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Abstract 

Spatial transcriptomics technologies permit the study of the spatial distribution of RNA 
at near‑single‑cell resolution genome‑wide. However, the feasibility of studying spatial 
allele‑specific expression (ASE) from these data remains uncharacterized. Here, we 
introduce spASE, a computational framework for detecting and estimating spatial ASE. 
To tackle the challenges presented by cell type mixtures and a low signal to noise ratio, 
we implement a hierarchical model involving additive mixtures of spatial smoothing 
splines. We apply our method to allele‑resolved Visium and Slide‑seq from the mouse 
cerebellum and hippocampus and report new insight into the landscape of spatial 
and cell type‑specific ASE therein.
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Background
In diploid organisms, allele-specific expression (ASE) refers to the imbalanced expres-
sion of the two parental alleles for a given gene. ASE has been well-studied in the context 
of epigenetic phenomena such as genomic imprinting and X-chromosome inactivation 
(XCI) [1–3], where expression from one allele is silenced. Spatial patterns of ASE have 
long been observed as a consequence of XCI in female organisms, where the random 
silencing of either the maternal or paternal X-chromosome in early development is 
passed to daughter cells, resulting in visible clusters of ASE [4–6]. By contrast, although 
studies in bulk and single-cell RNA-sequencing data have revealed widespread variabil-
ity in ASE throughout the autosome across tissues and cell types [7–20], relatively little 
is known about the prevalence of spatial ASE therein.

Spatial transcriptomics technologies now provide the opportunity to study spa-
tial ASE patterns genome-wide. For example, Slide-seq [21, 22] has high resolution 
which enables near-single-cell quantification of ASE with 2D spatial information. 
However, for most technologies, including both Slide-seq and Visium, measure-
ment locations can potentially source transcripts from multiple cells and cell types. 
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Furthermore, these data are limited by highly sparse read counts in comparison to 
bulk or single-cell sequencing technologies, which is exacerbated by the requirement 
that reads align uniquely to one allele. In addition, cell type, which drives the major-
ity of variability observed in single-cell data, is highly correlated with spatial loca-
tion, especially in solid tissue [23]. Therefore, it is important to distinguish between 
spatial and cell type-specific ASE, which could arise from and contribute to distinct 
underlying biological mechanisms.

Several statistical and computational methods have been developed for studying 
ASE in bulk and single-cell RNA-seq data [24–32]. Some focus on estimating allele-
specific transcriptional bursting kinetics for individual genes in homogeneous popu-
lations of cells [15, 30, 31]. Here, we instead focus on the problem of estimation and 
inference for the maternal allele probability p for a given gene across 2D space, and we 
consider how p may vary with cell type. To model p in bulk and single-cell RNA-seq, 
multiple methods have used a beta-binomial framework, which can flexibly account 
for overdispersion from unknown technical and biological variability [26–28, 32]. An 
additional advantage of this model is that it can be parameterized as a generalized 
linear model (GLM) [33, 34], allowing for maximum likelihood estimation of p while 
incorporating covariates of interest such as cell type. One statistical challenge that 
has not yet been addressed is how to account for cell type mixtures, particularly when 
cell types can have varying rates of gene expression as well as distinct epigenomic 
profiles which can lead to preferential expression of one allele.

The issue of estimating smooth functions from sparsely sampled data has been well-
studied [35–40], and multiple solutions have been developed and implemented as 
computational methods [41, 42]. In the case of allele-specific spatial transcriptomics 
data, although the read count measured at individual spatial coordinates may be low, 
smoothing spline methods can increase power by leveraging information from local 
neighborhoods of spots. Generalized additive models are GLMs that incorporate 
smoothing splines into a regression framework, enabling estimation of the smooth 
spatial function as well as hypothesis testing for spatial functions deviating from a 
constant [39, 42].

Here, we present spASE, a statistical and computational framework for detect-
ing ASE in spatial transcriptomics while accounting for cell type mixtures. Building 
on the beta-binomial strategy used in previous ASE models, we introduce a mixture 
framework that estimates the contribution from each cell type to maternal and pater-
nal allele counts at each spot, calculated based on cell type proportions and differen-
tial expression. Our method enables modeling of the maternal allele probability spatial 
function both across and within cell types as well as the ability to distinguish between 
cell type-specific and within cell type spatial ASE. We generated Slide-seq and Visium 
data from an F1 hybrid mouse model, and we use spASE to estimate the prevalence 
of different types of ASE, including overall (bulk) ASE, cell type-specific ASE, and 
spatial ASE. Furthermore, we use spASE to generate high resolution spatial maps of 
X-chromosome ASE and identify a set of genes escaping XCI. We further demonstrate 
the utility of spASE in generating high resolution spatial maps of X-chromosome ASE 
across all samples, and for visualization of estimated spatial patterns.
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Results
A beta‑binomial framework for modeling allele‑specific expression in spatial 

transcriptomics

We generated Visium and Slide-seq data from four genetically identical female F1 
hybrid (CAST x 129) mice (Additional file 1: Figs. S1, S2, Table S1, the “Methods” sec-
tion). This hybrid strain is ideal for assessing allele-specific expression (ASE) as it con-
tains a high rate of genetic differences within transcripts, including polymorphisms 
and indels, that can be uniquely assigned to one of the two parental inbred strains. In 
total, we sequenced two mouse cerebellums, one with Visium and one with Slide-seq, 
and three mouse hippocampuses with Slide-seq. We called cell types on each sample 
using RCTD [23] in doublet mode for the Slide-seq samples and full mode for Visium 
(Additional file 1: Figs. S3-S6).

These data revealed two primary statistical challenges associated with analyz-
ing ASE from spatial transcriptomics. The first challenge is that spatial and cell type 
effects can be confounded, particularly in solid tissues such as the mouse cerebellum 
(Additional file 1: Fig. S7a,b). Measurement locations, here termed spots, can poten-
tially source transcripts from multiple cell types, making it difficult to detect and 
control for cell type effects on allelic expression. A second challenge is that for tech-
nologies that have high resolution, such as Slide-seq (Additional file 1: Fig. S7b), we 
often observe spots with low counts and high overdispersion. This overdispersion is 
sometimes referred to in single-cell literature as “transcriptional bursting,” as it leads 
to “bursts” of monoallelic expression, even for autosomal genes that have no prior 
knowledge of exhibiting allele-specific expression, such as Aldoc in the mouse cer-
ebellum (Additional file 1: Fig. S7c,d). This extra variability is particularly present in 
spatial transcriptomics when the resolution of measurements approaches single cells, 
e.g., more so in Slide-seq as compared to Visium (Additional file 1: Figs. S7e,f, S8).

We therefore developed a statistical framework to model and account for both these 
sources of variability. Specifically, we developed a beta-binomial model for mixtures 
of cell types and provide a flexible approach to estimation, inference, and visualiza-
tion of ASE in spatial transcriptomics (Fig. 1). We denote the counts from the mater-
nal allele for spot i and gene j with Yi,j and assume it follows the distribution:

where we parameterize the beta-binomial distribution in terms of mean probability, total 
read count, and a gene-specific overdispersion (Additional file 1: Supplemental Notes). 
Specifically, pi,j is the mean probability that a transcript from gene j is from the maternal 
allele; Ni,j is the total read count, summing both alleles; φj is a gene-specific overdisper-
sion term ranging from 0 to 1 that accounts for biological and technical variability not 
explained by binomial sampling; αi,j,k are cell type-specific weights; and the γi,ℓ repre-
sent any potential user-defined covariates of interest, such as categorical regions or a 
smoothing spline basis function evaluated at continuous spatial coordinates (see below).

(1)

Yi,j ∼ Beta-Binomial(pi,j ,Ni,j ,φj)

pi,j =

K

k=1

αi,j,k expit β0,k ,j +

L

ℓ=1

βℓ,k ,jγi,ℓ ,
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Our model for the expected maternal allele probability, pi,j , is a weighted sum over 
the contributions at each spot for each gene from all cell types k ∈ {1, . . . ,K } present 
at that spot. To properly formulate the weights, αi,j,k , we considered the possibil-
ity that there could be cell type-specific differences in both the rate of gene expres-
sion as well as the allelic bias. Thus, we designed the weights to adjust the expected 
maternal probability contribution at spot i from cell type k by (1) the rate of expres-
sion for gene j in cell type k and spot i and (2) the proportion of transcripts at spot 
i that are expected to be attributable to cell type k (Fig.  1a, see the  “Methods” sec-
tion). We pre-compute these weights from the cell type weights at each spot obtained 
through a cell type decomposition algorithm (e.g., RCTD) and the cell type-specific 
gene expression rates estimated using a differential expression algorithm (e.g., C-SIDE 

Fig. 1 Schematic of the spASE method for detecting allele‑specific expression (ASE) in spatial transcriptomics 
while accounting for mixtures. a Given a 2D spatial transcriptomics data set, we assume that for each gene 
j, each spot i can potentially source transcripts from multiple cell types. Each cell type can potentially have 
a different rate of expression for gene j and could also have a different cell type‑specific maternal (red) or 
paternal (blue) bias for gene j. In this example, cell type 1 has a higher level of expression as well as a maternal 
bias, whereas cell type 2 has lower expression and no bias. The weights α determine the contribution of 
each cell type to the transcripts on spot i. b spASE can be run in two modes: parametric and non‑parametric. 
Parametric mode is designed for hypothesis testing, e.g., testing whether or not there is a difference in ASE 
between two regions. Non‑parametric mode is for when no prior hypothesis exists about ASE, and the goal 
is to flexibly estimate a smooth function across space. c spASE can determine whether or not a gene exhibits 
significant ASE, either spatially, within cell type, or both. Notation: Yi,j represents the maternal allele counts at 
spot i for gene j. xi = (x1,i , x2,i) are the 2D spatial coordinates of spot i. αi,j,k are the cell type‑specific weights. 
1L(·) is the indicator function for membership in set L. Bℓ denotes the ℓth spline basis function
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[43], the  “Methods” section). This allows us estimate and perform inference on the 
cell type-specific covariates, β.

In practice, the expression within the expit function in the model for the mean can 
take a variety of forms, depending on the biological hypothesis of interest (Fig.  1b). 
For example, we may be interested in testing for allelic differences between two pre-
defined regions; in this case, we test for significance of the coefficients β . Alternatively, 
if we have no prior hypothesis about allelic variation, we can choose to flexibly model a 
2D function across space using a non-parametric smoothing spline approach. The lat-
ter option is particularly useful as it allows for estimation of the maximum likelihood 
smooth maternal allele probability function, either across or within cell type (Fig. 1c, 
the “Methods” section).

spASE detects ASE in Visium and Slide‑seq while accounting for cell type mixtures

We first conducted simulations to test the ability of spASE to accurately estimate smooth, 
non-parametric 2D spatial functions in the presence of cell type mixtures (Fig. 2). Using 
the real Visium and Slide-seq data, we estimated gene- and cell type-specific proportions 
and differential expression (DE) at each spot. We generated random linear combinations 
of spline basis functions as ground truth 2D spatial patterns and sampled raw counts 
from the ground truth distribution at each spot (Fig. 2a). We then fit the spASE model 
and computed the RMSE of the coefficient estimation (Additional file 1: Fig. S9) as well 
as the correlation between the estimated 2D maternal probability function values and 
the ground truth (Fig. 2b).

Overall, we found that the higher resolution from Slide-seq resulted in both lower 
RMSE of coefficient estimation and higher R2 of the estimated maternal probability func-
tions (Fig. 2b), particularly at lower total UMI counts per gene. We attributed this differ-
ence to a reduction in variance of the estimated coefficients given the higher density of 
points sampled in the function (Fig. 2c) as well as lower variance in the cell type-specific 
DE estimates in Slide-seq as compared to Visium (Additional file 1: Fig. S10). Even at 
100–500 counts, correlation was still weakly positive, with the inner quartile range of the 
boxplots generally lying above r = 0.5 . This motivated our selection of the threshold of 
27 (128 total counts) in analyses using real data as well as using confidence intervals over 
the 2D surface to assess the variance in the estimated 2D spatial function and account 
for cases where the density of counts for a particular gene was not high enough to make 
an accurate estimate. There was also a noticeable cell type effect; in particular, cell types 
with a broader spatial distribution across the slice, such as granule cells in the cerebel-
lum, were easier to estimate at lower UMI values than cells with more limited spatial 
distributions. We also varied the ground truth level of overdispersion in the data and 
found that higher overdispersion resulted in higher variability, especially for the Visium 
samples (Fig. 2d), which was also likely due to the lower sample size in Visium.

Next, we fit the beta-binomial model on the real Slide-seq and Visium data. We tested 
for significant (1) overall maternal or paternal bias, (2) within cell type bias, (3) over-
all spatial pattern, and (4) within cell type spatial pattern, using a false discovery rate 
threshold of q < 0.01 , and report the prevalence of significant ASE in each of these cat-
egories (Tables 1 and 2).
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We first compared the overall estimates of maternal and paternal bias for each gene 
across all samples (Additional file 1: Fig. S11). Consistent with prior knowledge, we iden-
tified a small set of genes exhibiting strong maternal and paternal bias across all hip-
pocampus and cerebellum samples, including Meg3, Impact, and Peg3, for which our 
estimated direction of ASE bias was consistent with previous reports as maternal (Meg3) 
and paternal (Impact, Peg3) imprinted genes [44]. We compared these estimates to a 
previously published list of 383 imprinted genes in mice (not specific to the brain) [45] 
and found that 91 of them were also detected as imprinted in our data (Additional file 2: 
Table S2, Additional file 3: Table S3). We also used a resource which contains previous 
knowledge on the direction of ASE effect for 138 genes (not specific to the brain) [44] 
and found that, of the 35 genes estimated to have ASE in our data set, 26 of them (18 

Fig. 2 Simulation framework and results comparing estimated 2D maternal probability functions to ground 
truth. a Simulation framework schematic. We used the Visium and Slide‑seq data generated in this study and 
ran RCTD to get cell type weights at each spot as well as C‑SIDE to get cell type‑specific gene expression 
rates at each spot. b Pearson correlation r between the estimated 2D maternal allele probability function and 
the ground truth maternal allele probability function, binned by the total UMI for that simulation condition 
( Ni,j in the model). Panel title indicates the cell type that had the true cell type‑specific ASE pattern. c Density 
plots of the variance of the estimated coefficients (logit scale) across all simulations. d Same r as (b), except 
only for total UMI 100‑500, including all cell types, and binned by ground truth overdispersion values
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paternal and 8 maternal) agreed with the previous direction of effect (Additional file 2: 
Table S2, Additional file 3: Table S3). A large number of genes were also consistently sub-
tly, but not significantly, biased either maternally or paternally across samples. The vast 
majority of genes had an estimated maternal probability close to 0.5. Interestingly, the 
agreement between the hippocampus and cerebellum in mouse 3 was much higher than 
the agreement among the hippocampus samples or cerebellum samples ( R2 = 0.91 com-
pared to R2 ∈ [0.32, 0.69] ), suggesting higher ASE variability across mice than between 
two brain regions of the same mouse (Additional file 1: Fig. S11b).

We next compared results across significant spatial and non-spatial ASE gene catego-
ries between the Visium and Slide-seq cerebellum samples (Table 1). Of the 7599 autoso-
mal genes detected in both samples, the majority (5425 or 71%) had no significant ASE 
detected in either sample, for a concordance of roughly 87% between the two mice. 496 
autosomal genes genes, or 6.5%, had a significant maternal or paternal bias in both sam-
ples. For cell type-specific ASE, we noticed that the Slide-seq sample had a much higher 
number of genes detected with a bias than the Visium sample (722 compared to 23). 
More genes were also detected as having an overall spatial pattern in Slide-seq compared 

Table 1 Number of genes detected as significant ( q < 0.01 ) in the F1 hybrid (CAST x 129) mouse 
cerebellum in Visium and Slide‑seq from two female mouse brains

“Overlap” column indicates number of genes that were detected as significant in both mice (i.e., intersection of the numbers 
for mouse 3 and mouse 4 for each row). Note that genes can belong to more than one category, with the exception of the 
“no significant ASE” category, which is exclusive. Numbers are formatted as # autosomal genes (# X-chromosome genes). 
The total number of genes for each sample is based on using a filtering threshold of at least 128 spots with non-zero counts 
per gene for “overall” or at least 128 spots per gene per cell type for “within cell type”

Category Slide‑seq (mouse 3) Visium (mouse 4) Overlap

No significant ASE 6235 (53) 8971 (162) 5425 (30)

Overall maternal bias 720 (157) 502 (112) 196 (81)

Overall paternal bias 947 (7) 672 (12) 300 (5)

Within cell type maternal bias 306 (62) 9 (2) 5 (2)

Within cell type paternal bias 416 (4) 14 (0) 7 (0)

Overall spatial pattern 8 (19) 2 (0) 1 (0)

Within cell type spatial pattern 0 (6) 0 (0) 0 (0)

Total n genes 8304 (225) 10,147 (286) 7599 (204)

Table 2 Number of genes detected as significant ( q < 0.01 ) in the F1 hybrid (CAST x 129) mouse 
hippocampus in Slide‑seq from three female mouse brains

Overlap (Ovl.) is calculated between mice 1 and 2 and mice 1 and 3. Genes can belong to more than one category, with 
the exception of the “no significant ASE” category, which is exclusive. Numbers are formatted as # autosomal genes (# 
X-chromosome genes). The total number of genes for each sample is based on using a filtering threshold of at least 128 
spots with non-zero counts per gene for “overall” or at least 128 spots per gene per cell type for “within cell type”

Category Mouse 1 Mouse 2 Mouse 3 Ovl. (1‑2) Ovl. (1‑3)

No significant ASE 4961 (104) 2242 (5) 6530 (16) 2008 (3) 4249 (4)

Overall maternal bias 349 (30) 176 (55) 623 (208) 93 (11) 179 (29)

Overall paternal bias 456 (9) 180 (1) 834 (1) 109 (1) 254 (1)

Within cell type maternal bias 104 (3) 24 (15) 250 (61) 18 (1) 64 (1)

Within cell type paternal bias 151 (9) 22 (0) 307 (0) 19 (0) 101 (0)

Overall spatial pattern 18 (17) 1 (0) 67 (0) 1 (0) 9 (0)

Within cell type spatial pattern 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Total n genes 5866 (159) 2609 (61) 8309 (225) 2560 (59) 5698 (150)
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to Visium (8 vs. 2). Finally, six X-chromosome genes were detected as having a spatial 
ASE pattern within cell type in the Slide-seq sample, while none were detected in the 
Visium sample. Thus, despite having a lower average number of allele-resolved counts 
per spot than Visium (Additional file 1: Table S1), the higher resolution and density of 
measurement spots in Slide-seq affords higher power to detect both cell type-specific 
and spatial ASE.

Similarly, we compared the prevalence of ASE in the different categories across three 
Slide-seq mouse hippocampus samples (Table  2). Samples with higher sequencing 
depth and longer read lengths generally had more total genes detected in each category 
(Additional file 1: Table S1). Notably, in both the cerebellum and hippocampus, agree-
ment across samples was modest, hovering around 50–70% overlap in gene sets for 
each category.

spASE separates cell type‑driven spatial ASE from within cell type spatial ASE in the mouse 

hippocampus and cerebellum

We next assessed whether our method could accurately differentiate between cell type-
driven and within cell type spatial ASE in real data. Cell type is often confounded with 
space, particularly in the hippocampus, in which cell types are concentrated in discrete 
spatial areas within the 2D slice (Fig. 3). Without controlling for cell type, we observed 
a considerable number of autosomal genes with a significant overall spatial ASE pattern: 
18 genes in mouse 1 and 67 in mouse 3, which had higher coverage, with 9 genes in com-
mon (Table 2, Additional file 4: Table S4). Here, we further make a distinction in termi-
nology for genes exhibiting cell type-specific ASE, cell type-driven spatial ASE, or within 
cell type spatial ASE. Cell type-specific ASE refers to ASE that is only present in one par-
ticular cell type. Cell type-driven spatial ASE refers to a spatial bias in ASE that could 
be due to cell type-specific ASE, or it could also be driven by a higher rate of expression 
for a particular gene relative to other cell types, even if the ASE is not cell type-specific. 
Within cell type spatial ASE refers to spatial ASE detectable within a cell type which is 
not necessarily cell type-specific.

For example, consider the gene Ptgds, which exhibited significant overall spatial ASE 
pattern of a general paternal bias with a small region of biallelic expression in the mouse 
hippocampus (Fig. 3a–c). These regions corresponded to the localization of two major 
cell types which highly expressed Ptgds: oligodendrocytes and endothelial cells. When 
using spASE to estimate the effect size of ASE within cell types, we found that oligo-
dendrocytes had a strong paternal bias in expression, whereas endothelial cells had 
strong biallelic expression (Fig.  3h). When using the full spASE model controlling for 
cell type, Ptgds was not significant for having a within cell type spatial ASE effect. Thus, 
we conclude that Ptgds exhibits a cell type-driven spatial ASE effect due to the contrast 
between the biallelic expression in endothelial cells, which are localized to a small por-
tion of the region, and high paternal expression in oligodendrocytes, which encompass 
a broader area of the sample. We wondered what potential mechanism could be driving 
the paternal bias in oligodendrocyte expression (Fig. 3h). Integrating single-cell ATAC-
seq data and single-cell RNA-seq atlas data, we found a likely mechanism by which an 
oligodendrocyte-specific enhancer for Ptgds may have a strain-specific SNP which alters 
an oligodendrocyte-specific TF binding site (Additional file 1: Fig. S12).
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We also discovered a cell type-driven spatial effect in Sst in the hippocampus. In par-
ticular, we noticed a strong maternal bias in the bottom-middle region of the puck, cor-
responding to a cluster of interneurons outside of the main hippocampal formation in 
the thalamus (Fig. 3e–g). Indeed, when we fit the intercept-only spASE model and exam-
ined the estimated maternal probabilities within cell type, we found that this interneu-
ron subtype had a higher maternal estimated maternal probability that was further from 

Fig. 3 spASE distinguishes between cell type driven and within cell type spatial ASE in the mouse 
hippocampus and cerebellum. a Cell type map of the hippocampus from mouse 3. b Raw maternal allele 
fractions for each spot with non‑zero expression of Ptgds in the hippocampus from mouse 3. Spot size 
corresponds to the total number of allele‑resolved reads (total reads) at that location. Color corresponds 
to the fraction of reads at that spot that were maternal; red being maternal, blue being paternal, and white 
being 50/50. c Estimated maternal allele probability function computed by spASE across cell types. d 
Estimate and confidence interval cross‑section along the diagonal of c. e Estimate and confidence interval 
cross‑section along the vertical dashed line in g. f, g Same as b–c, but for Sst. h Estimate and confidence 
interval from the intercept‑only (within cell type) spASE model for Ptgds and Sst by cell type. Only cell types 
with sufficient reads measured at spots containing that cell type are included. i Distributions of the maternal 
proportion of total reads per spot for Sst by cell type, colored by the total number of reads per spot. j Cell 
type map for the cerebellum from mouse 3. k Same as c but for Uba1 and only plotted at the location of 
granule cell singlets. l Same as k but for Tspan7 
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0.5 than other interneurons (Fig. 3h). This bias was also visible in the distributions pf 
raw maternal proportion of total reads per cell type (Fig. 3i). Thus, the localization of 
this interneuron subtype to a small region of the puck, combined with its high, strongly 
maternal expression of Sst, was the main driver of the spatial pattern in Sst.

Cell types within the cerebellum also aggregate in distinct spatial regions; however, 
depending on the slice, the main granule layer comprises a wide spatial range of densely 
packed cells, spanning a larger area and density than most other cell types (Fig. 3h). We 
found that the only genes detected as having a significant spatial ASE pattern within cell 
type were six highly expressed X-chromosome genes in granule cells (Additional file 5: 
Table  S5). In particular, we saw that the wide span of granule cells was large enough 
to capture the subtle spatial X-chromosome ASE pattern present in the cerebellum of 
Mouse 3 (Fig. 3i,j).

spASE generates high resolution spatial maps of the allele‑specific X‑chromosome 

landscape in the mouse hippocampus and cerebellum

Finally, we used non-parametric spASE to estimate smooth 2D maternal allele prob-
ability functions for X-chromosome genes in all our samples. In addition to testing for 
significance, the non-parametric mode allows for varying the degrees of freedom of the 
smoothing spline basis functions to create higher resolution maps of the ASE patterns 
depending on gene coverage.

We first examined the fitted 2D maternal allele functions for all X-chromosome genes 
individually for each of the five mice (Additional file 1: Figs. S13-S17). For all samples, 
the majority of X-chromosome genes were estimated to have a similar smooth pattern 
within a sample. We observed some slight differences which could be attributed to lack 
of UMI sampled in some genes, leading to higher variance in the estimates.

We then looked for any genes potentially escaping X-chromosome inactivation (XCI). 
We compared the estimated maternal probability functions for a previously published 
list of 14 XCI escape genes in the mouse brain [46] and found that 11 (including Xist) 
were highly expressed enough in our data to enable estimation of spatial ASE. Of those 
11, Gpm6b and Syp showed evidence of XCI escape in the cerebellum, but not the hip-
pocampus (Additional file 1: Fig. S18). In particular, Gpm6b had near-biallelic expression 
across the slice, and it had a spatial function that was similar, although more attenuated 
in magnitude, to other X-chromosome genes that did not escape XCI. Syp also exhibited 
near-biallelic expression and exhibited a similar spatial pattern to Xist (Additional file 1: 
Fig. S18). The other genes either had too few counts to confidently estimate a spatial pat-
tern with a small confidence interval, or they appeared to not escape XCI. We also found 
evidence of XCI escape genes not previously reported; for example, Morf4l2 showed a 
strong paternal bias across all five mice and both brain regions (Additional file 1: Figs. 
S13-S17). In mice 1 and 4, Tceal3 appeared to have a strong paternal bias, and similarly, 
Tceal6 had a pattern that trended closer to biallelic expression than other X-chromo-
some genes, potentially indicating escape from XCI (Additional file 1: Figs. S13-S17).

We then merged all X-chromosome genes (excluding Xist) to provide maximum power 
for estimating the landscape of the X-chromosome in all samples (Fig.  4, Additional 
file  1: Fig. S19). Overall, we detected considerable heterogeneity in the fitted X-chro-
mosome functions across mice. In the hippocampus of mouse 1, for example, we found 
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distinct regions of clearly maternal and clearly paternal bias, which we confirmed were 
anti-correlated with regions of maternal and paternal bias in Xist (Fig. 4a, b). High cov-
erage from the merged X-chromosome gene profiles allowed for very narrow confidence 
intervals in the estimate as compared to those for Xist, which had larger variance in the 
estimated maternal probability due to having significantly lower counts (Fig. 4c, d).

Similarly, in the cerebellum of mouse 3, we observed an overall spatial pattern (driven 
mostly by granule cell expression, as seen in Fig.  3i, j) which was maternally biased 
towards the left and right edges, but trended towards biallelic near the center (Fig. 4e–h). 
This pattern was also anti-correlated with Xist expression, which again had much lower 
total coverage resulting in wider confidence intervals. However, we saw that the rest of 
the samples had a more consistent maternal bias (Fig. 4i–l). In fact, although the cerebel-
lum from mouse 3 overall only exhibited a slight maternal bias, the hippocampus from 
mouse 3 exhibited a near total silencing of the paternal allele.

We wondered whether this heterogeneity in X-chromosome spatial ASE could be 
explained by any other genes or factors present in our data set. Interestingly, we found 
that total Xist expression was weakly correlated with the variance in X-chromosome 

Fig. 4 spASE generates high resolution maps of the X‑chromosome ASE landscape in the mouse 
hippocampus and cerebellum from five mice. a Estimated maternal allele probability function for the merged 
X‑chromosome profile from the hippocampus of mouse 1. b Same as a, but for the gene Xist. c Estimate and 
confidence interval for the maternal allele probability for all merged X‑chromosome genes along the vertical 
dashed line in a, starting at the arrow in a and moving up. d Same as c, but for Xist in b. e–h Same as a–d, but 
for the cerebellum of mouse 3. i–l Same as a but for the denoted mice and tissues. m Scatterplot showing 
the merged X‑chromosome gene overdispersion plotted against the normalized Xist expression for each 
sample
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allele probability for each sample, quantified as the estimated overdispersion in the beta-
binomial model ( R2

= 0.39 , Fig.  4m). In particular, the hippocampus of mouse 3 had 
nearly 0 Xist expression, whereas the cerebellum of mouse 3 and the hippocampus of 
mouse 1 had considerably higher expression, perhaps indicating dynamic X-inactivation 
activity.

Discussion
In summary, we developed spASE, a statistical and computational framework for detect-
ing ASE in spatial transcriptomics while accounting for cell type mixtures. Building on 
the beta-binomial framework used in previous ASE models [27, 28, 32], we introduce a 
mixture framework that estimates the contribution from each cell type to maternal and 
paternal allele counts at each spot, which we calculate based on estimates of cell type 
identity as well as cell type-specific differential expression. Our method enables mod-
eling of the maternal allele probability spatial function both across and within cell types 
as well as the ability to distinguish between cell type-driven and within cell type spa-
tial ASE. We used spASE to estimate the prevalence of different types of ASE (overall, 
within cell type, and spatial) in multiple hippocampus and cerebellum samples from an 
F1 hybrid mouse model. We further demonstrated the utility of non-parametric spASE 
in generating high resolution spatial maps of X-chromosome ASE across all samples and 
for visualizing estimated spatial patterns and their variance at any given location in the 
spatial 2D function.

Overall, we found modest agreement between previously published imprinted genes 
and the genes we report here, but many of the genes we found were not in any previ-
ously published list of imprinted genes [44, 45]. In particular, only 91 of 383 previously 
published imprinted genes were detected in our study. However, of the genes that had 
previously published direction of ASE and that were detected as significant in our analy-
sis, a higher fraction (26 of 35) agreed in the direction of ASE. There are many possible 
explanations for these differences, including (1) our study was focused on the mouse cer-
ebellum and hippocampus, whereas many studies have not focused on these tissues, and 
many genes have previously been shown to have imprinting dependent on the tissue of 
interest [44]; and (2) the genetic background of our mouse model could potentially alter 
some imprinted directions, particularly with the abundance of SNPs that could affect 
gene regulatory regions.

Indeed, a limitation of the biological findings presented here is that our experiments 
only included one mouse strain, CASTx129. Thus, some results, such as the cell type-
specific bias for Ptgds or the strong maternal bias in the interneuron subtype for Sst, may 
only hold for samples where similar genetic variation exists at the cis-regulating loci. In 
general, ASE analysis is subject to the available genetic variation that allows for detec-
tion of different alleles. We used an F1 hybrid mouse strain which has substantial genetic 
variation and therefore relatively higher power to detect ASE effects, but such analysis 
is likely also feasible in other data sets for a smaller set of genes. For example, in a study 
looking at 10x Chromium, it was shown that estimating ASE was feasible from human 
scRNA-seq datasets given a large enough library size (average of 150K sequencing reads 
per cell) [47].
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Recently, it has been shown in single cell data that autosomal genes exhibit transcrip-
tional bursting [15, 31], or random monoallelic expression [14], which we model here as 
overdispersion in the beta-binomial framework. How this bursting, or overdispersion, 
influences spatial ASE patterns has not yet been studied. Consistent with previous find-
ings, we observed considerable overdispersion in Slide-seq, which has a resolution that 
is closest to single cell, whereas the count distribution in Visium was more similar to 
binomial sampling (Additional file 1: Fig. S8). Importantly, however, we did not detect 
any autosomal genes to have significant within cell type spatial ASE patterns. Thus, we 
show here that this transcriptional bursting of autosomal alleles is not significantly cor-
related across space in our data.

Much of X-chromosome biology is still actively being researched [48–50]. Our 
knowledge of the regulatory networks involved in directing Xist expression and ensur-
ing XCI is still incomplete in both mouse and human [48]. Here, we observed that total 
Xist expression was weakly correlated with the amount of spatial variation in the over-
all X-chromosome gene pattern (Fig.  4m). This result potentially points to a dynamic 
process of XCI maintenance in adult mice, i.e., less Xist RNA present, or captured in 
sequencing, when the allele is already almost fully silenced.

In addition, our knowledge of the regulatory factors responsible for XCI escape are 
still unknown [48]. Previous work has shown that random XCI patterns are often skewed 
away from equal representation of both alleles [51]. Interestingly, we found that Gpm6b 
and Syp, two genes previously published to escape XCI in the brain [46], exhibited XCI 
escape in the cerebellum but not the hippocampus, and many of the previously reported 
genes did not escape XCI in our data. This could point to tissue- or sample-specific dif-
ferences in XCI. One limitation was that many of the previously reported genes were 
not measured at high enough read depth in our data and thus had very wide confidence 
intervals across the spatial fit (Additional file 1: Fig. S18). However, we did observe that 
Morf4l2 consistently escaped XCI across all samples and tissues, showing a strongly 
paternally biased spatial pattern. The effect was slightly more subtle in the hippocam-
pus from mouse 3, which had a strong maternal bias for all other X-chromosome genes 
(Additional File 1: Fig. S15). In the cerebellum from mouse 3, Morf4l2 had a paternal 
bias but also a region of biallelic expression towards the middle, similar to Xist, indi-
cating that its escape from XCI was not ubiquitous. The same was true for Tceal3 and 
Tceal6 in the hippocampus of mouse 1 and the cerebellum of mouse 4 (Additional file 1: 
Figs. S13, S17); however, these two genes did not seem to escape XCI in mice 2 and 3 
(Additional file 1: Figs. S14, S15). Tceal3 and Morf4l2 also lie relatively close together on 
the X-chromosome within 100kb of each other, and Tceal6 lies slightly over a megabase 
downstream from Tceal3. Thus, there could be some local epigenetic effect allowing 
these genes to escape XCI in some, but not all samples. In general, we note that the 2D 
slice gathered for each sample is only a small cross-section of the hippocampus or cer-
ebellum; thus, many samples could have had more X-chromosome genes detected as 
spatially significant if the field of view were larger.

The reliance on non-parametric smoothing splines to flexibly estimate the maternal 
allele probability function when no hypothesis is given has both advantages and disadvan-
tages. Advantages include (1) incorporation of the basis functions as covariates into a lin-
ear model and thus (2) control over the bias-variance trade-off when choosing degrees of 
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freedom for the spline fit. Disadvantages include (1) no meaningful interpretation of indi-
vidual coefficients in non-parametric mode and (2) possibly overly smooth estimated spa-
tial functions. Indeed, smoothing splines do not account for sharper boundaries in ASE; for 
example, although the thin curve of highly expressing endothelial cells partially contributed 
to the biallelic expression in the center of the hippocampus sample for Ptgds, the estimated 
maternal allele probability function smoothed the thin curve of biallelic expression into a 
larger area (Fig. 3). In the future, it will be useful to develop methods which more precisely 
account for both large smooth regions as well as the sharp, discrete cell type regions as we 
observed in the mouse hippocampus and cerebellum.

Conclusions
Overall, this work represents an important methodological first step towards using high 
throughput technologies to characterize the spatial allelome. In simulated and real Slide-
seq data from the healthy adult mouse hippocampus and cerebellum, we show that spASE 
can recover known and unknown cell type-driven and within-cell-type spatial ASE. We 
additionally show that higher resolution is necessary to have sufficient power to detect cell 
type-driven effects. Given the difficulty in generating probes that hybridize specifically to 
different alleles when they could vary by only a few SNPs, we anticipate that sequencing 
based approaches will continue to be a primary method of measuring ASE transcriptome-
wide. We show here that Slide-seq data, when sequenced to high depth and with sufficiently 
long reads (i.e., 150 bp), generally has higher power to detect cell type-driven biases in spa-
tial data. As our knowledge of spatial and even cell type-specific ASE is still in its infancy, 
it will be an important goal of future studies to query spatial ASE in other contexts to fully 
understand its potential impact on healthy and diseased states.

Methods
Fitting the spASE model

Here, we detail the approach to fitting the spASE model. We denote the counts from the 
maternal allele for spot i and gene j with Yi,j . We assume the following model:

where pi,j is the mean probability that a transcript from gene j is from the maternal 
allele; Ni,j is the total read count, summing both alleles; φj is a gene-specific overdisper-
sion term ranging from 0 to 1 that accounts for biological and technical variability not 
explained by binomial sampling; αi,j,k are cell type-specific weights; and the γi,ℓ repre-
sent any potential user-defined covariates of interest, such as categorical regions or a 
smoothing spline basis function evaluated at continuous spatial coordinates (see below). 
Note that this parameterization of the Beta distribution in terms of mean and overd-
ispersion corresponds to a Beta(ai,j , bi,j ) distribution where ai,j = pi,j ∗ (1− φj)/φj and 
bi,j = (1− pi,j) ∗ (1− φj)/φj.

The proportion of gene j on spot i belonging to cell type k, αi,j,k , is pre-computed as:

(2)

Yi,j ∼ Beta-Binomial(pi,j ,Ni,j ,φj)

pi,j =

K
∑

k=1

αi,j,k expit

(

β0,k ,j +

L
∑

ℓ=1

βℓ,k ,jγi,ℓ

)

,
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Note that wi,k are the cell type weights (previously called β ) from RCTD, while µi,j,k are 
the cell type-specific gene expression rates from C-SIDE. This can be justified by noting 
that �i,j , the expected maternal proportion at spot i, gene j satisfies:

as above.
We provide an algorithm for computing the maximum likelihood estimator of β , pre-

sented in Additional file 1: Supplemental Notes. Our likelihood optimization algorithm 
is a second-order, trust-region [52] based optimization (Additional file 1: Supplemental 
Notes) [53]. In brief, we iteratively solve quadratic approximations of the log-likelihood, 
adaptively constraining the maximum parameter change at each step. Critically, the like-
lihood is independent for each gene j (and sample g), so separate genes are run in parallel 
in which case there are K × (L+ 1) parameters per gene and sample.

Non‑parametric mode

In non-parametric mode, we implement the spline basis functions B using the thin plate 
spline basis [40]. To construct the thin plate spline basis functions evaluated at coordi-
nates (x1, x2) , we use the following command in R [54]: smoothCon(s(x1,x2,k,fx
=T,bs=‘tp’)) for specified degrees of freedom k in the package mgcv [55]. For both 
Slide-seq and Visium data, we experimented with multiple choices of k, and selected 
k = 5 for testing significant spatial patterns (Tables 1 and 2). We used k = 15 to provide 
higher resolution visualizations for genes with a significant spatial pattern (Figs. 3 and 4, 
and Additional file 1: Figs. S12-S17; see Additional file 1: Supplemental Notes for addi-
tional information on the intuition of adjusting k).

Hypothesis testing

The form given in (2) allows for flexibility in choice of covariates γi,ℓ depending on the 
biological hypothesis of interest. Below, we detail the procedure for the categories given 
in Tables 1 and 2 for each gene j. 

1. Overall maternal/paternal bias―we assume logit(pj) = β0,j , i.e., the mean mater-
nal probability does not change based on cell type or spatial location. We test the sig-
nificance of the hypothesis β0,j  = 0 and require pj > 0.6 to call a maternal bias and 
pj < 0.4 to call a paternal bias.

2. Within cell type maternal/paternal bias―we assume pi,j =
∑K

k=1 αi,j,kexpit(β0,k ,j) , 
and test for the significance of the intercepts β0,k ,j.

3. Overall spatial pattern―we assume logit(pi,j) = β0,j +
∑L

ℓ=1 Bi,ℓβℓ,j , where Bi,ℓ 
are degrees of freedom L thin plate spline basis functions evaluated at spots i. We 

(3)αi,j,k =
wi,kµi,j,k

∑

k wi,kµi,j,k
.

(4)

�i,j = P(m | spot i, gene j) =
∑

k

P(m, k | spot i, gene j) =
∑

k

P(k | i, j)P(m | i, j, k)

=
∑

k

P(k | i)P(j | k , i)

P(j | i)
�i,j,k =

∑

k

wi,kµi,j,k
∑

k

wi,kµi,j,k
�i,j,k =

∑

k

αi,j,k�i,j,k ,



Page 16 of 22Zou et al. Genome Biology          (2024) 25:180 

compute a likelihood ratio test for the significance of the additional covariates in this 
model over a baseline intercept model from 1.

4. Within cell type spatial pattern―we assume pi,j =
∑K

k=1 αi,j,kexpit(β0,j +
∑L

ℓ=1 Bi,ℓβℓ,j) 
and test for significance of any of the smoothing spline coefficients βℓ,k ,j.

For all procedures, we employ false discovery rate correction using the Benjamini-Hoch-
berg procedure [56] and use a threshold of q < 0.01.

CAST/EiJ x 129S1/SvImJ F1 mice

We obtained female CAST/EiJ x 129S1/SvImJ (CASTx129) mice from Jackson labora-
tories (Additional file 1: Fig. S1a). The CASTx129 cross contains ∼ 23 million SNPs or 
approximately 1 SNP for every ∼110 bp [57, 58]. This SNP density is approximately ten-
fold the SNP density in human cells and thus provides high resolution to interrogate 
ASE. We also characterized the diversity in the pooled CASTx129 transcriptome (see 
below) used for alignment. Approximately 40% of the 115,125 total transcripts contained 
an insertion or deletion when comparing the two strain-specific versions of each tran-
script. The SNP density was also weakly correlated with the number of counts observed 
per gene, particularly for transcripts without an indel (Additional file 1: Fig. S1b). The 
SNP density was variable for different transcripts within a gene, but in general, the pri-
mary transcript tended to have a higher density of SNPs, as was the case for Xist and 
Ptgds (Additional file 1: Fig. S1c,d). Approximately 100k total SNPs reside in the tran-
scripts for genes measured in this study with non-zero counts.

Library processing

Slide‑seq

Slide-seqV2 was performed as described previously [21, 22] on 10-µm-thick coronal slices 
of the hippocampus from three mice (mice 1–3) and the cerebellum of one mouse (mouse 
3). For mice 1 and 3, two serial sections were sequenced and reads were aggregated down-
stream, while for mouse 2, only one section was sequenced. Slide-seq libraries were pro-
cessed with the slideseq-tools pipeline (https:// github. com/ Macos koLab/ slide seq- tools) 
and then re-aligned to a custom transcriptome (see below). For longer read libraries (mouse 
3 Slide-seq), we used Atropos [59] to trim adapter sequences and low quality bases.

Visium

10x Genomics Visium was performed on two mice (Mice 4,5) on 10-µm-thick coronal 
slices of the cerebellum. Visium libraries were processed with the 10x Genomics Space 
Ranger 1.1.0 pipeline and then re-aligned to a custom transcriptome (see below).

Alignment

Read alignment

We generated a pooled CASTx129 transcriptome using the command create-
hybrid from the EMASE [60] software on the CAST and 129 transcript fasta files 
downloaded from ftp:// churc hill- lab. jax. org/ softw are/ g2gto ols/ mouse/ R84- REL15 05/. 
We then aligned reads to this pooled transcriptome with bowtie2 [61] using the param-
eters-k 100 -p 16 –very-sensitive. This method of alignment ensures there 

https://github.com/MacoskoLab/slideseq-tools
ftp://churchill-lab.jax.org/software/g2gtools/mouse/R84-REL1505/
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is no reference bias. The multi-mapping parameter k = 100 was chosen to report a large 
amount of multi-maps as bowtie2 randomly reports multi-mapping locations (in order 
of increasing number of mismatches). We used a custom script (https:// github. com/ luliz 
ou/ spASE/ blob/ master/ scrip ts/ proce ssBow tie2. py) for processing the aligned BAM file 
[62] to create a gene UMI count matrix only from reads that uniquely aligned to one 
gene and one allele. We conservatively restricted attention to alignments with 3 or fewer 
mismatches and only considered alignments that had the fewest number of mismatches 
for that read. We merged the reads from samples that had two serial sections: mouse 1 
hippocampus, mouse 3 hippocampus, and mouse 3 cerebellum.

Spatial alignment

We overlaid data from the Slide-seq samples with two the two serial sections (mouse 1, 
mouse 3) by rotating, shifting, and scaling the slices to overlap according to the location 
of the hippocampal formation and the granule layer of the cerebellum.

Cell type assignment

We ran RCTD [23] in doublet mode (default settings: MIN.CHANGE = 0.001, CONFI-
DENCE_THRESHOLD = 10, DOUBLET_THRESHOLD = 25) for the Slide-seq samples 
and full mode (default settings: MIN.CHANGE = 0.001) for the Visium samples. We used 
all UMIs, including those aligned to genes but not aligned to an allele. We used previously 
published hippocampus [63] and cerebellum [64] scRNA-seq datasets as references. Cell 
type weights were normalized to sum to 1 for each spot for downstream analysis.

Cell type‑specific differential expression

We ran C-SIDE [43] as previously described in non-parametric mode, filtering to gene 
and cell type combinations with at least 128 spots with non-zero counts. We selected 
degrees of freedom to match the degrees of freedom used to fit the non-parametric 
spASE functions.

Simulations

To evaluate the ability of spASE to estimate ASE in the presence of cell type mixtures, 
we simulated ground truth 2D maternal allele probability functions (Fig.  2). Starting 
with the mouse cerebellum data collected using Visium and Slide-seqV2, we first used 
RCTD and C-SIDE to compute cell type weights and cell type-specific spatial DE esti-
mates, respectively, for each gene. We focused on the fibroblast, granule, MLI2, and 
oligodendrocyte cell types as they had the highest sample size in both the Visium and 
Slide-seqV2 data. Then, for each gene in a given cell type, we generated a 2D maternal 
allele probability function using random linear combinations of basis functions with five 
degrees of freedom. In addition to varying which cell type and which gene we focused 
on, we also varied the amount of ground truth gene-specific overdispersion ( φj above) 
and the total UMI count for that gene. Simulation performance was evaluated using the 
correlation r between the ground truth maternal probability function and the estimated 
function, as well as the root-mean-squared error (RMSE) of the estimated coefficients 
(Additional file 1: Fig. S9).

https://github.com/lulizou/spASE/blob/master/scripts/processBowtie2.py
https://github.com/lulizou/spASE/blob/master/scripts/processBowtie2.py
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Mouse hippocampus scATAC‑seq, cis‑regulatory elements, and TFBS motifs

We analyzed previously published mouse hippocampus sci-ATAC-seq count matrices 
(GSE118987) [65]. The mice used in the study were the wild-type C57/B6 strain, and the 
data were aligned to the mm10 genome. We extracted the called peak annotations and 
counts using the command scitools split. To quantify accessibility of peaks, we 
computed the average count within cell types. We searched for known TFBS motifs within 
peaks with the command matchMotifs from the R package motifmatchr [66] using 
all motifs for Mus musculus in the JASPAR 2020 database [67]. We overlaid annotations 
of ENCODE cis-regulatory elements (cCREs) [68] for mm10 downloaded from the UCSC 
Table Browser [69] at the Ptgds locus and visualized the annotations using IGV [70].

Mouse strain SNP data

We obtained gene-specific SNP annotations for 129S1/SvImJ and CAST/EiJ with respect 
to the mm10 reference using REL1505 of the Mouse Genomes Project (https:// www. 
sanger. ac. uk/ sanger/ Mouse_ SnpVi ewer/ rel- 1505) [71, 72].

Mouse scRNA‑seq data

We downloaded mouse scRNA-seq data from the Allen Brain Map [73], filtered to cell 
types annotated that were present in our mouse hippocampus data set, and visualized 
the expression of Mtf1 (Additional file 1: Fig. S12).
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Zenodo at 10. 5281/ zenodo. 11239 156 [77].
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