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Abstract 

Nucleotide conversion RNA sequencing techniques interrogate chemical RNA modi-
fications in cellular transcripts, resulting in mismatch-containing reads. Biases in map-
ping the resulting reads to reference genomes remain poorly understood. We present 
splice_sim, a splice-aware RNA-seq simulation and evaluation pipeline that introduces 
user-defined nucleotide conversions at set frequencies, creates mixture models 
of converted and unconverted reads, and calculates mapping accuracies per genomic 
annotation. By simulating nucleotide conversion RNA-seq datasets under realis-
tic experimental conditions, including metabolic RNA labeling and RNA bisulfite 
sequencing, we measure mapping accuracies of state-of-the-art spliced-read mappers 
for mouse and human transcripts and derive strategies to prevent biases in the data 
interpretation.
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Background
Nucleotide conversion (NC) RNA sequencing techniques are powerful methods to study 
post-transcriptional modifications across a wide range of organisms and cell types [1]. 
In these techniques, RNA is exposed to dedicated nucleotide conversion chemistry and 
subjected to cDNA library preparation and high-throughput sequencing, ultimately 
resulting in reads that exhibit zero, one, or more specific NCs. Reads are then mapped 
to a reference sequence and grouped into labeled (one or more NC) and unlabeled (no 
NC) reads. Grouped read counts are finally combined to quantitative measures of inter-
est and analyzed/interpreted to gain novel biological insights.

Several NC RNA-seq protocols that monitor a range of RNA modifications but dif-
fer in the type and penetrance of NCs have been introduced recently. These include 
metabolic RNA labeling techniques with low (1–5%) NC rates that are being used to 
study the cellular rates of RNA synthesis, processing, translation, and decay. Here, 
cells are subjected to metabolic RNA labeling with the nucleotide analog 4-thiouridine 
(4sU). Upon RNA extraction and chemical treatment, 4sU is converted into cytosine 
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or cytosine analogs, allowing to distinguish newly synthesized from pre-existing tran-
scripts due to the presence of T-to-C conversions. The fraction of converted reads (FCR; 
Table 1) per transcript annotation is, for example, used to estimate half-lives of RNA 
molecules [2–4]. In contrast to metabolic RNA sequencing, RNA bisulfite sequencing 
(RNA-BS-seq) is an example for a NC RNA-seq protocol with very high (> 98%) con-
version rates. This approach enables the mapping of posttranscriptional cytosine meth-
ylation that has been proposed to play a role in RNA regulation, structure, stability, 
translation and, if mis-regulated, also in disease (progression) [5–8]. Here, methylated 
cytosines are protected from being deaminated into uracil upon bisulfite treatment 
and methylation rates of 5-methylcytosine  (m5C) sites are assessed upon sequencing of 
cDNA libraries by determining the fraction of unconverted reads at any given cytosine 
site (metR, methylation rate; Table 1).

Depending on conversion-frequencies, NC RNA-seq datasets are expected to be vul-
nerable to biases in mapping due to the presence of mismatches that may affect their 
unique assignment to specific regions in the genome: If, for example, converted reads 
from a metabolic labeling experiment show considerably lower mapping accuracies than 
unconverted reads due to increased mismatches to the reference sequence, then result-
ing FCR values and in consequence derived half-lives would be affected. Accordingly, 
variations in mapping accuracies for reads with different numbers of  m5C sites may con-
sequently lead to false-negative and false-positive annotation of  m5C sites. Thus, to esti-
mate the reliability of these measures, we need to understand how NCs influence the 
accuracy of mapping reads to their originating genomic location.

Here, we set out to study mapping accuracies of NC reads, focusing on the evalua-
tion of splice-aware read mappers because NC conversion approaches are often applied 
to problems that benefit from or require spliced read alignments. Examples include 
the (relative) quantification of different gene isoforms to investigate alternative splic-
ing mechanisms or intron splicing kinetics [9] (by comparing read counts from (NC 
converted) unspliced (premature) isoforms with counts from fully spliced (mature) 
isoforms, FMAT; Table 1). RNA-seq quantification based on spliced alignments was fur-
thermore reported to be more accurate when compared to transcriptome mapping and 
lightweight quasi-mapping approaches [1, 10]. We do, however, also evaluate the impact 
of NC on transcript quantification by 3′ end mRNA sequencing, an alternative, cost-
efficient protocol that does not require spliced read mapping [11].

Generally, read mapping accuracy is influenced by read length and the number of mis-
matches to the reference sequence (by NCs and sequencing errors) as well as the general 
genome mappability of the respective genomic sequence. Genome mappability describes 
the ability of read mappers to accurately place and align reads of a specific length to 

Table 1 Exemplary measures based on the comparison (ratio) of different (NC) read groups

Measure Simplified formula Applications

FCR: fraction of converted reads #converted_reads
#all_reads

e.g., RNA stability measurement (half-life estimation)

metR: methylation rate #unconverted_reads_at_site
#all_reads_at_site

e.g., post-transcriptional RNA methylation

FMAT: fraction of mature isoform #mature_isoform_reads
#all_reads

e.g., RNA splicing kinetics; applied to converted and 
unconverted reads
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respective genomic regions. It is largely determined by the repetitiveness of the genome 
[12]. Highly repetitive regions account for large shares of eukaryotic genomes and are 
found in non-coding as well as coding regions (Additional file 1: Figure S1 [13, 14]). Their 
reduced mappability results in misplaced (false-positive, FP) and missing (false-negative, 
FN) reads and consequently reduced reliability of biological interpretation derived from 
respective read alignments.

While mappability of unmodified short reads has been intensely studied in the past 
[12, 14, 15], much less has been done to address mappability of NC reads. A notable 
exception is bisulfite sequencing where the bisulfite reaction converts unmethylated 
cytosine to uracil that is ultimately read as thymine. The high conversion efficiency of 
this reaction leads to reads with high fractions of C-to-T conversions that are most effec-
tively mapped using specially designed alignment tools, e.g., Bismark [16], BSMAP [17] 
or meRanGs [18]. Most current approaches essentially employ a (partial) three-nucleo-
tide letter (3N) alignment strategy: all cytosines in the reads and the reference sequence 
are converted to thymines and read mapping is based on the remaining three bases (T, 
A, G). While this makes 3N mappers insensitive to the number of converted cytosines in 
the reads, it reduces mappability due to the lower complexity of the mapped sequences 
and their targets. First approaches to investigate this systematically can be found in 
Karimzadeh et  al. [19], who identified uniquely mappable regions in unconverted and 
fully bisulfite-converted human and mouse genomes. In [20], the authors present an 
extension to the mapper Segemehl that employs a hybrid approach, combining a seed-
based search on a reduced 3N alphabet with a bisulfite-sensitive semi-global alignment 
that improved overall mapping sensitivity. More recently, Zhang et  al. [21] evaluated 
their HISAT-3N mapper that implements a generalized 3N alignment strategy, allow-
ing arbitrary NCs, on simulated bisulfite and metabolic labeling data. Besides reporting 
improved mapping accuracies when comparing to other 3N mappers, they also observed 
an expected increase in multi-mapped reads but overall similar mapping accuracies 
when comparing 4N and 3N alignments of unmodified reads.

Here, we extend and generalize these findings by comprehensively assessing mapping 
accuracies of NC reads under different conditions (low to high conversion rates) and 
their impact on downstream analyses. For this purpose, we developed splice_sim, a spe-
cialized RNA-seq simulation and evaluation pipeline that (i) simulates short reads with 
realistic sequencing errors from arbitrary mixes of (partially) spliced and unspliced iso-
forms per transcript, (ii) introduces arbitrary NCs with a given rate as well as a configur-
able set of single-nucleotide variations (SNVs) into these reads, and (iii) creates mixed 
models of converted and unconverted reads. Splice_sim then maps simulated reads using 
a configurable set of mappers and calculates differential alignments between simulated 
“truth” and mapper output, enabling a comprehensive evaluation of mapping accuracies 
under different nucleotide conversion rates.

Using splice_sim, we generated deep (100X coverage) simulated metabolic labeling 
RNA-seq datasets with altering conversion rates (1–10%) for mouse and human tran-
scriptomes and evaluated mapping accuracies of converted and unconverted reads for 
HISAT-3N [21] and STAR [22], a popular spliced read mapper that does not imple-
ment a 3N mapping strategy, for various genomic regions of interest (exons, introns, 
splice junctions, and whole transcripts). We then evaluated the effects of NC mapping 
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accuracies on decay half-life and isoform mix reconstruction and applied several strate-
gies to correct/improve those measures using our mapping accuracy scores. As a result, 
we provide comprehensive transcriptome-wide NC mapping accuracy tables for more 
than 50k mouse and human transcripts each. We repeated our analysis with simu-
lated RNA-BS-seq data (evaluating HISAT-3N, Segemehl and meRanGs, a specialized 
bisulfite read mapper based on STAR) and evaluated downstream effects on methylation 
site calling. Finally, we used splice-sim to evaluate different analysis strategies for tar-
geted RNA sequencing, such as mRNA 3′ end sequencing, an alternative cost-effective 
approach for quantifying (NC) mRNA abundances.

Our study demonstrates the negative impact of nucleotide conversion rates on the 
accuracy to estimate measures with direct biological interpretation and thereby sheds 
light on the dimension of this problem for real-world experiments. We provide mapping 
accuracy tables for meaningful biological units of interest (transcripts, exons, introns, 
and splice junctions) and showcase simple algorithms for improving accuracies in prob-
lematic regions or for filtering error prone data sections. Using splice_sim, we identified 
such regions in numerous members of hallmark gene sets [23], demonstrating their bio-
logical relevance (Additional file 1: Figure S1). Finally, we provide users with a simula-
tion and evaluation pipeline that can be used to evaluate existing analysis pipelines/tools 
or to conduct sophisticated in silico experiments that can be performed for any species 
and transcript annotation of interest.

Results
Splice_sim systematically evaluates the performance of read mappers on NC RNA‑seq data

Using splice_sim, we simulated a deep metabolic labeling single-read 100 nt dataset (m_
big) covering > 50k GENCODE (https:// www. genco degen es. org/) annotated canonical 
mouse (mm10) transcripts. For each transcript, we simulated the premature (unspliced) 
and mature (fully spliced) isoform with a target coverage of ~ 50X per isoform, 
i.e., ~ 100X overall. We simulated three replicates with five different T/C conversion rates 
(0,1,3,5,10%, typically observed in metabolic RNA-seq time course experiments) each 
and mapped the simulated data with HISAT-3N and STAR. Splice_sim then assessed 
true-positive (TP), false-negative (FN), and false-positive (FP) read counts for different 
annotation sets: whole transcripts, exons, introns, and splice junctions. For the latter, we 
counted donor overlapping, acceptor overlapping, and spliced reads separately. Details 
about the counting algorithm are provided in Additional file 1: Supplement; a graphical 
overview of the analysis workflow is shown in Fig. 1A. Mapping accuracy per annota-
tion was quantified using the  F1 measure (an accuracy measure that incorporates preci-
sion and recall into one single score) for mature and premature isoforms separately. As 
genome mappability has arguably a major impact on NC mapping accuracy and is widely 
used to filter data, we grouped genomic annotations into three mappability classes (high, 
medium, low; cf. the “Methods” section and Fig. 1B) based on the observed mappability 
distributions.

First, we analyzed over 12 billion mapped reads to quantify the impact of NC on map-
ping accuracy using STAR and HISAT-3N. As expected, NC and sequencing errors 
increased false discovery (FDR) and false negative rates (FNR) for both mappers, as 
read alignment becomes more difficult with increased numbers of mismatches to the 

https://www.gencodegenes.org/
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originating genomic sequence (Fig.  1C). Simulated T/C nucleotide changes, however, 
did not strongly affect HISAT-3N data as those were essentially masked out due to the 
applied 3N mapping approach. We found residual elevated FP rates with increasing con-
version rates in HISAT-3N to be caused by reads (~ 2%) mapping to the wrong strand (cf. 
Additional file 1: Figure S2) and corresponding elevated FN rates to be caused by repeti-
tive regions of the same base composition as the introduced base conversions, likely con-
fusing the repeat index during mapping (Additional file 1: Figure S3). Note that absolute 
FDR/FNR is dominated by genome mappability which is why the relative increase due 
to additional mismatches is much smaller for low mappability regions. We then assessed 
mapping accuracies for different genomic features (Fig. 1D). As expected, mapping accu-
racy decreases with genomic mappability across all categories. Overall, both evaluated 
mappers showed high accuracies except for features with low mappability where STAR 
slightly outperformed HISAT-3N. In accordance with our initial analysis, we observed 
that STAR’s performance dropped with increasing conversion rates due to increasing 
mismatches between reads and reference sequence, while HISAT-3N was largely unaf-
fected due to its 3N mapping approach. For both mappers, we observed higher mapping 
precision than recall (Additional file 1: Figure S4) which indicates that FNs are the main 

Fig. 1 Analysis workflow and NC mapping accuracies for simulated mouse metabolic labeling data. A 
Analysis workflow overview: briefly, we simulated short reads with realistic sequencing error (red X) for 
premature and mature isoforms, calculated truth alignments, and injected nucleotide conversions with 
configured conversion rates. Simulated reads were mapped by the evaluated read mappers and resulting 
alignments were compared to the simulated data. Finally, grouped count tables with true positive (TP), false 
positive (FP), and false negative (FN) counts per annotation of interest (tx: transcripts, fx: exons + introns, sj: 
splice junctions) were created and analyzed. B Numbers of analyzed m_big annotations with high (> 0.9), 
medium, and low (< 0.2) mean genome mappability. C Changes of false discovery (FDR = FP/(TP + FP) and 
false negative (FNR = FN/(TP + FN)) rates by number of mismatches per read compared to reads without 
mismatches, stratified by mappability and type of mismatch (either simulated NC or random sequencing 
errors). The plots show median FDR/FNR and interquartile regions (shaded areas) across three m_big 
replicates for STAR (green) and HISAT-3N (orange) alignments. This analysis included ~ 12B reads originating 
from premature isoforms and their classification (TP, FP, FN) with respect to whole-transcript annotations. D 
Median  F1 measure per mapper and originating isoform (pre: premature, mat: mature) for different genomic 
annotations (tx: whole transcript), stratified by mappability. E Mean difference to simulated, exonic FCR 
(fraction of converted reads) per mapper and for a “mosaic” approach where the mapper with the smallest 
difference to the simulated value was chosen. The mosaic approach reduces differences to simulated values 
and when removing exons where none of the two mappers showed good results, reconstruction is nearly 
perfect (“mosaic filtered,” see main text). Note that a corresponding plot for human data is provided in 
Additional file 1: Figure S6 for comparison



Page 6 of 19Popitsch et al. Genome Biology          (2024) 25:166 

factor for reduced accuracies. We then investigated the effect of reduced mapping accu-
racies on the fraction of converted reads (FCR), an exemplary measure used in down-
stream analyses to estimate transcript stabilities (Table  1). We compared exonic FCR 
values (a plot showing intronic and whole-transcript data is in Additional file 1: Figure 
S5) derived from mapper specific alignments to the true (simulated) FCR which revealed 
that both mappers indeed have problems reconstructing this measure in the low map-
pability segment (Fig. 1E). STAR underestimates the real value while the opposite is true 
for HISAT-3N, although the latter showed less deviations from the true values. The dif-
ference to simulated values is dependent on conversion rates, particularly for STAR. We 
then implemented a “mosaic” analysis strategy to enhance FCR reconstruction accuracy. 
In this approach, we selected the FCR values for each interval (e.g., exon) from the map-
per that most closely matched the simulated values. This strategy is termed “mosaic” 
because it involves choosing the most effective mapper for each specific interval, akin to 
assembling a mosaic where each piece is optimally chosen based on performance. When 
combining this “mosaic” approach with a filtering strategy that removed transcripts 
for which none of the mappers returned results close to the simulation (see the “Meth-
ods” section), the overall mean FCR approached the simulated (true) value and omitted 
only ~ 1.3k (~ 8%) of low mappability exons. We concluded that combining STAR and 
HISAT-3N in a genomic-location-specific manner can enhance the quantitative analysis 
of NC datasets particularly for loci that suffer from low overall mappability.

Splice_sim instructs mapping approaches in a reduced sequence space

Emerging RNA sequencing approaches that target only selected transcript features are 
gaining popularity by their ability to multiplex in a cost-effective manner large sample 
numbers within one library. 3′ end mRNA sequencing [1, 11, 24], for instance, targets 
not the entire transcript sequence but only its 3′ end (typically the last 200 bp) and 
considers the resulting counts representative for the whole transcript. In addition, the 
use of oligo(dT) primers for reverse transcription that binds poly-A tails potentially 
also enriches for any A-rich region in the transcript body resulting in reads that stem 
from such “internal priming” events and “pollute” the overall signal thereby reducing 
achieved mapping accuracies. To showcase how our tool can be used to select an opti-
mal read mapping strategy in such a scenario, we configured splice_sim to evaluate 3′ 
end mapping accuracies and their impact on downstream analyses in a side-by-side 
comparison with the full transcript sequencing approach. To cover also internal prim-
ing events inherent to 3′ end sequencing, we considered two possible extremes: (1) 
clean amplification of the 200 bp 3′ ends only and (2) simulating reads from the entire 
transcript in case there is internal priming along the entire transcript (“transcript 
noise”). In addition, we investigated distinct mapping strategies by mapping to (i) the 
whole genome, (ii) the transcript sequences, and (iii) their 3′ end sequences. Finally, in 
all cases, only reads overlapping 3′ end intervals were counted (Additional file 1: Fig-
ure S7). When comparing mean genome mappability for 3′ end and whole-transcript 
annotations, we found the former to be generally higher, irrespective if calculated on 
the genome level or transcriptome level (Additional file  1: Figure S8A). Overall, the 
mappability of transcripts and their 3′ ends seems comparable with the most common 
change being from medium mappable transcripts to high mappable 3′ ends and few 
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extreme cases (e.g., high mappability transcripts with low mappability 3′ ends), see 
Additional file 1: Figure S8B.

In line with the higher mappability, our simulated 3′ end sequencing data also showed 
higher mapping accuracies across all conversion rates and mappability classes. When 
considering FCR estimations, however, full-length sequencing showed the smallest 
deviation from the simulated FCR, implying that the larger mapping space of the full 
transcript allows for more robust FCR estimates (Additional file 1: Figure S8C and D). 
Mapping 3′ end data to the transcriptome showed the worst performance with notice-
able differences to simulated values already for high and medium mappability genes. 
Mapping the same data to the genome in an unbiased way performed clearly better and 
adding “noise” (i.e., reads from “internal priming” events) even seemed to have a benefi-
cial effect. We speculate that here both converted and unconverted FP reads are mapped 
at the same ratio as the TP 3′ end reads, therefore making the recall of the FCR more 
robust despite stemming from FP signal. We concluded that the overall mapping per-
formance in a reduced sequence space does not strikingly aggravate mappability issues; 
however, there is a robustness trade-off for biological measures such as FCR. This is 
best mitigated by using a genome-mapping approach that offers more mapping space 
to reads that would otherwise potentially falsely be assigned to transcript 3′ ends when 
restricting the mapping space to transcript sequences only.

A mosaic sequence alignment approach enhances the interpretation of metabolic labeling 

data with implications for RNA stability measurements

Intrigued by the observed NC-dependent FCR differences, we simulated metabolic 
labeling pulse-chase data to estimate the effects of reduced NC mapping accura-
cies on the downstream analysis of RNA decay half-life reconstruction [4, 25]. In a 
metabolic labeling pulse-chase experiment, cells are typically exposed to a nucleotide 
analog (e.g., 4-thiouridine) for a considerable time span to ensure a fully labeled RNA 
population. Then, the labeling nucleotide analog is washed out and RNA is extracted 
at multiple consecutive time points. Extracted RNA is finally exposed to nucleotide 
conversion chemistry followed by cDNA library preparation and sequencing. FCR per 
time point is determined and normalized. A decay model (typically exponential decay 
is assumed) is fitted to these data and half-lives are derived which are interpreted as 
a quantification of RNA stability. Accordingly, we configured splice_sim to simulate 
unlabeled/labeled (5% T-to-C conversion rate) RNA ratios over multiple timepoints 
following a simple exponential decay model for three different decay rates (fast, 
medium, slow). We included ~ 2.3k mature transcripts (of which 2150 were included 
in this analysis after filtering for minimum transcript length > 100 bp) and their ~ 17 k 
introns that are expressed in mouse embryonic stem cells (see Additional file 1: Sup-
plement). After simulation, read mapping, and counting, we calculated FCR per 
transcript/intron and time point and fitted an exponential decay model (FCR~et×−k 
where t is time and k is the decay rate constant) to these data and reconstructed half-
lives (Fig.  2A, B). Note that estimated half-lives from simulated data are systemati-
cally higher than the true value (cf. Fig. 2B). This is because in this analysis, as in a 
true world scenario, all reads without a found NC were considered to be stemming 
from “new” (after washing point) RNA, including a considerable number of reads 



Page 8 of 19Popitsch et al. Genome Biology          (2024) 25:166 

stemming from “old” RNA that have zero conversions just by chance. Although we 
could have corrected for this in our simulated data (as we know the origin of each 
individual read), we decided to treat simulated and mapped data the same way to 
keep them comparable.

Although half-life estimation was robust for most transcripts and introns (Fig. 2 and 
Additional file 1: Figure S9), we observed a considerable number of outliers with more 
than 10% difference to simulated half-lives for both mappers in the medium and low 
mappability segments. Those outliers over- and underestimated simulated half-lives 
of > 120 protein coding genes (Fig.  2C–G). Again, we applied a “mosaic” approach by 
choosing FCR values closest to simulated values from mapper-specific data per tran-
script. This resulted in fewer outliers and smaller differences to simulated half-lives 
(Fig. 2E). Most outliers (106) were shared; however, a considerable number were found 
exclusively in HISAT-3N (94) and STAR (39) alignments. The “mosaic” approach 
removed 144 outliers while adding only one additional one (Fig.  2F). Interestingly, 
HISAT-3N produced worse fits to the decay model as supported by lower observed 
Efron pseudo-R2 values (Additional file 1: Figure S10; the “Methods” section) and conse-
quently also more half-life outliers for this dataset although it showed better overall FCR 

Fig. 2 Effect of NC on transcript half-life reconstruction (corresponding plot for introns in Additional file 1: 
Figure S9). A Normalized, mature transcript FCR per time point (arbitrary units) for true, simulated, and 
mapped data. The truth data models an idealized exponential decay curve for three randomly assigned 
decay rates (violet: fast/k = 0.15, brown: moderate/k = 0.1, magenta: slow/k = 0.05). FCR for simulated and 
mapper-specific alignments was estimated as explained in the “Methods” section. The mosaic panel was 
created by choosing the mapper-based FCR estimate closest to the simulated value per transcript. FCR 
was normalized to the maximum value across all timepoints. The data reconstructed from the read mapper 
alignments show increasing noise with decreasing mappability although some clear outliers are also visible 
in high mappability regions. Grey, dashed lines indicate 50% FCR. B Reconstructed half-lives per decay rate. 
The box plots show a considerable number of outliers for both mappers; numbers of considered transcripts 
are plotted below the boxes. See main text for a discussion why reconstructed half-lives from simulated data 
are systematically higher than the true value (black boxes). C–E Correlations between estimated half-lives 
from simulated data and STAR, HISAT-3N, and “mosaic” data, respectively. Transcripts with > 10% difference 
to simulated half-lives were considered outliers and are indicated by red triangles. Theoretical true half-lives 
per decay rate group are indicated by red dashed lines. F Upset plot showing numbers of outliers (including 
transcripts for which no half-life could be estimated) shared by mapper and mosaic data respectively. G Gene 
types of outliers (in one or both mappers), colored by mappability (see H for color code). Most outliers were 
transcripts of protein coding genes. H Number of transcripts per mappability category for the analyzed gene 
set
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reconstruction compared to STAR (Fig. 1E). We found comparable numbers of outliers 
across all three simulated decay rates.

Intron filtering improves isoform mix estimates of low mappability transcripts

Alignment of spliced reads is particularly difficult as it needs to take the possibility of 
(typically large) gaps due to spliced out introns into account and requires the accurate 
placement of short (sometimes single nt) sub-sequences of reads (anchors) that span 
over these gaps [10, 26, 27]. This process is expected to be particularly sensitive to addi-
tional mismatches introduced by NC. To assess the influence of low-frequency NCs on 
mapping accuracies of spliced reads, we counted spliced (stemming from mature gene 
isoforms) and all informative (spliced and donor/acceptor spanning) reads per splice 
junction (SJ) and calculated fractions of mature isoform reads (FMAT; fraction mature 
isoform, Table  1) per SJ and transcript, a metric that is typically used in downstream 
analyses. We observed that differences between mapper-reconstructed and simulated 
FMAT values increase with decreasing mappability and, for STAR, also with conversion 
rate (Fig.  3A). Difference to simulated FMAT values correlated negatively with our  F1 
values as expected (Additional file 1: Figure S11). When looking closer at the distribu-
tion of FMAT values within genes, we observed that transcripts are often a mosaic of 
high, medium, and low mappability introns (Fig. 3B). We reasoned that FMAT recon-
struction of whole transcripts would benefit from filtering introns with low NC map-
ping accuracies that pollute the overall signal. We filtered introns based on the observed 

Fig. 3 FMAT reconstruction. A Median difference to simulated FMAT for unfiltered and intron-filtered data 
(shaded areas show interquartile ranges); negative values mean underestimation of simulated values. Intron 
filtering is described in the main text and improves results particularly for HISAT-3N in the low mappability 
segment. STAR shows larger underestimation with increasing conversion rates indicating difficulties to map 
spliced reads with more NCs. B Fractions of transcripts with different intron mappability categories, stratified 
by number of introns. Most transcripts with more than 3 introns contain introns from different mappability 
categories. C Median FMAT improvement increases with higher fractions of filtered introns per transcript. 
HISAT-3N seems to profit more in the low mappability segment. D Distributions of simulated, mapper 
specific, intron-filtered, and mosaic FMAT values for low mappability transcripts and 0 and 10% conversion 
rates. The dotted black line indicates the theoretical value of 1/3 (cf. the “Methods” section); numbers of 
observations are plotted below the boxes. Intron filtering and a “mosaic” approach improve FMAT estimations, 
and the “mosaic” approach recovers data for more transcripts. A respective human metabolic labeling data 
plot is provided in Additional file 1: Figure S16 for comparison
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difference to simulated FMAT (see the “Methods” section and Additional file 1: Figure 
S12 and 13 for examples) and compared filtered with original FMAT values. Intron fil-
tering decreased differences to the true FMAT values and reduced the overall negative 
correlation with  F1 values (Fig. 3A and Additional file 1: Figure S11). Figure 3C shows 
that the improvement due to intron filtering is highest if large fractions of introns were 
omitted and that HISAT-3N profits more than STAR in low mappability regions. Con-
sequently, we observed a clear improvement in FMAT reconstruction for filtered data 
when plotting value distributions of low mappability transcripts (Fig.  3D). Addition-
ally, we again tried a “mosaic” approach by choosing the mapper with the most accurate 
FMAT value per intron which also improved overall estimations and recovered data for 
more transcripts compared to the intron filtering approach.

A priori knowledge about true splice junctions considerably improves accuracy of 
spliced read mapping [28]. To confirm this in our data, we repeated our simulations 
without passing respective gene model information to the read mappers and found a 
strong increase in FN spliced reads as well as FP SJ overlapping reads and in conse-
quence a strong underestimation of simulated FMAT values respectively large numbers 
of introns filtered by our approach (Additional file  1: Figure S14). This underlines the 
importance of feeding accurate information about known and/or suspected splice junc-
tions to splice-aware read mappers but should also motivate in silico experiments to 
learn about the expected readout for the detection of novel splice junctions from RNA-
seq data. A further analysis of SJ detection in our main dataset unveiled that HISAT-3N, 
when compared to STAR, recovered a higher fraction of the (passed) known SJ while at 
the same time also reporting a higher number of novel SJs which are per definition false-
positive in our dataset (Additional file 1: Figure S15). Notably, we observed increasing 
false-positive SJs with increasing conversion rates for both mappers.

Low mappability regions are hotspots of false cytosine methylation calls

Next, we configured splice_sim to simulate RNA-BS-seq data which is characterized 
by high C-to-T conversions rates (98% in our simulation). We used these data to eval-
uate mapping accuracies of HISAT-3N and meRanGs, a specialized 3N bisulfite RNA-
seq read mapper based on STAR. First, we compared overall mapping accuracies in 
the presence and absence of NCs and found  F1 scores similar to our metabolic labe-
ling dataset. Comparison of the two aligners revealed that meRanGs performed com-
parably to the general-purpose NC aligner HISAT-3N (Additional file 1: Figure S17A). 
Interestingly, we observed a slight drop in accuracy for HISAT-3N for the NC dataset 
but no such drop for meRanGs. We speculate that this drop could be due to the ~ 2% 
HISAT-3N reads mapping to the wrong strand (Additional file 1: Figure S2E). Since 
we stratified our data using genomic mappability scores (umap), we were curious if 
stratification by methylome mappability scores as presented in [19] led to better pre-
dicted mapping accuracy. For this purpose, we compared umap (general mappabil-
ity) and bismap (methylome mappability) scores and found a high positive correlation 
(Additional file  1: Figure S17B). We then quantile-normalized bismap scores before 
creating equally sized mappability class bins for a direct umap to bsmap comparison. 
Notably, when calculating ΔF1 values between mappability classes, we did not find 
any striking difference between the two mappability scores and no clear-cut winner 
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when comparing different mappers, features, or mappability classes (Additional file 1: 
Figure S17C and D). We therefore conducted our analysis using the same (umap-
based) genome mappability scores as for the metabolic labeling analysis.

We then set out to measure the effects of mismapped NC reads on calling  m5C 
sites in a realistic dataset. For this, we spiked a published set of mESC  m5C sites with 
methylation rates (per site) ranging from 20 to 100% into a splice_sim dataset with 
1910 overlapping transcripts and measured how many of them could be recalled (TP), 
how many were missed (FN), and how many false-positive (FP) calls we would get. 
A detailed description of this analysis that included the mappers HISAT-3N, meR-
anGs, and Segemehl is provided in Additional file 1: Supplement. Overall, simulated 
and true methylation rates correlated well and most  m5C sites were re-called in all 
mapper-derived datasets (4793/4831 = 99.2%, Fig.  4A, B). All mappers did, how-
ever, produced considerable amounts of FP and a few FN  m5C calls, mainly in low 
mappability regions of protein coding genes (Fig. 4C–E). When inspecting the data, 
we found that FP and FN  m5C sites were mainly a result of incomplete (simulated) 
bisulfite conversion (i.e., not all reads contained a C-to-T NC at a true  m5C site) and 
missing FN reads in low mappability regions (Additional file  1: Figure S18), in line 
with reported experimental artifacts of the BS-seq protocol [29–32]. False positives 
were called with methylation rates over the whole range (20–100%) which makes such 
calls not straightforward to filter. Although advanced filtering approaches (e.g., by in 
silico folding of transcripts and checking for the base-pairing status of potential  m5C 
sites [6, 33]) would likely reduce false calls, our analysis clearly shows that regions of 

Fig. 4 Effect of (NC) mappability on methylation site reconstruction. To estimate the impact of (NC) mapping 
biases on methylation site calling, we simulated RNA-BS-seq data for transcripts overlapping 4831 published 
mESC  m5C sites (see Additional file 1: Supplement for details). A High correlation of published (“truth”) and 
simulated methylation rates. B Upset plot showing the number of simulated  m5C calls recovered from 
HISAT-3N, meRanGs and Segemehl alignments. Calls were classified with respect to the simulated sites as TP/
FP/FN. C FP and FN calls were predominantly located in regions with low mappability. D Methylation rate 
correlations for HISAT-3N, meRanGs, and Segemehl. Note that these plots also contain methylation rates for 
FN (light-red) and FP (dark-red) calls but shown correlation coefficients were calculated from TP calls (green) 
only. All three mappers produced a significant number of FPs, several of them shared (cf. 4B), as well as a few 
FN calls. Example calls are depicted in Additional file 1: Figure S18. E False calls were located predominantly in 
protein coding genes
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low genome mappability are hotspots of false  m5C calls and should be handled with 
particular care.

Genome‑specific features impact NC RNA‑seq data analysis in different species

Finally, we repeated our analysis with human data (GRCh38, canonical Ensembl genes) 
using the same configuration parameters as for the mouse data experiments for com-
parison and reference (Additional file 1: Table S2). Note that when comparing genome 
mappability distributions between our selected human and mouse annotations, we 
found slightly but significantly increased mappability for mouse annotations and more 
human transcripts in the medium mappability category (Additional file 1: Figure S19). 
We found, however, also less low mappability transcripts in the human annotations. 
Human exon/intron annotations were slightly shorter/longer respectively when com-
pared to mouse annotations. Overall, the human data showed very similar results when 
compared to our mouse datasets with differences possibly explained by the abovemen-
tioned difference in mappability distributions.

Discussion
We presented splice_sim, a versatile RNA-seq simulation and evaluation framework, and 
used it for a comprehensive analysis of annotation-based mapping accuracies of regular 
as well as NC reads that focused on potential effects on downstream analyses. Overall, 
our analysis revealed that mapping accuracies with and without NC are high  (F1 > 0.98) 
for all considered mappers when considering annotations with high/medium genome 
mappability but substantially lower  (F1 < 0.55) for low mappability ones, a considerable 
fraction that includes protein coding as well as regulatory RNAs of biological impor-
tance (Additional file 1: Figure S1 [12]). Particularly in regions with low genome map-
pability, we observed considerable differences in mapping accuracies among groups of 
unmodified and NC reads that consequently lead to increased error rates in measures 
based on the comparison of such read groups (e.g., FCR). Other than for many met-
rics derived from regular RNA-seq data (e.g., relative abundances), NC mapping biases 
do not cancel out and we demonstrate that they can lead to wrong estimates of down-
stream measures (transcript half-lives or isoform estimates) which in turn affect biologi-
cal implications/interpretations.

Our result tables for mouse and human metabolic labeling and RNA-BS-seq data, 
including raw counts, performance measures, and categorical data, are built on GEN-
CODE annotations and published alongside this manuscript. A summary plot of these 
tables is provided in Additional file  1: Figure S26: for each transcript, we calculated 
which of the evaluated mappers showed the best performance with regard to gen-
eral mapping accuracy, FCR and FMAT reconstruction, reporting both mappers if we 
observed only small differences and none if we considered the differences to the true 
values too large for a useful analysis. We demonstrate how our results can guide data 
cleaning and analysis strategies: using simple approaches such as best mapper selection 
(e.g., in a “mosaic” approach) or filtering of identified problematic introns, we were able 
to improve overall accuracy of derived measures and thereby biological interpretability. 
The demonstrated accuracy gains due to “mosaic” analysis strategies demonstrate that 
the evaluated mappers differ to some extent in the made mapping errors due to their 
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differing alignment algorithms/approaches, and overall, our evaluation does not render 
one of them superior to the others. In practice, a “mosaic” analysis strategy, however, 
requires the generation of (at least) two alignments per dataset thereby increasing analy-
sis costs. As an alternative, intron filtering can be used to improve FMAT predictions as 
demonstrated. Our datasets furthermore provide information about which transcripts 
cannot be analyzed with respect to what measures reliably with short read data and 
should be handled with care or omitted from analysis.

We provide fine-grained precompiled result sets for all annotated transcripts of the 
GENCODE annotation that are useful for benchmarking read mappers on NC data sets. 
Users can directly look up how a given mapping tool will perform on their genomic fea-
ture of interest and take countermeasures to mitigate bad estimates from problematic 
regions. Users are also encouraged to apply our software and analysis scripts to calculate 
mapping accuracy data for alternative model organisms and annotation sets and devise 
new data cleaning and filtering strategies. While our study considered the entirety of the 
(theoretically) expressed mouse and human transcriptomes, splice_sim is applicable to 
arbitrary genomes and genomic annotations, thereby also allowing to study NC mapping 
accuracies in non-coding regions of the genome.
Splice_sim can also be used to measure the potential impact of sequencing protocols 

and analysis pipelines on read mapping accuracies and downstream measures, thereby 
helping to develop best practices for experiments and data analysis. Splice_sim was, for 
example, used to study and quantify the influence of read length on mapping accuracy 
(Figure S29), which showed that longer reads increase mappability along all categories 
but show the same characteristics as their shorter counterparts. In another analysis, we 
compared datasets with and without passing known splice sites to the read mappers and 
confirmed the large impact of this knowledge on spliced read mapping accuracy (Fig 
S13-15). We also demonstrated that 3′ end sequencing is a valid alternative to whole-
transcript sequencing, which has advantages for certain applications, such as FCR esti-
mation, and showed that it is beneficial to map 3′ end reads to the whole genome to get 
most accurate FCR estimations (Fig S7-8). Finally, we demonstrated that low mappability 
regions are hotspots of false  m5C calls that are not straightforward to filter based on 
measured methylation rates (Fig. 4). Besides experimental optimizations of RNA-BS-seq 
protocols, splice-sim can thus help to establish accurate and reproducible sets of true 
 m5C sites in mammalian transcriptomes which were reported with large variation (rang-
ing from < 100 to > 10 k sites) in current literature [7].

Related work
Splice_sim distinguishes itself from previous RNA-seq simulators by its ability to simu-
late mixtures of regular and NC reads and its evaluation module that provides users with 
detailed mapping accuracy assessments and additional resources (such as read highlight-
ing and BAM files containing misaligned reads) that are useful for subsequent process-
ing/analyses [34, 35]. Splice_sim supports arbitrarily complex isoform mixes, comparable 
to Polyester [36], and uses ART [37] for the actual simulation of (unmodified) high-
throughput sequencing reads, but this module could easily be replaced by alternative 
RNA-seq simulators (e.g., Camparee [38], BEERS [39], or RSEM [40]). Notably, splice_
sim quantifies mapping accuracies for entities of direct biological interpretation (e.g., 
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exons and introns) instead of general genomic regions as most previous work on genome 
mappability to which our work is complementary [15, 19, 41].

Limitations
There are some limitations to our chosen approach for estimating mapping accuracies: 
first, our method is based on simulations as it is obviously unfeasible to iterate all pos-
sible NC reads which could lead to biases due to stochastic effects. We are, however, 
confident that stochastic effects would be rather small based on our analysis of three 
replicates that showed very high correlation (Additional file 1: Figure S22).

Second, for our main dataset (m_big), we configured splice_sim to simulate one tran-
script for each annotated mouse gene with similar read coverage which also means that 
reads from all transcripts can be mismapped and potentially contribute to false-positive 
counts. Our results should thus be interpreted as worst-case scenarios in this regard, 
and we encourage users to repeat our analysis with a configuration that better reflects 
transcript expression levels in their cell-type of interest (e.g., estimated from standard 
RNA-seq data) to avoid this bias. Comparing our data to a smaller dataset containing 
only transcripts that are actively transcribed in mESC, however, showed high correla-
tion and only small differences that could be attributed to inflated FP counts (Additional 
file 1: Figure S23). We also investigated what fraction of FP reads change their labeling 
status (i.e., from labeled to unlabeled or vice versa) due to misalignment that introduces/
masks NCs but found this to be a minor problem (Additional file 1: Figure S24).

Third, splice_sim is currently based on single-end reads only, a configuration that is 
widely considered as a cost-effective option for standard and NC RNA-seq experiments. 
Nevertheless, paired-end data would have two central advantages in the discussed 
experimental settings: first, it would arguably improve overall mappability as both mates 
would contribute to overall (fragment) mappability. Second, overlapping mates could be 
used to correct for sequencing errors in the overlapping regions [42]. We therefore plan 
to extend our software to support such scenarios in the future.

Fourth, splice_sim employs Bernoulli processes for simulating NC, a method we deem 
suitable for RNA-BS-seq and SLAM-seq data (see Additional file 1: Figure S30). Differ-
ent simulation approaches might, however, be necessary when investigating sequence-
context specific NC patterns (e.g., A-to-I RNA editing mediated by the ADAR enzyme 
family [43]), complex mutational signatures as found in FFPE-derived DNA [44], or 
extensive depurination and cytosine deamination as observed in ancient DNA [45]. To 
enable researchers to implement more sophisticated and domain-specific simulation 
methods, we have designed the NC simulation component of splice_sim as a versatile 
Python method. This method, providing access to genomic coordinates and configura-
tion parameters of simulated reads, is readily adaptable for diverse and domain-specific 
simulation needs.

Conclusions
Our study demonstrates how minor differences in mapping accuracy between regular 
and nucleotide-converted reads may cause considerable numbers of outliers and false 
calls in downstream measures with direct biological interpretation, such as RNA stabili-
ties or post-transcriptional methylation site calls. We offer a comprehensive simulation 
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and evaluation framework along with simulated datasets and respective analyses that 
quantify these mapping biases with genomic mappability and selected read mapper 
being main determinants. Our findings not only elucidate the extent of this issue but 
also aid in developing effective mitigation strategies, and we demonstrate how a simple 
“mosaic” selection strategy based on mapper ensemble data can enhance overall data 
accuracy.

Our simulation and evaluation pipeline, along with the accompanying datasets, can 
directly be used for filtering and/or correction of experimental data as documented, 
thereby improving overall accuracy and reliability of derived biological interpretations. 
Splice_sim’s applications encompass a range of functionalities: (i) assessing the effects 
of nucleotide conversions and read lengths on mapping accuracies, (ii) evaluating read 
mapper configurations and sequencing approaches (such as whole transcriptome ver-
sus 3′ end sequencing), (iii) refining data quality by excluding low-accuracy transcripts, 
exons, or introns, (iv) employing a “mosaic” approach to select data based on optimal 
mapping accuracy, and (v) generating test datasets for new methodological develop-
ments in nucleotide conversion (NC) research. We also provide an R Markdown (Rmd) 
script with the splice_sim source code to demonstrate these applications.

Methods
Splice_sim is implemented by a set of Python and R scripts that are orchestrated by nex-
tflow pipelines [46]. The complete software stack is bundled in a Docker container to 
increase reproducibility and usability. A detailed description of splice_sim is provided in 
Additional file 1: Supplement (Additional file 1: Figure S20 and 21). Briefly, it simulates 
short reads with realistic sequencing errors for a set of configured transcript ids and iso-
forms and injects NCs with given conversion rates and configurable sets of SNVs with 
given variant allele frequencies (VAF). For our main evaluation dataset (m_big), we sim-
ulated 1:1 ratios of premature (unspliced) and mature (fully spliced) isoforms for > 50k 
mm10 (GRCm38) transcripts with five different conversion rates (0, 1, 3, 5, 10%). We 
simulated three replicates and mapped the reads with STAR and HISAT-3N. Mapped 
reads were classified as true positive (TP), false positive (FP), or false-negative (FN) with 
respect to given genomic features of interest (exons, introns, full transcripts, and splice 
junctions) by comparing to the simulated data (see Additional file 1: Supplement for a 
detailed description of this procedure). Resulting count tables were grouped by read 
mapper, conversion rate, annotation feature id, originating isoform, reads with at least 1/
at least 2 NCs, and reads with at least 1/at least 2 simulated sequencing errors. Data was 
annotated with additional meta-data (e.g., GENCODE gene types) as required and ana-
lyzed in RStudio v2022.02.1. For estimating genome mappability per feature, we down-
loaded umap mm10/hg38 single-read k24 tracks from https:// bismap. hoffm anlab. org 
and calculated mean values over annotation feature intervals. Features were then classi-
fied into three mappability categories: high (mean value > 0.9), low (< 0.2), and medium.

Mapping performance per annotation (transcript, exon, intron, splice-junction) was 
measured by precision ( TP

TP+FP ), recall ( TP
TP+FN ) and accuracy using the  F1-measure: 

F1 = 2×
precision×recall
precision+recall

 = 2×TP
2×TP+FP+FN . Fraction of converted reads per annotation was 

defined as the ratio between NC containing reads and all reads, FCR =
#converted−reads

#all−reads
 . 

https://bismap.hoffmanlab.org
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All reads with at least one NC were considered converted. Fraction of mature isoform 
per transcript was calculated as

where spl, acc, and don are intron splicing, donor overlapping, and acceptor overlapping 
reads respectively. Given the configured 1:1 ratio between mature and premature iso-
forms, we expected a theoretical FMAT value of 1 3 and recovered a mean value of 0.334 
from our simulated data (cf. Fig. 3D). Intron filtering per transcript was implemented 
as follows: we first sorted introns by decreasing FMAT difference to the simulated data 
and consecutively filtered introns with a difference greater than 10% until no more such 
introns were available or until removal of the next intron would lead to less than 100 
remaining informative (spl + don + acc) reads for this transcript.

For the RNA decay experiments, we simulated mature (for transcript decay rates) 
and premature (for intron decay rates) isoforms for six timepoints with arbitrary units 
and 5% T/C conversion rate. The fraction of labeled and unlabeled RNA per time point 
was configured in a way that the resulting FCR values follow a simple exponential 
decay model FCR ∼ et×−k where t is time and k is the decay rate constant. We simu-
lated data for ~ 2.3k transcripts with three randomly assigned decay rates (fast/k = 0.15, 
moderate/k = 0.1, slow/k = 0.05), mapped the reads, annotated T-to-C conversions in the 
BAM files, and extracted reads with at least one T-to-C conversion to new BAM files. 
We then counted reads per genomic annotation with featureCounts [47] for complete 
and T-to-C-only alignments, calculated FCR per transcript and intron, and fitted the 
data to the exponential model in R. A more detailed description of this procedure is pro-
vided in Additional file 1: Supplement. Resulting half-life estimates were compared to 
the theoretical and simulation-derived values and we compared goodness-of-fit between 
mappers by Efron’s pseudo-R2 values that were calculated as 1− rss

tss where rss is the sum 
of the squared model residuals and tss is the total variability in the dependent variable 
(Additional file 1: Figure S10).

For the human dataset (h_big), we used the same configuration as for m_big and sim-
ulated data for all GENCODE v39 (GRCh38) transcripts annotated with the Ensembl 
canonical annotation tag.

For the RNA-BS-seq analysis, we simulated a dataset (m_big_bs) containing the same 
transcripts as m_big and 98% C-to-T conversions. For measuring  m5C calling accu-
racy, we simulated a smaller dataset (m_small_bs) with 1910 transcripts that overlap 
with a set of published methylated  m5C sites called from mESC total polyA RNA-seq 
data (https:// pubmed. ncbi. nlm. nih. gov/ 28077 169, GEO project GSE83432 [33]). Pub-
lished  m5C sites were spiked into the dataset with given methylation rates; simulated 
reads were mapped with MeranGs, HISAT-3N, and Segemehl and filtered for reads with 
mapping quality ≥ 20. Finally, methylation status was called with meRanCall [18] and 
compared to the truth set. A more detailed description of this analysis is provided in 
Additional file 1: Supplement.

For the 3′ end analysis, we used the comprehensive full-length transcript dataset 
(m_big) as reference and simulated several 3′ end datasets, taking the last 200 nt rang-
ing from the transcript 3′ ends with different noise levels (see Additional file 1: Figure 

FMAT =
#mature − isoform− reads

#mature − isoform− reads + #premature − isoform− reads
=

�#spl − reads

�#spl − reads +�#don− reads +�#acc − reads

https://pubmed.ncbi.nlm.nih.gov/28077169
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S7). We then calculated count tables for all scenarios and benchmarked them against 
the full-length reference set for mapping accuracy and FCR estimation. Applying 3′ end 
sequencing for FMAT estimation was omitted as only few evaluated 200 nt 3′ ends span 
a splice-junction. A more detailed description of the 3′ end simulation routine is pro-
vided in Additional file 1: Supplement.

Note that we also evaluated the effect of mapping quality filtering (as often seen in bio-
informatics analysis pipelines) on estimated mapping accuracies and observed a strong 
decrease in the low mappability segment as expected as filtered reads are treated as FN 
by our pipeline (Additional file 1: Figure S25). In high/medium mappability segments, we 
observed small but noticeable accuracy decreases. Note that splice_sim is by default return-
ing counts for unfiltered and mapping quality (MQ > 20) filtered alignments.

Resource benchmarks documenting required computational resources and expected 
runtimes of our pipeline are provided in Additional file 1: Figure S27 and 28.
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