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Abstract 

Cancer is a complex disease composing systemic alterations in multiple scales. In this 
study, we develop the Tumor Multi‑Omics pre‑trained Network (TMO‑Net) that inte‑
grates multi‑omics pan‑cancer datasets for model pre‑training, facilitating cross‑omics 
interactions and enabling joint representation learning and incomplete omics infer‑
ence. This model enhances multi‑omics sample representation and empowers various 
downstream oncology tasks with incomplete multi‑omics datasets. By employing 
interpretable learning, we characterize the contributions of distinct omics features 
to clinical outcomes. The TMO‑Net model serves as a versatile framework for cross‑
modal multi‑omics learning in oncology, paving the way for tumor omics‑specific 
foundation models.
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Background
Cancer is predominantly initiated with the aberrant regulation of tumor suppressor 
genes or proto-oncogenes, leading to systemic cellular alterations and eventual tumor 
cell proliferation and metastasis [1]. Recent advancements in diagnostic and examination 
methods enable the profiling of local tumor tissues using multiple modalities, including 
genomics, epigenomics, transcriptomics, proteomics, and more [2]. All these datasets 
provided abundant information for comprehending the pathogenesis and progression of 
cancers, posing a challenge in their integrated analysis for precision oncology studies 
[2, 3]. Furthermore, the progress in high-throughput sequencing technologies and the 
establishment of large-scale cancer research platforms, including The Cancer Genome 
Atlas (TCGA) [4] and the International Cancer Genome Consortium (ICGC) [5] pro-
jections, have amassed a wealth of paired multi-omics cancer datasets spanning various 
cancer types. Integrating the clinical phenotypes of individual patient cohorts allows us 
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to delve deeper into the underlying genomic regulations, identifying crucial molecular 
features that are closely associated with tumorigenesis and disease progression [6].

Multi-omics data learning is another major challenge for effectively utilizing these 
multi-omics datasets available for specific cancer cohorts [7]. Various methods have 
been developed to integrate these high-dimensional datasets for predicting specific 
clinical outcomes [8–11]. However, a significant limitation of most existing methods is 
their reliance on study-related patient cohort datasets, which often have smaller cohort 
sizes compared to the feature counts of these high-dimensional data modalities, lead-
ing to the potential issue of the “curse of dimensionality” [12]. Besides, the obtained 
data modalities can be varied across different cancer studies, adding extra complexity to 
data integration and analysis, and hindering data integration across multi-omics data-
sets. Cross-omics data inference presents a valuable strategy for integrating and under-
standing multi-omics datasets [13–17]. Through the imputation of missing omics data 
within individual samples, we can achieve more comprehensive sample representations, 
thereby advancing various downstream prediction tasks.

While pre-training frameworks have demonstrated success in enhancing the perfor-
mance of deep learning models in specific tasks, including prognosis prediction [18], 
cancer dependency gene prediction [19], and others, the transferability of these models 
to diverse downstream tasks remains impractical. In addition, the development of foun-
dation models in the biomedical field has significantly expanded the applications of deep 
learning methods in various domains, including single-cell omics [20], pathology image 
analysis [21], retinal image analysis [22], medical reports [18], and so on. The capability 
of foundation models to pre-train with large-scale datasets and fine-tune with task-spe-
cific labeled datasets allows for the learning of fundamental information within specific 
data modalities while maintaining a high model general applicability [18]. Therefore, 
there is a pressing need for a universal deep learning framework capable of seamlessly 
integrating diverse and complex multi-omics pan-cancer datasets. Such a framework 
should be designed to learn the underlying gene regulatory mechanisms across differ-
ent modalities through model pretraining, ensuring broad applicability across a range of 
tasks.

Here, we introduce TMO-Net, an explainable, pre-trained deep learning model spe-
cifically designed for the integration of multi-omics cancer datasets and further adapting 
into multiple oncology downstream tasks. Pretrained initially with multi-omics pan-can-
cer datasets, the TMO-Net model can learn the underly genomic regulations between 
molecular features across gene mutation, mRNA expression, copy number variation 
(CNV), and DNA methylation. Notably, this model incorporated a cross-omics fusion 
network, which adeptly learns the connections between latent variables from different 
data modalities, enables missing modality data inference, and expands its broad applica-
tions in oncology research. With different labeled multi-omics cancer datasets, we fur-
ther adapted and fine-tuned the TMO-Net model into different oncology downstream 
tasks, including cancer subtype classification, metastasis prediction, drug response pre-
diction, and prognosis prediction. Our experiments reveal that the pre-trained TMO-
Net model outperforms most state-of-the-art models and also the TMO-Net model 
trained from scratch. Moreover, the pre-trained TMO-Net model demonstrates better 
learning of tumor representations across pan-cancer datasets, showcasing its ability to 
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extract joint representations from diverse multi-omics datasets. Leveraging explain-
able deep learning methods, we characterized the impacts of different molecular fea-
tures on various clinical outcomes for cancer patients. The TMO-Net model highlighted 
large-scale data pretraining as a crucial method for the future of multi-omics cancer 
research and contributed to the development of generalist multi-omics cancer founda-
tion models.

Results
Model framework

To establish a comprehensive analytical framework for extracting clinical information 
from multi-omics cancer datasets, we developed the Tumor Multi-Omics pre-trained 
Network (TMO-Net) model. This model was specifically designed to be pre-trained with 
large-scale pan-cancer multi-omics datasets and learn the relationships among individ-
ual omics features. Meanwhile, the model was engineered to accommodate the learn-
ing of incomplete omics data, making it suitable for a broad spectrum of cancer-related 
deep learning tasks (Fig. 1a, b, and see the “Methods” section). This model utilized mul-
tiple variational autoencoders (VAEs) for capturing associations within self-modal and 
cross-modal features [23]. Additionally, a “Cross Fusion Module” was integrated to effi-
ciently align latent spaces from different modalities and facilitate the inference of miss-
ing modalities [24] (Fig. 1c). These encoders collaboratively produced joint embeddings 

Fig. 1 Overview of the TMO‑Net model. a Pan‑cancer multi‑omics dataset utilized in the pre‑training 
stage, comprising gene mutation, mRNA expression, copy number variation (CNV), and DNA methylation 
modalities. b The architecture of the TMO‑Net model, encompasses self‑modal variational autoencoders, 
cross‑modal variational autoencoders, and the “Cross Fusion Module”. c Schematic of the Cross Fusion 
Module for cross‑modal learning and fusion, devised for aligning latent embedding from different modalities, 
cross‑modal learning to infer the missing modalities, and fusing the complete multi‑omics embedding. 
d Diagram of utilizing pre‑trained TMO‑Net model for fine‑tuning in multiple downstream tasks through 
transfer learning, accommodating missing modalities. e The biological interpretations analysis for the 
multi‑omics features via analyzing the global gene attributions in integrated gradients across datasets and 
utilizing the importance scores of individual genes to characterize pathway enrichments
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for each omics type, which were then fused to generate comprehensive joint multi-omics 
sample embeddings. The detailed description of the TMO-Net model framework was 
introduced in the “TMO-Net framework” section in the “Methods” section.

The TMO-Net model was pre-trained using processed large-scale pan-cancer multi-
omics datasets [19], which encompass paired data from 32 cancer types, involving 8174 
samples, including gene mutation, mRNA expression, copy number variation (CNV), 
and DNA methylation modalities. The model underwent pre-training using a multi-
objective, self-supervised learning framework. The comprehensive loss function com-
prises several components: (1) Self-ELBO loss: this loss aims to learn the latent variance 
distribution while enabling accurate reconstruction of the input data. (2) Cross-modal 
ELBO Loss: this component focuses on capturing the associations between different 
omics layers and enables the model to reconstruct specific modalities from others. (3) 
Discriminator Loss: this loss compels the model to discriminate between original and 
reconstructed data and align latent representations across modalities. (4) Contrastive 
Loss: this loss aligns embeddings of the samples with the same tumor subtype while 
differentiating them from others. Throughout the pre-training phase, we refined the 
hyperparameters of these distinct model losses to enhance the capture of patient-level 
representations in cancer datasets. Detailed descriptions of the model losses, hyper-
parameters, and pretraining strategies can be found in the “Model pre-training loss” 
and “TMO-Net pre-training process” sections of the “Methods” section. Furthermore, 
the joint embeddings learned by TMO-Net, incorporating diverse multi-omics datasets, 
along with the multimodal encoders, were subsequently employed to adapt to various 
downstream cancer tasks and models, especially for independent and limited-size can-
cer patient cohorts (Fig. 1d). Additionally, we integrated model interpretation methods 
to uncover the significance of specific omics molecular features with the predicted out-
comes, aiding in the identification of cancer-related multi-omics mechanisms (Fig. 1e).

TMO‑Net model enables improved cancer representation learning

We first assessed the performance of the TMO-Net model in learning representations 
of multi-omics or incomplete-omics cancer datasets. The heterogeneous pathogen-
esis and phenotypes of different cancers can result in the distinct molecular profiles of 
tumor samples; we then utilized the learned joint embedding of pan-cancer multi-omics 
datasets of various methods to compare their capabilities in segregating samples with 
distinct cancer subtypes via unsupervised learning (Fig.  2a). The silhouette score was 
utilized to evaluate the effectiveness of each method in segregating samples with distinct 
cancer subtypes [25]. Our results demonstrate that the latent embeddings inferred by 
the TMO-Net model can better represent samples from distinct cancers with the high-
est silhouette score in both gene expression and multi-omics datasets, in contrast to that 
with PCA and OmiVAE [26] (Fig. 2a).

To further characterize the representation learning capabilities of various methods, 
we undertook a downstream classification task to predict cancer subtypes using differ-
ent pre-training datasets. After model pre-training, the encoders of the OmiVAE and 
TMO-Net models were frozen, along with the pre-calculated principal components, 
we then compared the classification performance of the learned embeddings via an 
XGBoost [27]. Notably, the TMO-Net model outperformed the OmiVAE model across 
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multi-omics and gene expression datasets, achieving the highest average F1 score of 
0.751 (Additional file  2: Table  S1). Moreover, to investigate the impact of pre-training 
data scales on modal representation learning, we utilized a classification network to 
assess the performance of learned sample embeddings by TMO-Net models pre-trained 
with subset training multi-omics datasets, ranging from 10 to 100%. Our findings indi-
cated a strong correlation between the data scale and the representation learning capa-
bility of the TMO-Net model in classifying cancer subtypes within validating datasets 
for different pre-training datasets (Additional file 1: Fig. S1, Additional file 2: Table S2). 
Besides, we applied the Integrated Gradients [28] algorithm to evaluate the contribu-
tion of various omics in predicting cancer subtypes. By aggregating the IG values of all 
features across different omics to cancer-specific prediction neurons, we revealed that 
gene expression and gene methylation omics contributed significantly more to cancer 
classification compared to gene mutation and CNV omics (Additional file 2: Tables S3).

TMO‑Net model enables cross‑modal inference

The cross-modal learning module of the TMO-Net model facilitates interaction learning 
among different modalities through cross-modal data regeneration. We then assessed 
the TMO-Net model’s ability to reconstruct gene expressions and mutations from 
alternative modalities. In comparison to a baseline dual-autoencoder model [29], our 
results demonstrated that TMO-Net achieves higher coefficients of determination (R2) 
(Fig. 3a) and Pearson’s correlation coefficients (Fig. 3b) based on the reconstructed gene 
expression values. Furthermore, representative raw and reconstructed gene expression 
heatmaps of selected genes across various cancer subtypes further illustrate the gene 
expression inference capabilities of TMO-Net (Fig. 3c).

Fig. 2 Comparison of pan‑cancer sample representation learning. t‑SNE plots of pan‑cancer omics 
representation learning with TMO‑Net (pre‑trained) and baseline methods, colored by cancer type. The upper 
plots illustrate representations based solely on mRNA expression input and the lower plots with multi‑omics 
inputs. Silhouette scores were applied to compare the model performance in representation learning
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We then assessed the performance of the TMO-Net model in predicting gene muta-
tions from other modalities. We subset the top 50 most mutated genes as prediction 
targets and utilized binary prediction outcomes to denote the gene mutation status of 
tested samples. The area under the curve (AUC) score was employed to quantify the 
model’s performance in mutation prediction. Compared to the baseline model, the 
TMO-Net model achieves superior prediction accuracy (Fig. 3d), particularly in typical 
cancer-specific gene mutations (Fig. 3e).

TMO‑Net enables breast cancer subtype prediction with model pretraining

To assess the effectiveness and robustness of the TMO-Net model across diverse tumor 
multi-omics downstream tasks, we employed it to predict the molecular subtypes of 
breast cancers, which is crucial in devising personalized treatment plans and predict-
ing patient outcomes. We then obtained training and validating datasets from labeled 
TCGA-BRCA dataset for model fine-tuning and tested with an independent METABRIC 
dataset [30]. These datasets included cancer samples with identified Basal-like, HER2-
enriched, Luminal A, and Luminal B subtype labels, and all samples encompassing gene 
expression, CNV, and gene mutation modalities. For a comprehensive evaluation of the 
classification performance of various models, we conducted multiple classification tasks, 
including ER status, HER2 status, PAM50 subtypes, and Basal status prediction [31] 
(Fig. 4a). We first evaluated the representation learning capabilities of different models 

Fig. 3 The ability of the TMO‑Net model in cross‑omics generation. a, b Comparison of the averaged 
coefficient of determination (R2) (a) and Pearson’s correlation coefficients (b) of raw and reconstructed gene 
expression values from other modalities. c Heatmap plot of the raw and reconstructed gene expressions 
in selected genes across cancer subtypes. d Comparison of the averaged AUC score of predicted gene 
mutations in the top 50 most mutated genes. e Receiver operating characteristic (ROC) plots of the 
prediction result of typical cancer mutations. Fivefold cross‑validation results were presented in a, b, and d, 
with mean ± SD
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in both the test and validation datasets after fine-tunning with PAM50 subtype predic-
tion task. In comparison to PCA, Moanna [31], and the TMO-Net model without data 
pre-training, the TMO-Net (pre-trained) model demonstrates the highest silhouette 
scores in both cancer sample projection analyses with t-SNE [32], highlighting its supe-
riority in latent embedding learning (Fig. 4b). The benchmark results of the classification 
tasks also revealed that the TMO-Net (pre-trained) model outperforms other baseline 
methods in most downstream prediction tasks, achieving an average F1-score of 0.921 
(Table  1), which supports the notion that pretraining the model with a cancer multi-
omics dataset enhances its performance and robustness in cancer-related downstream 
tasks. Additionally, we assessed the classification performance differences between the 
TMO-Net model pre-trained with or without BRCA multi-omics cancer datasets, and 
the results indicated model pre-trained with BRCA datasets had better performance 
in the breast cancer subtype classification task of METRBRIC dataset, suggesting the 

Fig. 4 TMO‑Net model can enhance breast cancer subtype prediction. a Diagram of TMO‑Net model 
adapted for predicting breast cancer subtypes with mRNA and mutation inputs in METABRIC dataset. A 
Multi‑Layer Perceptron (MLP) network was employed to predict the subtype labels, including Basal‑NonBasal, 
ER‑Status, HER2‑Status, and PAM50Subtype. b t‑SNE plots of multi‑omics representations generated by 
TMO‑Net (pre‑trained) and baseline methods, colored by PAM50 subtypes. Silhouette scores were applied 
to compare the model performance in representation learning. c Top‑20 most important gene expression 
features in classifying different PAM50 subtypes of breast cancers. The symbol “star” highlights the crucial 
genes linked to PAM50 subtypes with literature evidence
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critical roles of similar pre-training datasets in TMO-Net model (Additional file  2: 
Table S4).

We also characterized the interpretability of our model in discerning the regulatory 
roles of various omics features in the development of distinct breast cancer subtypes. 
We utilized the Integrated Gradients [28] algorithm to calculate attribute scores of each 
omics feature based on individual sample data and evaluate the global feature scores with 
their averaged magnitudes [33]. A detailed introduction to model interpretation analysis 
is available in the “Model interpretation analysis” section of the “Methods” section. By 
identifying the top 20 most important gene expression features in classifying different 
PAM50 subtypes of breast cancers (Fig. 4c), we have identified several genes with highly 
important scores across all breast cancer subtypes. Notably, the TM4SF5 gene emerged 
as the most important gene in three or four PAM50 cancer subtypes, which is overex-
pressed in breast tumors [34] and associated with tumor progression [35]. Additionally, 
we highlighted the RERG gene in the HER2 subtypes, functioning as a tumor suppressor 
gene in breast cancers [36]. We also identified the NKX2-1 gene in most cancer sub-
types, as it plays a significant role in cancer metabolism and affects tumor aggressiveness 
[37]. Additionally, we found the ESR1 gene was annotated highly important in ER-nega-
tive breast subtypes (Basal and HER2 subtypes) (Fig. 4c). To characterize the regulatory 
roles of specific genes in our model, we compared the signed IG values of the canonical 
genes associated with ER-positive and HER2 subtypes (ESR1, ERBB2) across breast can-
cer subtypes. The results validated the signs of IG values correlated with gene expression 
patterns in diverse breast cancer subtypes (Additional file 1: Fig. S2), with their magni-
tudes serving as indicators of importance across molecular features.

TMO‑Net enhances predicting cancer samples from primary or metastasis

We then aim to assess the performance of the TMO-Net model in additional cancer 
downstream tasks and apply it to predict cancer samples from primary tumor sites or 
distant metastatic organs, a crucial aspect of the treatment and surgery design [38] 
(Fig. 5a). We obtained balanced samples with annotated distant metastasis or not from 
the TCGA project, both the gene expression and gene methylation modalities were 
selected for model training and testing [39].

Various methods, including SVM, CVAE [39], TMO-Net model trained from scratch, 
and TMO-Net (pre-trained), were employed to segregate metastatic samples from pri-
mary ones. Multiple classification performance metrics were utilized to compare the 

Table 1 F1 scores of different methods in predicting breast cancer subtypes in validation and test 
datasets

Methods ER status HER2 status PAM50 
subtype

Basal status Average

Val Test Val Test Val Test Val Test Val Test

SVM 0.972 0.942 0.929 0.747 0.863 0.874 0.975 0.974 0.934 0.884

Moanna 0.965 0.947 0.959 0.844 0.852 0.852 0.984 0.989 0.940 0.908

TMO‑Net (from scratch) 0.975 0.950 0.943 0.840 0.884 0.876 0.984 0.983 0.946 0.912

TMO‑Net (pre‑trained) 0.985 0.955 0.953 0.857 0.897 0.880 0.986 0.991 0.955 0.921
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capabilities of these models in predicting metastatic tumor samples (Fig. 5b). Notably, 
the TMO-Net (pre-trained) model outperforms other models across different met-
rics, achieving an F1-score of 0.8980, which outperformed SVM, CVAE, and TMO-
Net trained from scratch by 0.0831, 0.0191, and 0.0180, respectively (Additional file 2: 
Table S5). These results underscore the adaptability of the TMO-Net framework to effi-
ciently handle various downstream tasks in multi-omics cancer datasets, showcasing the 
advantages of model pretraining.

In our analysis of tumor metastasis, we assessed the significance of both gene expres-
sion and DNA methylation features (Fig. 5c). We identified the TMC6 gene as a pivotal 
factor in tumor metastasis, a role also noted in other metastatic cancers [40]. Moreover, 
we revealed the feature importance of specific CpG probes: cg26879282, cg20751395, 
and cg16778148, which were highly associated with tumor metastasis, are located within 
the genomic regions of the KCNQ1 gene; the methylation status of KCNQ1 has been 
linked to the progression of various cancers [41].

TMO‑Net accurately predicts drug responses

We then employed the TMO-Net model to predict drug responses in cancer patients 
using multi-omics datasets in the Genomics of Drug Sensitivity in Cancer (GDSC) [42] 
project, to assess the generalization capability of the pre-trained TMO-Net model with 
only cancer cell line data (Fig. 6a). Binary drug response profiles of gemcitabine, pacli-
taxel, erlotinib, and cetuximab for the target cell lines in the GDSC dataset were uti-
lized for model training, and an external patient-derived xenograft (PDX) encyclopedia 
dataset [43] with corresponding drug response labels served as the validation set. We 
conducted a benchmark analysis of the TMO-Net (pre-trained) model against various 

Fig. 5 TMO‑Net model can separate primary and metastatic cancer samples. a Diagram of TMO‑Net 
model adapted for predicting primary or metastatic cancer samples with mRNA and methylation inputs. b 
Performance comparison of different methods in predicting primary or metastatic cancer samples, evaluated 
by metrics of accuracy, F1‑score, precision, and recall. c Important molecular features of gene expression 
and DNA methylation that are associated with tumor metastasis; the symbol “star” denotes the specific gene 
features and CpG probes linked to the progression and metastasis of various cancers
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baseline methods, including NMF, DNN, MOLI [44], and the TMO-Net model trained 
from scratch. The ROC-AUC scores of different methods across all drug response tasks 
revealed that the TMO-Net (pre-trained) model outperforms all other methods, achiev-
ing the highest score of 0.697 (Fig. 6b). These results support that the TMO-Net model 
with data pre-training not only demonstrates robustness and generalization across dif-
ferent cancer downstream tasks but also proves effective across diverse forms of cancer 
multi-omics datasets.

Our study characterized key gene expression features associated with various drug 
treatments to elucidate the connections between drug responses and cancer molecular 
profiles. We ranked these gene features based on the importance score and utilized them 
to identify the Reactome pathway [45] enrichments linked to different drug responses. 
Notably, most enriched gene pathways, predominantly related to cell cycle pathways, 
were consistent across all examined drugs (Fig.  6c, Additional file  1: Fig. S3). Subse-
quently, we explored drug-specific gene pathways. Our findings revealed distinct asso-
ciations: the response to gemcitabine was linked to the activation of Fc gamma receptor 
signaling; paclitaxel correlated with tumor metabolism pathways; erlotinib’s effectiveness 
was connected to cell–cell interaction mechanisms; and cetuximab was associated with 
lipid metabolism pathways (Fig. 6c). In EGFR inhibitor-treated datasets, we revealed the 
significant correlation between the EGFR gene expression and IG values of EGFR gene 
values in the cetuximab but not the erlotinib-treated samples (Additional file 1: Fig. S4). 
These findings highlight the variability in drug responses across diverse tumor molecular 

Fig. 6 The applications of the TMO‑Net model in drug response prediction. a Diagram of TMO‑Net model 
adapted for predicting drug responses based on cell‑line response datasets with mRNA and mutation inputs. 
b Comparison of the prediction performance of different models in drug response predictions. c Bar plots 
of Reactome pathway enrichments calculated with the importance scores of gene expression features with 
individual drug responses
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profiles, limited by the size of testing datasets and potential drug resistance; the clinical 
implications of these results warrant further in-depth discussion.

TMO‑Net enhances prognosis prediction with tumor multi‑omics datasets

Another major challenge in cancer multi-omics analysis is to accurately characterize 
the prognosis of cancer patients with distinct molecular features and further benefit the 
development of personalized treatment design and precision oncology [2]. In this study, 
we employed the TMO-Net model for predicting the overall survival (OS) status of can-
cer patients across 12 different subtypes (Fig. 7a). The prognosis prediction model was 
established with the Cox survival regression network [46] to predict the risk score of 

Fig. 7 TMO‑Net model can predict the prognosis of pan‑cancers. a Diagram of TMO‑Net model adapted 
for predicting primary or metastatic cancer samples with multi‑omics inputs. The predicted risk scores of 
cancer patients were used to classify high‑ and low‑risk patient groups for downstream survival analysis. b 
Comparison of the performance of different models in predicting patient prognosis of different cancers, the 
C‑index was applied for performance evaluation, and the horizontal line represents the total average C‑index 
across pan‑cancers. c Kaplan–Meier analysis of the overall survival prediction of low‑ and high‑risk patients 
stratification by the TMO‑Net (pre‑trained) model across 12 cancer types. Low‑ and high‑risk patient groups 
were defined by the predicted median risk scores. The log‑rank test was used to test for statistical significance 
between the predicted prognosis of low‑ and high‑risk cancer patients. d Bar plots of important gene 
expression features most related to the prognosis of identified cancer subtypes
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individual patients, and the model was trained with weak supervision method. We eval-
uated the performance of the TMO-Net model using the Concordance index (C-index) 
score with other baseline models, including SNN, DeepSurv [46], VAECox [47], and the 
TMO-Net model trained from scratch. The TMO-Net (pre-trained) model achieved 
the highest average C-index of 0.6344 across all cancers and outperforms all other base-
line methods in 11 of 12 cancer subtypes (Fig. 7b). Notably, the TMO-Net (pre-trained) 
model performs better than TMO-Net model fine-tuned with only single cancer-spe-
cific multi-omics dataset, highlighting the advantages of pan-cancer data pre-training on 
cancer downstream tasks. Furthermore, we conducted an additional experiment aimed 
at validating the significance of model pre-training in tumor multi-omics datasets. We 
integrated independent tumor multi-omics datasets from the Clinical Proteomic Tumor 
Analysis Consortium (CPTAC) project [48], encompassing proteomics, gene expres-
sion, gene mutation, and CNV modalities. Compared to the performance of TMO-Net 
models trained from scratch and pre-trained, we demonstrated that model pre-training 
substantially improves prognosis prediction in CPTAC multi-omics datasets using the 
TMO-Net model (Additional file 2: Table S6).

We further evaluated our model’s capabilities to classify cancer patients into high- 
and low-risk cohorts. Patients were grouped based on the median survival risk scores 
predicted for individual cancer cohorts. We then visualized patient stratification using 
Kaplan–Meier survival curves (Fig. 7c) and assessed the differences between high and 
low-risk groups through Log-rank tests. Our results demonstrate that the TMO-Net 
(pre-trained) model effectively distinguishes between high- and low-risk cancer patients 
in 8 out of 12 cancer cohorts (p < 0.05). In addition, we employed data interpretation 
algorithms to validate TMO-Net’s proficiency in identifying crucial genomic features for 
patient survival prediction. We calculated gene expression importance scores for various 
cancer subtypes (Fig.  7d, Additional file  1: Fig. S5). Commonly shared features across 
most cancer subtypes included mitochondrial genes, HLA-related genes, and keratin 
family genes, known for their roles in tumor metabolism, progression, and immune 
responses [49–53]. Furthermore, we revealed other cancer subtype-specific prognostic 
gene expression features, including MFAP5 [54], SPARC  [55], BSCL2 [56], SERPINA1 
[57], S100A11 [57], and MUC1 [58], among others (Fig. 7d). These results affirm TMO-
Net’s efficacy in extracting biologically informed genomic features from multi-omics 
tumor datasets for various applications, thereby enhancing our understanding of cancer 
pathogenesis and potentially expanding its use in clinical settings.

Discussion
The complex and heterogeneous nature of tumor pathogenesis necessitates a deeper 
understanding of its molecular mechanisms and the resulting clinical phenotype changes 
[59]. Although multi-omics profiling of tumor samples offers a multifaceted view of can-
cer development, challenges in modality fusion and model interpretation often limit our 
complete understanding of these datasets [2]. The emergence of foundation models in 
the biomedical field [18] opens new opportunities for creating algorithms that address 
various clinical challenges in oncology. In this study, we introduced a multi-omics tumor 
data fusion framework named TMO-Net, designed for pre-training on extensive tumor 
multi-omics datasets and enabled for different downstream tasks with incomplete data 
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modalities. Using self-supervised learning, the TMO-Net model effectively generates 
biologically significant joint embeddings from multi-omics datasets, providing enhanced 
representation of diverse tumor samples. Furthermore, the pre-trained TMO-Net model 
can be adapted to different downstream tasks, such as drug response and patient prog-
nosis prediction, especially in scenarios with limited data. Our results demonstrated that 
the pre-trained TMO-Net model surpasses its counterparts trained from scratch, pro-
posing the potential of large-scale data pre-training and foundation model approach in 
future tumor multi-omics analyses.

Compared with other tumor multi-omics data fusion algorithms, the TMO-Net model 
integrates a “Cross Fusion Module” network. This network leverages the Product-of-
Expert algorithm to efficiently learn joint latent embeddings from multi-omics inputs, 
enabling the processing of incomplete data modalities. The model’s self-supervised 
training approach facilitates learning of feature interactions across various modalities, 
thereby enhancing its ability to generalize and adapt to new datasets and tasks. Addi-
tionally, TMO-Net’s proficiency in identifying important omics features across different 
clinical outcomes aids in understanding key genomic regulations during various tumor 
development stages and their clinical relevance. These capabilities position TMO-Net as 
a versatile and adaptable framework, well-suited for exploring tumor multi-omics data-
sets and addressing a broad range of downstream tasks in tumor research.

Although the TMO-Net model performed well in various tumor downstream applica-
tions, our study has various limitations. The primary challenge is the scarcity of large-
scale paired multi-omics datasets in oncology, which are crucial for effective model 
pre-training. Additionally, the diverse data preprocessing methods used in biomedical 
datasets complicate comprehensive learning across individual modalities. The restriction 
of paired multi-omics datasets also complicates the usage of mass-published biomedical 
datasets and further applications of our models. Furthermore, the different modalities 
of tumor research follow its underlying biological roles as the “Central Dogma,” future 
fusion frameworks should incorporate the causality and connections between different 
omics features or integrate the advanced biological regulation databases to better char-
acterize the development and progression of tumors. Furthermore, in addition to under-
standing the significance of distinct molecular features for model outcomes, recognizing 
regulatory roles across diverse omics features through self-supervised learning is equally 
crucial [29, 60, 61]. By discerning the regulatory associations within molecular features 
across varying scales, we can uncover more intricate mechanisms of tumorigenesis and 
development. The fusion of biological insights with interpretable model frameworks 
presents a promising pathway for enhancing the construction of multi-omics cancer 
deep models in further research.

Conclusions
The TMO-Net model paves the way for harnessing the power of established multi-omics 
data in cancer research. By demonstrating its effectiveness on diverse tumor datasets 
and downstream tasks, TMO-Net proves that pre-training on multi-omics datasets can 
significantly enhance representation learning, both for multi-omics and incomplete 
omics data. Furthermore, its ease of transferability to other omics-based tumor research 
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applications adds its value in oncology. This study lays the groundwork for developing 
future multi-omics foundation models that will accelerate cancer research.

Methods
Data preprocessing

We sourced multi-omics data for 32 pan-cancers from the TCGA database, which con-
sisted of 8174 samples, including normal tissue samples. Each cancer subtype dataset 
incorporated four types of omics data: RNA-Seq gene expression profiles, DNA methyl-
ation profiles, gene mutation data, and copy number variation (CNV) data. Additionally, 
corresponding clinical information was included. The multi-omics data preprocessing 
procedures and criteria for feature selection were followed as in Chiu et al. [19]. In brief, 
the gene expression data, represented as log2(TPM + 1), underwent filtering to exclude 
genes with standard deviation (SD) greater than 1, resulting in a final set of 6016 genes. 
In gene mutation profiles, genes were filtered to include only those mutated in at least 
1% of TCGA samples, resulting in 4539 genes for further analysis. In DNA methylation 
analysis, probes that exhibited low methylation (beta-value < 0.3) in over 90% of TCGA 
samples were removed, leaving 6617 features for subsequent analysis. Copy number 
variation (CNV) analysis was conducted by filtering 7460 informative segments based 
on criteria including fewer than 5% of samples with zeros, a mean of absolute values 
exceeding 0.20, and a coefficient of variation greater than 0.20 across all samples. The 
multi-omics profiling and clinical information in other downstream fine-tuning tasks are 
also available from public sources, and the pre-processed multi-omics datasets used in 
other studies were obtained. In model fine-tuning, intersected omics features with the 
pre-training multi-omics TCGA datasets were used. The independent CPTAC multi-
omics datasets were obtained, including proteomics data in 7970 features, gene expres-
sion data in 39,451 dimensions, gene mutation data in 1553 genes, and copy number 
variation (CNV) data in 60,604 segments from four tumor subtypes (COAD, GBM, 
LUAD, and GBM).

TMO‑Net framework

The TMO-Net model contains a hybrid architecture of self- and cross-modal variational 
autoencoders (Fig. 1b, c). The self-modal variational autoencoders are designed to cap-
ture omics-specific representations and reconstruct themselves, while the cross-modal 
variational autoencoders focus on learning the cross-omics associations and predicting 
the target omics from others. Notably, a “Cross Fusion Module” was designed to ensure 
that with the absence of certain omics data, it can generate approximate patient-level 
latent embeddings from other available omics and can be further utilized in different 
downstream tasks. The discriminator and contrastive losses were designed to enhance 
the performance of cross-modal imputation and representation learning of pan-cancer 
multi-omics datasets. In the model pre-training phase, paired multi-omics datasets were 
required to learn all the self- and cross-modal associations. In the model fine-tuning 
phase, the self-autoencoders of available data modalities were updated and the cross-
autoencoders of missing modalities were locked for cross-modal inference; the gener-
ated joint embeddings were used for training task-specific neural networks.
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Self‑modal variational autoencoder

Following the basic framework of the variational autoencoder, the self-modal variational 
autoencoder (self-VAE) was designed to capture omics-specific representations and 
reconstruct the target omics. For multi-omics data, each omics data is first passed into 
a self-VAE encoder to reduce the dimensionality from high dimensionality to 64 in the 
embedding space. For the input x of omics k, the self-VAE encoder network outputs two 
vectors, the mean vector µ and the standard deviation vector δ , which determined the 
Gaussian distribution N (µ, δ) of the latent variable z in the embedding space. The latent 
variable z is randomly sampled from the distribution. To achieve backpropagation in the 
deep neural network, the reparameterization trick was applied using Eq. (1) to approxi-
mate the latent variable z:

Then, the latent variable z was passed to reconstruct the omics data x of the input x 
through the VAE decoder network. The self-VAE network was optimized by maximizing 
the variational evidence lower bound (ELBO) defined in Eq. (2):

Equation (2) can further transform into Eq. (3):

The network was optimized to maximize Eq. (3), and for the deep learning model, the 
generative distributions can be implemented by the deep decoder neural network, and 
the variational posteriors by deep encoder neural networks. The self-VAE loss can be 
defined as follows in Eq. (4):

Cross‑modal variational autoencoder

The cross-modal variational autoencoder (cross-VAE) is devised to learn the cross-omics 
associations and predict target omics from others. For the target omics k, the input x of 
other omics was passed into encoders of cross-VAE to reduce the high dimensionality to 
64. The encoder of cross-VAE generates two vectors, the mean vector µ and the standard 
deviation vector δ , which determined the variational posteriors Gaussian distribution  
N (µ, δ) of the latent variable z in the embedding space, and represented as the inferred 
latent embedding of omics k from others, which was defined in Eq. (5):

Cross Fusion Module

To get a better and full multi-omics representation with missing modalities data, we 
designed a “Cross Fusion Module” to fuse embeddings of all other encoders of cross-VAE 

(1)z = µ+ δε

(2)ELBOself = E(qφ(z|x))[−logqφ(z|x)+ logpθ (x, z)]

(3)ELBOself = E(z∼qφ(z|x))logpθ (x | z)− DKL(qφ(z|x) � pθ (z))

(4)Lself = MSE(xj , xj)+ DKL(qφ(z | x) � pθ (z))

(5)q(zk | xk′)(k′ �= k)
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into a common space. We employed a product-of-experts (PoE) module to obtain the 
product of the marginal variational posteriors from all existing modalities into a joint 
variational posterior as follows:

The joint cross-modal ELBO can then be defined as:

In this way, we can employ the observed modalities xνk to infer the latent embedding 
of xk , further reconstructing missing modal xk . We also utilized the KL-Divergence to 
align distributions between self-variational posteriors and cross joint-variational poste-
riors as follows:

The parameter θ of the omics-specific decoder in cross-VAE was consistent with the 
decoders of the self-VAE, and the cross-modal loss can be computed as:

The �cross−elbo and �cross−kl are the hyperparameters to balance the weight of different 
loss functions.

Latent embedding fusion

For omics k, we get two latent representations, the zkself  generated by self-VAE and 
zkcross generated by joint cross-VAEs from other modalities. To get embedding from 
full modalities, we fuse these two embeddings as the joint latent representation for the 
omics k, as follows:

While omics k is missing, we can also get the representation from the observed modal-
ities as follows:

Finally, embeddings of all modalities were concatenated to represent the sample-level 
multi-modal representations for downstream model prediction and fine-tuning.

Discriminator

Discriminators assist in improving the generative capacity of TMO-Net during the pre-
training stage [62]. The discriminator of modality k,Disk−s takes either original data xk 
or reconstructed data xk−s as input and outputs a label represents data sources. The dis-
criminator Disk−c takes x̃k−c to predict the source modal used in cross-encoders. Con-
sequently, the self- and cross-encoders of TMO-Net were trained adversarial to deceive 
the modality discriminators. The discriminator loss was defined as:

(6)qφ(zk | xνk ) =
∏

qφ(zk | xk′)(k′ ∈ νk , k /∈ νk)

(7)Lcross−elbo = Eqφ(zk |xνk )
logpθ (xk |zk)− DKL(qφ(zk |xνk ) � p(zk))(k′ ∈ νk , k /∈ νk)

(8)Lcross−kl = DKL(qφ(zk |xνk ) � qφ(z | x))

(9)Lcross = �cross−elboLcross−elbo + �cross−klLcross−kl

(10)zkfusion = zkself ⊕ zkcross

(11)zkfusion = zkcross
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CE(·, ·) represents the cross-entropy loss.

Contrastive learning

To further enhance representation learning of pan-cancer multi-omics datasets, 
we applied the contrastive learning [63] strategy to obtain a latent feature space with 
enhanced pan-cancer supervision. In the training batch, for target sample xt ∈ Xt in a 
specific cancer subtype t, the positive samples set is Xt , as well as their latent embed-
dings Zt . In contrast, the latent embeddings Zn from other cancer subtypes were defined 
as negative samples [64]. The contrastive loss was then designed to increase the latent 
distance similarity across positive samples Lpos and reduce that in negative samples Lneg , 
which were defined as:

sim(·, ·) represents the similarity calculation function, 1(·, ·) represents a counting func-
tion that returns 1 if both inputs are not empty. τ is the temperature parameter used 
to control the strength of the distance constraints. Finally, the contrastive learning loss 
is obtained by the linear combination of the positive sample pair loss and the negative 
sample pair loss as defined in Eq. (14).

Model pre‑training loss

The TMO-Net model is jointly optimized by four losses during the pre-training stage: 
(1) self-modal ELBO Lself  of self-VAE; (2) cross-modal ELBO Lcross of cross-VAE and 
KL divergence of original and inferred variational posteriors; (3) adversarial loss of dis-
criminators Ldis ; (4) contrastive loss Lcon . The overall pre-training loss optimization was 
defined as follows:

�∗ are the weight coefficients for corresponding losses. We utilized various hyperpa-
rameter configurations to achieve a balance in weighting different loss functions during 
the optimization in model pre-training. The specific hyperparameters employed in the 
pre-training phase are detailed in Table S7, and we conducted loss ablation experiments 
to assess the significance of individual losses, as summarized in Table S8.

TMO‑Net pre‑training process

In the model pre-training process, the TCGA multi-omics data were split into fivefold 
by cancer types for cross-validation. We applied the Adam optimizer with learning 

(12)Ldis = CE(Disk−s

(
x̃k−s

)
, 0)+ CE(Disk−s(xk), 1)+ CE(Disk−c

(
x̃k−c

)
, k)

(13)Lpos =

∑
zt ,z

′
tǫZt

sim(zt , z
′
t)/τ∑

zt ,z
′
tǫZt

�(zt , z
′
t)/τ

, Lneg =

∑
ztǫZt ,znǫzn

[1− sim(zt , zn)]/τ∑
ztǫzt ,znǫzn

�(zt , zn)/τ

(14)Lcon = �posLpos + �negLneg

(15)Min (�self Lself + �crossLcross + �conLcon)

(16)Max (�disLdis)
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rate 1e − 4 and weight decay 5e − 4 for the discriminator part and used the Adam 
optimizer with learning rate 1e − 5 and weight decay 1e − 4 descent by epoch. TMO-
Net was pre-trained for a maximum of 100 epochs with early stopping to avoid over-
fitting. We fixed all random seeds during model initialization and training to ensure 
the reproducibility of the training process. To improve the ability of cross-modal 
reconstruction, the strategy for modality masking is randomly generating the inte-
ger number from 0 to 3, corresponding to the mask or non-mask status of the four 
modalities of TCGA data. During the pre-training state, the LogME [65] method is 
used to estimate the cancer-type clustering score for the best model selection.

Downstream task model fine‑tuning

During the fine-tuning phase for downstream tasks, we formulated oncological and 
clinical objectives, which encompassed pan-cancer subtype classification, breast cancer 
subtype classification, cancer metastasis prediction, drug response prediction, and pan-
cancer survival prediction. Leveraging the multi-omics cancer representations generated 
by TMO-Net, a feedforward neural network served as the classifier to produce outcome 
predictions. For pan-cancer subtype classification, we kept the parameters of TMO-Net 
frozen, updating only the downstream classifier during the fine-tuning process to assess 
the sample representation performance of pre-trained TMO-Net. In contrast, for other 
downstream tasks, both the parameters of TMO-Net and the downstream classifier were 
updated to acquire informative representations supervised by the task loss function. For 
instance, for missing modalities in the fine-tuning datasets, the cross-inference varia-
tional encoders of missing modalities in the TMO-Net model remained frozen to main-
tain the quality of cross-modal reconstruction. In model fine-tuning, we partitioned the 
training multi-omics dataset into fivefolds for cross-validation and utilized an external 
validation dataset for performance evaluation. We utilized the Adam optimizer with a 
learning rate of 1e − 5 and weight decay of 1e − 4, descending by epoch with early stop-
ping to prevent overfitting. Additionally, apart from the loss associated with the classifi-
cation task, other losses from the pre-training stage were disregarded.

For the multi-label classification task, we applied a C-dimensional one-hot vector to 
represent the probability of the sample in the C class and proposed the output predic-
tion result is ŷ =

[
ŷ1, · · · , ŷC

]
 , the cross-entropy loss was defined as follows:

For the survival prediction task, the clinical information of TCGA datasets was 
utilized and the model was fine-tuned with full or incomplete omics. Additionally, 
we filtered pan-cancer subtypes with more than 50 uncensored samples and finally 
included 12 cancer subtypes for performance evaluation. The Adam optimizer is used 
to optimize the loss function Cox loss and reconstruction loss. The learning rate is 
set to 1e − 5, and the model freezing layer setting is consistent with the classification 
task. For model validation in the survival prediction task, we involved an independ-
ent tumor multi-omics dataset from the CPTAC project and included 4 tumor sub-
types for performance evaluation. The Cox proportional hazards [66] and maximum 

(17)LCE = −
∑c

i=1
yilog

(
Softmax

(
ŷi
))
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likelihood (ML) model were used for evaluating the hazard ratio of the patient’s prog-
nosis, assuming the output of the cross-modal fusion as:

where l was the MLP for the low-rank multimodal fusion output, hθ was hazards of 
multi-omics samples. The Cox likelihood was constructed by the observed order of 
events named “partial” likelihood as described in [67–69]:

where i, j are the sample numbers, and E = 1 represents the termination event (right cen-
sored) that occurs. R(Ti) means that Tj > Ti is satisfied, and the corresponding Cox loss 
(defined as neg log partial likelihood loss) is calculated by the maximum likelihood of 
Lpart [70]:

Implementation of baseline methods

We introduced a set of baseline methods for evaluating the performance of our TMO-
Net model, encompassing OmiVAE [11] for pan-cancer multi-omics learning, Moanna 
for breast cancer subtype classification [31], CVAE for cancer metastasis prediction [39], 
MOLI for drug response prediction [44], and VAECox [47], SNN, and DeepSurv [46] 
for survival prediction. All baseline models were implemented following methodologies 
outlined in published literature and utilizing corresponding code repositories available 
in public domains. All training procedures maintained consistent hyperparameter set-
tings and employed consistent dataset separation of multi-omics datasets to ensure fair 
comparisons across different methods and tasks.

Evaluation metric

In the model pre-training phase, the LogME method was used for checkpoint selection. 
In the cross-modal inference task, Pearson’s correlation coefficients and coefficient of 
determination (R2) were applied to quantify the performance in gene expression impu-
tation from other modalities. The area under the curve (AUC) method was used to 
compare the performance of gene mutation prediction from other modalities. In classifi-
cation tasks, we utilized accuracy, precision, recall, and F1-score for performance evalu-
ation. The C-index, Kaplan–Meier survival curves, and Log-rank tests were utilized to 
characterize the performance of survival analysis tasks.

Model interpretation analysis

The integrated gradients (IG) method was utilized for model interpretation analysis, 
which assesses feature importance by integrating gradients along a path from actual 
input to the baseline value across individual features. Let f

θ̂
(x) represents the output of 

(18)hθ = l
(
concatenate

(
zm

M
m=1

))

(19)Lpart =
∏

i:Ei=1

eĥθ (xi)

∑
j∈R(Ti)

eĥθ (xj)

(20)Lcox = −logLpart = −
∑

i:Ei=1

(
ĥθ (xi)− log

∑
j∈R(Ti)

eĥθ (xj)
)
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the pre-trained TMO-Net model for the omics input x , and θ̂  be model parameters, and 
∇f

θ̂
(x) represents the gradient of the model’s output to the input . The integrated gradi-

ent value  IGi(x) for the ith feature was computed as follows:

where and xi′ is the ith actual input and the baseline input. α is the parameter varying 
from 0 to 1. For each molecular feature g , we computed its averaged absolute IG value 
within a specific sample group S , as the contribution value of g in specific downstream 
tasks, which was defined as follows:

For the classification task, the class-specific neurons in the SoftMax layer were selected 
as model output, as well as the hazard ratio of patient samples in the survival prediction 
task. To evaluate the contributions of individual modalities in model outcomes, the sum 
of the IG values for all molecular features within individual modalities was used. We 
iterated this process within different downstream tasks and ranked molecular features 
related to different model outcomes for subsequent biology interpretation and pathway 
analyses.

Implementation details

All experimental procedures were conducted on a workstation equipped with two Intel 
Xeon Silver 4210R CPUs and four NVIDIA GeForce RTX 3090 GPUs. The TMO-Net 
model was constructed based on the Python platform and Pytorch library. The model 
interpretation analysis was implemented using the Captum package. Throughout all 
benchmarks and experimental scenarios, we adhered to the utilization of default hyper-
parameters, unless otherwise specified explicitly.
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