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Abstract

Accurate inference of orthologous genes constitutes a prerequisite for comparative
and evolutionary genomics. SonicParanoid is one of the fastest tools for orthology
inference; however, its scalability and accuracy have been hampered by time-con-
suming all-versus-all alignments and the existence of proteins with complex domain
architectures. Here, we present a substantial update of SonicParanoid, where a gradient
boosting predictor halves the execution time and a language model doubles the recall.
Application to empirical large-scale and standardized benchmark datasets shows

that SonicParanoid? is much faster than comparable methods and also the most
accurate. SonicParanoid? is available at https://gitlab.com/salvo981/sonicparanoid?2
and https://zenodo.org/doi/10.5281/zenodo.11371108.

Keywords: Orthology inference, Machine learning, Language model, Genome
evolution

Background

The accurate inference of orthologous genes originating from speciation events is cru-
cial in various areas of genomics and evolutionary biology [1]. Many tools and resources
have been developed to identify orthologous relationships among multiple proteomes.
They are classified into graph [2—-6] and tree based [7-9], which do not include tools that
integrate both approaches (hybrid) or integrate publicly available resources to perform
their predictions [10, 11]. Graph-based tools infer orthologs by calculating all-versus-
all pairwise similarity scores and using the bidirectional-best-hit (BBH) method or its
derivatives [12]. In tree-based methods, orthologs are identified by analyzing phyloge-
netic trees, which allows the identification of speciation and duplication events. Tree-
based tools are more computationally demanding and are typically available to users
only via databases or web services. A comparative study showed no significant differ-
ences in the ability of the two approaches in inferring orthologs [13].
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The steep decrease in sequencing costs and the associated increase in genomic and
metagenomic data [14] challenge the scalability of orthology inference tools. Inferring
orthologs de novo for a few hundred proteomes using graph-based methods on high-
performance computing servers may require days to weeks, even when local alignment
tools, such as MMseqs2 [15] and Diamond [16], are used as faster alternatives to BLAST
[17].

In addition to the scalability problem, graph-based methods tend to miss orthologs
in duplication-rich proteomes [18] (e.g., plant proteomes) and in proteins with complex
domain arrangements (architectures) originating from fusion and fission events [19, 20].
For example, BBH-based methods fail to identify human kinase orthologs detected using
a domain-based orthology inference method [21]. The importance of orthology-infer-
ence at the domain level was also highlighted by its recent integration into the long-
standing InParanoidDB [22].

Machine learning (ML), particularly methods borrowed from natural language pro-
cessing (NLP), has been extensively used in genomics [23]. Currently, deep learning and
language models are used in multiple areas of genomics [24], including sequence assem-
bly and binning [25, 26] as well as protein folding [27, 28]. ML is gradually being adopted
for orthology inference [29, 30]; however, the sensitivity, scalability, and usability of ML-
based methods can be further improved.

Herein, we report a major update to SonicParanoid [31], which is one of the fastest de
novo orthology inference tools [30, 32]. The update uses two ML methods, AdaBoost
[33] and Doc2Vec [34], to deliver a substantially faster, more accurate, and more com-

prehensive orthology inference.

Results
SonicParanoid2 as the fastest and most accurate orthology inference method
For a set of N proteomes, SonicParanoid2 performs de novo orthology inference using a
novel graph-based algorithm that halves the execution time with an AdaBoost classifier
and avoiding unnecessary alignments (Fig. 1a). Furthermore, for a more comprehensive
identification of orthologs, SonicParanoid2 conducts domain-based orthology infer-
ence using Doc2Vec neural network models (Fig. 1b). The clusters of orthologous genes
from each species pair (the species-species ortholog clusters) predicted by these two
algorithms are merged (Fig. 1c) and input into the Markov cluster algorithm [35] (MCL)
to infer the multi-species ortholog groups [2] (OGs) for the N input proteomes. Sonic-
Paranoid2 can be executed using three predefined modes (fast, default, and sensitive), in
which different local alignment tools and settings are used (Additional file 1: Table S1).
The effect of domain-based orthology on the number of predicted orthologs and
the total execution time differs depending on the input dataset and settings for Son-
icParanoid2. For example, on a dataset provided by the Quest for Orthologs [36, 37]
(QfO) (Additional file 1: Fig. S1), the number of predicted orthologs increased by one
third at the default settings, and the total execution time showed a similar increase
(26.86%) (Table 1). The increase in the total execution time becomes relatively neg-
ligible for larger datasets and at higher sensitivity settings because of the high scal-
ability of the domain-based pipeline (Additional file 1: Fig. S2). For example, on a
dataset with 2000 metagenome-assembled genomes (MAGs) (Additional file 1: Fig.
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Table 1 Execution times of SonicParanoid2 and effects of including domain-based orthology.
Results were obtained using the QfO dataset as input. Execution time columns show the total
execution time and its increase due to the execution of the domain-based pipeline. Increase
in predicted orthologs provided by the domain-aware pipeline is up to one third (columns of
predicted ortholog pairs). Last four columns show the speedup folds relative to the execution times
of the compared methods

Execution time Predicted ortholog Speed-up folds on other methods
pairs
Mode Total Increase(%) Count Increase Broccoli OrthoFinder  OrthoFinder ProteinOrtho
(hours) (million) (%) (MSA)
Default 0.83 26.86 15.28 27.39 3.57 1.64 11.91 —1.19
Fast 0.55 49.99 14.64 29.79 541 249 18.08 127
Sensitive  4.28 4.29 19.27 23.14 — 144 —3.13 232 —6.12

S3), the increases in execution time were 16% and 13% for the default and fast modes,
respectively, whereas one third more orthologs were predicted regardless of the set-
tings (Table 2). The execution time of the domain-based algorithm is almost the same
regardless of the mode at which SonicParanoid2 is executed, and so its impact on
the total execution time varies depending on the time the graph-based pipeline took.
For example, on a dataset of 200 eukaryotes (Additional file 1: Fig. S4), the domain-
based algorithm increases the execution time by 28% and 2% for the fast and sensitive
modes, respectively (Table 3).

We compared the execution time of SonicParanoid2 with those of OrthoFinder [10],
ProteinOrtho [38], and Broccoli [30], which are among the fastest tools for de novo
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Table 2 Effects of including domain-oriented orthology when processing a set of 2000 MAGs.
Execution time columns show the total execution time and its increase due to the inclusion of
the domain-based pipeline. The increase in execution time is low if we consider the magnitude of
the input dataset, whereas the number of predicted orthologs increased by more than one third.
OrthoFinder and Broccoli failed to complete the execution for different reasons

Execution time Predicted ortholog pairs Speed-up folds
Mode Total (hours) Increase (%) Count (million) Increase (%) ProteinOrtho
Default 41.60 15.69 1817.40 30.66 3.29
Fast 25.03 13.56 1694.88 37.39 547

Table 3 Effects of including domain-oriented orthology when processing a set of 200 eukaryotic
proteomes. Execution time columns show the total execution time and its increase due to the
inclusion of the domain-based pipeline. Broccoli was using the whole 2 terabytes of memory in the
system and was terminated

Execution time Predicted ortholog Speed-up folds on other methods
pairs
Mode Total Increase  Count Increase  Broccoli  OrthoFinder OrthoFinder ProteinOrtho
(hours) (%) (million) (%) (MSA)
Default 574 13.58 148.06 2167 NA 1.65 6.92 1.13
Fast 3.07 2843 141.81 2342 NA 3.09 1293 2.1
Sensitive 3885 1.67 181.25 17.15 NA —4.09 1.02 —5.99

orthology inference. Broccoli reduces the burden of all-versus-all alignments through
k-mer clustering, while ProteinOrtho uses a heuristic approach to halve the number
of required alignments. Multiple studies demonstrated that these tools are similarly
accurate for inferring OGs [32, 39, 40].

On the QfO dataset, the fast mode of SonicParanoid2 was 5x, 2.5x, and 1.3x faster than
OrthoFinder, Broccoli, and PorteinOrtho, respectively (Table 1). At the default settings,
SonicParanoid2 was 3.6x and 1.6x faster than Broccoli and OrthoFinder, respectively,
but slightly slower (— 1.2x) than ProteinOrtho. In the sensitive mode, SonicParanoid2
was slower than others due to the use of MMseqs2 at the highest sensitivity (Additional
file 1: Table S1), but it was 2.3x faster than OrthoFinder (MSA), which performs addi-
tional multiple sequence alignments to increase the sensitivity. Furthermore, when the
same sensitivity settings for Diamond are used for both ProteinOrtho and SonicPara-
noid2 a similar execution time was observed (Additional file 1: Table S2).

We also estimated the peak memory usage of each tool on the QfO dataset (Additional
file 1: Table S3 and Supplementary text) and found ProteinOrtho to have the lowest
memory footprint, while Broccoli has the highest. ProteinOrtho also exhibited very low
CPU times since it performs only half of the alignments compared to SonicParanoid2
and OrthoFinder.

Orthologous relationships for the MAG dataset were inferred by SonicParanoid2 in 1.7
and 1 day in the default and fast modes, respectively (Table 2). Conversely, OrthoFinder
and Broccoli failed to complete orthology inference on the MAG dataset for different
reasons (Additional file 1: Supplementary text), while ProteinOrtho took 5.7 days (5.5x
slower than SonicParanoid2).

Page 4 of 18
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The accuracy of SonicParanoid2 was evaluated using the QfO benchmark [37] and
compared with 14 well-established methods, including a legacy version of SonicPara-
noid [31]. In 12 tests performed, methods close to or constituting the Pareto frontier
were regarded as those that provided the best tradeoff between precision and recall.
SonicParanoid2 was Pareto optimal in multiple tests, including the LUCA and bacterial
species tree discordance tests (Fig. 2a—d and Additional file 1: Figs. S5 and S6). Lastly,
SonicParanoid2 is the most accurate method based on the aggregate ranking of three
classification methods provided by the QfO benchmarking service (Fig. 2e and Addi-

tional file 1: Figs. S7-S10).
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Substantially faster and scalable graph-based orthology inference using machine learning
Graph-based de novo orthology inference for N proteomes generally requires N intra-
proteome and N(N-1) bidirectional inter-proteome all-versus-all alignments. For the
bidirectional inter-proteome alignment of proteomes A and B, all proteins in A are que-
ried against proteome B (denoted as alignment A-B), and all proteins in B are queried
against proteome A (B-A). The key rationale behind the way in which SonicParanoid2
reduces the computational cost is as follows: (1) the execution times of alignments A-B
and B-A can substantially differ depending on the proteome size and evolutionary dis-
tance between A and B (Additional file 1: Figs. S11 and S12), and (2) query and target
proteins that have no hits with bitscores above a predefined threshold in one of the two
inter-proteome alignments cannot be predicted as orthologs, based on the definition of
BBH (Eq. 1). Accordingly, for a pair of proteomes A and B, SonicParanoid2 first pre-
dicts the faster alignment between A-B and B-A using an adaptive gradient boosting
[33] (AdaBoost) binary classifier (Additional file 1: Table S4). If A-B is predicted to be
faster, then SonicParanoid2 first conducts the alignment A-B and creates two subsets,
ess(A) and ess(B), which include only proteins with alignment scores above the thresh-
old (Eq. 2) and representing the best-hits for the A-B alignment. Subsequently, the align-
ment between ess(B) and ess(A) is performed instead of the slower alignment of B-A
(Additional file 1: Fig. S13). Finally, the algorithm identifies the orthologs as shown in
Eq. 3. Henceforth, we will refer to the subsets of proteins generated by this graph-based
algorithm as “essential subsets” and to the all-versus-all among these subsets as “essen-
tial alignments”

We evaluated the execution time of the novel graph-based algorithm in SonicPara-
noid2 (Fig. 1a) on the QfO and MAGs datasets (Additional file 1: Figs. S1 and S2) using
different alignment tools and sensitivity settings (Additional file 1: Table S5). For the
QfO dataset, the execution time for the all-versus-all alignments was reduced by 42%
(Additional file 1: Table S6). Moreover, when only inter-proteome alignments were
considered, the reduction in execution time was as high as 95% (Fig. 3). A speedup was
observed regardless of the alignment tool used (MMsegqs2, Diamond, or BLAST). Nev-
ertheless, the extent depended on both the alignment tool used and its sensitivity set-
tings (Additional file 1: Table S6). Specifically, the proportions of sequences used in the
second alignment were smaller for the proteome pairs of phylogenetically distant spe-
cies (Additional file 1: Fig. S14), thus resulting in higher speedups. For example, 97% of
the input proteins was not used in the second alignment between Leptospira interrogans
(bacteria) and Giardia intestinalis (protist), which consequently reduced the execution
time substantially. Conversely, less than 2% of the original input was removed for the
second alignment between closely related chimpanzee and gorilla proteomes.

The accuracy of the AdaBoost classifier differed depending on the alignment tool for
which it inferred faster alignments, partly because it was trained for MMseqs2 (Addi-
tional file 1: Table S6). The necessity of the AdaBoost model was assessed by measuring
the reduction in execution time when the slowest alignments were conducted first. This
task was performed by inverting the predictions of the AdaBoost classifier. For exam-
ple, when the classifier predicted A-B as the fastest alignment, we first aligned B-A. We
observed that the amount of saved time was up to 70% less, which proved the impor-
tance of predicting the fastest inter-proteome alignments (Additional file 1: Table S7).
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Fig. 3 Speedup from essential alignments and evolutionary relatedness. For two proteomes A and B, the
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A-B and B-A. The speedup (on the Y-axis) obtained for each bidirectional alignment was computed as the
difference in total execution time required with and without using the essential alignments. The speedups
obtained using the novel approach in SonicParanoid2 are inversely proportional to the evolutionary
relatedness (expressed in terms of AAl) of the proteome pairs. The results above were obtained using the QfO
dataset as input and MMseqs?2 at the most sensitive settings

Additionally, compared to randomly selecting the alignments to perform, following
AdaBoost prediction was 7-22% faster depending on the sensitivity settings (Additional
file 1: Table S8).

To evaluate the scalability of the graph-based algorithm of SonicParanoid2, we per-
formed orthology inference on a large dataset comprising 2000 MAGs from aquatic and
terrestrial environments (Additional file 1: Fig. S3). The required four million all-ver-
sus-all alignments were performed in 56.48 and 23.74 h using MMseqs2 and Diamond,
respectively, which corresponded to execution times reduced by 16.18% and 24.99%,
respectively (Additional file 1: Table S9). The MAG dataset contained many closely
related microbial genomes, and the closely related proteomes therein limited the reduc-
tion in execution time (Additional file 1: Figs. S14 and S15).

Speed and accuracy of the AdaBoost-enhanced graph-based method

We compared the execution times of the AdaBoost-enhanced graph-based algorithm
(Fig. 1a) with those of Broccoli and OrthoFinder. In particular, the domain-based algo-
rithm in SonicParanoid2 was disabled. On the 78-proteome QfO dataset, the fast mode
of SonicParanoid2 using Diamond (Additional file 1: Table S5) completed the execu-
tion in 0.38 h, whereas OrthoFinder and Broccoli took 10.19 and 2.77 h (7.3x and 26.9x
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slower), respectively (Additional file 1: Table S10). Subsequently, we tested OrthoFinder
and Broccoli on the 2000-proteome MAG dataset; however, both tools failed to com-
plete the orthology inference for different reasons (Additional file 1: Supplementary
text), whereas SonicParanoid2 required one day (Additional file 1: Table S9).

To compare the AdaBoost-enhanced method with the conventional graph-based
approach, which uses all the input sequences, we evaluated the prediction sets of 18 tri-
als (Additional file 1: Table S6) using the QfO benchmark. The accuracies of the two
graph-based approaches were highly similar, with no apparent adverse effect on the
accuracy despite the substantial reduction in computational time (Additional file 1: Figs.
S16 and S17). This can better be seen in Additional file 1: Figs. S7-S10 in which “SP v1.3
(most-sens)” and “SP2 (g) (sens)” are ranked next to each other in three of the four rank-
ings. These two methods used only the graph-based algorithm and the same settings for
MMseqs (Additional file 1: Tables S1 and S5).

Fast and scalable domain-based orthology inference using Doc2Vec
The graph-based approach based on BBH can miss orthologs of proteins with many
duplications or those that have undergone domain fusion or fission [18, 20, 21] (Fig. 4a

a Example of domain orthologs missed by BBH
PF14681
UPRTase

PF00485
AOA3B3HHDS PF00485 PF14681
O.latipes PRK UPRTase

b Architectures and cosine similarities
7 PFM%Bl%————————————1
|
|
9 PF00485 13 0.68
0.66 . —— i
A oibe 78 PF00485 40 PF14681F ——-'

Fig. 4 Recovery of orthologs missed by BBH via domain-based orthology inference. a Protein AOA3B3HHDS8
from O. latipes is a representative example of domain fusion resulting from two single-domain £. coli proteins.
Pink and green boxes in a are functional domains (annotated with their Pfam ID and gene name), whereas
black boxes represent inter-regions with no Pfam annotation in InterPro (as of January 2023). POA8F4 and
POAB8FO are orthologous to AOA3B3HHDS (black arrows), but the graph-based pipeline identifies only
POA8F4 as an ortholog. b Using domain-aware orthology, SonicParanoid?2 predicts POA8FO as an ortholog of
AOA3B3HHDB8. Text inside the white boxes represent the architectures for the proteins above as they appear
in the training corpus for the Doc2Vec model. The rounded rectangles in orange show the cosine similarities
assigned to the two pairs of domain architectures
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and Additional file 1: Fig. S18). Thus, in addition to the orthologs predicted using the
graph-based approach, SonicParanoid2 infers orthologs at the domain level by compar-
ing functional domain architectures using techniques typically used in natural language
processing (Fig. 1b and Fig. 4b).

SonicParanoid2 uses fast profile searches on Pfam [41] to infer the domain archi-
tectures of the input proteins and converts them into “phrases,” where “words” are the
annotated functional domains and the amino-acid lengths of the inter-domain regions
(Fig. 1b). The phrases are used as the training corpus for a Doc2Vec [34] neural network
model that associates a numerical vector with each domain architecture. For each inter-
proteome pair, after a filtering step, the cosine similarities of the inter-proteome domain
architecture pairs are computed. Pairs of architectures with cosine similarities above a
predefined threshold are considered candidate orthologs.

The increase in total execution time due to the inclusion of the domain-based pipeline
was negligible, considering the increase in the number of predicted orthologs (Tables 1,
2, and 3). Due to the high scalability of the domain-based pipeline (Additional file 1: Fig.
S2), the aforementioned smallness of the increase in execution time was more appar-
ent when processing larger datasets. For example, for the MAG dataset, the increases in
execution time were 16% and 13% for the default and fast modes, respectively, whereas
the increase in the number of predicted orthologs was about one third, regardless of the
settings (Table 2). The impact on the total execution time is even lower when SonicPara-
noid2 is executed in the sensitive mode (Tables 1 and 3, only 1.7-4.3% increases). The
scalability of the method also allows us to train the Doc2Vec model on the fly with docu-
ments (architectures) extracted from the input dataset. This ensures that the model has
seen the entire corpus and can provide an embedding vector for each domain architec-
ture, thus enabling faster executions.

The inclusion of the domain-based pipeline substantially increased the recall. For
example, in the bacterial species tree discordance test, the recall doubled in some set-
tings (Additional file 1: Figs. S19 and S$S20). Nevertheless, the additional orthologs
obtained from the domain-based pipeline might contain false positives. This may explain
the result on the SwissTree dataset (Additional file 1: Fig. S6a, the right panel) in which
SonicParanoid2 obtained a small increase in recall at the cost of precision. It should be
noted that at present the QfO benchmark service does not fully support predictions
obtained at the domain level, although the 2022 challenge (for which results are publicly
available) includes a new test that scores domain architectures of the predicted orthologs
using the approach described in Dosch et al. (2023) [42]. In this test, the inclusion of the
predictions obtained using Doc2Vec resulted in an increase in both precision and recall.

The embeddings generated by Doc2Vec are sensitive to the order of the elements in the
architectures (annotated domains and unannotated regions), but this comes with limi-
tations. For example, the embeddings for architectures that have experienced domain
shuffling or other rearrangement would have low cosine similarities and would ulti-
mately be rejected by our algorithm. Domain rearrangement events could potentially be
detected by replacing Doc2Vec with attention-based methods [43], or by including met-
rics that are order-invariant, such as the Jaccard index in Domainoid [20], or by allow-
ing each domain to have different orthology. We acknowledged the limitation of our
approach and used a very conservative approach when including predictions from the
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domain-based algorithm. This partially explains why the biggest improvement in recall
when the domain-based algorithm was used was observed in the STD Bacteria dataset,
which likely contain simpler architectures compared to other test datasets (Additional
file 1: Fig. S2b).

The overall accuracy was significantly increased, making SonicParanoid2 the most
accurate based on three classification methods provided by the QfO benchmark service
(Fig. 2e and Additional file 1: Figs. S7-S10). More importantly, such boost in accuracy is
higher when SonicParanoid?2 is executed at lower sensitivities, allowing for accurate pre-
dictions with shorter runtimes (Additional file 1: Table S11).

The recovery of eukaryotic uridine—cytidine kinases are examples of orthologous rela-
tionships recovered using domain-based orthology inference. Previous studies showed
that the fusion of prokaryotic phosphoribulokinase/uridine kinase and uracil phospho-
ribosyltransferase domains (POA8F4 and POAS8F0) resulted in the emergence of this
enzyme in human [20] (UniProt ID QINWZ5). Whereas the graph-based method of
SonicParanoid2 identified POA8F4 only as an ortholog of QOINWZ5, the domain-based
method identified POA8FO as well. Additionally, the domain-based method predicted
POASFO to be an ortholog of other 17 eukaryotic uridine—cytidine kinases in 12 eukary-
otic species in the QfO dataset (Additional file 1: Table S12).

Conclusion

Fast, accurate, and comprehensive identification of orthologous genes is becom-
ing increasingly important in genomic and evolutionary studies owing to the steady
growth of publicly available genomic data [14]. Nevertheless, existing de novo orthol-
ogy inference tools require long execution times because of the necessary all-versus-all
alignments and cannot effectively detect orthologs of proteins with complex domain
architectures or those that have undergone gene fusion or fission events [20, 21].

SonicParanoid2 solves the two aforementioned problems using ML and is faster and
more accurate than existing tools. The novel graph-based algorithm almost halves the
execution time by avoiding unnecessary homology searches and does not degrade the
accuracy. The domain-aware algorithm increased the number of predicted orthologs by
one third and significantly increased the accuracy with minimal costs for the total execu-
tion time. Evaluation based on standardized benchmarks showed that SonicParanoid?2 is
the most accurate among other 14 well-established methods.

While SonicParanoid2 was the fastest thanks to several optimizations in the graph-
based pipeline, it could be further improved. The AdaBoost model for selecting the
faster inter-proteome alignment to perform could be substituted with a simple heuristic
approach based on proteome size. Additionally, the “pseudo-reciprocal best alignment”
approach used by ProteinOrtho has a lot of potential, if it could be improved to lower
the negative impact on accuracy and integrated with our techniques.

Considering the way SonicParanoid2 uses language models to infer orthologs, and
their recent applications in bioinformatics (e.g., ProtVec [44], SeqVec [45] and ESMFold
[28]), we expect accurate alignment-free orthology inference tools to be realized in the
near future, which will result in significant advancements in comparative and evolution-
ary biology. Attention-based models have the potential to be able to identify orthologs
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that experienced complex domain shuffling events and to better incorporate domain-
level orthology information into the embeddings.

Material and methods

Test datasets, accuracy benchmark, and ranking

The execution times of SonicParanoid2, Broccoli, and OrthoFinder were evaluated
using the 2020 version of a benchmark dataset provided by the QfO consortium [37].
This dataset contains 78 proteomes (Additional file 1: Fig. S1a). Because it includes both
closely and distantly related species, it provides a good example on the manner by which
evolutionary relatedness affects the AdaBoost-enhanced graph-based algorithm in Son-
icParanoid2 (Additional file 1: Fig. S14).

The scalability of SonicParanoid2 was evaluated on a dataset comprising 2000 micro-
bial MAGs from terrestrial and aquatic environments (Additional file 1: Fig. S3), which
were randomly selected from a public catalogue of 52,515 MAGs [46]. The MAGs in
the dataset satisfied or exceeded the medium quality level of the minimum information
about metagenome-assembled genome (MIMAG) standard [47] and contained 5.1 mil-
lion proteins. The final dataset contained 1786 pairs of MAGs (involving 931 MAGs)
with an average amino acid similarity (AAI) exceeding 99%, suggesting that for approxi-
mately a quarter of the MAGs there is another MAG which is almost identical. Although
we processed these MAGs, we recommend removing highly similar proteomes from the
input dataset to avoid bias in the orthology inference. Additionally, we tested all meth-
ods on 200 eukaryotes reference proteomes from UniProt (Additional file 1: Fig. S4 and
Additional file 2: Table S13) which is composed of 2.9 million proteins. This dataset is a
subset of the one described in Additional file 1: Fig. S21.

To evaluate the accuracy of SonicParanoid2, the orthologs predicted for the QfO
dataset were uploaded to a benchmark service provided by the QfO. The benchmark
provides 12 tests [37]: two are based on reference gene trees, two use functional infor-
mation, one is based on manually curated sets of orthologous relationships among mam-
mals, and seven assess the validity of predictions in terms of the accuracy of the species
trees that can be reconstructed from them. In most of the tests, small subsets of the
uploaded predictions were used, except for the LUCA generalized species tree discord-
ance test, which evaluated all predictions.

The accuracy of SonicParanoid2 was compared with those of other 14 methods, the
results of which are publicly available on the benchmark web page (as of February 2023).
Benchmark results for Broccoli are not available; furthermore, because only the devel-
opers of each tool can render the benchmark results publicly available on OpenEbench
[48], the accuracy of Broccoli is not discussed herein. For ProteinOrtho6, the benchmark
results were not available on the public server at the time that we prepared the materials.
Currently, its performances at various settings can be found in Klemm et al. [37] and on
the benchmark web page.

The ranking of the 15 methods into 4 groups (Fig. 2e and Additional file 1: Figs. S7-510)
was done based on the three classification methods (diagonal quartiles, K-means cluster-
ing, square quartiles) offered by the QfO benchmark services. Specifically, the diagonal
quartiles approach ranks the methods by the distance from the “optimal performance” cor-
ner (denoted by an arrow in the plot). The K-mean clustering approach clusters methods
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with similar performances into 4 groups and sorts them. The square quartiles approach
ranks the methods based on their relative performances compared to the median along the
two metrics on the X-axis and Y-axis, with preference given to the precision over recall.
Details on how to reproduce the ranking plots and the source scripts for the three classifica-
tion methods can be found in Additional file 1: Supplementary text. Each participant was
ranked counting how many times it was placed into groups 1 to 4, where group 1 contained
methods with the highest performance. The rankings shown in Fig. 2e and Additional file 1:
Fig. S7 were obtained by aggregating the ranks from the 3 classification methods. It should
be noted that because the square quartiles classification preferentially rewards methods
with higher precision, its rankings are significantly different from the other two classifica-
tion methods.

Software, databases, and settings

To perform a comparison of the execution times on the QfO 2020 and the MAG data-
sets, we used SonicParanoid 2.0.4 (commit bf30cb27), Broccoli 1.2 (commit 032064c), and
OrthoFinder 2.5.4 (commit 1b3f37c). For the results regarding only graph-based orthology
inference, SonicParanoid2 was executed with the option “--graph-only” to omit domain-
based predictions and sensitivity settings, as shown in Additional file 1: Table S1. The
additional parameters (if any) used for each tool and each run described in this study can
be found in Additional file 1: Table S3. To evaluate the AdaBoost-enhanced graph-based
method, SonciParanoid2 was executed using the settings described in Additional file 1:
Table S5, which were used in older versions of SonicParanoid (up to v1.3.8).

OrthoFinder and Broccoli were implemented in the Python3 programming language,
whereas SonicParanoid2 was implemented in Python3 and Cython [49] (v3.0.0a10). Pro-
teinOrtho was implemented in the Perl, C++, and Python languages. All tests were per-
formed using Python 3.8.10, while ProteinOrtho also required Perl (v5.38.2 was used).
The execution times (wall times) and CPU times were measured using Hyperfine (https://
github.com/sharkdp/hyperfine), while the peak memory usage were measured using the
memory-profiler software tool (https://pypi.org/project/memory-profiler). More details
can be found in Additional file 1: Supplementary text.

The alignment tools used in this study were MMseqs2 [15] (13-45111), Diamond [16]
2.0.12, and BLAST [17] 2.12.0. Additional file 1: Table S5 shows the mapping of the sensitiv-
ity of the alignment tools to the sensitivity settings of the tested orthology inference tools.

The average AAls of proteome pairs in the QfO and MAGs datasets were computed
using CompareM 0.1.2 (https://github.com/dparks1134/CompareM).

The profile database for Pfam [41] (version 35) was retrieved using the command data-
bases in MMseqs2 with “Pfam-A.seed” as a parameter and indexed using the createindex
command with parameters “-k = 5" and “-s = 7”

The Doc2Vec model was trained using the Gensim [50] (ver. 4.2) library for Python3.

Graph-based orthology inference
The graph-based orthology inference in SonicParanoid2 uses AdaBoost and exploits the
properties of the original BBH (Eq. 1) to reduce the execution time required by all-vs-all

alignments.


https://github.com/sharkdp/hyperfine
https://github.com/sharkdp/hyperfine
https://pypi.org/project/memory-profiler
https://github.com/dparks1134/CompareM

Cosentino et al. Genome Biology ~ (2024) 25:195 Page 13 0f 18

cl) b is best hit for query a in the alignment A-B

{ II) a is best hit for query b in the alignment B-A (1)

The workflow of graph-based orthology inference (Fig. la) for N input proteomes
is shown in Additional file 1: Fig. S13. The first step involves predicting the N(N-1)/2
fastest inter-proteome alignments using the AdaBoost binary classifier. Next, local
alignments of the proteome pairs predicted to have the shortest execution time are per-
formed using all input proteomes. Only the results for the best hits were kept. For each
of these alignments, let us assume A-B, the best hits are processed to create two essential
subsets (ess(A) and ess(B)) of the original proteomes using the conditions shown in Eq. 2.

cl')Va € A3 atleast one targetb € B: score(a,b) > t

{II’) Vb € B3I atleastonetargeta € A: score(b,a) >t (2)

These subsets are used for the remaining N(N-1)/2 inter-proteome alignments. N
intra-proteome alignments are performed in parallel using complete proteome sets.

Once all local alignments are completed, their outputs are processed, and the graph-
based ortholog relations are inferred using Eq. 3 and clustered as in the original Sonic-
Paranoid [30] algorithm (Additional file 1: Supplementary text).

cl) bis best hit for query « in the alignment A-B

{ II) a is best hit for query b in the alignment ess(B)-ess(A) 3)

AdaBoost training and optimization

The AdaBoost [33] binary classifier was built using 62,250 training samples containing
properties extracted from 250 reference proteomes (Additional file 1: Fig. S21 and Addi-
tional file 3: Table S14) and labeled using the execution times of inter-proteome align-
ments performed using MMseqs2 at the highest sensitivity. Given N input proteomes,
for each of the N(N-1) inter-proteome alignments, we created a training sample with
properties such as protein count, proteome size, and average protein length. Addi-
tionally, we included the differences in proteome size and protein count, expressed in
folds, by assuming that the query proteome (leftmost in the pair) was smaller and had
fewer proteins than the target proteome. Each sample was labeled based on the execu-
tion times of the two inter-proteome alignments of the proteome pair (Additional file 1:
Table S4). As an example, for a sample representing A-B, if the execution time for its
alignment is shorter than that of the other alignment (B-A), then its label is set to 1
(faster); otherwise, it is set to 0 (slower).

We selected the features in Additional file 1: Table S4 because, for two proteomes
(A and B) with substantially different compositions, the execution times for the inter-
proteome alignments can differ significantly. More specifically, if proteome A contains
much fewer sequences (or amino acid bases) than proteome B, then the time required
to align A-B may be much shorter than that to align B-A. Furthermore, because the dif-
ference in execution time was directly proportional to the difference in the composition
of the proteomes, regardless of the alignment tool used (Additional file 1: Figs. S11 and
S12); this information was used as the training feature of the AdaBoost classifier. Finally,

because this information is computed and used at each execution by SonicParanoid2,
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regardless of the binary classifier, the creation of samples to predict the fastest align-
ments has virtually no overhead.

Based on the accuracies of the model on Diamond and MMseqs2 (Additional file 1:
Table S6) as well as considering the estimated execution time for labeling the training
samples using BLAST (which is likely more than 2 months), we decided to use only the
model trained on samples labeled using MMseqs2.

The training, validation, and optimization of the model were conducted using Ada-
Boost libraries in Scikit-learn [51]. Hyperparameter optimization was performed using
a grid search, where the best performing model achieved a mean test accuracy of 97.90
in a 10-fold cross validation. For the independent QfO test dataset, the maximum accu-
racy achieved by the model was 96.70% (Additional file 1: Table S6). Based on observed
association between proteome sizes and execution times (Additional file 1: Fig. S12), we
also investigated the possibility of using the proteome size as a heuristic for selecting
the faster inter-proteome alignment to be performed. Specifically, by setting the larger
proteome to be the query and the smaller proteome to be the target, the execution times
of the alignments were comparable (only 1-3% difference) to those obtained when using
the AdaBoost model. Although we tested this only on the QfO dataset, it might be a
viable substitute for the AdaBoost model.

Construction of domain architectures and training corpus for Doc2Vec

Examples of architecture estimation and document creation for a single protein are
depicted in Additional file 1: Fig. S22. Hereinafter, we will use the terms “document”
and “architecture” interchangeably and similarly for “word” and “annotated/unanno-
tated domains.” The first step in estimating the architectures involves searching for input
proteins in a Pfam profile database using MMseqs2. The hits are filtered to obtain a bit
score and target coverage of at least 30 and 75%, respectively. For queries with multiple
domains, the architectures are composed of non-overlapping domains and inter-regions
for which no annotation was identified (uncovered regions). The elements of the archi-
tectures are converted into words and the architectures into phrases (documents). In the
documents, annotated domains are represented by their Pfam annotations and uncov-
ered regions (longer than four amino acid) by their lengths (Additional file 1: Fig. $22). A
document constitutes the training corpus if it has a protein coverage (the proportion of
the protein sequence annotated with domains) of at least 70% and is not repeated in the
corpus.

Doc2Vec model training

Doc2Vec (also known as Paragraph2Vec) is an unsupervised learning method that is an
extension of Word2Vec [52] which represents a document as a numerical vector [34]. It
uses Word2Vec to generate embeddings of single words; therefore, the embeddings can
be learned through a continuous bag-of-words or skip-gram algorithm. In Doc2Vec, an
algorithm that is similar to skip-gram is known as the “distributed bag-of-words of the
paragraph vector” and is used to train the Doc2Vec models in SonicParanoid2. The con-
text window value for the skip-gram was set to two, the number of dimensions (vector
size) was set to 100, and training was performed for 200 epochs. Although these param-
eter settings are typically used in studies pertaining to NLP [53], we set the minimum
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word frequency to one. This parameter controls the minimum number of times a certain
word must appear in the corpus in order to be used for training. Because NLP models
are typically trained on billions of documents [23], this parameter is often set to values
equal to or higher than five to reduce the training time and memory usage. Nevertheless,
in our case, the training sets were relatively small, where 134,520, 285,092, and 567,119
documents were obtained for the QfO, the 200 eukaryotes, and MAG datasets, respec-
tively. Hence, we set the minimum word frequency to one, allowing the neural networks
of the Doc2Vec model to be trained using all documents in the corpus. The training is
performed on a single CPU core for reproducibility and typically finishes in minutes
(Additional file 1: Fig. S2). It should be noted that every time SonicParanoid2 is run, the
Doc2Vec model is trained on the fly on the corpus generated from the input proteomes
and the trained model is used only on those proteomes. This also ensures that the model
recognizes every annotated domain architecture in the input dataset.

Architecture prefiltering and creation of domain-based ortholog clusters

Given proteomes A and B with / and m architectures, respectively, [ x m pairs of archi-
tectures exist. Accordingly, computing the cosine similarities for all the possible pairs of
architectures for the N(N-1)/2 combinations of input proteomes will be extremely com-
putationally demanding. To reduce the execution time, SonicParanoid2 performs pre-
filtering, in which pairs of architectures that are unlikely to be orthologous are rejected
before their cosine similarities are computed.

Filtering is performed by comparing features of the architectures, including the pro-
tein length, protein coverage, and number of annotated domains (Additional file 1: Fig.
S22¢).

A pair of architectures is rejected if one of the following conditions applies:

1. The protein length of one architecture exceeds 3X the length of the other

2. Their protein coverages differ by more than 25%

3. One of the two architectures has more than double the domains of the other
4. The two architectures have no mutual domains

After prefiltering, the cosine similarities between the remaining pairs of architectures
are computed, and cosine similarity values of at least 0.5 populate a matrix M of dimen-
sion [/ x m. The domain-based algorithm generates clusters of orthologs by selecting the
maximum cosine similarities in M for architectures from A (row-wise) and B (column-
wise) proteomes (Additional file 1: Fig. S23).

Merging of pairwise orthologs and inference of OGs
The pipelines depicted in Fig. 1a and b infer orthologous relationships between pairs of
species using the graph- and domain-based algorithms, respectively. SonicParanoid2
combines these orthologs to generate ortholog graphs, which are subsequently used to
infer OGs (Fig. 1c). Because we regarded graph-based predictions as more accurate, we
integrated domain-based predictions into them.

Let G and D be sets of species-species ortholog clusters for proteomes A and B
generated by the graph- and domain-based algorithms, respectively. Let g € G and
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d € D be clusters of ortholog relationships. When merging the two sets of predicted
orthologs, we considered the following three cases:

1. dis a completely new cluster with no proteins contained in any cluster in G

2. All proteins in d are already predicted as orthologs in other clusters in G

3. Some proteins in d are not in any cluster in G, and some proteins in g are not in any
deD

In case 1, the architecture of each ortholog in d must have a protein coverage of at
least 75%; otherwise, it is rejected. Additionally, if even a single pair of architectures
has a different number of annotated domains, cluster d is rejected completely; cluster
d is added as a new cluster in G if none of the aforementioned applies.

In case 2, we prioritized graph-based predictions and use the clusters in G, which
already contain the orthologs in d, without any modifications.

Case 3 is the most complicated and involves scenarios in which some proteins in
d are contained in one or more clusters in G, whereas others are not. In this case,
the orthologous proteins from d with coverages higher than or equal to 75% are inte-
grated into the existing G clusters. One such example is the protein POA8F4 (Fig. 4b).
For proteins AOA3B3HHDS8, POA8F4, and POAS8FO, the graph-based cluster g € G
contains all proteins except POA8SFO. Cluster d contains all three proteins; therefore,
POASFO (with 96.2% coverage) is inserted as a new ortholog into the corresponding
cluster in G.

Combined sets of pairwise orthologs are used to construct ortholog graphs, which are
the input to the MCL. The output from the MCL is analyzed to extract the OGs, which is
the final output of the SonicParanoid2 (Fig. 1c).

Hardware used

The results described herein were obtained using an Ubuntu 20.04.04 LTS (Linux 5.15.0)
HPC server, which was equipped with a 128 cores AMD EPYC 7742 CPU, 2 terabytes of
memory, and a 3.5 terabytes solid state disk.
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