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Abstract 

Genomic data holds huge potential for medical progress but requires strict safety 
measures due to its sensitive nature to comply with data protection laws. This con-
flict is especially pronounced in genome-wide association studies (GWAS) which rely 
on vast amounts of genomic data to improve medical diagnoses. To ensure both their 
benefits and sufficient data security, we propose a federated approach in combination 
with privacy-enhancing technologies utilising the findings from a systematic review 
on federated learning and legal regulations in general and applying these to GWAS.

Introduction
‘Privacy by design’ is an international principle of data protection law which stipulates 
that privacy measures must be built into the technical and organisational processes 
which handle personal data. This principle has been laid down in laws in different leg-
islations, e.g. the European Union’s General Data Protection Regulation (GDPR) [1] or 
the California Consumer Privacy Act (CCPA) [2]. In particular, genomic data are highly 
sensitive [3]. For use in biomedical studies such as genome-wide association studies 
(GWAS), they often must be shared between institutions. Therefore, to achieve privacy 
compliance, researchers conducting such studies are required to implement privacy by 
design to achieve data self-determination. Essentially, this means that contractual agree-
ments to respect privacy are not enough, but instead, researchers must reduce the possi-
bility of privacy violations as much as possible, both through technology and appropriate 
organisational design. Privacy by design aims to institutionalise privacy at all levels, 
rather than tinkering with individual processes [4]. However, technology is developing 
rapidly and privacy by design principles, once formulated, are not necessarily sufficient 
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to guarantee a satisfactory level of data protection in the long-term [5]. It is therefore 
not surprising that in practice, compliance with privacy by design, although necessary, 
is often perceived as a burden [6]. Challenges associated with the processing of genomic 
data—e.g. how privacy and research on genomic data can be harmonised, how genome-
phenome investigations such as GWAS can be conducted without violating the privacy 
of the people involved and how individual or combined privacy-enhancing technologies 
(PET) can be used to meet privacy requirements—have repeatedly been the subject of 
many papers. For example, Berger and Cho [7] described the shift from traditional pri-
vacy approaches for sharing genomic data to advanced privacy-enhancing approaches 
and their challenges under data protection laws. Erlich and Narayanan [8] examined pri-
vacy breaches that are relevant to genomic information, e.g. attribute disclosure attacks 
via DNA (ADAD), which are particularly relevant for GWAS, as they are especially vul-
nerable to this form of attack, and appropriate risk mitigation strategies; these, how-
ever, do not refer to the legal requirement for privacy protection [8]. In their review, 
Bonomi et al. [9] analysed the privacy challenges associated with emerging applications 
for genetic testing performed directly by consumers and what techniques can protect 
privacy in the context of such analyses. Wan et al. [5] studied the regulations in the EU 
and the USA on the handling of genetic and genomic data and how the legal differences 
affect the use of such data, but do not provide a concrete analysis of the legal require-
ments. Shabani and Marelli [10] referred to codes of conduct or professional society 
guidance, i.e. ‘soft law’, in order to minimise the risks and offer the greatest possible legal 
protection for the handling of sensitive data such as genomic data and help to meet the 
requirements of the GDPR. Mitchell et al. [11] also discussed codes of conduct and addi-
tional certification mechanisms under Article 42 GDPR, giving a detailed overview of 
the legal framework under the GDPR and pointing out various difficulties, such as cross-
border data transfers, how to deal with data relating to multiple genetic relatives or the 
right to rectification when genomic data is inaccurate. Other authors focus on the legal 
perspective: Quinn and Quinn [12] provided a general evaluation of genetic data under 
the GDPR and in regard to privacy by design, whilst Brauneck et al. [13] assessed feder-
ated learning and privacy-enhancing technologies (PETs) as measures to achieve GDPR 
compliance.

Our article diverges from prior work in that we trace the principle of privacy by design 
back to its legal basis and identify the requirements that need to be met before apply-
ing them specifically to GWAS on diseases and human traits. On this basis, we analyse 
each step of these studies and discuss the risks for data subjects associated with them 
as well as the legal downsides and merits of technical solutions before providing con-
crete advice on how to fulfil the privacy by design requirements of the GDPR. These 
requirements are enshrined in Article 25 GDPR and designed to safeguard data subjects’ 
rights, especially the right to informational self-determination. We focus on GWAS, 
however, the privacy by design concept applies to all types of studies in which genomic 
data from individuals are exchanged between different research sites for analysis pur-
poses. We consider the same general privacy risk model as Wang et al. [14]. There are 
several known types of privacy attacks that are relevant to genomic data sharing, such as 
membership inference attacks [15, 16], attribution inference attacks [17] and reconstruc-
tion attacks [18]. Most commonly, attackers have access to the full or partial genomic 
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sequences of the target and exploit side information, which usually increases the mali-
cious potential of the attack significantly [14]. Our focus, however, is on general privacy 
risks, without focussing on specific attacks and aims to mitigate the privacy risks asso-
ciated with the exchange of highly sensitive data through the use of privacy-enhancing 
techniques. First, we address the international and European background of privacy by 
design requirements, then demonstrate which challenges arise in research with genomic 
data, especially in GWAS with regard to GDPR requirements, and finally present recom-
mendations for future GWAS in the form of privacy-enhancing technologies.

Privacy by design and its impact on genome‑wide association studies: a primer

GWAS aim to determine the impact of variation in the genome sequence on physi-
cal traits by identifying relationships between genetic variants and phenotypes, such 
as diseases, disease severity or other human traits. As a result, GWAS can both iden-
tify genetic risk factors and improve the standard of medical care [19]. The power of 
GWAS—especially when analysing common diseases and common variants (and with 
increasing sample sizes also rare diseases and/or low-frequency variants) —can most 
effectively be harnessed by studying large datasets from multiple centres with a very 
high number of participants. This requires data sharing amongst internationally distrib-
uted consortia [5, 20–24], which poses a number of legal challenges, not all of which 
are necessarily unique to GWAS, but result from the large number of participants and 
consequently large amounts of data that are required for performing GWAS. All of these 
challenges, which we will investigate in the following, can ultimately be traced back to 
the requirements of privacy by design.

Privacy by design is far from new [4]. There are many international examples of leg-
islation on how privacy by design might be implemented. In the USA, this principle 
has been enshrined in, amongst others, the CCPA, and in 2012, the U.S. Federal Trade 
Commission (FTC), a regulator for antitrust and unfair trade practices, published a 
framework of privacy best practices for implementing privacy and data security for 
companies that collect and use consumer data [25]. This framework specifies ‘unfair’ 
and ‘deceptive’ practices as described by Sect. 5 of the FTC Act. The Commission takes 
action against companies ‘that promised consumers a certain level of security (in their 
privacy policies, for example) and then failed to deliver’ [4]. Another example of data 
protection laws is Japan’s Act on the Protection of Personal Information (APPI) [26], 
which was fundamentally revised in both 2017 and 2022 [27]. The APPI is partially sim-
ilar to relevant EU laws, especially regarding the implementation of adequate security 
measures, in order to ease data transfers between Japan and the EU. Overall, it has a 
slightly narrower scope [27].

In Europe, privacy by design is explicitly required by the GDPR, the landmark regula-
tion governing privacy protection and data use. The scope of what is meant by ‘privacy’ 
in the GDPR’s ‘privacy by design’ is different from the colloquial use. The GDPR lays 
out a number of ‘core principles’ beyond privacy (Article 5 GDPR), in the protection of 
which lies its raison d’etre. The principles with a particularly high relevance for GWAS 
are data protection and security, data self-determination and data fairness. The method 
of privacy by design (anchored in Article 25 GDPR) to protect the aforementioned prin-
ciples is an obligation for systems that process personal data, which in turn is defined in 
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Article 4 (1) GDPR as ‘any information relating to an identified or identifiable natural 
person (“data subject”)’. Genomic data therefore always constitutes personal data, since it 
is unique to each person (and thereby identifying) even if all other identifying informa-
tion (e.g. name or address) is removed [10]. In practice, pseudonymised genomic data—
and subsequently the study results concerning this data subject—can generally only be 
matched to a person whose genomic data are both accessible and linked to them, unless 
re-identification through relatives’ records in online genealogy services is possible—e.g. 
because they entered it into a database for ancestry services. This fact lowers the identi-
fication risks associated with genomic data. But the researchers cannot simply trust that 
the genomic data will not be linked to a natural person either. In light of this, the rapid 
rise of companies and business models that sell genetic data (e.g. for forensic analyses) 
directly to consumers raises new questions about data protection and ethics [5, 9, 28, 
29]. Privacy can never be fully ensured and the consequences can as of yet not be fully 
anticipated. How real these risks of leaking genetic data are is shown, for example, by 
last year’s successful hacking attack that exposed 6.9 million users of the ancestry service 
23 and Me [30], which resulted in a class action lawsuit against 23andMe for negligence 
and violation of the Illinois and California law [31]. The class lawsuit is based on allega-
tions that the company failed to take reasonable security measures to protect its custom-
ers’ sensitive data. If the class action is successful, the damage could amount to between 
1 and 2 million dollars [32]. Similarly, violations of the GDPR may result in high fines or 
damages claims (Article 82 GDPR).

Current practices and their legal issues

In our assessment of the compatibility of current GWAS practices with privacy by design 
requirements, we examine a number of legal issues that need to be addressed for the 
various data processing steps of a typical GWAS analysis. Especially relevant to GWAS 
practitioners are the legal challenges arising from the core principles of the GDPR: 
namely data protection and security, data self-determination and data fairness, all of 
which must be ensured through privacy by design. Figure 1 provides a general overview 
of the principles. Subsequently, we address specific challenges in a GWAS context.

Firstly, the exchange of genetic data is risky from a data protection and data security 
perspective, as individuals are identifiable by their genetic data (genetic fingerprint). 
This comes with a number of challenges that are (also) relevant in a GWAS context, of 
which we will explain four in more detail here:

1.	 Technical and organisational measures

Researchers, who are usually the party controlling the data (according to the GDPR: 
the ‘controller’ see Article 4 (7), Article 24 GDPR), must take ‘appropriate technical and 
organisational measures’ (Article 25.1 GDPR) to ensure data privacy and protection 
and minimise the risk of data breaches (i.e. accidental or unlawful destruction, loss or 
unauthorised disclosure of personal data) [13]. Due to the sensitivity of genomic data, 
data security should be embedded as an operating principle in the organisation (akin to 
a ‘safety first’ culture), and technical measures such as encryption and authentication/
authorisation must be robustly implemented.
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Some variants of GWAS approaches already include safety measures such as homo-
morphic encryption (HE) in their initial set-ups [36, 37]. And with regard to authen-
tication/authorisation, trusted research environments (TREs) are an often-used 
option to prevent unauthorised access to de-identified data and/or re-identification of 
individuals [38]. A difficulty here that leads to legal challenges is that many research 
institutions and data providers use their own TREs for analysis purposes, so the data 
are often kept separately: Even if researchers have permission to use data from two 
separate TREs via multi-party TREs, it is often challenging to combine the data sets 
[39]. The reason for this are data use agreements that have to be negotiated. Meas-
ured by the size of the data set, the sensitivity of the data and the number of people 
who should have access to the data, these agreements are complex, time-consuming 
and therefore expensive.

Additionally, the necessary security standard is kept vague by both legislation and 
courts and has to be determined on a case-by-case basis which makes it difficult for 
practitioners to establish and adopt adequate security standards.

Fig. 1  Core principles of the GDPR: overview over the GDPR principles of data protection and security [33] 
data self-determination [34] and data fairness [35] that have to be fulfilled by GWAS researchers
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2.	 Security duration

Another data protection and security challenge is that personal data must be kept 
secure either until its deleted or for at least the duration of the data subject’s life [40], 
if not for that of close family members. The latter could be the case for genomic data: 
they differ from other personal data as they are directly linked to more than one person. 
No final decision on the status and rights of family members under the GDPR has been 
reached so far, but some scholars make strong—if controversial—cases that the need for 
data security does not diminish with the data subject’s death as far as the data reveals 
information about their relatives [41, 42].

3.	 Cross-border transfers

Depending on the location where research is to be conducted, additional difficul-
ties for appropriate data protection arise from cross-border legislation transfers. This 
is particularly relevant for GWAS that are conducted in the EU and rely on the use of 
genotype imputation servers located in the USA [43, 44]. Imputation is used in almost 
every meta- or single GWAS study to combine data from different research sites and 
from different array/sequencing experiments. In this step of a GWAS, the data are still 
identifiable (Fig. 3, Step 3), and locally performed imputation by data protection-friendly 
genotype imputation servers located in the EU [45] is not always feasible. Regarding 
GWAS conducted in the USA, cross-border transfers are necessary if the study relies on 
data from EU subjects.

Two adequacy decisions by the European Commission, the so-called Safe Harbor 
Agreement and the so-called EU-U.S. Privacy Shield, have so far failed to provide a suf-
ficiently secure basis for data transfers to the USA and were both declared invalid by 
the Court of Justice of the European Union (CJEU) (2015 Schrems I judgement [46] and 
2020 Schrems II judgement [47]). Since July 10, 2023, the third adequacy decision, the 
so-called EU-U.S. Data Protection Framework (DPF), has been in force, covering all data 
transfers between the EU and the USA. This new adequacy decision will allow the trans-
fer of personal data from the EU to the USA without the need for additional safeguards 
such as standard contractual clauses. To apply, it requires recipients in the USA to ‘join 
the DPF by committing to the DPF principles and self-certifying with the U. S. Depart-
ment of Commerce’ [48]. The majority of public sector entities in the USA, as well as 
banks, airlines and insurance companies, are exempt from certification and therefore do 
not fall under the framework [49]. Data transfers to non-DPF-certified recipients require 
other safeguards in accordance with Article 46 GDPR (e.g. standard contractual clauses) 
[48, 50]. It remains to be seen whether the new adequacy decision will once again be 
challenged before the CJEU. The first private action to have the data protection frame-
work agreement annulled was dismissed by the General Court of the European Union at 
the beginning of October last year. To our knowledge, the relevant U.S. imputation serv-
ers are not yet DPF-certified. For this reason, GWAS researchers who want to utilise U.S. 
imputation servers do not benefit from the advantages, in particular the intended legal 
certainty, that arise from the DPF. International imputation currently remains a data 
processing procedure that is legally complicated and often time-consuming. In lieu of 
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the DPF, Article 46 GDPR mandates that appropriate safeguards must be taken and the 
European Commission published new standard contractual clauses in June 2021, which 
are mandatory for new contracts from 27 September 2021 [51]. This option requires 
more effort and time and lacks the benefit of legal certainty as to what constitutes appro-
priate safeguards that the DPF offers.

Furthermore, cross-border transfers require researchers to consider two legislations. 
Even though the GDPR is currently one of the strictest privacy laws in effect, it naturally 
does not cover every data protection and security provision under other jurisdictions.

4.	 Imputation methods

Imputation usually necessitates a data transfer to a third party. This leads to additional 
security risks. One way to guarantee such an adequate level of protection is provided by 
privacy-friendly genotype imputation methods. An example of such a privacy-friendly 
imputation method is p-Impute, which is based on HE [52]. P-Impute users can perform 
genotype imputation on encrypted genotype data and receive encrypted genotype out-
puts. A downside is that although the p-impute algorithm is faster due to the lack of a 
phasing step, it leads in its current form to lower accuracy for heterozygous SNPs [52]. 
Another HE-based method was presented by Kim et al. [53]. A comparison with state-
of-the-art non-secure methods showed that HE-based solutions achieved comparable 
accuracy for common variants, but not for rare variants. An alternative to these HE-
based frameworks are privacy-preserving imputation services based on trusted execu-
tion environment (TEE) technology, for example Intel SGX [54]. Due to the fact that it is 
hardware-based, the computational overhead is relatively small, as most of the computa-
tion is performed on the basis of the plaintext data inside the enclave, resulting in state-
of-the-art imputation accuracy, which was significantly higher than HE-based solutions 
[54]. However, hardware-based solutions are not a homogenous concept in terms of 
trustworthiness [52, 55, 56] so they still often rely on users trusting the service provider 
to process sensitive data securely, which is not required with HE-based solutions [52]. 
They furthermore sacrifice some safety guarantees, which means that they do not have 
‘the mathematically provable safety guarantees of HE’ [55]. For further details on HE [5, 
57] and other PETs [29, 58, 59], see Fig. 2.

Secondly, the participants’ data self-determination must be protected, especially in 
the form of consent. The GDPR creates several requirements for gaining consent for 
the processing of health and genetic data (Article 9.1 GDPR) and implementing meas-
ures to ensure the security of processing (Articles 24, 25, 32 GDPR). As a result, it is 
generally prohibited to process health and genetic data. The most prevalent excep-
tion to this rule is explicit consent (Article 9.2 lit. a GDPR). Consent management 
in GWAS though is becoming increasingly difficult due to the ever-growing num-
ber of participants in GWAS studies, with millions of participants already [64]. This 
becomes especially apparent in studies obtaining their data from biobanks. These may 
rely on very broadly worded consent forms to be effective and competitive, depending 
on the specific biobank collection—departmental collections, project-specific collec-
tions or hospital-wide collection [65, 66]. However, for compliance, consent must be 
very concrete and precise, explicitly permitting the use of genetic data and outlining 
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the circumstances and possible future processing changes (as far as foreseeable in sci-
entific terms). The concept of broad consent, that would allow for data to be pro-
cessed in the context of yet unspecified projects and thereby allows for secondary use 
of data without a need for repeated consent, therefore generally conflicts with this 
need for specificity according to Article 5.1 lit. b GDPR [67]. Whilst recital 33 of the 
GDPR generally allows less strict requirements that would permit broad consent [67], 
the Article 29 Working Party (an independent advisory body to the European Com-
mission) has signalled the prevalence of a stricter standard in 2017 (Working Party’s 
Guidelines on consent under Regulation 2016/679) [67]. However, broad consent is 

Fig. 2  Overview of the function and aim of the three standard PETs: DP [60], SMPC [61] and HE [62] are three 
PETs that can—depending on circumstances alone or in combination—be used to fulfil privacy by design 
requirements. PETs can help to protect informational self-determination by ensuring that no unauthorised 
parties gain access to personal data. However, other data protection requirements, such as the principle of 
data fairness, are largely unaffected by PETs and must be ensured separately [63]
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widely accepted by patients if it has been communicated as part of patient counsel-
ling [68]. Nevertheless, most patients do not wish to lose all control over their data 
and would prefer to make a new decision if research or processing circumstances 
change [66]. In any case, consent—including broad consent—needs a suitable infor-
mation basis to be legitimate [69]. For this reason, patients should be informed as 
specifically as possible, in particular about whether ‘data is going to be shared with 
other research partners and across national borders’, whether linkage to registry data 
is to take place or whether research results or incidental findings are to be reported 
back [69]. Additionally, further complications arise from the fact that genomic data 
also always includes information about parents and close relatives, in particular in 
the case of monozygotic twins due to identical DNA, leading to yet unsolved issues 
regarding consent. At the moment, researchers can only achieve legal certainty if fed-
eral or state laws permit the processing of the data without consent [42] or the data 
processing is based on another processing basis in accordance with Article 9.2 GDPR.

Data can only be processed as long as valid consent exists. A later withdrawal of 
consent does not, however, affect the lawfulness of processing based on consent 
before its withdrawal (Article 7 (3) GDPR). Analyses carried out at the time of con-
sent can thus continue to be used lawfully despite withdrawal. However, from the 
time of revocation, it is unlawful for parties to request the raw data for the purpose of 
verification or review. Consequently, researchers must take special legal and organi-
sational measures to protect the participants’ (data) rights (see, for example: Politou 
et al. [70]).

In addition to consent, the self-determination right is also protected through transpar-
ency requirements (Articles 12–15 GDPR). An issue that may arise specifically in the 
context of GWAS and on which EU legislators have yet to make a decision is the right of 
a person to know or not to know about incidental genetic findings, i.e. cases in which sci-
entists encounter genetic variants in their studies that affect a disease other than the one 
being studied [71]. Generally, this decision should be left to the data subject and is often 
also asked for when broad consent is obtained [68]. The question of how to deal with 
incidental findings is typically important when dealing with rare genetic variants (i.e. 
genetic variants with a low frequency in the population under study but high estimated 
risk of disease) or mutations in genes that are known to have a major impact on the 
development of a disease (e.g. genetic mutations in the breast cancer genes BRCA1 and 
BRCA2 usually have a major influence on the development of breast cancer). Informa-
tion on incidental findings is therefore also particularly sensitive and must be protected.

Thirdly, genetic discrimination, violating the principle of data fairness, can occur when 
apparently population-specific risk factors are identified or when they incorrectly lead to 
systematically biassed (discriminatory) results for a particular population group (many 
GWAS studies listed in the GWAS Catalog of the National Human Genome Research 
Institute (NHGRI) [72] predominantly contains data on white populations) due to insuf-
ficient data precision for other ethnicities, for example in polygenic risk scores [73], 
which can, for example, lead to false prognoses [74, 75]. Furthermore, measures such as 
DP may skew the data leading to similar results or reinforcing bias [76]. To counteract 
this, the risks of DP have to be carefully considered before any amount of noise is added, 
and studies increasingly involve more specific populations from different parts of the 
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world [74] or clearly point out the limitation of the study, namely that conclusions for 
other populations should be considered with caution [64].

Comparison of the current genome‑wide association study designs with regard to their 

privacy by design compatibility

In the following, we outline three different types of GWAS study designs and highlight 
certain special characteristics that need particular attention from a privacy by design 
perspective. The approaches differ in their data security and statistical power, especially 
in their robustness to data heterogeneity due to the heterogeneous nature inherent in 
biomedical data: (1) the centralised GWAS approach with all genotype data from dif-
ferent study populations pooled at one analysis site, (2) the meta-analysis approach, in 
which the genotypes from all participating studies are first analysed individually at par-
ticipating centres and then only GWAS summary statistics are shared and meta-analysed 
and (3) the newly proposed federated analysis approach, in which genotype data stored 
separately at each institution is used to train local machine learning models which are 
then aggregated into one federated global model. Figure 3 provides a summary over the 
six typical GWAS data processing steps and inherent privacy and accuracy risks.

The responsibility to ensure privacy by design begins at the latest when researchers 
gain access to the genotype data (either at the quality control (step 2, see Fig. 3) or later) 
and continues for all processing steps where the data uniquely identify the data subjects. 
This is the case until the data are aggregated after single-nucleotide variant (SNV) test-
ing and the retaining of any individual, privacy-sensitive information can be discarded 
(for meta-analysis and federated analysis approaches, this applies after step 4, see Fig. 3). 
The comparatively weaker privacy protection is a notable downside of central data pro-
cessing (centralised analysis), which applies here up to step 6, see Fig. 3, if final figures or 
descriptive statistics are still produced using genotype data.

Since genomic data are inherently identifying, pseudonymisation alone is not suffi-
cient to protect the rights of data subjects during these steps [11]. Therefore, researchers 
should additionally delete unnecessary and unusable data (e.g. local sample identifier) 
as soon as possible and deploy PETs such as DP, HE and SMPC to ensure secure com-
munication and counter typical cyberattack schemes by design (see Fig.  2 for further 
details). It is crucial to evaluate and balance the trade-off between accuracy, computa-
tion time and data security due to the use of PETs carefully before choosing to apply—or 
forgo—any particular method [16, 58, 78]. If researchers utilise an already-established 
database (e.g. the UK Biobank [79]), the safe storage (as well as deletion after the end of 
the project) of the extracted data must be assured by the responsible third party, because 
individual study participants (e.g. from the UK Biobank) also regularly withdraw their 
consent.

Whilst aggregating individual data on centralised analysis servers is desirable from a 
research perspective, it massively increases data security risks (see Fig.  3, ‘loss of pri-
vacy’). Hence, separation of genotype data in distributed data silos is recommended 
from a legal point of view. Storing genomic data on large central servers also carries the 
risk of this data being stolen by hackers because in the event of a successful attack, a 
large amount of genomic data from a large number of individuals falls into the hands 
of the attacker all at once. There are two possible approaches suitable for conducting 
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Fig. 3  Graphical summary of typical GWAS data processing steps, inherent privacy risks and risks of 
reduced accuracy for centralised, meta and federated analysis. Data privacy during data collection (1) and 
quality control (2) can be ensured through the implementation of PETs, such as HE, DP and SMPC [77] and 
strict access control. There are no accuracy concerns. Data privacy standards during imputation (3) differ 
between international imputation servers and servers imputing locally or within a legislation border, such 
as EagleImp-Web (EU) [45], the Haplotype Reference Consortium (UK) [43] and TopMed [44]. Whereby local 
imputation can lead to a loss of accuracy in the case of obsolete references and algorithms, cross-legislation 
border transfers lead to additional privacy risks that can be combated through the use of HE, e.g. through 
the tool p-Impute. However, this still results in lower accuracy. Privacy risks and accuracy during the last three 
steps (4–6) depend on the GWAS study design: a centralised analysis is accurate but leads to privacy risks. A 
meta-analysis has a medium to low privacy risk but may suffer from reduced accuracy. A federated approach 
combines a medium to low privacy risk and high accuracy
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GWAS analyses on such distributed data: meta-analysis and federated GWAS. Meta-
analysis aggregates the summary statistics for genomic loci for each of the distributed 
datasets, avoiding direct sharing of genomic data. However, this may come at the cost 
of accuracy for data sets with heterogeneously distributed class labels and confound-
ing factors (e.g. uneven distribution of smokers across the data centres or unbalanced 
case–control ratios) [21, 80, 81] (see Fig. 3, Step 6). As mentioned at the beginning, this 
can lead to discriminatory outcomes which can, as well as exposing practitioners to legal 
risks, create real-world harm. Federated GWAS work through the emerging technology 
of federated learning, where statistical models are trained locally at each data centre, 
followed by a subsequent (or iterative) exchange of the model parameters either with 
a central server or with the other partners in a server-free manner, e.g. using SMPC, 
to produce a single joint model without exchanging the genotype data [21, 82]. Despite 
heterogeneously distributed phenotypes or confounding factors in different cohorts, in 
principle, the same results can be obtained as with centralised analysis, thus satisfying 
the requirements for accuracy [21] (see Fig. 3, step 6). An example for the accuracy of 
federated analysis was provided by Froelicher et al., whose Secure Federated Principal 
component analysis (SF-PCA) algorithm combines multiparty homomorphic encryp-
tion, interactive protocols and edge computing [83].

Whilst, as mentioned above, statistical scores such as the results of GWAS analyses 
generally do not have (directly) identifying qualities, there is a residual risk of reveal-
ing information about individual subjects; both the summary statistics in meta-analysis 
and the exchanged model parameters of federated GWAS may therefore in theory con-
stitute personal data—in which case they would also require very stringent protection 
(although to a much lesser extent than the genomic data in centralised analysis). There 
is an ongoing debate in the scientific community if and to which degree one could re-
identify an individual from a meta-GWAS’ summary statistics if, e.g. one knows a few 
hundred SNPs from that individual [16]. A simulated statistical attack showed that the 
presence of an individual in a GWAS cohort could be determined on the basis of the 
aggregated allele frequencies, provided the attacker has access to some raw genomic 
information about the individual in question [10, 15, 16, 84, 85]. The risk grows with 
the increasing collection of and access to (sometimes public) personal genetic marker 
data [85]. Another study demonstrated that genetic data can be matched with photo-
graphs, a risk that can be addressed by using DP for images [86]. According to the study, 
without access to high-quality, preferably three-dimensional images, the risk is small but 
not negligible, especially given the ever-developing camera and artificial intelligence (AI) 
technologies [86].

These findings make it even more important to implement safeguards to keep 
genomic data secure, especially when third parties (albeit exclusively for the interme-
diate storage of genomic data) are given access to provide services such as genotype 
imputation. Effective measures to mitigate such an attack on the trained statistical 
model itself include employing additional PETs that either add noise to the data (DP), 
specifically obfuscate the underlying data (by altering carefully selected linkage dise-
quilibrium data) [16], generalise the data (by replacing values with general but seman-
tically consistent ones) that suppress identifying data by removing specific values or 
by detecting and removing outliers before model training. These measures must be 
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carefully chosen and administered to balance the accuracy-privacy trade-off in a way 
that is suitable for the sample populations’ specific features, such as demographics or 
outliers [59, 78] (see Fig. 4 for further details). Researchers must carry out this com-
plex balancing process (e.g. have to choose the appropriate level of noise); in doing 
so, they are not bound by any specific legal requirements. Rather, they must protect 
the data in a way that corresponds especially to the state of the art, the probability of 
occurrence and the severity of the risks associated with the processing for the rights 
and freedoms of natural persons (Article 25.1 GDPR). At the same time, they must 
take into account technical developments that lead to both more secure measures and 
new risks, if they can be considered at all based on the characteristics of the study, 
to achieve the intended effect. In some cases, it might also be required to combine 
PETs to heighten their effectiveness and compensate for weaknesses. This especially 
pertains to DP as the amount of noise necessary to achieve adequate data privacy in 
the context of a GWAS is not reasonable with respect to accuracy concerns. This can 

Fig. 4  Overview of recommendations for researchers in relation to data collection, data storage, quality 
control, genotype imputation, SNV association testing and follow-up analysis and visualisation in distributed 
GWAS analysis
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be circumvented by combining DP with HE [5] or SMPC [36]. HE and SMPC profit 
in return from reduced communication and computation overhead [36].  Figure  4 
shows which concrete actions  can be taken when projects fall within the scope of 
the GDPR in the following six areas: data collection [87], data storage [39, 88], qual-
ity control [89–91], genotype imputation [45, 52], SNV association tests and follow-
up analysis [21] as well as visualisation in distributed GWAS analysis. 

Conclusion
Fully ensuring privacy by design in GWAS comes with a number of challenges, but 
researchers who are conscious of these challenges and wish to tackle them head-on 
have access to a growing array of methods and tools. In particular, federated GWAS 
has the potential to overcome the most persistent privacy challenges for GWAS on 
distributed datasets and multi-centred GWAS meta-analysis whilst avoiding unac-
ceptable accuracy trade-offs. However, it is hampered by legal uncertainties and a 
number of (yet) unresolved legal questions. The four most important ones which we 
discussed in our contribution are cross-border data transfers for genotype imputation 
purposes, the rights of family members regarding genomic data shared for study pur-
poses, the legality of consent and a lack of diversity in studies of populations leading 
to genetic discrimination (or sometimes opens up discrimination, when genetic varia-
tion is studied only for certain population groups) [75]. Interestingly, contrary to pre-
vious assumptions, published GWAS summary statistics as stored in public databases 
such as the NHGRI GWAS Catalogue can reveal an individual’s participation in trait-
specific GWAS. In the case of GWAS for diseases, this may lead to unwanted and 
unauthorised disclosure of information. For these and an array of further technical 
questions, guidelines and ultimately a robust legal framework are needed to provide 
legal certainty and improve compliance for the handling of genomic data in research 
under the GDPR regulatory regime. Data protection and privacy risks cannot be com-
pletely eliminated, but can be largely combated by implementing PETs and processing 
data locally where appropriate—these are fundamental aspects (along with self-deter-
mination and discrimination prevention) of privacy by design.
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