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Abstract 

Microbial pangenome analysis identifies present or absent genes in prokaryotic 
genomes. However, current tools are limited when analyzing species with higher 
sequence diversity or higher taxonomic orders such as genera or families. The Roary 
ILP Bacterial core Annotation Pipeline (RIBAP) uses an integer linear programming 
approach to refine gene clusters predicted by Roary for identifying core genes. RIBAP 
successfully handles the complexity and diversity of Chlamydia, Klebsiella, Brucella, 
and Enterococcus genomes, outperforming other established and recent pange‑
nome tools for identifying all‑encompassing core genes at the genus level. RIBAP 
is a freely available Nextflow pipeline at github.com/hoelzer‑lab/ribap and zenodo.org/
doi/10.5281/zenodo.10890871.
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Background
Based on rapid advances in sequencing technologies and computational approaches 
in the past two decades, classifying bacterial genes into homologous groups based on 
their presence or absence has become a common comparative task called microbial 
pangenomics [1–3]. Pangenomics aims to understand the whole genomic content of a 
species or population, including both the core genome (conserved genes shared by all or 
nearly all members of the group) and the accessory genome (variable genes that are pre-
sent in only a subset of members) [1, 4]. Besides “core genome” and “accessory genome”, 
terms like “persistent”, “shell”, and “cloud” are used to describe different sets of genes 
based on their varying levels of presence across a given set of genomes.

Determining the pangenome allows for comparing multiple genes and identifying evo-
lutionary relationships [2, 5], thus providing new insights into bacterial pathogenicity 
and clinical microbiology [6]. Overall, classifying genes into categories such as “core” 
and “accessory” allows insights into the evolution and adaptation of a particular species 
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or group of species and helps researchers identify critical functional genes that may be 
important for understanding the biology and ecology of these organisms. This can be 
particularly important in bacteria because of their high genetic diversity and ability to 
exchange genetic material through mechanisms such as horizontal gene transfer.

Today, researchers have access to various tools [7] to input genomes or genes to 
define accessory and core genes or, at an even finer granularity, shell, cloud, and persis-
tent genes. Recent tools, such as Roary [8], Panaroo [9], and PPanGGOLiN [10], typi-
cally involve aligning the genomes/genes and identifying shared and unique genes. To 
this end, the genes are annotated using tools such as Prokka [11] or Bakta [12] before 
being provided as input for gene-oriented approaches to pangenome content discovery. 
The resulting gene groupings depend on the applied computational tool [13–15] and 
parameter settings, e.g., sequence similarity thresholds or the relative number of input 
genomes required to make up a specific group.

One challenge in pangenomics is dealing with a large amount of data generated by 
analyzing multiple genomes. This can require significant computational resources and 
expertise in bioinformatics. In addition, pangenomics studies often involve analyz-
ing diverse populations, which can be difficult to define and sample accurately. In this 
context, a particular problem arises when sequence similarity between genes belong-
ing to the core genome is low, for example, when calculating a pangenome for diverse 
species at the genus level. In this case, it may be difficult to correctly assign genes to 
the core genome, and they may erroneously end up as independent groups in the acces-
sory genome. Thus, defining homology based on sequence similarity alone often under-
estimates the true core genome, especially when comparing genomes across species 
or genus boundaries. Established pangenome tools [8–10] usually focus on calculat-
ing pangenomes at the species level and not beyond and evaluate themselves accord-
ingly at this evolutionary level. However, in our experience, the composition of the 
input genomes and their sequence similarity, reflecting their evolutionary relatedness, 
can pose a challenge for computational pangenome tools. In particular, when going 
beyond the species level, default sequence similarity thresholds may be too high, lead-
ing to underestimation of core gene sets, while thresholds that are too low may lead to 
more false positive assignments. Simply scaling up established bioinformatics pipelines 
will not be sufficient to realize the full potential of rapidly growing and diverse genomic 
datasets [15]. Therefore, new, qualitatively different computational methods and para-
digms are needed to advance the field of computational pangenomics.

While other pangenome tools use some degree of gene neighborhood information 
to distinguish between orthologs and paralogs, they do not use gene neighborhood 
information to infer orthology itself, independently of sequence identity. For example, 
Roary uses information about the neighborhood of conserved genes to split homolo-
gous groups containing paralogs into groups with true orthologs [8]. But what if the 
homologous group was not formed due to insufficiently high sequence similarity in the 
first place? Here, we propose a new method that combines an accurate initial computa-
tion of gene clusters based on high sequence similarity with a less stringent scaffold-
ing approach to combine these clusters into larger gene family groups. To perform this 
scaffolding, we adopt an integer linear programming (ILP) approach, a mathematical 
method used to find the best possible solution from a set of alternatives by optimizing a 
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particular target, under a set of constraints. In the context of pangenomics, ILP can be 
considered a tool to understand the most probable ways genes have moved, duplicated, 
or disappeared over time. In other words, we model synteny information (the conserva-
tion of gene order and orientation) through ILP formulations that allow us to optimize 
gene order conservation to extend gene clusters beyond high sequence similarity.

Results
Overview

Here, we present RIBAP, a comprehensive bacterial pangenome annotation pipeline 
based on Roary [8] and pairwise integer linear programs (ILPs) as originally introduced 
by Martinez et al. [16]. We specifically designed RIBAP to compute core gene groups for 
evolutionarily diverse genome inputs. The development of the pipeline was motivated 
by our comparative genome studies on different Chlamydia species [17–19]. Here, we 
could not calculate meaningful core genome sets based on experts’ evaluation using the 
available pangenome tools without lowering the sequence similarity cutoff well below 
the values recommended by the pipeline authors. Therefore, we decided to keep the ini-
tial pangenome calculations with high thresholds for sequence similarity and refine the 
resulting gene clusters as we proceeded, ending in implementing the RIBAP pipeline. 
RIBAP uniquely merges these initial gene clusters, constructed based on high sequence 
similarity, with a novel scaffolding method that employs pairwise ILPs. The ILPs opti-
mize for both sequence similarities and gene order conservation and allow us to com-
bine these clusters into larger gene family groups—even at the genus level. By that, we 
address limitations in traditional pangenome analyses by explicitly considering synteny 
when defining homologous genes, thereby refining our understanding of orthologous 
relationships and gene arrangement evolution in bacterial genomes.

In the context of our manuscript, synteny refers to the conservation of gene order 
and orientation across different genomic regions and between different genomes. This 
concept goes beyond sequence similarity to encompass the organizational relation-
ship between genes to provide insights into genomic evolution, rearrangements, and 
gene duplication. Our ILP formulation harnesses synteny by modeling these conserved 
gene sequences and adjacencies, allowing us to infer evolutionary relationships and 
refine the identification of gene clusters in pangenome analysis. In this study, we further 
define a gene as part of the core genome if it is present in all (100%) input genomes. 
This is important because such a constraint reduces the predicted core gene size of other 
pangenome tools, which would otherwise define a core gene if it is present in > 99% of 
the input genomes, for example. However, since we are particularly interested in detect-
ing the genes that are present in all input genomes, we compare the results of RIBAP at 
this level with those of other pangenome tools. More information using lower thresholds 
for core gene detection can be found in Additional file 1: Fig. S1.

First, RIBAP performs annotations with Prokka [11], calculates a pangenome with 
Roary, refined by pairwise ILPs, and finally visualizes the results in an interactive HTML 
table linking each gene family of the pangenome to its multiple sequence alignment and 
sequence-based phylogenetic tree. RIBAP is implemented in Nextflow [20] and comes 
with Docker/Singularity/Conda support for easy installation and execution on local 
machines, high-performance clusters, or the cloud.
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RIBAP reconstructs more comprehensive core genomes when dealing with diverse input 

genomes

To compare the performance of RIBAP, we analyzed the results of different tools com-
monly used to calculate pangenomes [8–10]. While such tools perform well on input 
genomes from the same taxonomic species, core genomes may be underestimated when 
sequence diversity increases. Thus, we applied RIBAP and three other tools (Roary, Pan-
aroo, PPanGGOLiN) to different bacterial datasets (Brucella spp., Chlamydia spp., Ente-
rococcus spp., and Klebsiella spp.; Additional file 2: Table S1). To challenge the tools, we 
deliberately chose the datasets also to include genomes with lower sequence similarity. 
We ran the tools with their default parameters, but since these are often optimized for 
species-level comparisons, we also adjusted the sequence similarity thresholds to allow 
for a fairer comparison with RIBAP. To investigate how similar the selected genomes 
are at the protein level, we calculated pairwise POCP (percentage of conserved proteins) 
values for the genomes belonging to each species and as originally proposed by Qin et al. 
[21]. POCP quantifies the degree of protein conservation between two genomes and is 
thus a measure of genomic similarity and a widely accepted metric for the delimitation 
of genera in the genome-based taxonomy of prokaryotes [21]. Each POCP value corre-
sponds to the sum of the conserved proteins of two genomes (e-value < 1e − 5, sequence 
identity > 40%, alignment length > 50%) divided by the sum of the total number of pro-
teins of both genomes. The POCP values showed that our datasets include highly similar 
and more distant genomes (see Additional file 3: Table S2 and https:// osf. io/ g52rb). For 
example, the Brucella dataset includes three genomes with pairwise POCP values ~ 89% 
(09RB8471, 09RB8910, 141012304), while most genomes have a POCP significantly 
larger than 95%. The POCP calculation also highlights Brucella vulpis strain F60 with 
POCPs ~ 91% as more distant in this dataset. Another extreme example is Klebsiella 
michiganensis strain RC10, which has a POCP of only 60% compared to Klebsiella oxy-
toca strain CAV1374 and a generally low pairwise POCP in this dataset.

Using their default parameters or slight sequence similarity optimizations, all evalu-
ated tools generally yield a similar core gene size when the input genomes are from the 
same species (Fig. 1, Additional file 4: Table S3). For example, all tools provide compa-
rable core gene set sizes for the Brucella melitensis and Chlamydia trachomatis data-
sets at the species level, also largely independent of the sequence similarity thresholds 
(Fig. 1). These two datasets also have the highest average POCP values of 99.44% and 
98.86%, respectively. The species-level data sets for Enterococcus faecium and Klebsiella 
pneumoniae with average POCP values of slightly below 90% already show a wider range 
of predicted core genome sizes with different sequence similarity cutoffs (Fig. 1). How-
ever, including genomes from different species of the same genus decreases the size of 
core genomes for all bacterial genera tested (Fig. 1). While the Brucella spp. dataset with 
the highest average POCP among the genus datasets of 97.09% already shows a greater 
reduction in core genome size when using PPanGGOLiN and Roary, the effect is even 
more dramatic for the other three genus datasets (Fig. 1). Most surprising are the results 
for Chlamydia and Enterococcus on the genus level. While other tools, using default 
parameters, compute core gene sets containing only 0–13.77% (Chlamydia spp.) and 
0.7–11.58% (Enterococcus spp.) of the average number of annotated genes (Fig.  1 and 
Additional file 4: Table S3), RIBAP’s core gene set covers 83.69% and 49.92% of the genes, 

https://osf.io/g52rb
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respectively. These results are also more consistent with previously published core gene 
sets calculated on less diverse input datasets of Chlamydia spp. and Enterococcus spp. 
[22–24]. While adjusting the sequence similarity cutoffs for Roary, Panaroo, and PPanG-
GOLiN helps to find larger core gene sets, especially for datasets with lower POCP, these 
remain below the number of core genes found by RIBAP (Fig.  1). However, the tools’ 
original authors generally do not recommend reducing the sequence similarity cutoffs 
too much to avoid false-positive assignments. Thus, when sequence identity among CDS 
is low, other pangenome tools are especially challenged to identify homologous genes. 
POCP calculations of the datasets further indicate this.

The results presented in Fig.  1 are based on genes detected in 100% of the input 
genomes. Lowering this cutoff increases the number of recovered genes (Additional 
file  1: Fig. S1). The number of genes discovered by RIBAP increases slightly to mod-
erately depending on the dataset (Additional file 4: Table S3). This effect is more pro-
nounced in genus-level comparisons compared to species-level comparisons, but it 
also varies with the selected genomes per dataset. For instance, lowering the cutoff to 
99%—considering genes as core genes present in 99% of the input genomes—recovers 
more core genes for the Klebsiella spp. dataset (genus level) across all compared tools 

Fig. 1 Detected number of core genes (genes present in all (100%) input genomes) in relation to the 
average number of genes (y‑axis) compared to the average POCP values (x‑axis) per dataset, tool, and 
sequence similarity threshold. Roary, Panaroo, and PPanGGOLiN were run with different sequence similarity 
thresholds, as shown in the legend. Each tool’s default parameter for sequence similarity is printed in bold. 
Filled symbols represent genus‑level records, while non‑filled symbols represent species‑level records. 
For example, all tools show similar results for the Chlamydia trachomatis species‑level dataset, where 
they generate a core gene set that covers ~ 86% of the average gene count. However, for the Chlamydia 
genus‑level dataset, the core genes covering the average number of genes range from ~ 0% (Roary 95%, 
Panaroo 98%, PPanGGOLiN 95%) to ~ 83% (RIBAP). Again, note that in this comparison, only genes that were 
detected in all input genomes (no shell or cloud genes) are included. In the supplement, we additionally 
show the results for genes present in 99%, 95%, and 90% of the input genomes (Additional file 1: Fig. S1 and 
Additional file 4: Table S3). RIBAP uses the Roary 95% sequence similarity results to refine the gene groups 
(Fig. 2)
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(Additional file 1: Fig. S1). For this dataset, PPanGGOLiN, with an 80% similarity cutoff, 
detected only 29.60% core genes relative to the average number of annotated genes at 
a 100% core gene cutoff. However, reducing the core gene cutoff to 99% resulted in the 
detection of 53.76% core genes. In contrast, for the Chlamydia spp. dataset, there is only 
a small increase in the number of detectable genes when the core gene cutoff is lowered 
(Additional file 1: Fig. S1).

Detailed results: Brucella

Our POCP analysis of Brucella spp. genomes revealed high inter-species genome sim-
ilarity, with average POCP values of 99.44% for B. melitensis and 97.09% for Brucella 
spp. This high similarity facilitated the calculation of the core genome, as seen in Fig. 1 
(and Additional file  1: Fig. S1, Additional file  3: Table  S2, Additional file  4: Table  S3). 
All pangenome tools performed well with the Brucella dataset, indicating robust results 
even when genomes from different species are included and default sequence similarity 
thresholds are used. This may be also a consequence of the (historic) taxonomic classi-
fication of brucella strains, which is characterized by relatively high sequence similarity 
thresholds [25, 26].

Detailed results: Klebsiella

We did not observe a drastic decrease in core genome size for the species-level data set 
(Klebsiella pneumoniae), but we did for the genus-level data set (Klebsiella spp.) (Fig. 1). 
The POCP values showed relatively high pairwise sequence similarity, especially within 
K. pneumoniae strains (average 89.43%). An outlier, K. michiganensis strain RC10, had 
lower POCP values (~ 65%). The average POCP for Klebsiella spp. was 86.32%. On the 
genus level, RIBAP recovered the largest core genome (60% of annotated genes), while 
Roary, Panaroo, and PPanGGoLiN recovered significantly smaller core genomes (3.33%, 
16.12%, and 29.60%, respectively) using default parameters and when considering core 
genes to be present in all input genomes. For K. pneumoniae, RIBAP recovered 85.5% 
of core genes, compared to lower percentages by the other tools (Fig.  1). Comparing 
the Klebsiella spp. genus-level core genome sizes with the predicted core genome sizes 
of the K. pneumoniae species-level dataset supports our hypothesis that diverse input 
genomes challenge pangenome tools. A small reduction in POCP values thus caused 
tools to lose many core genes. However, lowering sequence similarity thresholds again 
helps to recover more core genes that are detected in all input genomes (Fig. 1).

Detailed results: Chlamydia

The Chlamydia dataset, comprising the entire genus, showed varying POCP values, with 
C. pneumoniae having the lowest (~ 76%). C. trachomatis maintained high POCP values 
(> 96%), resulting in sound core genome sizes, regardless of sequence similarity cutoffs 
(Fig. 1). However, including other species with lower POCP values significantly reduced 
core genome sizes. For Chlamydia spp., RIBAP calculated a core genome of 772 genes, 
aligning well with independent literature estimates (around 880 for C. trachomatis and 
700 for Chlamydia spp.) [23, 24]. In contrast, Roary, Panaroo, and PPanGGOLiN recov-
ered very few core genes at the genus level but improved with lower sequence similarity 
thresholds (Fig. 1 and Additional file 4: Table S3).



Page 7 of 21Lamkiewicz et al. Genome Biology          (2024) 25:170  

Detailed results: Enterococcus

We made similar observations with the Enterococcus dataset. Here, E. faecium genomes 
had pairwise POCP values between ~ 76% and 99% (average 88.78%) (Additional file 3: 
Table S2). Including other Enterococcus spp. genomes resulted in lower pairwise POCP 
values (68.75% on average). Thus, core genome sizes decreased drastically for the genus 
level with default parameters but improved with lower sequence similarity thresholds. 
RIBAP proposed a core genome size of 1491 genes for Enterococcus spp., covering 
74.96% of the E. faecium core genome size, whereas Roary, Panaroo, and PPanGGOLiN 
calculated much smaller core genome sets (Fig. 1).

Further details about the POCP values, RIBAP results, and their comparison with 
the other pangenome tools for all four bacteria data sets can be found in the Additional 
file 1: Text S1.

RIBAP identifies core genes with low sequence similarity from diverse input genomes

To emphasize the advantages of RIBAP, we looked at the ompA gene, which is present in 
all species of Chlamydia. This gene encodes the major outer membrane protein or porin, 
which researchers have been using to subdivide the major species of Chlamydia into dif-
ferent serotypes based on recognized epitopes on the protein surface [27, 28]. As shown 
in Fig.  2, the protein sequence similarity of OmpA in different species of Chlamydia 
can be as low as around 60%. Due to the ILP refinement implemented in RIBAP, we can 
reconstruct this core gene despite its high sequence diversity. In contrast, Roary, Pana-
roo, and PPanGGOLiN do not detect ompA as a core gene of Chlamydia spp. when used 
with default parameters. Furthermore, using the default parameter of Roary (sequence 
similarity threshold of 95%), Fig. 2 also indicates that Roary would not even detect ompA 
as a core gene for the individual species C. trachomatis or C. psittaci, respectively. In 
both cases, sequence similarity must be reduced to 80% to recognize ompA as a core 
gene with Roary (Fig. 2). This further supports our point that many pangenome calcu-
lation tools underestimate the actual number of core genes, even if genomes from the 
same species are used as input. In this context, we want to emphasize again that RIBAP 
currently defines a gene as part of the core genome if it is present in all input genomes. 
However, the user can also filter the output table to include genes from RIBAP groups 
that cover fewer input genomes (see also Additional file 1: Fig. S1 and Additional file 4: 
Table S3).

Discussion
Scope, limitations, and open challenges

There are several important points to consider when using RIBAP to analyze bacte-
rial genomes. Firstly, when examining larger datasets with more than 100 genomes, the 
computational runtime and required disk space can become very demanding due to the 
pairwise gene comparisons and subsequent ILP solving. For example, an input of 32 
Chlamydia genomes (~ 1 Mbp genome size) runs ~ 3 h on 8 cores and requires ~ 84 GB 
disk space when using the optional --keepILPs parameter. We continue to offer this 
option to obtain intermediate ILP results, particularly for further development of RIBAP, 
maintenance, and expert users. Thus, the disk space can be reduced to ~ 2 GB when not 
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storing the intermediate ILP results (default behavior). Running the same dataset on an 
HPC (12 computing nodes with 256 cores each) with the pre-configured SLURM profile 
reduces the runtime to 1 h. The peak utilization of the physical RAM is ~ 2 GB for such a 
dataset. The Brucella dataset comprising 71 genomes (~ 3.4 Mbp genome size) runs ~ 5 h 

Fig. 2 Example output of RIBAP for the Chlamydia dataset (102 genomes). A Screenshot of the summary 
HTML output table. Per default, ten entries are shown. The table can be sorted and searched for gene 
IDs (Prokka), gene names, gene descriptions, and RIBAP group numbers. Hypothetical genes and their 
corresponding groups are also shown. RIBAP groups with a suffix such as “group847.1” indicate potential 
paralogs. Rows can be expanded to show details about the gene members of a RIBAP group. B Shows a 
snapshot of 30 of the 102 member strains of the RIBAP group854 and their annotated gene names and 
descriptions based on Prokka. Additionally, the user can estimate the sequence similarities of involved genes 
based on a heatmap representing the individual Roary clusters with different sequence similarity thresholds. 
For example, we selected ompA, a gene present in all species of the Chlamydia genus and identified as 
core gene group854 by RIBAP. As the colors indicate, Roary failed to sort all ompA genes into one cluster 
with a sequence similarity threshold above 60%. However, its authors do not recommend lowering the 
sequence similarity threshold to this value (see Roary online FAQ). Furthermore, the HTML output includes 
a phylogenetic tree for each RIBAP group and points to the underlying MSA and NEWICK format file. C The 
phylogenetic tree based on all 102 members of group854. The NEWICK tree file from RIBAP was visualized 
with Iroki [29]. The inner dots show bootstrap support (white dot cutoff: 0.5, black dot cutoff: 0.75). Leaf 
dots with black stroke paint mark the strains shown in the snapshot in B. D Zoom into the C. psittaci clade. 
The classification of C. abortus strains in the C. psittaci clade makes sense, given the recent discussions on 
reclassifying atypical C. psittaci [30]. The RIBAP output, including the interactive HTML, can be found at 
https:// osf. io/ g52rb. The figure was finalized for publication with Inkscape

https://osf.io/g52rb
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20 m on an HPC (SLURM default profile), uses up to ~ 5 GB physical RAM, and requires 
3.4 TB disk space when keeping the intermediate ILP results. When running in default 
mode and not keeping the ILPs, the disk space is reduced to ~ 16 GB. The results folder 
has 7.7 GB in both cases. Therefore, we strongly recommend running RIBAP in default 
mode without saving the intermediate ILP results unless they are really needed for addi-
tional examinations. Secondly, while RIBAP performs well on diverse species inputs, it 
is not as effective when analyzing genomes from the same species. Other established 
tools, such as Panaroo [9] or PPanGGOLiN [10], predict sound core genomes for intra-
species genomes (Fig. 1) much faster than RIBAP. Thirdly, at the moment, RIBAP does 
not provide detailed output for core and accessory genomes or persistent/shell/cloud 
categories as known from other tools. Therefore, RIBAP is most useful for estimating 
the core gene set for diverse species inputs. Additional metrics have to be extracted from 
the tabular output RIBAP produces. Furthermore, RIBAP may struggle when analyzing 
highly similar genes present in multiple copies, such as polymorphic membrane proteins 
in Chlamydia, or genomic regions with high plasticity (paralogs). While RIBAP repre-
sents a significant advance in pangenome analysis, particularly at the genus level, it is 
important to recognize that it can also overestimate the size of core gene sets in certain 
contexts (Additional file 1: Fig. S1). For example, the predicted core gene set (consider-
ing 100% of input genomes) for the Enterococcus spp. dataset, which covers 49.92% of 
the average number of annotated genes per genome, is larger than the reported aver-
age of about one-third or even fewer core genes [31, 32]. However, the small number of 
reported core genes can also be explained by the high sequence diversity of Enterococcus 
spp. (Fig. 1), which complicates computational approaches to identify true homologous 
core genes. This potential for overestimation arises from the sophisticated approach to 
integrating different gene clusters and modeling gene synteny with the goal of increasing 
accuracy but can sometimes capture genes in the core set that are not conserved in all 
genomes analyzed. As with any computational tool, RIBAP results should be interpreted 
considering its methodological nuances and in conjunction with complementary anal-
yses to ensure a balanced understanding of genome evolution and gene conservation. 
Finally, our selection of Roary [8] for calculating the backbone pangenome in RIBAP is 
grounded in historical precedence and our accumulated expertise in computing core 
genes across various bacterial genera. Our initial challenges with Chlamydia datasets 
[17–19] prompted us to adopt Roary, and subsequent developments, including Panaroo 
[9] and PPanGGOLiN [10], while valuable, have not necessitated a shift for RIBAP due 
to comparable outcomes in our assessments. However, we acknowledge the strengths of 
such novel approaches currently utilized for pangenome calculations and recognize their 
potential for integrating alternative pangenome tools into RIBAP’s flexible framework in 
the future.

Another limitation is that our extension of the proposed ILP is rather simple. When 
comparing the RIBAP results based on our implementations of Eqs. 1 and 2 (with the 
additional indel model), we found little or no difference in our datasets. However, it is 
conceivable that the indel model captures edge cases on bacterial genomes with multiple 
plasmids and/or prophages. Replacing our model with more sophisticated approaches 
might improve the results of RIBAP further. Recently, Bohnenkämper et  al. [33] pro-
posed an extension of the original ILP by Shao et  al. [34] that enables rearrangement 
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analysis of genomes without imposing further restrictions. Expanding from this, Rubert 
et al. [35, 36] further adapted this model to allow gene family-free analysis of pairwise 
genomes. Our analysis did not seem limited by the naive ILP model involved. However, 
future investigations will have to address the question of whether the accuracy of RIBAP 
can be improved by employing different models to deal with gene duplications and indel 
events.

RIBAP, in its current implementation, is also very strict about categorizing genes into 
the core genome, namely those present in all input genomes. Given input data of even 
higher diversity than in the present study, this conservative threshold could be lowered 
to, e.g., 95%, which is a generally accepted threshold in other studies as well (called soft 
core) [37, 38]. However, RIBAP already calculates and outputs all possible RIBAP groups 
by refining the initial Roary clusters. Therefore, the final output contains all RIBAP 
groups that comprise 100% or less of the input genomes. The user can filter this table to 
select, for example, all RIBAP groups that span at least 99% or 90% of the input genomes 
to obtain a more relaxed core genome. In addition, the user can use the --core_perc 
parameter to specify how many genomes are required for a gene to be considered a core 
gene for the (optional) tree calculation. In this context, it should be noted again that for 
our comparison of other pangenome tools with RIBAP, we also only selected genes as 
core genes that were detected in all (100%) input genomes. This constraint reduces the 
predicted core gene size of these tools, which would otherwise define a core gene if it is 
present in > 99% of the input genomes, for example. Thus, we also performed the same 
comparison with lower gene set thresholds of 99%, 95%, and 90% (Additional file 1: Fig. 
S1). Lowering the core gene detection cutoff from 100 to 99% increases the number of 
detected core genes in genus-level comparisons, particularly for Klebsiella and Brucella 
spp., while showing only a small increase for Chlamydia and Enterococcus spp. (Addi-
tional file 1: Fig. S1).

Finally, RIBAP is not intended to replace existing pangenome tools that work well at 
the species level, especially in cases where POCP is high, and the datasets do not contain 
outlier genomes with larger evolutionary distances (Fig. 1 and Additional file 1: Fig. S1). 
Given the high computational demands, RIBAP excels at analyzing smaller datasets and 
at the genus level, where it brings to light a more comprehensive set of core genes. As an 
exploratory tool, RIBAP improves decision-making with its interactive results, making it 
a valuable tool for detailed analysis and refinement of pangenomes where conventional 
tools may underestimate core genes due to high sequence diversity.

Conclusions
Current computational approaches for calculating the core- and pangenome of 
diverse input genomes are challenged by low sequence similarities of homolo-
gous genes. Therefore, tools tend to underestimate the number of genes present 
in the core genome of inter-species genomes. Here, we described RIBAP, a pange-
nome calculation pipeline, to overcome this limitation and provide an easy-to-use 
framework for scientists to analyze pangenomes of diverse input sets. We demon-
strated its application to four different bacterial clades and showed the advantage 
of using RIBAP when genomes from different species of the same genus were the 
input. By utilizing ILP, we bring a rigorous mathematical approach to refine initial 
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gene clusters of high sequence similarity, enabling a pangenome calculation that 
is resilient to the issues of sequence diversity and annotation inconsistencies. This 
enhances our understanding of bacterial genomes by providing a more nuanced and 
comprehensive view of their core genetic components. Researchers can work explor-
atively with the RIBAP data and search for genes of interest. The data provided in 
the HTML report can be used to analyze the presence/absence and sequence diver-
sity within a species or across the species of the genus.

Analyzing core and pangenomes of bacteria from the same taxonomic clade is 
only one of many use cases we envision for RIBAP and pangenomics in general. Due 
to the improved detection of gene clusters with low sequence similarity, we see a 
future application of RIBAP in studying pan- or core-metagenomes [39] and defin-
ing gene clusters in a metagenomic context [40]. Determining a core gene set within 
or between species of metagenomes is highly complicated due to the different spe-
cies composition and evolutionary distance between bacteria in an environmental 
sample. However, the principles behind RIBAP are promising to test the applica-
tion of the pipeline also on metagenome-assembled genomes (MAGs). Thus, high-
quality MAGs with high completeness and low contamination could be directly used 
by RIBAP to identify core genes that shape a comprehensive representation of the 
genetic content of a taxonomic group in a particular environment.

Methods
Used bacterial datasets in this study

We selected four bacterial datasets with different compositions to evaluate the per-
formance of RIBAP: Enterococcus (44 genomes), Brucella (71), Chlamydia (102), and 
Klebsiella (167). We selected Enterococcus as a representative of gram-positive bac-
teria ubiquitous in various environmental settings and with a diverse genome size 
range from 2.6 to 4.2 Mbp. The Enterococcus dataset is composed of the species E. 
faecium (21 genomes), E. faecalis (14), E. durans (2), E. hirae (2), E. casseliflavus (1), 
E. gallinarum (1), E. mundtii (1), E. silesiacus (1), and E. sp. (1). Brucella are animal 
pathogenic, gram-negative bacteria. Our dataset includes genomes ranging in size 
from 3.2 to 3.6 Mbp with the species B. melitensis (24), B. suis (16), B. abortus (14), 
B. canis (6), B. sp. (4), B. pinnipedialis (2), B. ceti (2), B. microti (1), B. ovis (1), and B. 
vulpis (1). The Chlamydia dataset, gram-negative and human and animal pathogenic 
bacteria, contains the dataset with the smallest genomes in the range of 1–1.2 Mbp 
and includes the species of C. trachomatis (70), C. psittaci (15), C. muridarum (5), 
C. pecorum (3), C. abortus (3), C. gallinacea (2), C. avium (1), C. felis (1), C. pneu-
moniae (1), and C. suis (1). Finally, our largest dataset consists of Klebsiella species, 
gram-negative and human pathogenic bacteria with the largest genome sizes in our 
benchmark of 5.1–7.3 Mbp. The species included are K. pneumoniae (134), K. oxy-
toca (8), K. variicola (7), K. aerogenes (6), K. michiganensis (6), K. quasipneumoniae 
(4), and K. sp. (2). All genomes were downloaded from NCBI and are also available 
here: https:// osf. io/ g52rb; their accession IDs are summarized in Additional file  2: 
Table  S1. For each described genus, we further selected the species with the most 
genomes to assess the performance of RIBAP.

https://osf.io/g52rb
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Calculation of the percentage of conserved proteins

For each dataset, we calculated the percentage of conserved proteins (POCP) with the 
POCP-nf pipeline v2.3.1 [41] (https:// github. com/ hoelz er/ pocp, default parameters) to 
examine how similar the selected genomes are at the protein level. POCP quantifies the 
degree of protein conservation between two genomes, providing a measure of genomic 
similarity, originally proposed by Qin et  al. [21]. Those proteins of the query genome 
that have a hit with an e-value of less than 1e − 5, an identity of more than 40%, and 
an alignable region of more than 50% are called conserved based on the original POCP 
definition. Each POCP value corresponds to the sum of the conserved proteins of two 
genomes divided by the sum of the total number of proteins of both genomes. A POCP 
of 50% was originally proposed as the genus limit. We then summarize the calculated 
pairwise POCP values per data set by calculating an average POCP value. The already 
calculated protein sequences from RIBAP, which uses Prokka (v1.14.6) for annotation, 
were used as input. All POCP values can be found in Additional file 3: Table S2.

General workflow of RIBAP

The RIBAP pipeline (Fig.  3) is implemented in Nextflow, a workflow management 
system for reproducible analyses [20]. Each tool dependency is solved via Conda 
environments or prebuilt Docker/Singularity containers [42]. To ensure compat-
ibility between genome annotations, the pipeline begins by (re-)annotating all input 
genomes with Prokka, a popular tool that identifies bacterial gene features such as 
protein-coding sequences (CDS), tRNAs, and rRNAs [11]. These annotations are then 
used to perform pairwise all-versus-all sequence similarity searches with MMSeqs2 
[43]. The results of these searches are used to generate ILP problems, which are sub-
sequently solved with GLPK [44]. In addition to the MMSeqs2 analyses, the pipeline 
also uses Roary [8] to calculate a pangenome scaffold, which is refined with the help 
of the ILPs (see the section below for details). The final step of the pipeline is to link 
and potentially expand homologous gene families in the Roary scaffold (called “Roary 

Fig. 3 Schematic overview of the RIBAP pipeline. The only mandatory input are genomes in FASTA format 
that can be provided directly or via a CSV file of the paths. Reference annotations in GenBank format (gbk) 
can be provided as optional input to guide Prokka gene annotations. The pipeline will calculate a scaffold 
pangenome producing Roary gene clusters, which are further refined by the ILP results into so‑called RIBAP 
groups. For the genes within each RIBAP group, a multiple sequence alignment (MSA) and a phylogenetic 
tree are calculated and linked in the final summary report table in HTML format. Optionally, a tree (NEWICK 
format, nwk) for all core gene MSAs can be calculated. We use CD‑HIT to remove MSAs that are only 
composed of identical sequences before tree calculation. An UpSet plot visually summarizes overlaps 
between the identified RIBAP groups of all analyzed genomes. The supplement (Additional file 1: Figs. S2 and 
S3) contains example UpSet diagrams at the species (Brucella melitensis) and genus (Enterococcus spp.) levels. 
RIBAP provides all intermediate output files for detailed investigation and further downstream analyses

https://github.com/hoelzer/pocp
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clusters”) using the individual results of the ILP analyses into so-called “RIBAP 
groups” (Fig. 4). We consider every gene that is present in all input genomes as a core 
gene. For each RIBAP group, we calculate a multiple sequence alignment (MSA) and 
a phylogenetic tree with MAFFT [45] and FastTree [46], respectively. Optionally, the 
user can further calculate a phylogenetic tree based on the complete core gene set 
using IQ-TREE 2 [47]. To reduce runtime, we apply CD-HIT [48] with 100% sequence 
similarity on each core gene set MSA and remove MSAs from the core gene set phy-
logeny calculation that lack diversity. RIBAP summarizes the results in an interactive 
HTML file, providing a searchable table and access to all alignments and phylogenetic 
trees for each gene family. All tool versions and the detailed descriptions of the indi-
vidual steps are based on the release version 1.0.3 of RIBAP (https:// github. com/ hoelz 
er- lab/ ribap).

Initial gene annotation

RIBAP utilizes Prokka [11] (v1.14.6, default parameters) to annotate all input 
genomes. Each CDS, defined from start to stop codon, is searched in a protein data-
base derived from UniProtKB. Coding regions without a database hit are labeled as 
“hypothetical protein” by Prokka. In addition, Prokka annotates rRNA and tRNA 
genes. While the gene annotation itself does not affect the calculations of RIBAP, 
the genomic coordinates of each CDS are used to perform subsequent steps in our 
pipeline. The annotation itself is again included when results are summarized in the 
tabular output. Providing a reference annotation file in GenBank format to guide the 
Prokka annotations is also possible. A CSV file can be provided to guide the genome 
annotation using different reference annotations.

Fig. 4 General combination scheme of the Roary and ILP results. The left‑hand side describes a trivial case, 
showing a Roary cluster with five genes that is also a RIBAP group. The middle panel shows two Roary 
clusters (three and two genes, respectively) that are finally merged into one RIBAP group with the help of the 
ILPs. The right‑hand panel shows again two Roary clusters that result in two RIBAP groups. The smaller RIBAP 
group is labeled as a subgroup of the larger RIBAP group. A The original Roary clusters as determined at a 
sequence similarity threshold of 95%. B Extracted genes and their pairwise ILP connections. C The resulting 
RIBAP groups (and the original Roary clusters) after our merging procedure

https://github.com/hoelzer-lab/ribap
https://github.com/hoelzer-lab/ribap
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Roary pangenome calculation

Based on the Prokka annotations, we calculate a preliminary scaffold pangenome using 
the tool Roary [8] (v3.13.0, default parameters except for sequence similarity thresholds). 
Roary outputs homologous genes potentially belonging to a group into clusters. The 
threshold for sequence similarity is set to 95% by default, and the corresponding results 
(Roary clusters) are used for subsequent analysis steps, e.g., for merging with the ILP 
results. However, RIBAP performs additional Roary calculations with lower thresholds 
(60%, 70%, 80%, 90%). The Roary clusters resulting from these lower similarity thresh-
olds are not used for downstream calculations but for visualization and comparison.

Pangenome refinement via integer linear programming

We refine the initial Roary clusters based on 95% sequence similarity to tackle the issue 
of common pangenome calculation tools of underestimating the number of core genes 
in genomes with high sequence diversity or in the context of inconsistent gene annota-
tions [49, 50]. Our approach utilizes individual, pairwise comparisons of the genes of 
all input genomes and refines the scaffold pangenome as calculated by Roary. First, all 
gene features, as predicted by Prokka (mainly CDS, but also tRNAs and rRNAs), are 
used in an MMSeqs2 [43] (v10.6d92c) all-vs-all comparison. We split this output into all 
possible pairwise comparisons between the input genomes. We then use these pairwise 
comparisons to formulate ILPs. The formulation process translates the biological prob-
lem of refining pangenome clusters into a mathematical model which we solve using the 
GNU Linear Programming Kit (GLPK, v4.65) package [44]. By that, we find the opti-
mal arrangement of genes that satisfies all constraints while achieving the objective of 
keeping the number of evolutionary events as low as possible. Through this method, 
we address the challenge of underestimating core genes by systematically evaluating 
all possible configurations of gene clusters, leading to a more accurate representation 
of the core pangenome in diverse bacterial species. However, sequence similarities and 
genomic organization between two genomes can be contradictory, which leads to an 
optimization problem known as family-free DCJ (FFDCJ) distance [16]. Martinez et al. 
proposed ILP to compute the optimal FFDCJ distance between two genomes. For a more 
detailed overview of our ILP implementation, check below.

To limit the run-time of RIBAP, per default, each ILP has a time limit of 240 s (--tmlim 
240 s in GLPK). Additionally, we split the ILP problem of two genomes into several sub-
ILPs based on disjoint components in the initial adjacency graph to reduce RIBAP’s 
runtime even further. Trivial cases where a direct one-to-one mapping of genes is pos-
sible are not parsed into an ILP problem but are directly accepted as homologs by our 
ILP approach.

The ILPs provide homology mappings between genes of lower sequence similarity 
(60% or higher). Thus, we have a scaffold pangenome calculated by Roary and all pair-
wise sets of homologous genes given any two input genomes. This information is merged 
in the following fashion (visualized in Fig. 4): First, we extract all genes for each Roary 
cluster identified using a 95% similarity threshold. Then, we compare hits of each gene in 
our pairwise ILPs with the information Roary provided. In the trivial case, no new infor-
mation is added with the inclusion of our ILPs (see Fig. 4, left). However, if any homolog 
gene derived from the ILPs belongs to a different Roary cluster, the two clusters are 
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merged into a preliminary RIBAP group (Fig. 4, middle and right). To account for gene 
duplications (i.e., paralogs), we further refine a RIBAP group. If any genome has two or 
more genes within the same RIBAP group, we define subgroups for each paralog gene in 
the original preliminary RIBAP group (Fig. 4, right). Let gA be a set of genes that are all 
paralogs in a genome A . To resolve the issue of determining and selecting a representa-
tive homolog gene for all other genomes within this RIBAP group, we compare the indi-
vidual ILP scores and the Roary score. First, we evaluate the number of hits based on our 
pairwise ILPs, i.e., if one gene is connected to the rest of the cluster more often than the 
other gene, we pick this as the representative homolog. If this is ambiguous, we fall back 
to the scaffold pangenome determined by Roary. For each gene in gA , we check the clus-
ter sizes these genes belong to and determine the gene with the largest cluster to be the 
representative homolog. If this second analysis still yields ambiguity, we make the best 
guess based on the Prokka annotation and gene name. This final decision is only made if 
the name of a candidate gene matches the majority of gene names in an existing group. 
The rest of gA is then split into n− 1 subgroups, where n is the size of gA . If two or more 
genomes have paralogs, we repeat the procedure for each subgroup.

FFDCJ distance and ILP implementation

To refine the pangenome calculation by Roary, we employ all-vs-all comparisons of 
annotated genes for each pair of genomes. Let A and B be such a pair of genomes with 
n and m genes, respectively. We use the annotation of Prokka to determine n and m , but 
we do not use the functional annotation, the gene names, itself, to determine further 
homology. Each gene Ai with iǫ{1..n} is compared with each gene Bj with jǫ{1..m} . This 
leads to sequence similarities (and potential orientation differences) between each pair 
of genes of the two genomes. Following previous studies, we first construct a gene simi-
larity graph GSσ (A,B) (Fig. 5A) based on the two genomes A and B and all gene similari-
ties encoded by σ [51]. We use the reported bitscore of MMseqs2 as a combined value 
representative for the sequence similarity and alignment length of two genes. Now, let M 
be a matching, i.e., a subgraph of GSσ (A,B) , such that the degree of each vertex is either 
1 or 0, then AM and BM denote the reduced genomes of A and B . In reduced genomes, 
singletons derived from indel events are removed (Fig. 5B). Due to the orientation of a 
gene, we can distinguish the two ends of a gene called extremities (t—gene tail, or the 3′ 
end; h—gene head, or the 5′ end). We now build the adjacency graph AGσ (A

M ,BM) by 
modeling a gene’s adjacency via the two neighboring genes’ extremities (Fig. 5C). Here, 
assuming identical genome organization, AGσ (A

M ,BM) would result in all cycles in the 
graph being of length two (adjacent genes). We refer to these two elements as “fixed 
components” as no genome rearrangement events are needed to transfer one genome 
to another. For all other components, genome rearrangements have to be applied. Apart 
from genome rearrangements, we must also consider the similarity of individual genes 
if we want to calculate the distance between two genomes without prior assignment of 
gene families. Sequence similarities and genomic organization between A and B could 
be contradictory, e.g., depending on whether one prefers (slightly) higher individual 
similarities or fewer genomic rearrangements such as inversions or transpositions. This 
contradiction leads to an optimization problem described by Martinez et  al., named 
the family-free DCJ (FFDCJ) distance [16]. Martinez et al. proposed an ILP to compute 
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the optimal FFDCJ distance between two genomes A and B . The FFDCJ distance of 
two genomes A and B is defined as given in Eq.  1, where |M| is the size of the maxi-
mum matching in GSσ (A,B) , c is the number of cycles in AGσ (A

M ,BM) and ω(M) are 
the summed weights of the edges in the matching. The parameter α ∈ {0,1} weights the 
genome order and the sum of individual gene similarities.

A maximum matching is then defined as a matching M that maximizes the number 
of paired vertices in GSσ (A,B) . Given two identical genomes, as discussed above, would 
increase the number of cycles in AGσ (A

M ,BM) . Therefore, finding a matching M that (i) 
maximizes the number of cycles and (ii) maximizes the pairwise sequence similarities, 
decreases the FFDCJ distance. Setting α to 0 ignores genome order completely, whereas 
setting α to 1 ignores the sum of individual gene similarities.

We extended the original ILP formulation of Martinez et al. to consider indel events 
(as depicted in Fig. 5B) [52]. First, we label each gene not part of a fixed component as a 
potential indel event. Next, we summarize consecutive indel events into a block [52, 53]. 
This is motivated by the fact that it seems reasonable to have larger indel events, affect-
ing consecutive genes at once, instead of having many individual indel events. Using 
this block model, the requirement of M being a maximal matching prevents solving our 

(1)dFFDCJ (A,B) = α(|M| − c)+ (1− α)(|M| − ω(M))

Fig. 5 A Gene similarity graph of two genomes, A and B, with five and six genes, respectively. Note that, for 
simplicity, edge weights are omitted in this figure. B Two possible matchings of the graph. Both contain an 
indel event. Additionally, M1 contains an inversion and M2 a transposition. C Derived adjacency graph of the 
two matchings. Each gene is denoted by its gene extremities, black edges denote homology across A and B, 
and gray edges represent an adjacency within a genome. t—gene tail, or the 3′ end; h—gene head, or the 
5′ end
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ILP problem with one deletion and one insertion event. Similarly to how Martinez et al. 
count cycles (see [16, 34]), we count blocks of indels and consider them in the objective 
function. For this, two adaptations of the original ILP have been made: (i) for each sin-
gleton, let there be an edge in GSσ (A,B) that connects the two gene extremities of the 
singleton in its genome. We call this edge a self-edge (see [16]) and include its cost to the 
objective function of the ILP. We (ii) define a binary variable bi that indicates whether a 
gene i is at the end of a block [53]. The number of blocks (i.e., number of bi set to 1 ) is 
also included in the objective function. The weights of self edges and blocks are deter-
mined by α (default: 0.5). These adaptations lead to our (naive) FFDCJ-indel distance as 
given in Eq. 2. It extends Eq. 1 by adding the number of singletons S and number of indel 
blocks I to the rearrangement part of the equation. Note that we are still looking for 
maximum matchings, similar to the original ILP. Therefore, an indel event is only con-
sidered if there is no way to match a gene to the other genome. Additionally, we penal-
ize indel events twice by our adaptation; once for every singleton and another time for 
each block of indels. This is based on our observations that only considering one of the 
two adaptations led to a dramatic overestimation of indels (adaptation (i)) or of the ILP 
interpreting genome A as one deletion block and genome B as one insertion block (adap-
tation (ii)).

Alignment, tree, and summary output

For each RIBAP group, we calculate a multiple sequence alignment (MSA) and a phylo-
genetic tree with MAFFT (v7.455, default parameters) [45] and FastTree (2.1.10, default 
parameters) [46], respectively. Lastly, we produce an interactive HTML file, which 
visualizes the pipeline results in a searchable table and links to each MSA and tree. To 
visualize the pangenome, we employ an UpSet plot with the UpSetR package (v1.4.0) 
[54]. The user can also activate the calculation of a phylogenetic tree based on all core 
gene MSAs using IQ-TREE 2 [47] (v2.2.0.3, -spp mode). We used CD-HIT [48] with a 
100% sequence identity threshold on each core gene set MSA to remove any duplicate 
sequences. We further discarded MSAs consisting of only fully identical sequences from 
the core gene set phylogeny calculation. The remaining MSAs are then individually pro-
cessed by IQ-TREE 2 to estimate the best-fitting model for each gene.

Execution of other pangenome tools

We compared RIBAP’s results against Roary (v3.13.0) [8], Panaroo (v1.4.2) [9], and 
PPanGGOLiN (v2.0.4) [10]. Initially, we employed the default parameters for all 
tools to mirror common usage practices, acknowledging that many users might pre-
fer to utilize bioinformatics tools directly out of the box. The standard thresholds 
for sequence similarity or clustering are 95% for Roary, 98% for Panaroo, and 80% 
for PPanGGOLiN. However, to allow for a fair comparison and because the default 
parameters of pangenome tools are often more optimized for species-level compari-
sons, we adjusted the sequence similarity threshold in an attempt to reflect more 
divergent genomes better. The resulting numbers of core genes are given in Additional 
file 4: Table S3 and visualized in Additional file 1: Fig. S1, where core gene detection 

(2)dFFDCJ−indel(A,B) = α(|M| − c + I + S)+ (1− α)(|M| − ω(M))
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thresholds of 100%, 99%, 95%, and 90% were used and a gene is considered a core 
gene if it was found in this percentage of input genomes.

For Roary, we directly used the results of the RIBAP execution, where we ran Roary 
multiple times with different sequence identity cutoffs anyway (0.95 (default), 0.9, 
0.8, 0.7, 0.6). For Panaroo and PPanGGoLiN, we used the already computed anno-
tation files from RIBAP, which uses Prokka (v1.14.6), as input to compare the same 
sequences.

Panaroo has three different cleanup modes: strict (default), moderate, and sensi-
tive. According to the online manual, these different stringency modes mainly affect 
the removal of potential contaminants and errors, leaving most relevant genes intact. 
However, very rare plasmids can be identified as contaminants in strict mode. Since 
we are not particularly interested in plasmids in our comparison, we decided to keep 
the default strict mode for Panaroo but change the sequence identity threshold (-c) 
for clustering (0.95, 0.9, 0.8, 0.7, 0.6), which Panaroo performs first before clustering 
the genes into possible families. We also included Panaroo’s default clustering thresh-
old of 0.98. We decided to keep the default value for determining the level at which 
Panaroo clusters the genes into possible gene families (-f 0.7) to focus on the effects of 
the sequence identity cutoff.

We ran PPanGGOLiN in the “all” mode and changed the percentage of minimum 
sequence identity (--identity) that determines whether two proteins are in the same 
cluster (0.95, 0.9, 0.8 (default), 0.7, 0.6). We decided not to change the number of 
expected partitions, which PPanGGOLiN automatically selects based on a Bayesian 
statistic. We also did not change the --coverage parameter (0.8) to focus on the effects 
of the sequence identity cutoff.
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