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Abstract 

Background:  The advent of single-cell RNA-sequencing (scRNA-seq) has driven 
significant computational methods development for all steps in the scRNA-seq data 
analysis pipeline, including filtering, normalization, and clustering. The large number 
of methods and their resulting parameter combinations has created a combinatorial 
set of possible pipelines to analyze scRNA-seq data, which leads to the obvious ques-
tion: which is best? Several benchmarking studies compare methods but frequently 
find variable performance depending on dataset and pipeline characteristics. Alter-
natively, the large number of scRNA-seq datasets along with advances in supervised 
machine learning raise a tantalizing possibility: could the optimal pipeline be predicted 
for a given dataset?

Results:  Here, we begin to answer this question by applying 288 scRNA-seq analysis 
pipelines to 86 datasets and quantifying pipeline success via a range of measures 
evaluating cluster purity and biological plausibility. We build supervised machine 
learning models to predict pipeline success given a range of dataset and pipeline 
characteristics. We find that prediction performance is significantly better than random 
and that in many cases pipelines predicted to perform well provide clustering outputs 
similar to expert-annotated cell type labels. We identify characteristics of datasets 
that correlate with strong prediction performance that could guide when such predic-
tion models may be useful.

Conclusions:  Supervised machine learning models have utility for recommend-
ing analysis pipelines and therefore the potential to alleviate the burden of choosing 
from the near-infinite number of possibilities. Different aspects of datasets influence 
the predictive performance of such models which will further guide users.
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Background
Single-cell RNA-sequencing (scRNA-seq) has revolutionized biomedicine by enabling 
transcriptome-wide quantification of gene expression at single-cell resolution [1, 2]. 
The analysis of scRNA-seq data is often complex, requiring multiple interacting compo-
nents such as cell filtering, normalization, dimensionality reduction, and clustering, the 
choices of which may affect the results of methods downstream. To meet this demand, 
there has been a surge in computational methods development, with over 1000 tools 
developed as of late 2021 and over 270 developed for cell clustering alone [3].

Concomitant with the development of this large toolset is the combinatorial num-
ber of possible pipelines that can be applied to a given scRNA-seq dataset, where a 
given pipeline is defined by the composition of methods for each step, along with their 
respective parameter choices. Consider an unrealistically simple example: if there are 3 
analysis steps (e.g., filtering, normalization, clustering), with 4 computational methods 
for each step, and each method has 2 possible parameter combinations, then there are 
(4 × 2)3 = 512 possible pipelines. Given the far larger set of possibilities for steps, meth-
ods, and parameters, in practice, the number of sensible pipelines that could be applied 
to scRNA-seq data is likely in the high thousands if not millions. This therefore leads to 
an important question: how do we select the pipeline that is “best” for our dataset?

To tackle this, the field has largely relied on benchmarking studies. For example, 
numerous papers have performed comprehensive evaluations of multiple stages of the 
scRNA-seq workflow, including clustering [4], pseudotemporal ordering [5, 6], dimen-
sionality reduction [7], dataset integration [8], data imputation [9], and gene selection 
[10]. These stages may be combined in frameworks such as pipeComp [11] that integrate 
multiple pipeline steps together to benchmark over combinations. While such bench-
marking studies are hugely valuable, they may be limited for two reasons. Firstly, the 
extremely large combinatorial number of pipelines means it is impossible to exhaustively 
benchmark all method combinations, and so interactions between the different stages 
may affect performance. Secondly, pipeline performance is generally dataset-specific, 
meaning the pipeline that performs best on average may be not optimal for a given 
dataset.

This combinatorial number of possible pipelines is not unique to single-cell analysis. 
In supervised machine learning (ML), attempting to optimize the possible set of data 
processing pipelines, algorithms, and hyperparameter choices has led to the rise of 
automated machine learning (AutoML) [12]. AutoML algorithms attempt to automati-
cally select optimal hyperparameter combinations using advanced statistical techniques 
such as Bayesian optimization [13]. Importantly, previous AutoML work has shown that 
rather than considering an exhaustive set of possible pipelines, testing over a large but 
fixed subset and recommending one from within that is sufficient [14]. However, in the 
context of supervised ML, the goal is to optimize the accuracy of predictive models on 
a held-out dataset which does not readily apply to single-cell analysis. In contrast, the 
majority of single-cell pipelines are unsupervised, and there are few methods developed 
at the intersection of AutoML and unsupervised genomic analysis [15].

Here, we investigate whether AutoML approaches may be adapted and applied for the 
optimization of scRNA-seq analysis pipelines in order to recommend an analysis pipe-
line for a given dataset. To do so, we applied 288 scRNA-seq clustering pipelines to 86 
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datasets, resulting in 24,768 unique clustering outputs, and quantified the performance 
of each via a range of cluster purity and gene set enrichment metrics. With this, we cre-
ated Single Cell pIpeline PredIctiOn (SCIPIO-86), the first dataset of single-cell pipeline 
performance. We then developed a set of supervised machine learning models to predict 
the performance of a given pipeline on a given dataset using a combination of pipeline 
and dataset features (Fig.  1A). We investigated the accuracy of predictions tailored to 
both datasets and pipelines and compared these to predictions that only use pipeline 
characteristics as input features. We further investigated the relevance of such predic-
tions by correlating how the overlap of the identified clusters with existing cell labels 
varies for pipelines that were predicted by our model to perform well or not. Finally, 
we investigate what features of an scRNA-seq dataset make it easier to predict which 

Fig. 1  A Overview of the machine learning workflow: 288 clustering pipelines were run over each dataset 
and the success of each was quantified with 4 unsupervised metrics. Dataset- and pipeline-specific 
features were then computed and given as input to supervised machine learning models to predict metric 
values. B 86 human datasets in the EBI Single Cell Expression Atlas containing < 100 k cells as of May 2021 
were selected for this study. C Characteristics of the 86 datasets used as input to predictive models of 
dataset-specific pipeline performance. These include median values of metrics frequently used to quality 
control at the cell level (e.g., percentage of mitochondrial counts) as well as principal components of average 
expression values per dataset jointly decomposed. Each characteristic was scaled in the training set to follow 
a standard normal distribution. The means and variances before scaling of each characteristic in the training 
set were used to scale the corresponding characteristics in the test set to prevent train-test leakage
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pipelines will be applicable to it. This study provides a foundation for the development of 
recommender systems for scRNA-seq analysis pipelines, and the training data are pub-
licly available at zenodo.org/records/11403435 to encourage further methods develop-
ment in this area.

Results
Constructing a dataset of scRNA‑seq pipeline performance on 86 datasets across 288 

pipelines

We began by gathering a comprehensive pan-tissue pan-disease collection of 86 human 
scRNA-seq datasets (Additional file 2: Table S1) from EMBL-EBI’s Single Cell Expres-
sion Atlas [16] comprising 1,271,052 cells total (Fig. 1B). For each dataset, we computed 
a wide range of dataset characteristics such as number of cells and proportion of genes 
detected (Additional file 2: Table S2 and the “Methods” section). Visualizing these based 
on the different dataset characteristics demonstrates significant heterogeneity between 
datasets with distinct clusters forming (Fig. 1C), in line with previous research [11].

Next, for each of the 86 datasets, we ran 288 different scRNA-seq analysis pipelines 
to produce a total of 24,768 unique clustering outputs using established frameworks 
[11]. The pipelines consisted of the four major steps in scRNA-seq clustering analysis: 
(i) filtering, (ii) normalization, (iii) dimensionality reduction, and (iv) clustering (see 
the “Methods” section). For each of the four steps, different algorithms and parameters 
were considered. For example, for normalization, we considered Seurat’s log-normali-
zation [17], scran’s pooling-based normalization [18], and sctransform’s variance-stabi-
lizing normalization [19], which are three of the most popular normalization methods 
available as R packages [3]. In total, all possible parameter and algorithm combinations 
resulted in the 288 pipelines that were applied to each dataset.

Once the 86 × 288 clustering outputs were generated, we quantified the perfor-
mance of each pipeline on each dataset using several different metrics. Since the 
majority of the scRNA-seq datasets did not include previous cell type annotations, 
we computed four unsupervised metrics for every pipeline-dataset pair (Fig.  2A) 
that target a measure of cluster purity or biological plausibility in line with previ-
ous benchmarking studies [8, 20]. The cluster purity metrics considered included 
the Calinski-Harabasz index (which from here we abbreviate to CH), Davies-Bouldin 
index (DB), and mean silhouette coefficient (SIL). CH measures the ratio of between-
cluster dispersion to within-cluster dispersion, favoring well-separated, dense clus-
ters. DB measures cluster similarity by comparing each cluster to its most similar 
one, attributing good scores to distinct, well-separated clusters. SIL measures how 
well each data point fits into its assigned cluster, with higher scores signifying con-
sistent clusters (a point is closer to members of its own cluster) and negative scores 
suggesting misclassification. We opted for these three metrics as it was not a priori 
obvious if they would be correlated nor which one to favor above the others, and 
each may be computed for any clustering result in the absence of additional informa-
tion such as cell labels. In addition, we used Gene Set Enrichment Analysis (GSEA) 
[21] to assess the biological plausibility of the clustering outputs, complementing 
the unsupervised metrics that rely on distances only. Ideally, each individual cluster 
should represent a biologically meaningful group of cells. Therefore, GSEA may be 
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applied to differentially expressed genes between clusters to evaluate whether each 
cluster is enriched for Gene Ontology gene sets, which can be summarized over 
gene sets and clusters to a per-clustering score. While there are many possible ways 

Fig. 2  A The SCIPIO-86 dataset showing 288 scRNA-seq clustering pipelines applied to 86 datasets in terms 
of 4 unsupervised metrics (CH, DB, SIL, GSEA). Pipeline performance can be seen to have a monotonic 
relationship with clustering resolution for the CH, DB, and SIL metrics, with additional dependency 
on different pipeline strategies (filtering, normalization) also evident. B After correction for number of 
clusters, we embedded each scRNA-seq clustering pipeline into UMAP space, with variation visible due to 
normalization strategy
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to construct such a score, we used the absolute normalized enrichment score (NES) 
averaged over clusters (see the “Methods” section).

We next observed that the three cluster purity metrics (CH, DB, SIL) exhibited 
a strong relationship with the number of clusters identified, typically showing a 
monotonically decreasing relationship with the number of clusters (Additional 
file  1: Fig. S1), similar to an observation made in a previous benchmarking study 
[11]. This represents a challenge for using such metrics to optimize scRNA-seq pipe-
lines as most pipelines include a parameter for controlling the number of clusters 
(the resolution in graph-based clustering). Therefore, under this framework, such a 
parameter could be arbitrarily adjusted to achieve better performance. To counter-
act this effect, we trained a loess model for each dataset to regress out the number of 
clusters from each metric and established the residuals as the corrected metric (the 
“Methods” section). The corrected metrics (by construction) no longer showed the 
same relationship with the number of clusters and thus they allow for the quantifi-
cation of pipeline accuracy in the absence of the confounding effect of number of 
clusters (Additional file  1: Fig. S2). Interestingly, since each pipeline is now repre-
sented by a high-dimensional vector of metrics over datasets, we can embed them 
into low-dimensional space using popular methods such as UMAP [22]. Now, each 
point represents an entire scRNA-seq pipeline rather than a cell and may be used to 
visually assess the results in a qualitative manner, which in our case shows the low-
dimensional space being driven by normalization strategy (Fig. 2B).

Using corrected metrics to measure pipeline success, we found no single pipeline 
performed best across all datasets (Additional file 1: Fig. S3), and the best pipeline on 
average was not the same across each metric (Additional file 2: Table S3). Together, 
this represents the first dataset of single-cell pipeline performance comprising 4 cor-
rected metrics across 24,768 dataset-pipeline pairs that we term the Single Cell pIpe-
line PredIctiOn (SCIPIO-86) dataset. Importantly, in line with previous findings [4], 
we found that the performance of the analysis pipelines were dependent on the data-
set, providing additional motivation to model pipeline performance as a function of 
dataset-specific characteristics and pipeline parameters.

Supervised models can predict dataset‑specific pipeline performance

Next, we explored the ability of different supervised machine learning models to pre-
dict the four unsupervised metrics. We fitted random forest (RF) and penalized linear 
regression (LR) models with optimized hyperparameters tuned via cross-validation on 
the train set (n = 61, see the “Methods” section). For each model and metric, we consid-
ered two input feature sets: dataset-pipeline interactions and pipeline features only. In 
the dataset-pipeline interactions setting, interaction terms are allowed between dataset 
and pipeline features in addition to separate dataset and pipeline features in LR (and 
interactions naturally occur in RF), meaning pipeline performance predictions are data-
set-specific. In the pipeline features only setting, the models have access to pipeline fea-
tures only, resulting in predictions that are not dataset-specific.

The resulting predictive power of each model can be seen in Fig. 3 (top). Here, predic-
tive power for a given test dataset is measured as a correlation between the predicted 
metric value for each pipeline on that dataset and the actual (calculated) value. This is 



Page 7 of 18Fang et al. Genome Biology          (2024) 25:159 	

performed separately for each of the four metrics and for every dataset in the test set 
(n = 25). For the RF model, prediction power was significantly (padj < 0.05, one-sided 
Wilcoxon rank-sum test with Benjamini–Hochberg multiple test correction) greater 
than random (0) in all settings. Interestingly, for all metrics, incorporating pipeline and 
dataset-specific features (resulting in dataset-specific recommendations) improved pre-
dictive performance in terms of median correlation (Additional file  2: Table  S4). This 
pattern was largely similar when examining the results of the LR model: the average cor-
relation was greater than 0 in all settings and significantly greater than 0 for 7/8 tests 
(padj < 0.05). For some metrics, LR prediction results improved when using dataset-pipe-
line interactions over pipeline features alone, either in terms of average correlation or 
p-value. Together, these results imply that (i) relatively simple supervised machine learn-
ing models can be used to predict the success of an scRNA-seq pipeline, (ii) incorpo-
rating dataset-specific features improves prediction accuracy, and (iii) these results are 
consistent for both RF and LR models, suggesting that they are a statement about the 
predictive capacity of the information contained in the data rather than exact machine 
learning model used.

Next, we investigated if the predictive performance of these models differs in atlas-
scale datasets containing > 100,000 cells. We processed an additional 6 datasets (Addi-
tional file 2: Table S5) with the same pipelines as before (except for those using scran 
normalization that gave an out of memory error) and applied the trained predictive 
models from above to them. Correlating the predicted and actual metric values shows 
broadly comparable or improved performance (Additional file 1: Fig. S4), implying such 
predictive models will scale to larger and more complex datasets.

While the optimization of such metrics has previously been successfully used 
to benchmark single-cell pipelines [23], they are surrogate objectives that do not 

Fig. 3  Test set (held out dataset) correlations of predicted unsupervised metric values with actual metric 
values (top) and pipeline-specific adjusted Rand index (ARI) (bottom) for random forest and penalized linear 
regression models, considering two settings of pipeline features only and dataset-pipeline interactions. In 
general, including dataset-pipeline interactions improves performance when predicting the unsupervised 
metrics (top) but degrades performance when predictions are contrasted to pipeline-specific ARI (bottom). 
P-values are Benjamini–Hochberg multiple test corrected
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necessarily favor pipelines that return more meaningful cellular populations. To 
address this, we exploited the fact that 16/25 test datasets had cell types/states previ-
ously annotated. While using existing annotations as “ground truth” has certain limi-
tations that we cover in the discussion, it has previously been successfully used as an 
additional clustering comparator that provides a measure of how well a given cluster-
ing overlaps with one that is performed manually [24]. To quantify the overlap of a 
particular analysis pipeline with the previous labels, we computed the adjusted Rand 
index (ARI)—a measure of cluster overlap—between the clustering returned by every 
pipeline and the existing labels.

Next, we correlated this computed ARI with the predicted metric values across 
pipelines and datasets (the “Methods” section) with the results shown in Fig. 3 (bot-
tom). For the RF model, when including dataset-pipeline interactions, 3/4 of the pre-
dicted metrics had positive average correlations with the ARI (1/4 significantly greater 
than 0 at padj < 0.05, one-sided Wilcoxon rank-sum test). An example may be seen in 
Additional file 1: Fig. S5 that displays UMAP plots of the clustering results of the best 
predicted pipeline in contrast with a randomly chosen pipeline, demonstrating that 
the pipeline recommended by our model more closely agrees with the expert annota-
tions. In contrast, when not including dataset features, all four metrics had positive 
average correlations with ARI (2/4 significantly greater than 0 at padj < 0.05, one-sided 
Wilcoxon rank-sum test). A similar pattern is apparent in the results of the LR model, 
with the predictions using pipeline features achieving higher correlation with ground 
truth than those integrating dataset-pipeline interactions. Taken together, we inter-
pret this as meaning that overall, the supervised ML models can use the prediction 
of surrogate metrics to recommend pipelines that correspond more closely to those 
optimized for the previous annotation of the single-cell data. However, when allow-
ing for dataset-pipeline interactions (i.e., predictions “personalized” to each dataset), 
in most cases, there is no longer a significant association, implying that such models 
may be subtly overfit to the characteristics of the unsupervised metrics rather than 
truly meaningful cellular populations.

Next, we examined the qualitative differences between the best predicted pipeline and 
the Seurat version 5.0.3 default pipeline on two representative datasets from our test 
data for which author ground truth annotations were available. First, we examined an 
scRNA-seq dataset of whole blood from patients with COVID-19 and controls [25]. We 
found the best predicted pipeline learned 12 cell clusters that matched closer to the 6 
cell types annotated by the authors compared with the 18 found by the Seurat default 
pipeline (Additional file 1: Fig. S6A). However, this may be simply due to the predicted 
pipeline learning fewer clusters overall. Therefore, we examined an additional dataset of 
scRNA-seq of colorectal tumors [26] where the Seurat default pipeline learns a number 
of clusters (n = 26) much closer to the annotated number (n = 40) than that returned by 
the best predicted pipeline (n = 16) (Additional file 1: Fig. S6B). Despite this, the default 
Seurat pipeline splits several annotated clusters into multiple subclusters, while the best 
predicted pipeline does not or does to a far lesser extent (Additional file 1: Fig. S6C).

Finally, we considered if additional metadata provided by each original study’s 
authors would be of benefit for predicting dataset-specific pipeline performance. 
Given the large proportion of missing entries in each study’s metadata (Additional 
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file  3), we focused on three that were near-universally available for all datasets: (i) 
the end-bias of the sequencing protocol (5′, 3′, or none), (ii) whether the cells had 
been FACS sorted (yes or no), and (iii) whether the cells originated from blood (yes or 
no). After retraining the machine learning models to predict dataset-specific pipeline 
performance incorporating these features, we found largely equivalent model perfor-
mance (Additional file 1: Fig. S7).

Dataset‑specific characteristics impact predictive performance

Given that the predictive performance of each model on each metric varies across data-
sets (Fig.  3), we next investigated what dataset characteristics correlate with good or 

Fig. 4  Correlation between predictive power and dataset-specific features for random forest models with 
dataset-pipeline interactions (A) and pipeline features only (B) and penalized linear regression models 
with interactions (C) and pipeline features only (D). In each panel, the predictive power is quantified by the 
correlation between model predictions and the ARI of the clusters and the ground truth (top, ARI) or by the 
correlation between model predictions and the true metric values (bottom, metric). Only features that are 
significantly associated with predictive power for at least one metric are shown
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poor predictive performance on that dataset. This is important as, if a practitioner were 
to apply such models to a dataset with characteristics associated with strong predictive 
power, they are more likely to trust the resulting recommended pipeline, while in other 
cases they may wish to manually tune that pipeline. We identified such characteristics by 
correlating each dataset-specific feature with the metric-specific or ARI-specific predic-
tive performance (which is itself the correlation between the predicted and actual metric 
values across pipelines or between the predicted values and the cluster overlap meas-
ured by ARI).

The results for a subset of features (see the “Methods” section) are shown for RF and 
LR in Fig. 4A, B, C and D respectively. This is evaluated for both pipeline-dataset inter-
action models and pipeline-only models on both metric-based and ARI performance 
measures. Notably, predicting SIL and DB has higher accuracy on datasets with a higher 
percentage of counts in the top 20/50/100/200 highly expressed genes per cell, a pattern 
weakly reversed in the prediction of CH and GSEA. On the other hand, being able to 
predict the CH metric for each dataset is highly correlated with the proportion of genes 
from the coding genome for both LR and RF models, a pattern that is not present for 
predicting the other metrics. For datasets with more cells, most models had better pre-
diction performance for the pipelines that had better agreement with the ground truth. 
Importantly, associations between dataset characteristics and predictive performance 
were largely consistent (Additional file 2: Table S6) between LR and RF models, lending 
credence to the overall results. Together, these results provide a roadmap for interpret-
ing which datasets may benefit from predictive modeling of pipeline performance.

Finally, for the random forest and linear regression models, we analyzed which features 
were most important in driving prediction values. For random forest, this is quantified 
as “IncNodePurity,” which approximates the relevance of each feature at discriminat-
ing the outcome, and for penalized linear regression, we report the coefficient absolute 
value. For random forest (Additional file 1: Fig. S8), we found clustering resolution to be 
the most important feature for predicting 3/4 metrics, with filtering strategy, # dimen-
sions for dimensionality reduction, and normalization strategy being the most important 
otherwise. In contrast, for linear regression, filtering strategy rather than clustering reso-
lution was most important in 3/4 datasets (Additional file 1: Fig. S9). Interestingly, in this 
setting, interactions between dataset- and pipeline-specific features dominated as the 
most important features for all four metrics. These results suggest that particularly for 
random forest, clustering resolution is an important determinant of model performance, 
but other features and feature interactions are also crucial for prediction.

Discussion
One limitation in this study is the relatively small number of scRNA-seq datasets 
used (86, albeit 288 pipeline observations from each), which necessitated parsimo-
nious machine learning models (penalized linear regression, random forest) to not 
overfit. Since starting this work large-scale efforts such as CELLxGENE [27] have com-
piled > 1200 datasets with > 80 M cells total, raising the possibility that this benchmark-
ing dataset may be expanded and more complex models such as deep learning may be 
applied. However, such datasets bring new challenges of scaling algorithms to many 
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cells. For example, when we further attempted to assess the performance of 288 pipe-
lines on 6 datasets with > 100,000 cells, we found the implementation of scran normali-
zation used was unable to handle these data sizes, resulting in pervasive missing data. 
Therefore, applying such approaches to larger scRNA-seq datasets will require careful 
consideration and selection of highly scalable algorithms.

A related limitation is the limited dataset-specific features to which we have access: 
these were either QC metrics or reduced-dimension gene expression features. Our 
attempts to incorporate additional dataset-specific metadata were made difficult by large 
amounts of missing metadata across studies or metadata unique to individual studies. 
Future efforts may benefit from further standardization of study metadata.

A further limitation concerns the use of prior cell type/cluster annotations as a meas-
ure of ground truth. While this has been utilized in existing benchmarking and method 
comparison papers, it has several drawbacks. Firstly, given there is no perfect cluster-
ing of data [28], these annotations may be subjective and vary between practitioners. 
Secondly, given that our benchmarking dataset covers a set of highly used pipelines, it 
may be that these were run by default to obtain the annotations, making the annotations 
biased towards certain pipelines.

In addition, here we considered only R-based pipelines, while there is an active and 
mature ecosystem of Python-based workflows for single-cell analysis as implemented 
through packages such as Scanpy [29]. This was motivated by both the already combi-
natorial number of R-based pipelines considered as well as existing tools for efficiently 
executing many possible R-based pipelines on a dataset [11]. While many Python sin-
gle-cell analysis pipelines approximate R-based ones, recent work has thrown doubt on 
the extent to which the results are consistent between them [30]. Therefore, future work 
may wish to incorporate recommendations of Python-based pipelines in addition.

A further promising direction for future investigation is the incorporation of auto-
mated cell annotation methods as a possible metric and/or evaluation criteria. Mul-
tiple methods proposed by the community [31] take an annotated reference atlas and 
attempt to assign each cell in an unlabeled dataset to a previously annotated cell type 
based on gene expression similarity. While we have not applied such methods here due 
to the requirement to select an appropriate reference and annotation method, future 
machine learning algorithms may recommend pipelines based on agreement with auto-
mated cell type annotations or weight the deviation from automated annotation in their 
recommendation.

Finally, while the models we have used here frequently have predictive power on held 
out datasets that is significantly better than random, this is not equivalent to them hav-
ing practically significant predictive power. Indeed, the average correlations between 
predicted and measured metric values range from 0.016 to 0.296 leaving much scope to 
improve with larger datasets and more powerful predictive models. However, given that 
there are currently no tools or studies to automatically recommend scRNA-seq analysis 
pipelines for a given dataset, we believe this is a useful starting point for further explora-
tion and discussion in this field.
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Conclusions
In this study, we created a new dataset of four unsupervised clustering metrics applied 
to 288 analysis pipelines across 86 scRNA-seq datasets. By training supervised models to 
predict these metrics using pipeline and dataset-specific features, we demonstrated the 
exciting possibility of systematic recommendations of pipeline parameters for unseen 
datasets. Intriguingly, dataset-specific recommendations result in higher prediction 
accuracy when predicting the metrics themselves but not necessarily when consider-
ing whether predictions align with prior clustering results. To stimulate methods devel-
opment in the community in this area, we release the resulting dataset containing the 
4 clustering metrics from 24,768 unique clustering outputs as the Single Cell pIpeline 
PredIctiOn (SCIPIO-86) dataset, along with the pipeline- and dataset-specific features 
required for building predictive models.

Methods
Dataset collation

The scRNA-seq datasets used in this study were sourced from the European Bioin-
formatics Institute’s Single Cell Expression Atlas [16]. The selected datasets were the 
86 datasets that were (i) human and (ii) contained fewer than 100,000 cells as of May 
2021. The upper bound on the number of cells considered was due to memory and time 
constraints when applying many pipelines. For each dataset, a large number of data-
set-specific features were computed using the scuttle package addPerCellQC function 
[32] (Additional file 2: Table S2). The code for all analyses in this paper can be found at 
github.com/camlab-bioml/beyond_benchmarking_analyses.

scRNA‑seq pipeline construction

In total, 288 different clustering pipelines were run on each dataset using the pipeComp 
framework [11]. These pipelines consisted of different (i) filtering, (ii) normalization, (iii) 
dimensionality reduction, and (iv) clustering methods and/or parameters (Additional 
file 2: Table S7). All datasets were fed into the clustering pipelines as raw counts with 
per-cell quality control metrics computed using scuttle’s addPerCellQC as above as the 
quality control metrics were required for preprocessing steps such as filtering.

While the different steps of the pipelines are well described in the pipeComp paper, we 
briefly describe them below:

1.	 Filtering. The default method excludes cells that meet at least two of the follow-
ing criteria: log10_total_counts less than 5 median absolute deviations (MADs) or 
greater than 2.5 MADs, log10_total_features less than 5 MADs or greater than 2.5 
MADs, pct_counts_in_top_20_features greater than or less than 5 MADs, featcount_
dist greater than or less than 5 MADs, pct_counts_Mt greater than 2.5 MADs and 
greater than 0.08. The stringent filtering method uses the same thresholds as default, 
but a cell only needs to meet one of the above criteria before being discarded. Lenient 
filtering excludes cells with metrics greater than 5 MADs on any two quality control 
metrics, except for pct_counts_Mt where cells with a percentage of mitochondrial 
counts greater than 3 MADs or greater than 0.08 were excluded.
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2.	 Normalization. Three different normalization methods were computed. These were 
scran’s pooling-based normalization [18], sctransform’s variance-stabilizing normal-
ization [19], and seurat’s log-normalization [17], all with default parameters. After 
normalization, feature selection was performed using Seurat’s FindVariableFeatures 
function in the “vst” setting, and the top 2000 most variable features were kept.

3.	 Dimensionality reduction. The dimensionality reduction step was performed using 
Seurat’s PCA method and the dimension parameters considered were 10, 15, 20, and 
30.

4.	 Clustering was performed using Seurat, with resolutions 0.1, 0.2, 0.3, 0.5, 0.8, 1.0, 1.2, 
and 2.0. Since the number of clusters should reflect the number of true sub-popula-
tions in each dataset, clustering was performed with many different resolutions as 
the true number of subpopulations is not known a priori.

Metrics of pipeline success

The results from the clustering pipelines were evaluated using the unsupervised cluster 
purity metrics from sklearn [33]: Calinski-Harabasz index (CH), Davies-Bouldin index 
(DB), and silhouette coefficient (SIL). These were applied to the log(x + 1) count matrix 
filtered to contain the same cells as the clustering output for that pipeline (after e.g., 
filtering) on the 500 most highly variable genes. CH measures the ratio of the sums of 
between-cluster dispersion and of within-cluster dispersion for all clusters. A higher CH 
value indicates that clusters are dense and well-separated, which generally means a bet-
ter clustering output. DB measures the average similarity between each cluster and its 
most similar one, with similarity defined as the ratio between the sum of cluster diam-
eters (mean distance between each point in a cluster and its centroid) and the distance 
between cluster centroids. Unlike CH, a higher value of DB indicates a worse clustering 
performance, with values closer to 0 representing better, well-separated clustering. SIL 
is a measure of how cohesive and separated clusters are, quantified as the mean score 
across samples. For each sample, SIL computes the (normalized) difference between 
the mean distance from that sample to points in the same cluster and mean distance to 
points in the nearest cluster. SIL is bounded between − 1 and 1, and, similarly to CH, 
higher scores indicate better clustering. In contrast to SIL and CH, a lower DB indicates 
a more favorable clustering, so for the remaining analyses, we multiplied the DB values 
by − 1 for the direction of change in clustering performance to be consistent across met-
rics. After the above metrics were computed, they were scaled to have mean 0 and vari-
ance 1 within each dataset since their values are influenced by dataset-specific biological 
and technical factors and are thus not comparable between datasets.

Adjusting metrics for number of clusters identified

The cluster purity metrics were corrected to remove the relationship between the metric 
values and the number of clusters found by each pipeline. For each dataset, we fit a loess 
model using the loess function in R with the formula metric ~ number of clusters. We 
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then extracted the residuals from each of the loess models and used the residuals as our 
corrected metric values.

GSEA clustering metric

Aside from cluster purity metrics, Gene Set Enrichment Analysis (GSEA) [21] was used 
as an additional metric. For each of the clustering outputs, findMarkers from the scran R 
package [34] was used to identify the marker genes for each cluster. The log fold change 
for the marker genes of each cluster were then mapped to gene symbols and GSEA was 
computed using the Gene Ontology Biological Processes, Cellular Component, and 
Molecular Function gene sets, as well as the Human Phenotype Ontology gene sets [21] 
using the fgsea package [35]. These gene sets were subsetted to only include the sets with 
more than 10 and fewer than 500 genes (but no FDR filtering was performed). After an 
absolute normalized enrichment score (NES) was computed for each cluster, they were 
averaged across all clusters to yield one GSEA metric for each clustering output. The 
GSEA metrics were then scaled to have mean 0 and variance 1 within each dataset in 
line with the other metrics.

Comparison to expert‑derived labels

We were able to compute the adjusted Rand index (ARI) using sklearn on 16 of the 86 
datasets as they included cell type labels. ARI is a standard measure of clustering per-
formance that has been used in many other benchmarking studies when ground truth 
is available. The Rand index is a measure of the similarity between two different cluster-
ings, and the ARI adjusts the Rand index for chance overlap due to increasing cluster 
numbers. The ARI reaches a maximum value of 1 when the two clusterings are the same 
and is close to 0 when the cells are labeled randomly.

Handling missing data

We found that some pipeline and dataset combinations yielded clustering outputs con-
sisting of a singular cluster, leading to missing values in the unsupervised metrics as 
their computation requires at least two distinct clusters. We imputed the missing values 
using the median scaled metric value of each dataset. For the cluster purity metrics, this 
was done after correcting the metrics for the number of clusters.

Predicting pipeline performance using pipeline parameters and dataset characteristics

For each of the four metrics, random forest and linear regression models were used to 
predict the metric, given pipeline parameters and dataset characteristics as inputs. Each 
observation given to the model represents a unique pipeline and dataset combination. 
The input data consisted of 45 features. Of this 45, 20 features were the first 20 princi-
pal components of gene expression, four were pipeline parameters, and the remaining 
21 were dataset quality control metrics. The quality control metrics were per-cell met-
rics such as the number of genes detected and percentage of mitochondrial counts (see 
Additional file 2: Table S1). For each dataset, we used the median of each per-cell metric 
as the input to our machine learning models.

Principal component analysis (PCA) was used to create the additional 20 gene expres-
sion features mentioned above. For each scRNA-seq dataset, we summarized it with a 
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single vector by taking the mean expression of each gene’s raw counts. We then collated 
these vectors into a dataset by gene matrix. Notably, this is conceptually different from 
the standard PCA run on the gene by cell expression matrices in the typical scRNA-seq 
data analysis workflow. PCA on the dataset by gene matrix will capture the directions of 
variation in the mean gene expression across the 86 datasets. Using the same train-test 
split as below, we first fit a probabilistic PCA model [36] on the training set and then 
used the fitted model to transform the test set. The scores were then extracted from both 
the train and test sets and used as input features for the machine learning models.

The models were trained using a 70/30 dataset-aware train-test split where all pipeline 
results for a given dataset must be included in either the train or test set. Sixty-one of 
the 86 datasets (70%) were placed in the training set, and the remaining 25 (30%) were 
placed in the test set. This was done to ensure that our models would be able to predict 
pipeline performance on completely unseen datasets, which is a more realistic scenario 
as practitioners generally do not have access to benchmarking results for their specific 
dataset. Within the 25 datasets in the test set, we included the 16 datasets with cell type 
labels. This allowed us to evaluate our models’ test predictions against ground truth 
performance.

Since we modeled each of the four metrics as a function of dataset-specific character-
istics and pipeline parameters, we scaled all numeric values before giving them as inputs 
to the models so that the predictions would not be dominated by inputs on extreme 
scales. We computed the means and standard deviations of each of the numeric features 
on the train set and used them to center both the train set and test set.

Hyperparameter tuning

Tenfold dataset-aware cross-validation (CV) on the train set was used to tune model 
hyperparameters using the R package caret [37], meaning for each CV iteration, results 
from one dataset would appear in one fold only. We opted for a dataset-aware CV pro-
cess as not being dataset-aware would give test or cross-validation performance equiva-
lent to already having access to some ground truth values for a given dataset—in other 
words, the datasets would not be “unseen.” The number of trees (ntree) and number of 
variables tried at each split (mtry) were tuned using grid search for the random forest 
models, which were fitted using the randomForest R package. Values of 100, 300, and 
500 were considered for ntree and values of 1 to the total number of features (45 and 
4 for the dataset-pipeline interactions and pipelines-only models respectively) for mtry. 
The linear regression models were fitted using the glmnet R package [38]. The hyper-
parameters α and λ, which control the gap between lasso and ridge regression and the 
strength of the penalty term respectively, were tuned using grid search as well. Three 
values were tried for both α and λ using caret defaults. For both the random forest and 
penalized linear regression models, the final models were selected based on the hyper-
parameters that minimized the cross-validated root mean squared error.

Evaluating model performance

We evaluated the performance of the models by comparing their predictions with the 
corresponding calculated corrected metrics. For each dataset in the test set, we com-
puted the Pearson correlation between the model’s predictions and the observed metric 
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value. We then computed a one-sided Wilcoxon rank-sum test against 0 for all the cor-
relations in the test set for each model and used Benjamini–Hochberg multiple test cor-
rection. This allowed us to evaluate whether the models were able to predict on the test 
set with a significantly positive correlation with the observed metric values compared to 
random. We repeated this process on the 16 labeled datasets but replaced the observed 
metrics with the ARI between the clustering returned by a given pipeline and the exist-
ing labels to measure the agreement between our predictions and previous cell type 
annotations.

Quantifying determinants of dataset‑specific prediction performance

Since the correlation between the predictions of our models and the observed metric 
varied between datasets, we examined which features were indicative of pipeline pre-
dictive performance. We quantified predictive performance using the Pearson correla-
tion between the model’s predictions and the observed metric value for each dataset. We 
then computed the Pearson correlation between the predictive performance and dataset-
specific features across datasets, giving us one correlation for each feature. Finally, we 
performed a two-sided association test for these correlations to determine whether they 
were significantly different from 0. On the 16 datasets with ground truth labels avail-
able, we also quantified predictive performance as the correlation between the models’ 
predictions and the ARI. Using this measure of predictive performance, we repeated the 
above process to determine which dataset-specific features impact predictive ability. In 
the heatmaps in Fig. 4, the dataset-features have been filtered to only include those that 
have a correlation significantly different to 0 in at least one of the four models (CH, DB, 
SIL, GSEA).
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