablation studies demonstrate that the two encod-
ers together facilitate more sensitive and precise virus identification. We also propose 
a multi-step training strategy based on the pre-train-fine-tune paradigm, combining 
natural language processing framework with biological prior knowledge to optimize 
the sequence representations. Benchmarking on both simulated and real datasets with 
viral proportions ranging from 5 to 90%, we demonstrate that VirRep is well applica-
ble to both bulk and VLP-enriched metagenomes across a wide range of sequence 
lengths. Given the vital role of viruses in modulating microbial communities within 
the human gut, as well as the profound impact of gut virome on human health, we 
expect VirRep can serve as a valuable tool to help the researchers profile the human 
gut virus composition more accurately, so as to gain deeper insights into the diversity 
of the gut virome and its intricate associations with human health.

Methods
Viral and prokaryotic genomes used for training and validation

The viral sequences were gathered from four recently published human gut virome 
catalogs: GVD [21], GPD [22], CHVD [23], and MGV [24]. All the genomes in GVD 
were kept, while for GPD and MGV, only the longest sequence in each VC/OTU was 
retained to remove sequence redundancy. As for CHVD, those genomes marked as 
intestinal origin were extracted. CheckV [39] (version 1.0) was used to remove poten-
tial flanking host regions for the viral genomes. The trimmed viral genomes from dif-
ferent sources were pooled together and then dereplicated using MMseqs2 linclust 
[49] (version 13–45,111, options “–min-seq-id 0.9 -c 0.8 –cov-mode 1 –cluster-mode 
2”). The non-redundant virome set (referred to GGCM hereafter) were randomly par-
titioned into three non-overlapping parts, of which 75% of the genomes were used as 
the training set, 5% of the genomes constituted the validation set, and the remaining 
20% (referred to GGCM-test) for evaluation.

We downloaded the 4644 representative genomes of human gut prokaryotes from 
UHGG [25] collection. Since most of the genomes were derived from metagenomic 
samples, we conducted a two-stage filtering to remove potential viral sequences. 
First, VirSorter [8] (version 1.0.6) was applied to scan the whole genome set and 
the predictions classified as category 1, 2, 4, or 5 were filtered. Then we blasted the 
left sequences against the GGCM dataset. For each sequence in UHGG, the aligned 
regions that shared at least 90% nucleotide identity and longer than 1  kb were 
merged. Aligned regions longer than 1 kb in a sequence were removed if their cumu-
lative length was less than 80% of the entire sequence, and the original sequence was 
discarded if the cumulative length was greater. The purified genome set is referred 
to as UHGG-Rep. We randomly chose 3483 (75%) genomes as the training set, 232 
(~ 5%) genomes as the validation set, and the left 929 (~ 20%) genomes as the test set 
(UHGG-test).
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Both the viral and prokaryotic training set was additionally partitioned into three 
parts, with 70% of the sequences used for pre-training and the left 30% equally allo-
cated between the two stages of fine-tuning. All the sequences used for pre-training 
and the first-stage fine-tuning were split into 500-bp-long segments, while those for 
the second-stage fine-tuning were fragmented into segments in length of 1 kb. To bal-
ance the viral and prokaryotic training set, we downsampled prokaryotic segments to 
match the size of viral set at each training step.

Viral and prokaryotic genomes used for evaluation

In addition to the GGCM-test dataset, we utilized five additional human gut virome 
datasets to evaluate VirRep, including IMG/VR v3 [26], DEVoC [27], GPIC [28], crAss-
like phages [29, 30], and Lak-phages [31]. For the IMG/VR dataset, genomes originated 
from human gut were first extracted. Since a subset of the genomes in IMG/VR v3 was 
collected from GVD and MGV, we further eliminated these genomes, as well as those 
sharing the same vOTU with them, to ensure independence between the training and 
test sets. The crAss-like phage dataset was constructed based on two human gut virome 
studies [29, 30], where the genomes obtained from them were pooled together and 
dereplicated by clustering the genomes at 95% nucleotide identity over a local alignment 
of 85% of the shortest sequence using CD-HIT [50] (version 4.8.1, options: “-c 0.95, -G 0, 
-aS 0.85, -n 10”).

As negative control, genomes collected from the human Gut Microbial Biobank [51] 
(hGMB) and the Genomes from Earth’s Microbiomes (GEM) catalog [52] were included 
alongside UHGG-test. The hGMB is a cultured gut microbial resource that harbors 
102 genomes of novel species. The GEM catalog contains 52,515 metagenome-assem-
bled genomes collected from diverse biomes, among which genomes originated from 
human gut were extracted. To remove sequence redundancy, we calculated the pair-wise 
genomic distances between the extracted genomes and UHGG representatives using 
Mash [53] (version 2.3). Only Genomes maintaining a distance > 0.05 with all the UHGG 
representatives were retained for evaluation. We removed the potential viral sequences 
in hGMB and GEM following the same procedure as employed in UHGG. Genomes col-
lected from the three sources were pooled together to construct the Human Gut Prokar-
yote Test Set (referred to HGPTS hereafter). To assess the impact of sequence length 
on model performance, both viral and prokaryotic genomes were randomly fragmented 
into sequences with a minimum length of 1.5 kb.

Model architecture of VirRep

Since most human gut viral genomes are double-stranded, we employ a siamese neu-
ral network to separately process the forward sequence and its reverse complementary 
strand. The siamese network has two identical sub-networks sharing the same weights. 
Each of them consists of one semantic encoder, one alignment encoder, and a binary 
classification layer.

Semantic encoder

The semantic encoder is generally a BERT-like [18] neural network, relying on the 
multi-head self-attention mechanism [54] to generate global contextualized sequence 
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representations (Fig. 1b). The structure of semantic encoder consists of an embedding 
layer, eight Transformer encoders [54], and a pooling layer (Additional file  1: Supple-
mentary Note 1.1).

A tokenized DNA sequence is initially fed into the embedding layer, resulting in two 
matrices that independently encode the k-mer identities and their respective positions 
in the sequence. The two embedding matrices are then added up and used as the input 
for the first Transformer encoder. Through the multi-head self-attention mechanism, the 
embedding of each token is adjusted based on the context. The vector corresponding to 
the token [CLS] in the output matrix of the last Transformer encoder is extracted as the 
aggregate representation of the entire sequence, which is later fed into the pooling layer. 
The resulting output is regarded as the semantic representation of the input sequence.

Alignment encoder

The alignment encoder is designed to generate evolutionary representation by encod-
ing the sequence similarity between the input sequence and the human gut prokaryotic 
genomes. This task necessitates to sequentially encode the content of the sequence. We 
hence use the BiLSTM [19, 20] model as the backbone of the alignment encoder.

Specifically, the alignment encoder is composed of an embedding layer, a stacked BiL-
STM block, an average pooling layer, followed by layer normalization [55] and a pooling 
layer (Fig. 1b, Additional file 1: Supplementary Note 1.2). The embedding layer converts 
the tokenized DNA sequence into a matrix, which is then fed into the BiLSTM layers 
sequentially. The bidirectional outputs of each token were concatenated. Average pool-
ing is applied to reduce the dimension by taking average on the outputs of all the tokens. 
After layer normalization and nonlinear transformation by the pooling layer, the result-
ing output is recognized as the evolutionary representation of the input sequence.

Binary classification layer

The classification layer aims to output the likelihood of the input sequence deriving from 
viruses, which consists of a multilayer perceptron with a single hidden layer.

Iterative segment extension mechanism

The prediction process can be divided into 4 steps: (1) the scoring step, (2) the extension 
step, (3) the merging step, and (4) the post hoc check step (Additional file 1: Fig. S1). In 
the scoring step, the input sequence is first split into several segments in length of 1 kb, 
each of which is subsequently assigned a score by VirRep.

In the extension step, the average score of the top 80% of the highest scoring segments 
of a sequence is taken as the score for that entire sequence. If the score of a sequence is 
above the baseline set by the user, it is regarded significant and the sequence is consid-
ered as entirely viral. Otherwise, VirRep searches for segments with significant scores 
(score ≥ baseline) and starts extension procedure from the first one. VirRep iteratively 
extend one adjacent segment toward the direction (3′ or 5′) with the maximum score at 
a time as long as the average score of these segments stay significant. The procedure is 
repeated until all significant segments have been extended.

In the merging step, candidate regions resulting from the extension step in the same 
sequence are merged if the gap between them is shorter than the pre-defined threshold 



Page 16 of 24Dong et al. Genome Biology          (2024) 25:177 

(5 kb in default) or the maximum proportion (0.1 in default) of their summed length. 
And the merged region is retained only if it is longer than the user-provided minimal 
length (5 kb in default) or a specific percentage (0.5 in default) of the length of the origi-
nal sequence.

Sometimes, different cutoffs may be set for sequences in different lengths. Some of 
the viral candidates obtained in the aforementioned steps may not meet the specified 
cutoffs. Hence, VirRep introduces a post hoc check step to further prune the results. For 
a viral candidate with score below the cutoff, VirRep re-implements the extension and 
merging procedure with the baseline reset as the cutoff. The check procedure is exe-
cuted recursively until all candidates meet the specified cutoffs.

Determining the optimal k‑mer size

The optimal k-mer size was determined by several considerations. Firstly, the initial 
range of k-mer sizes, spanning from 3 to 8, was informed by previous works [11–13, 17]. 
Subsequently, multiple versions of VirRep were trained from scratch with each k-mer 
size within this range. The candidate appropriate k-mer sizes were identified by evaluat-
ing the performance of these models (Additional file 1: Fig. S23). Finally, the selection of 
7-mer was determined by achieving a balance between the model performance and the 
model size, where the vocabulary size grows exponentially with increasing value of k and 
it becomes computational challenging to train VirRep with larger k-mer sizes.

Pre‑training VirRep

VirRep was pre-trained to capture general rules of k-mer composition patterns before 
being trained to distinguish viruses and prokaryotes. We developed two pretext tasks to 
separately pre-train the semantic encoder and the alignment encoder.

Pre‑training the semantic encoder

The semantic encoder was pre-trained to learn the general structure of DNA language. 
Following Ji et al. [56], we used an adapted version of the masked language model as the 
pretext task. All DNA sequences used for training were in fixed length of 500 bp. For 
each sequence, we first tokenized it into a concatenation of 7-mers and inserted a special 
token [CLS] (representing the entire sequence) at the head. Apart from all the permuta-
tions of the 7-mer and [CLS], we also introduced two additional tokens: [UNK] (stand-
ing for the unknown token) and [MASK] (standing for the masked token). Therefore, the 
vocabulary size V  is 47 + 3 . For a tokenized sequence xpt = [x1, x2, . . . , xL] , continuous 
k-length spans of tokens, which accounted for approximately 15% of all the tokens, were 
randomly selected. Among these selected tokens, 80% were replaced with the [MASK] 
token, 10% were left unchanged, and the remaining were substituted with a random 
token. Let il ∈ {0,1} be an indicator denoting whether the lth token in the sequence xpt is 
masked. The objective is to minimize the cross-entropy loss between the predicted like-
lihood of the masked tokens and the ground truth, formulated as

(1)min
θ ,ω

− E
1
L

L

l=1

ily
T
l log pω f lθ x

pt ,
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where f lθ  and θ refer to the output representation of the lth token and the parameters of 
the semantic encoder, respectively. pω and ω represent the function and parameters of 
the classification layer, respectively. yl stands for the one-hot encoding ground truth of 
the lth token. More training details are provided in Additional file 1: Supplementary Note 
2.1 [57, 58].

Pre‑training the alignment encoder

Unlike the semantic encoder, only the embedding layer of the alignment encoder was 
pre-trained. To encode the sequence similarity, the first crucial step is to project the 
7-mers into an embedding space, wherein the higher the similarity between the two 
7-mers, the closer their proximity becomes. We followed the Skip-gram [59] method 
to pre-train the embedding matrix of 7-mers, which could be briefly summarized as 
predicting the surrounding 7-mers given a central k-mer. The rationale for introduc-
ing this pretext task lies on the fact that 7-mers prone to having identical neighbors 
are deemed to exhibit high similarity.

A tokenized sequence xpt is defined by a concatenation of L 7-mers, such that 
x
pt
= [x1, x2, . . . , xL] . The objective of the Skip-gram model is

where c refers to the context window size. p(xt |xs) is defined using the softmax function

where uv ∈ R
d and uv′ ∈ R

d are the input and output embeddings of the 7-mer v , 
respectively. However, the computational cost of this formulation is excessively expen-
sive due to the large size of the vocabulary. We hence capitalized the negative sampling 
technique [60] to improve the training speed. Instead of calculating the computationally 
intensive softmax term, negative sampling aims to maximize the co-occurring likelihood 
of a central 7-mer with its contexts (i.e., surrounding 7-mers), while minimizing the co-
occurring probability of this 7-mer with those outside of its contexts. Let random vari-
able D ∈ {0,1} indicates whether a given central 7-mer vi co-occurs with another 7-mer 
vj , the probability of D = 1 (i.e., vi and vj co-occur) is modeled as

where σ(z) = 1
1+e−z  is the sigmoid function. Then, the probability of D = 0 (i.e., vi does 

not co-occur with vj ) can be written as

Hence, the objective of negative sampling becomes

(2)min− E

[

1
L

L
∑

l=1

∑

−c≤j≤c,j �=0

log p
(

xl+j|xl
)

]

,

(3)p(xt |xs) =
exp

(

uxs
T u′xt

)

∑V
v=1 exp(uxs T u′v)

,

(4)p
(

D = 1|vi, vj
)

= σ

(

uvi
Tu′vj

)

,

(5)p
(

D = 0|vi, vj
)

= 1− p
(

D = 1|vi, vj
)

= σ

(

−uvi
Tu′vj

)
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where q and K  are hyperparameters, representing the noise distribution from which 
negative samples are drawn and the number of negative samples for each co-occurring 
7-mer pair, respectively. After pre-training, we used the input matrix of 7-mers to initial-
ize the embedding layer of the alignment encoder. For more training details, see Addi-
tional file 1: Supplementary Note 2.2 [61].

First‑stage fine‑tuning

After pre-training, the two encoders were first fine-tuned separately in a supervised way. 
Rather than initializing the weights at random, we started from transferring the pre-
trained parameters.

Fine‑tuning the semantic encoder

We fine-tuned the semantic encoder to determine whether a given sequence derives from 
viruses. We appended a classification head, which consists of a full connection neural 
network hω ( ω represents the corresponding parameters) with the sigmoid activation 
function, to the semantic encoder. For each sequence xft1 , we first fed the sequence into 
the semantic encoder. The latent feature vector f CLSθ

(

x
ft1
)

 corresponding to the token 

[CLS] in the final output matrix (i.e., output of the last Transformer encoder) is regarded 
as the aggregate representation of the entire sequence. The full connection layer hω takes 
the latent feature vector as the input and outputs a value hω

(

f CLSθ

(

x
ft1
))

 , representing 

the virus probability. Since the viruses in human gut are often double-stranded, the 
reverse complementary strand xft1 of the sequence is also fed into the model to calculate 
another virus probability hω

(

f CLSθ

(

x
ft1

))

 . We defined the average of the two probabilities 

as the final prediction p
(

x
ft1
)

=
1

2

(

hω
(

f CLSθ

(

x
ft1
))

+ hω

(

f CLSθ

(

x
ft1

)))

 . The model was fine-

tuned by minimizing the expectation of the cross-entropy loss between the predicted 
likelihood p

(

x
ft1
)

 and the corresponding true label y
xft1 , formalized as

For more detailed settings, refer to Additional file 1: Supplementary Note 2.3 [62, 63].

Fine‑tuning the alignment encoder

The alignment encoder was fine-tuned to infer the similarity between the input 
sequence and the human gut prokaryotic genomes, which could be viewed as a 
regression task. Unlike the pre-training process where only the embedding matrix 
was trained, all components of the alignment encoder, along with an appended 
regression head, were fine-tuned simultaneously during this phase. Given a sequence 
x
ft1 , its attribute y

xft1 was obtained by aligning the sequence against the UHGG-Rep 
database. We first independently fed the sequence xft1 and its reverse complementary 
strand xft1 to the alignment encoder to obtain the latent representations gθ ′

(

x
ft1
) and 

(6)

min
{uv ,u′v}

V
v=1

− E

[

1
L

L
∑
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∑
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(

logσ
(
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Tu′xl+j

)

+

K
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Evi∼q
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logσ
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]

(7)min
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− E
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)

+
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log
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(

x
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gθ ′

(

x
ft1

)

 . The regression head then maps the two representations to values 
hω ′

(

gθ ′
(

x
ft1
)) 

and hω ′
(

gθ ′

(

x
ft1

))

 , respectively. We took the average of these two values as the final pre-

diction r
(

x
ft1
)

=
1
2

(

hω′
(

gθ ′

(

x
ft1
))

+ hω′
(

gθ ′

(

x
ft1
)))

 . The objective was defined as 

follows

where LH stands for the Huber loss, defined as

More training details can be found in Additional file 1: Supplementary Note 2.4.

Second‑stage fine‑tuning

The two encoders are now able to generate semantic and evolutionary representations 
after fine-tuning separately. At this stage, we simultaneously fine-tuned the two encoders, 
along with the binary classification layer, to distinguish viruses and prokaryotes. The input 
sequence xft2 in length of 1 kb was first broken into two non-overlapping pieces from the 
midpoint, such that xft2 = [x1, x2] . After tokenization, the two pieces independently are 
fed into the semantic encoder and the alignment encoder to obtain the semantic represen-
tation [f CLSθ (x1), f

CLS
θ (x2)] and the evolutionary representation [gθ ′(x1), gθ ′(x2)] . We con-

catenated the semantic representation and the evolutionary representation to generate the 
final representation m

(

x
ft2
)

=
[

f CLSθ (x1), f
CLS
θ (x2), gθ ′(x1), gθ ′(x2)

]

 . Taking the final rep-

resentation as input, the binary classification layer then outputs a virus probability 
sω

(

m
(

x
ft2
))

 . The complementary strand xft2 is processed in the same way to obtain 

another virus probability sω
(

m
(

x
ft2
))

 . The final prediction p
(

x
ft2
)

 of the sequence xft2 is 

defined as the average of these two probabilities. Let y
xft2

∈ {0,1} denotes the label of the 
sequence xft2 , the objective becomes

See Additional file  1: Supplementary Note 2.5 for more details of the fine-tuning 
process.

Constructing human gut metagenomes with different viral proportions

Human gut metagenomes were constructed based on the GGCM-test dataset and 
HGPTS. Five metagenomes were constructed for each viral proportion. We controlled 
the amount of viral DNA in each metagenome to ensure compliance with the speci-
fied viral proportion. Specifically, when the viral proportions were set at 5, 10, and 50%, 
each metagenome consisted of viral sequences generated from 500 genomes selected 

(8)min
θ ′,ω

E

[

LH

(

r
(

x
ft1
)

, y
xft1

)]

,

(9)LH

(

x, y
)

=

{

0.5
(

x − y
)2
, if

∣

∣x − y
∣

∣ < 1
∣

∣x − y
∣

∣− 0.5, otherwise

(10)min
ω,θ ,θ ′

− E

[

y
xft2

log p
(

x
ft2
)

+
(

1− y
xft2

)

log
(

1− p
(

x
ft2
))]



Page 20 of 24Dong et al. Genome Biology          (2024) 25:177 

from the GGCM-test dataset, along with prokaryotic sequences generated from 100 
genomes chosen from HGPTS. As the viral proportion escalated to 90%, the number of 
sampled viral genomes increased to 900 to ensure sufficient diverse sequences could be 
generated.

Comparing with competing methods

geNomad (version 1.7.0), VIBRANT (version 1.2.1), and VirSorter2 (version 2.2.3) 
were directly applied to test sets, while the alignment-free methods (INHERIT, Deep-
VirFinder, PPR-Meta, Seeker, and VirFinder) were first retrained on the dataset used for 
training VirRep. Notably, PPR-Meta was modified from a 3-class classifier to a binary 
classifier, whereas INHERIT was fine-tuned from the provided pre-trained version. A 
comparison of the model performance between the original and retrained versions of 
these alignment-free methods are provided in Additional file 1: Fig. S24.

To compare the performance on datasets with equal number of viral and prokary-
otic sequences under different sequence lengths, VirRep was run with “–provirus-
off,” and all the other methods were run with default parameters. When evaluating 
the performance on the simulated metagenomes, the settings for each method was 
adjusted according to the viral proportions to achieve optimal results (Additional 
file 1: Supplementary Note 3).

Applying VirRep to human gut metagenomes from a colorectal cancer cohort

Raw sequencing reads of the 128 human gut metagenomes were downloaded from the 
NCBI SRA database under accession PRJEB10878. Human-derived reads were removed 
by mapping the reads to the human reference genome (hg38) using Bowtie2 [64] (version 
2.2.3). fastp [65] (version 0.20.0, options “-l 50 -x -q 20 -u 5 -M 20 -W 4”) was utilized to 
trim adapters and low-quality bases. The cleaned reads of each sample were assembled 
into contigs using MEGAHIT [66] (version 1.2.8) with default parameters.

VirRep and the other methods were applied to the resulting assemblies to identify 
viral sequences longer than 5 kb, as short sequences are more likely genome fragments 
(Additional file 1: Supplementary Note 4.1). Potential flanking host regions within the 
predictions were removed using CheckV [39] (version 1.0). The resulting cleaned viral 
sequences were then dereplicated by clustering them at a 95% nucleotide identity over 
a local alignment of 85% of the shortest sequence using CD-HIT [50] (version 4.8.1, 
options “-c 0.95 -G 0 -aS 0.85”). Finally, CheckV was leveraged to assess the level of com-
pleteness of each genome in the non-redundant sequence set.

Genomes annotated as “not-determined” by CheckV were first blasted against existing 
human gut virome databases to calculate sequence similarity with known viral genomes 
(Additional file  1: Supplementary Note 4.2). Next, protein-coding genes were identi-
fied by prodigal-gv [17] (version 2.10.0, option “-p meta”). Viral genes and the universal 
single-copy orthologs (USCO) of archaea, bacteria, and eukaryota were annotated using 
hmmsearch [67] (HMMER version 3.3.2) against specific HMM profiles, while host 
genes were determined from the results of CheckV assessment (Additional file 1: Sup-
plementary Note 4.2).
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Identifying CRC‑associated viral populations

To estimate the abundance of each complete and high-quality viral population, RPKM 
(reads per kilobase per million) was first calculated using CoverM (version 0.6.1, https:// 
github. com/ wwood/ CoverM, options “–min-read-percent-identity-pair 95 –min-read-
aligned-percent-pair 85 –proper-pairs-only”). The relative abundance was then cal-
culated by dividing the RPKM of a given viral population by the total RPKM of all the 
complete and high-quality viral populations presented in the sample.

The effects of confounding factors (age, sex, body mass index (BMI), whether to have 
diabetes, whether to sample after colonoscopy) on virus composition were first quanti-
fied based on an ANOVA-type analysis [35] (Additional file 1: Supplementary Note 4.3). 
CRC-associated viral populations were then identified using blocked Wilcoxon rank-
sum test [42] (“colonoscopy” was blocked according to the results of confounder analy-
sis), followed by the FDR correction [68]. Enrichment analysis of the CRC-associated 
viral populations in patients and healthy individuals was performed using the general-
ized fold change as described in ref. [35].

Phylogenetic analysis

Phylogenetic analysis of the two CRC-associated viruses, VP1279 and VP2811, was per-
formed based on their large terminase protein sequences. First, the annotation files of 
complete viral genomes were downloaded from GeneBank (https:// www. ncbi. nlm. 
nih. gov/), and the corresponding protein sequences of the large terminase were subse-
quently extracted. These sequences and the large terminase protein sequences of the two 
viruses were aligned with MUSCLE [69] (version 5.1, option “-super5”). Phylogenetic 
tree was then built based on the alignment results using FastTree [70] (version 2.1.11). 
Finally, iTOL [71] was leveraged to visualize the resultant tree.

Taxonomic assignment

MMseqs2 taxonomy [72] was leveraged to determine the lineages of the genome frag-
ments from which VP1279 and VP2811 were identified, where the Genome Taxonomy 
Database [73, 74] (GTDB, release 214.1) was used as the reference genomes.
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