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Abstract 

Background: We recently identified ~ 10,000 correlated regions of systemic interindi‑
vidual epigenetic variation (CoRSIVs) in the human genome. These methylation variants 
are amenable to population studies, as DNA methylation measurements in blood 
provide information on epigenetic regulation throughout the body. Moreover, estab‑
lishment of DNA methylation at human CoRSIVs is labile to periconceptional influences 
such as nutrition. Here, we analyze publicly available whole‑genome bisulfite sequenc‑
ing data on multiple tissues of each of two Holstein cows to determine whether CoR‑
SIVs exist in cattle.

Results: Focusing on genomic blocks with ≥ 5 CpGs and a systemic interindividual var‑
iation index of at least 20, our approach identifies 217 cattle CoRSIVs, a subset of which 
we independently validate by bisulfite pyrosequencing. Similar to human CoRSIVs, 
those in cattle are strongly associated with genetic variation. Also as in humans, we 
show that establishment of DNA methylation at cattle CoRSIVs is particularly sensitive 
to early embryonic environment, in the context of embryo culture during assisted 
reproduction.

Conclusions: Our data indicate that CoRSIVs exist in cattle, as in humans, suggest‑
ing these systemic epigenetic variants may be common to mammals in general. To 
the extent that individual epigenetic variation at cattle CoRSIVs affects phenotypic 
outcomes, assessment of CoRSIV methylation at birth may become an important tool 
for optimizing agriculturally important traits. Moreover, adjusting embryo culture con‑
ditions during assisted reproduction may provide opportunities to tailor agricultural 
outcomes by engineering CoRSIV methylation profiles.
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Background
Aiming to boost production efficiency, the cattle industry employs extensive breeding 
and selection techniques to enrich for desirable phenotypic traits. The advancement of 
breeding and selection processes has a long history, spanning over 100 years of data col-
lection and prediction of genetic merit [1]. For example, the lifetime net merit index was 
devised to measure the expected lifetime net profit of dairy animals: it considers a wide 
array of traits (39 individual traits for Holstein cattle so far) and their associated pre-
dicted genetic and genomic merits, then ranks dairy animals with respect to economic 
gains [2]. In addition, compared to traditional methods, single-nucleotide polymor-
phism (SNP)-based genomic selection programs generate more than 100% increases in 
genetic improvements and yield [3].

Nonetheless, heritability estimates for production traits, linear conformation traits, 
and health and reproductive traits in Holstein cattle range from 0.01 to 0.60 [4]. Epi-
genetic marks stably affect gene expression [5]. So, similar to genetic variants, interin-
dividual epigenetic variants could influence agriculturally important phenotypes. DNA 
methylation, which occurs in mammals mainly at CpG dinucleotides, is an epigenetic 
mechanism essential for differentiation and cell type-specific gene expression [6]. More-
over, as the most stable epigenetic mark [7], CpG methylation is a logical focus for stud-
ies trying to understand how individual epigenetic variation influences agriculturally 
important phenotypic outcomes. This has led, over the last decade, to increasing interest 
in understanding the causes and consequences of interindividual epigenetic variation in 
cattle [8]. Extensive research explores how variation in methylation among different tis-
sues influences the expression of genes associated with agriculturally significant traits 
and evaluates effects of early nutrition and other environmental factors on DNA meth-
ylation [8].

Our studies in humans demonstrate that interindividual DNA methylation vari-
ants that are systemic (i.e. not tissue-specific) have particular utility in population epi-
genetics, as DNA methylation measurements in easily sampled tissues like peripheral 
blood provide information about epigenetic regulation throughout the body. Such epi-
genetic variation is called systemic interindividual variation (SIV). The first such vari-
ants identified in mammals were the mouse  metastable epialleles agouti viable yellow 
and axin-fused. Early-embryonic establishment of DNA methylation at these loci occurs 
stochastically in the early embryo (i.e., not due to genetic variation) and was shown to 
be labile to maternal nutrition before and during pregnancy [9, 10]. Systemic interin-
dividual epigenetic variants were subsequently identified in humans. Similar to mouse 
metastable epialleles, establishment of methylation at these loci is sensitive to pericon-
ceptional nutrition [11, 12] and other exposures including assisted reproductive technol-
ogy [13].

The largest screen for systemic interindividual variants thus far identified nearly 
10,000 correlated regions of systemic interindividual epigenetic variation (CoRSIVs) in 
the human genome [14] and showed, again, that these regions are particularly sensitive 
to periconceptional environment. Human CoRSIVs are under strong genetic control 
and tend to be located in genomic regions exhibiting long-range enrichments in LINE1 
and LTRs and depletions of SINE transposable elements [15]. Despite growing interest 
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in using DNA methylation to predict phenotypic outcomes in agricultural animals [8], 
CoRSIVs have not previously been identified in cattle.

The standard approach for identifying CoRSIVs is to perform DNA methylation pro-
filing across multiple tissues (representing different embryonic germ layers) from each 
of multiple individuals [14]. Zhou et al. recently reported using whole genome bisulfite 
sequencing (WGBS) to profile DNA methylation in various tissues from each of two 
Holstein cows [16]. Here, by reanalyzing the data of Zhou et  al. [16], we screened for 
cattle CoRSIVs. At a subset of regions, systemic interindividual variation was vali-
dated by bisulfite pyrosequencing in an independent sample of Holstein cattle (males 
and females). We also evaluated major hallmarks of human CoRSIVs: association with 
genetic variation and sensitivity to periconceptional environment.

Results
Genome‑wide screen for cattle CoRSIVs

We downloaded publicly available WGBS data on tissues from three embryonic germ 
layers: lung (endoderm), peripheral blood leukocytes (mesoderm), and frontal cortex 
(ectoderm) from each of two Holstein cows (one lactating and one dry (not lactating)) 
[16] (Fig. 1A). Due to the relatively low sequencing depth of these WGBS libraries (aver-
age coverage across all six libraries is ~ 18x (Additional file  1: Table  S1), we began by 
imputing CpG methylation states on individual sequencing reads by Precise Read-Level 
Imputation of Methylation (PReLIM) to improve coverage [17]. We then partitioned the 
Bos taurus genome (bosTau9) into 100 bp bins and annotated all such bins containing at 
least one CpG site (hereafter referred to as ‘bins’).

Of the ~ 6  M bins with adequate coverage in all 6 libraries (see Methods), unsuper-
vised hierarchical clustering of average CpG methylation in a randomly selected subset 
of 30,000 grouped the libraries by tissue (Fig. 1B). As in our previous screen in humans 
[14], to maximize genomic coverage we used a two-step analytical approach. First, we 
calculated an individual-level average methylation residual for each bin (%methcow3886 
– %methcow3842). We then identified genomic blocks comprised of multiple consecu-
tive bins with residuals ≥ 10%, in the same direction (Fig. 1C). Average methylation dif-
ferences across all such blocks were balanced, showing no bias between the two cows 
(Additional file 2: Fig. S1A). In the second step, for all blocks we calculated a simplified 
systemic interindividual variation index (SIVI) [12]; a high SIVI indicates interindividual 
methylation differences that are similar within all three tissues.

Applying the same cutoffs as in our previous study (SIVI ≥ 20; 5 or more CpGs per 
CoRSIV) [12, 14] identified 1,387 candidate CoRSIVs (Additional file  1: Table  S2). To 
evaluate potential effects of genetic variation on our screen, we utilized genotyping data 
of the two cows in the screen [16] to search for discordant SNPs at CpG sites (CpG-
SNPs) within each of the 1,387 candidate CoRSIVs. Indeed, we identified a median of 
2 CpG-SNPs per candidate CoRSIV (Additional file  2: Fig. S2). To guard against such 
genetic variation masquerading as epigenetic variation, we repeated both steps of the 
CoRSIV screen after masking all CpG-SNPs between the two cows. Applying a SIVI 
cutoff of   ≥ 20 [12] yielded 1,263 candidate CoRSIVs (Additional file  1: Table  S3). An 
example of one at the promoter of GALNT5 is shown in Fig. 1D. Across the 1,263 can-
didate CoRSIVs, average methylation differences were balanced across the two cows 
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Fig. 1 Screen for correlated regions of systemic interindividual variation (CoRSIVs) in cattle. A We analyzed 
WGBS data from three tissues representing the three embryonic germ layers from each of 2 cows (3842 
and 3886; 6 methylomes total). B Unsupervised hierarchical clustering of average methylation groups 
the libraries by tissue (a random sample of 30,000 genomic bins is shown). C Illustration of our two‑step 
approach: an example of a 300 bp block with concordant positive residuals is indicated by the red box. D A 
200 bp CoRSIV (shaded region; 5 CpG sites) 1.8 kb upstream of the GALNTL5 transcription start site illustrates 
consistent interindividual difference in all three tissues. E Scatter plot of number of CpGs per CoRSIV vs. 
CoRSIV size for all 1,263 CoRSIVs initially identified (following masking of CpG‑SNPs). Subsequent analyses 
and the rest of this paper focus on the 217 CoRSIVs, each of which contains at least 5 CpGs (right of dotted 
line). F Unlike genome‑wide bins, hierarchical clustering of average methylation in the 217 CoRSIVs groups 
the libraries by individual
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(Additional file 2: Fig. S1B). Also, the median number of CpGs per block was 3, and the 
median block size was 200 bp (Fig. 1E). Permutation testing (Additional file 2: Fig. S3) 
showed that less than 1.3% of all blocks satisfy the SIVI ≥ 20 criterion by chance; hence, 
each of the 1,263 CoRSIVs is statistically significant. However, many include only a few 
CpGs (Fig.  1E). To prioritize the most robust regions and consistent with our previ-
ous studies [12, 14], we focused all subsequent analyses on the 217 CoRSIVs contain-
ing at least 5 CpGs (Additional file 1: Table S4). Interestingly, across these 217 CoRSIVs 
the methylation differences were biased, reflecting higher average methylation in cow 
3842 (Additional file 2: Fig. S1C; P = 2.12 ×  10–5). Consistent with their systemic nature, 
unsupervised hierarchical clustering of average CpG methylation at these 217 CoRSIVs 
grouped the libraries by individual (Fig. 1F).

Independent validation confirms systemic interindividual variation in DNA methylation

We obtained liver, kidney, and cerebral cortex from each  of 20 Holstein calves and 
selected 11 of the 217 CoRSIVs for validation by pyrosequencing, as in our previous 
studies [11, 12] (Fig. 2; Additional file 1: Table S5). Positive validation results are shown 
in Fig.  2. Employing our standard criterion [12, 14], regions with r ≥ 0.71  (r2 ≥ 0.5) in 
at least one of the three inter-tissue correlations were considered validated. Four of 11 
regions were validated, resulting in an overall validation rate of 36%. Of the two that 
showed high inter-tissue correlations in all three comparisons amongst liver, kidney, 
and brain (Fig. 2), methylation in each of these tissues was also correlated with that in 
peripheral white blood cells (Additional file 2: Fig. S4), indicating that methylation meas-
urements in blood provide a proxy for epigenetic regulation throughout the body, as at 
human CoRSIVs [15].

Cattle CoRSIVs are associated with genetic variation

As in humans, the 217 cattle CoRSIVs are non-uniformly distributed throughout 
the genome. A Manhattan plot (Fig.  3A) shows several chromosomes with regions of 
high and low CoRSIV density, such as chromosomes 9 and 3, respectively. To evaluate 
genomic characteristics of CoRSIVs, we generated a set of randomly selected control 
regions, each matched to one of the 217 CoRSIVs by chromosome, size, and CpG density 
(Additional file 1: Table S6, Additional file 2: Fig. S5). We used ShinyGO [18] to evalu-
ate whether CoRSIVs are enriched for gene ontology terms related to biological process, 
cellular component, or molecular function, and found no significant enrichment. Rela-
tive to control regions, cattle CoRSIVs were enriched at transcription start sites (Fig. 3B; 
P = 2.1 ×  10–3). No significant differences were found between CoRSIVs and controls rel-
ative to gene bodies, transcription end sites (TES), or intergenic regions (Fig. 3B).

Most human CoRSIVs are associated with genetic variants [15]. We therefore 
analyzed genotyping data of Zhou et  al. [16], including both SNPs and insertions/
deletions (indels), on the two cows in our screen to investigate genetic variation in 
1  kb windows centered on CoRSIV and control regions. Indeed, whereas genetic 
variants in the vicinity of control regions were over 100% more likely to be con-
cordant than discordant, in the vicinity of CoRSIVs this increment was just 38% 
(Fig. 3C; P = 2.3 ×  10–6). In humans, genomic regions flanking CoRSIVs show long-
range enrichment of specific classes of LINE1 and LTR transposable elements, and 
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depletion of CpG islands (CGIs) and SINEs [15]. Possibly due to the limited num-
ber of CoRSIVs identified here, we detected no long-range enrichment of transpos-
able elements at genomic regions flanking cattle CoRSIVs. Although there are many 
LINE1, LINE2, and LTR elements within 50 kb of cattle CoRSIVs (Fig. 3D), the pat-
terns of their distributions were not obviously different from those in the vicinity of 
control regions (Additional file 2: Fig. S6).

Establishment of DNA methylation at cattle CoRSIVs is sensitive to periconceptional 

environment

Embryo transfer is one of the most common forms of assisted reproductive technologies 
(ART) used for cattle reproduction, involving the creation of embryos either through 

Fig. 2 Independent validation of systemic interindividual variation at CoRSIVs we identified. Each scatter plot 
shows the inter‑tissue correlation in DNA methylation based on quantitative bisulfite pyrosequencing in each 
of 20 Holstein calves (10 male, 10 female). A CAB39L, B GIMAP7, C IL17F, D KCTD14. Inter‑tissue correlations 
with R ≥ 0.71 (the cutoff for validation) are highlighted in red
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Fig. 3 Cattle CoRSIVs are enriched at transcription start sites and associated with genetic variation. A Manhattan 
plot of systemic interindividual variation index (SIVI) for all genomic blocks with ≥ 5 CpGs. Blocks with 
SIVI ≥ 20 (dashed line) are considered CoRSIVs. B The overlap of CoRSIVs / controls with transcription start 
sites (TSS), transcription end site (TES), gene body, and intergenic regions. CoRSIVs are enriched at TSS. C 
The overlap with genetic variants in 1 kb windows centered on CoRSIVs / control regions. D CoRSIV‑flanking 
regions (± 50 kb at 5 kb increments) show overlap with various classes of transposable elements, specifically 
LINE‑1 and LTR elements. Column to the left of 0 KB mark shows direct overlap of CoRSIVs with transposable 
elements
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in vivo methods (multiple ovulation and embryo transfer (MOET)) or through in vitro 
embryo production (IVP), in which immature oocytes are collected from live cows and 
fertilized ex vivo, followed by in vitro embryo culture for 5–7 days prior to implantation 
in a recipient cow [19] (Fig. 4A). We used an existing WGBS data set [19] to test whether 
DNA methylation at CoRSIVs is particularly sensitive to the effects of embryo culture 
during IVP.

Rabaglino et  al. [19] obtained multiple tissues from three-month-old calves pro-
duced by IVP (n = 4) and by MOET (control, n = 4) and performed WGBS. We ana-
lyzed the WGBS data on liver, muscle, and hypothalamus (representing embryonic 
endoderm, mesoderm, and ectoderm, respectively) and identified differentially meth-
ylated regions (DMRs) between IVP and MOET calves (Additional file 1: Table S7-S9). 
Our statistical tests were based on comparing CoRSIVs with matched control regions. 
Given the small number of animals studied (n = 4 per group), we recognized that if 
there are more SNPs affecting CpG sites (CpG-SNPs) within CoRSIVs than control 
regions, chance genetic differences between the groups could masquerade as methyla-
tion differences. Using data from the 1000 Bull Genomes Project [20], we found nearly 
the same number of CpG-SNPs at CoRSIVs and control regions (86 and 76, respec-
tively). Moreover, of the 217 CoRSIVs or control regions, nearly the same number 
contain at least one CpG-SNP (58 and 59, respectively), alleviating concerns of poten-
tial genetic confounding. Strikingly, DMRs between the IVP and MOET calves were 
over five to ten times more likely to overlap CoRSIVs than control regions, depending 
on the tissue (Fig. 4B; P = 4.4 ×  10–3, 0.01, 0.03 for liver, muscle, and hypothalamus, 
respectively; Additional file 1: Table S10-S12). Generally, the effects of IVP on DNA 
methylation varied by tissue. Across all DMRs, compared to the MOET group, IVP 
animals showed a bias toward lower methylation in liver (Additional file 2: Fig. S7A; 
P = 1.48 ×  10−31), and higher methylation in hypothalamus (Additional file  2: Fig. 
S7B; P = 1.32 ×  10−82) and muscle (Additional file 2: Fig. S7C; P = 4.41 ×  10−10). Con-
versely, consistent with their systemic nature, this tissue-specificity was not found 
at DMRs overlapping CoRSIVs, which tended to exhibit higher methylation in IVP 
cattle in all three tissues (Additional file  2: Fig. S8). Because of the relatively small 
number of DMRs, we conducted a complementary analysis using chi-square tests 
based on read-level counts of methylation in the IVP vs. MOET offspring. This analy-
sis detected many more group differences in methylation at CoRSIVs than in control 
regions (Fig.  4C-E; P = 0.024, 0.09, 0.025 for liver, muscle, and hypothalamus), cor-
roborating the DMR-based results. A chi-square test across the three tissues yielded a 
P value of 0.025.

Fig. 4 Establishment of DNA methylation at cattle CoRSIVs is particularly labile to periconceptional environment. 
A Graphic illustration of IVP/MOET experiments. B Overlap of differentially methylated regions (DMRs) 
between IVP and MOET offspring with CoRSIVs and control regions in three tissues: liver, muscle, and 
hypothalamus. C‑E For the IVP vs. MOET experiments, volcano plots illustrating significant differences in 
average methylation between IVP and MOET at 217 CoRSIVs and matched control regions in (C) liver, (D) 
muscle, and (E) hypothalamus. Each point represents a CoRSIV or control region. P values are adjusted for 
multiple testing; significant p values are shown in pink

(See figure on next page.)
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Fig. 4 (See legend on previous page.)
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Discussion
Here, we show for the first time that CoRSIVs, first identified in humans [14], also exist 
in cattle. Moreover, cattle CoRSIVs share major characteristics with human CoRSIVs. 
First, both cattle and human CoRSIVs are strongly associated with genetic variation. Our 
latest analysis of human CoRSIVs identified over 70-times more methylation quantitative 
trait loci (mQTL) than previously detected [15]. Although, with only two individuals, 
our study was not powered to quantify mQTL, our results show that relative to control 
regions, cattle CoRSIVs are more likely to be associated with cis genetic variation. In this 
regard, it is surprising that across the 217 regions we identified, methylation tended to 
be higher in one cow than the other (Additional file 2: Fig. S1C). This could be attribut-
able, however, to either differences in periconceptional environment or a trans genetic 
effect that generally promotes DNA methylation during early embryonic development.

Just like at murine metastable epialleles [9, 10] and human CoRSIVs [14], our analy-
ses of cattle produced by IVP vs. MOET demonstrate that establishment of DNA meth-
ylation at cattle CoRSIVs is particularly sensitive to periconceptional environment. This 
finding indicates that genomic regions showing systemic interindividual variation in 
DNA methylation are generally labile to early embryonic environment. In this regard, 
our results are contrary to those of a recent study in mice [21] which concluded that 
regions of systemic interindividual variation (SIV) do not generally exhibit such plastic-
ity. It is important to note that unlike mouse metastable epialleles such as agouti viable 
yellow and axin-fused, which are generally studied within inbred populations, at CoR-
SIVs in outbred mammalian populations establishment of DNA methylation is influ-
enced both by periconceptional environment and genetic variation [11–15]. There does 
not appear to be a dichotomization of CoRSIVs that are influenced by early environment 
and those associated with genetic variation.

Despite these strengths, our study is not without weakness. First, only Holstein cat-
tle were included. Given the strong influence of genetics on CoRSIVs [15], it is likely 
that some CoRSIVs will be breed-specific. In addition, WGBS data on only two cows 
were available for this screen, limiting our ability to both broadly detect interindividual 
variants and characterize genetic influences at these loci. Notably, although we detected 
only 217 CoRSIVs in this screen, this number is comparable to the 109 SIV regions we 
detected in our first unbiased WGBS screen in humans, which was also based on just 
two individuals [12]. In addition, the WGBS datasets we used were not very deep, com-
promising the genomic coverage of the screen. Likely due to this limited sample size and 
sequencing depth, the overall validation rate was somewhat lower than in our human 
studies [14]. Future studies profiling genomic DNA methylation in tissues represent-
ing all three embryonic germ layer lineages from a larger number of individuals will be 
needed to better understand systemic interindividual epigenetic variation in cattle.

Nonetheless, we envision great potential for CoRSIVs to be useful in predicting and 
tailoring phenotypic outcomes that boost production efficiency in cattle, particularly 
given that CoRSIV methylation in peripheral blood can provide information about epi-
genetic regulation throughout the body (Additional file 2: Fig. S4). Human studies have 
shown that methylation at CoRSIVs is stable for years in the same individual [12, 22, 23]. 
It is possible, therefore, that profiling CoRSIV methylation in peripheral blood DNA of 
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calves could someday be utilized to identify those individuals most likely to exhibit traits 
favorably associated with productivity in adulthood.

Assisted reproductive technologies (ART) such as artificial insemination (AI), embryo 
transfer (ET), and in vitro fertilization (IVF) are commonly used in cattle production. In 
combination with genomic selection and selective breeding, ART allows for maximizing 
and accelerating genetic gain from cattle with superior genetics, leading to improved cat-
tle production efficiency and sustainability [24, 25]. In North America, the adoption of 
AI for cattle breeding is prevalent among nearly 80% of dairy producers, and 4% of beef 
producers [26]. In addition to genetic profiling, we have identified an additional level of 
individuality at the epigenetic level. Consideration of epigenetic variation at CoRSIVs 
may provide a useful complement to management strategies based on genotyping [3]. 
We are not proposing that CoRSIV methylation is transgenerationally heritable, but that 
it may be a useful variable for optimizing traits within each generation. For example, 
a potential application for CoRSIVs is to address low female fertility in dairy cattle, by 
characterizing differences in CoRSIV methylation between individuals with optimal vs. 
poor fertility. This knowledge could subsequently be used to inform selective breeding 
practices. During the weaning stage, for example, calves could undergo methylation 
profiling at CoRSIVs, enabling the identification of female calves with profiles indica-
tive of superior fertility. Selecting such individuals for further breeding could potentially 
improve overall reproductive efficiency within dairy cattle populations, promoting sus-
tainable dairy farming. In support of this possibility, in a rat model, GIMAP7 (Fig. 2B) 
was recently shown to promote oxidative stress and apoptosis in ovarian granulosa cells 
[27]. Beyond such selection for desirable traits within each generation, our results on 
periconceptional influence, specifically embryo culture during IVP, suggest the possibil-
ity of manipulating cow nutrition or the composition of culture media used in IVP to 
epigenetically optimize phenotypic outcomes [28, 29].

Conclusion
In this study, we have shown that CoRSIVs exist in the cattle genome. However, the data 
in this project are limited by low coverage and an insufficient number of individuals. For 
future studies, larger numbers of animals and deep WGBS in different tissues will be 
needed to better identify and characterize cattle CoRSIVs. Given the strong influence 
of genetics on CoRSIVs [15], investigating CoRSIVs in multiple cattle breeds will also be 
important. CoRSIVs may one day prove useful for boosting production efficiency and 
profitability in dairy and beef cattle production systems by providing additional metrics 
for selection and culling strategies and opportunities for epigenetic engineering based 
on embryo culture during assisted reproductive technologies. More broadly, by suggest-
ing that CoRSIVs may be a feature of mammalian genomes in general, our results indi-
cate that such opportunities for agricultural improvement are not limited to cattle.
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Materials and methods
Publicly available datasets used

Zhou et al. generated WGBS data for 13 different tissues in Holstein cattle [16] (GEO 
accession number: GSE147087). We selected 2 individuals with data available for 3 
tissues (cortex, lung, white blood cell) in our analysis. Cow 3842 was approximately 
3.5 years old and lactating, while cow 3886 was approximately 3.0 years old and was dry, 
not lactating.

Rabaglino et al. [19] obtained samples from 6 tissues from three-month-old calves pro-
duced by IVP (n = 4) and by MOET (control, n = 4) and performed WGBS (GEO acces-
sion number: GSE223098). We utilized 24 samples (8 calves, 3 tissues each (liver, muscle, 
hypothalamus)) in our analysis.

Run8 and Run9 of the 1000 Bull Genomes Project [20] are deposited in the European 
Nucleotide Archive under accession number PRJEB42783 and PRJEB56689, respectively. 
We combined the two runs and included only 254 Holstein samples. We only included 
variants with valid GT in at least 200 Holstein samples and minor allele frequency ≥ 0.05 
in all subsequent analysis. We used Bcftools 1.19 in handling VCF files.

WGBS data processing

We performed quality control checks, alignment, and methylation calling as previously 
described [14]. We aligned pair-ended sequencing reads to the ARS-UCD1.2 (bosTau9) 
bovine reference genome. Lastly, we removed duplicated alignments using deduplicate_
bismark from Bismark.

CoRSIV screen

To increase the relatively low coverage of the existing data (~ 18x), we first ran Precise 
Read-Level Imputation of Methylation (PReLIM) [17], which imputes CpG methyla-
tion states on individual sequencing reads, on the coverage file generated by Bismark 
tool methylation extractor.

Genetic variation at CpG sites can affect apparent methylation level. For example, if 
a C  to T SNP occurs at the cytosine in a CpG site, such cytosine would be misrepre-
sented as an unmethylated cytosine in subsequent WGBS sequencing. Hence, genetic 
variations can create artifactual methylation differences between the two individuals 
in the screen. Using genotyping data published by Zhou et  al. on the lung tissue of 
the two Holstein cows used initially in the screen, we identified 842,724 discordant 
SNPs affecting either a C or G in a CpG site with quality score ≥ 30, which were sub-
sequently removed from the coverage file and all subsequent methylation analysis. We 
then adopted a two-step analytical approach to maximize genomic coverage.

First‑step

We partitioned the Bos taurus genome (bosTau9) into 100 bp bins and annotated all 
such bins containing at least one CpG site. We focus on the ~ 10.5 M 100 bp bins with 
adequate coverage (roughly 83% of all ~ 12.6  M 100  bp bins containing at least one 
CpG) in at least two tissues in each animal. For a bin with n CpGs, if n ≤ 2, the bin is 
adequately covered when all CpGs are covered by 5 or more reads; if n > 2, the bin is 
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sufficiently covered when at least (n/2, rounded up) CpGs are covered by 5 or more 
reads. Then, we calculated an average individual-level methylation residual (%meth 
 cow3886 – %meth  cow3842) for each bin, based only on tissues with adequate coverage.

Second‑step

We identified 138,192 genomic blocks comprised of two or more consecutive bins 
with residuals having absolute values ≥ 10%, in the same direction. For all such blocks, 
we calculated a systemic interindividual variation index (SIVI); a high SIVI reflects 
interindividual methylation differences that are similar within all three tissues.

Systemic Interindividual Variation Index (SIVI) formula:

Where
x = cortex residual (%meth  cow3886—%meth  cow3842)
y = lung residual (%meth  cow3886—%meth  cow3842)
z = wbc residual (%meth  cow3886—%meth  cow3842)

The A term rewards high interindividual differences in methylation. The B term 
rewards consistent interindividual differences in methylation percentages across all 
three tissues. The initial formula developed by Silver and Kessler et al. [12] included a 
C term rewarding consistent methylation percentages across all tissues, but we chose 
to drop this term based on observations that interindividual variation can still be 
highly correlated across tissues even when average % methylation values differ among 
tissues [15].

Independent validation by bisulfite pyrosequencing

We obtained liver, kidney, cerebral cortex (representing endoderm, mesoderm, and 
ectoderm, respectively), and blood from each of 20 Holstein calves (10 females and 10 
males, age 2 to 17 days). The sets of tissues representing the germ layers were chosen 
to be different in the validation experiment rather than in the initial screen, to better 
test the systemic nature of interindividual variation at CoRSIVs. The calves were housed 
with standard care at the Cornell University Ruminant Center (Harford, NY) and trans-
ported to the abattoir of Frank Morrison Hall (Ithaca, NY) on the day of tissue collec-
tion. Euthanasia was performed by penetrating captive bolt followed by exsanguination 
during which blood was collected. Immediately following euthanasia, different types of 
tissues were collected from each calf and snap frozen on dry ice. Quantitative bisulfite 
pyrosequencing was performed to evaluate inter-tissue correlations. When design-
ing pyrosequencing assays, data on common SNPs in Holstein cattle in the 1000 Bull 
Genomes Project [20] were used to ensure that SNPs neither overlapped the PCR or 

SIVI = A + B

A =
3 x · y · z

B = −sd(x, y, z) (sd = standard deviation)
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sequencing primers, nor were within the sequence analyzed. To validate the sensitiv-
ity and quantitative accuracy of each pyrosequencing assay, we measured standards of 
known percentages of fully methylated and unmethylated Holstein genomic DNA [12, 
30]. DNA isolation and bisulfite conversion were conducted similarly to our previous 
studies [11]. The primers used and assay validation data are included in Additional file 1: 
Table S5. High inter-tissue correlation (for example, liver vs. kidney) is a hallmark of SIV. 
Similar to our study in humans [12], a CoRSIV was considered validated if at least one of 
the three inter-tissue correlations (liver-kidney, kidney-cortex, liver-cortex) was at least 
0.71  (r2 = 0.5). For validated CoRSIVs, we also tested respective correlation of three tis-
sues with peripheral blood, to determine whether methylation status in peripheral blood 
can be used to infer methylation status in tissues throughout the body.

Control regions

Control regions were identified in a similar fashion as in previous study [14], with a few 
changes. We started by removing CoRSIVs from the list of preprocessed 100 bp bins to 
avoid selecting CoRSIVs as controls. It is unlikely to identify the same control region for 
different CoRSIVs, so we sampled them with replacement. To find a matching control 
region, we first matched by chromosome, then prioritized matching CpG numbers, then 
genomic size. If the selected control didn’t have the exact same CpG density as its CoR-
SIV, then we made another attempt at selecting a control region. If after 1000 attempts 
the CpG density was still not achieved, we would increment target genomic size by 100, 
then reiterated the random selection process. At last, we ensured CoRSIVs and controls 
don’t overlap with each other, and control regions don’t overlap within themselves.

Permutation test for CoRSIVs

We conducted a permutation test on all blocks to determine if CoRSIVs were statis-
tically significant. The process generally follows that in our previous study [14]. We 
began with blocks that were identified after block-building criteria of delta ≥ 10 in the 
same direction and performed the following steps on each block for 1000 iterations:

1. Scramble library ID for all six libraries (2 subject × 3 tissues)
2. Compute SIVI for the current block based on permuted library ID

Assessing genomic characteristics of CoRSIVs

Association with genic features

CoRSIVs / control regions within 2.5kp of a transcription start site (TSS) were cat-
egorized as TSS CoRSIVs / control regions. CoRSIVs / control regions within 2.5kp 
of a transcription end site (TES) were categorized as TES CoRSIVs / control regions. 
CoRSIVs / control regions overlapping genes were categorized as Gene Body CoR-
SIVs / control regions. CoRSIVs / control regions that did not satisfy any of the above 
requirements were categorized as intergenic CoRSIVs / control regions. One region 
may be classified into multiple categories, for example in cases when the TSS of one 
gene is proximal to the TES of another.
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Association with genetic variants

Examining both 1000 Bull SNPs and lung genotyping on the two cows provided by 
Zhou et al., we counted the number of overlapping discordant and concordant genetic 
variations (including both SNPs and indels) within 1 kb windows centered on CoR-
SIVs and control regions, respectively, using Bedtools v.23.0.

Associations with transposable elements and CpG islands

The repeat definitions in the RepeatMasker track were obtained from the UCSC 
genome browser build ARS-UCD1.2 and then analyzed at the level of repeat class and 
family. Additionally, CpG islands defined by the UCSC genome browser were down-
loaded. We examined regions ± 50  kb of CoRSIVs and controls at 5  kb increments 
(± 0-5 kb, ± 5 kb-10 kb, etc.) and counted CoRSIVs and controls’ number of overlaps 
with each class of transposable elements.

Investigating the effect of assisted reproductive technology on CoRSIVs

Using WGBS data generated by Rabaglino et  al. [19], we called Bismark methyla-
tion extractor on BAM files and converted coverage files for both the IVP group and 
MOET group to the input format required for Dispersion Shrinkage for Sequencing 
data (DSS) [31] of four columns: chromosome number, genomic coordinate, total read 
counts, and number of methylated reads. They were then passed into DSS in the Bio-
conductor package of R to identify differentially methylated regions (DMRs) between 
the two groups, with the parameters p = 0.05 and delta = 0.05. We used Bedtools to 
determine overlaps between the resulting DMRs and CoRSIVs / control regions, 
respectively. An overlap was considered valid if the overlap was at least half the size of 
either the CoRSIV or control region or the DMR (whichever was smaller). Because of 
the relatively low number of DMR overlaps identified, as a complementary approach, 
we performed a read-level analysis to identify CoRSIVs or control regions showing sta-
tistically significant differences in methylation associated with IVP vs. MOET group. 
We performed chi-square goodness of fit tests on each CoRSIV or control region, 
using 2 × 2 contingency tables with rows designating the number of methylated and 
unmethylated reads for all CpGs in the CoRSIV or control region, and columns des-
ignating the IVP or MOET group. The chi-square tests were performed by chi2_con-
tingency in scipy.stats of Python, with Yate’s correction turned on. The p-values were 
then adjusted for multiple testing. To obtain a p value for each of the three tissue and a 
p value for three tissues combined, we again performed chi-square goodness of fit tests 
with contingency tables recording the number of CoRSIVs / controls that show statis-
tically significant differences in methylation level between the IVP and MOET groups, 
versus the number of CoRSIVs / controls that show no difference.
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