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Background
The folding process of proteins reveals fundamental principles of life [1]. Proper folding 
typically results in proteins existing in a soluble form within cells. If the folding rate is 
too slow or there are errors in the folding, it may cause the protein to exist in an insolu-
ble form, leading to loss of protein function and even cause some diseases related to 
abnormal protein aggregation [2]. With knowledge of protein folding, researchers can 
target specific steps in the folding process to design drugs that stabilize or disrupt spe-
cific conformations to achieve the desired therapeutic effect [3]. Therefore, understand-
ing the protein folding process is of great significance for unraveling disease mechanisms 
and personalized medicine [4, 5].

Protein folding is an extremely intricate process that entails the spontaneous arrange-
ment of amino acid chains into their biologically active three-dimensional structures 
through a series of conformational changes. Each of these changes is influenced by the 
surrounding solvent context [6, 7]. This complexity presents significant challenges for 
experimental scientists when investigating the protein folding pathway. Researchers 
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often employ a multi-faceted approach that combines multiple experimental tech-
niques to obtain protein folding information from different perspectives to understand 
its dynamic process and the formation of intermediate states [8, 9]. The complexity of 
experimental techniques has driven scientists to rely on computational techniques to 
study protein folding pathway [10, 11]. Molecular dynamics (MD) is one of the popular 
tools for studying protein folding dynamics. David E. Shaw et al. developed a specialized 
supercomputer named Anton to study the folding process of 12 proteins through equi-
librium MD simulations [12]. However, tracking the folding process at the level of ther-
mally driven residue-level dynamics is computationally demanding and often unfeasible 
for long timescales [13], and the molecular mechanics force fields used in MD simula-
tions are not sufficiently accurate. To overcome the time scale limitations of MD simu-
lations and effectively explore the complex energy landscape of proteins, a flow-based 
generative modeling approach has been developed to learn and sample the conforma-
tional landscape of proteins [14]. In addition to this, various efficient and enhanced sam-
pling methods such as Pathfinder [15], MELD [16, 17], DBFOLD [18], and P3Fold [19] 
have also been developed to study folding order or pathway [20, 21].

However, force field models in molecular dynamics simulations or Monte Carlo (MC) 
conformational sampling methods typically focus on capturing stable conformations and 
final structures of proteins. These force fields include physical potential terms such as 
hydrogen bonds and hydrophobic interactions, as well as statistical potential terms like 
Ramachandran, to guide proteins to accurately fold into a three-dimensional structure 
[22], without focusing on the topological plausibility of transition states or intermediates 
during the folding process [23]. Therefore, designing dedicated folding force field models 
specifically for predicting folding pathway and intermediates is an urgent challenge in 
the post-AlphaFold2 era [24].

During early evolution, there may have been many disordered polypeptides or poly-
peptide-like molecules [25]. These peptides may function in their disordered structure 
without specific folding. As biological systems become more complex, a need may arise 
for specific 3D structures that can more efficiently perform certain biological func-
tions [26]. During this process, evolutionary selection on foldable sequences may have 
led to the development of folding ability. The appearance and evolution of foldable 
sequences gradually became the basis of protein folding [27]. Therefore, we can try to 
establish a link between the folding process of proteins and the evolution of structure. 
As Ernst Haeckel claimed that ontogeny recapitulates phylogeny. He argues that indi-
viduals undergo a series of morphological changes during development that reflect the 
stages that species has gone through in its evolutionary history [28]. When taking pro-
tein folding as an example of this biological structure formation process, we can note 
that there may be a correlation between the evolutionary development of protein struc-
ture and its folding process. Therefore, it may be a feasible approach to exploit protein 
folding kinetic information and predict the protein folding pathway by exploring the 
evolutionary conservation of proteins through multiple structures alignments of fam-
ily proteins. In fact, the structural alphabets, proposed long ago, was constructed based 
on statistical analysis of large amounts of protein structure data [29, 30]. These alpha-
bets represent the most typical or frequently occurring local conformations observed 
in protein structures [31, 32], which has been applied to protein dynamics analysis and 
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protein flexibility prediction [33, 34]. Moreover, after AlphaFold2 and ESMFold made 
breakthroughs in the protein structure prediction, DeepMind and Meta teams released 
structure databases of 214 million and 617 million, respectively [35, 36]. The availability 
of large structure databases can undoubtedly provide valuable data for the prediction of 
protein folding pathway.

In this work, we developed FoldPAthreader, an in silico method for predicting protein 
folding pathway. This work builds on PAthreader advances by exploiting folding infor-
mation from 100-million-level structure databases to design folding force field model for 
guiding protein folding simulations. PAthreader is a previously developed remote tem-
plate recognition method that uses three-track alignment to thread PDB and AlphaFold 
DB libraries [37]. Based on the identified remote homologs, PAthreader initially explores 
the folding order of protein through artificial thresholds. Compared with PAthreader, 
FoldPAthreader not only identified the folding intermediates free of any arbitrary thresh-
olds, but also predicted a series of transition states from the amino acid chain to the 
native state. We quantified the results using the lDDT evaluation metric [38]. The results 
reveal the close link between protein evolution and folding. This work demonstrates that 
FoldPAthreader has developed into an effective tool for quantitative computational stud-
ies of protein folding and dynamics, which can provide a complement to experimental 
techniques. To the best of our knowledge, this work is the first folding force field model 
developed specifically for protein folding pathway prediction. It comprehensively uses 
the state-of-the-art modeling method AlphaFold2 [35], the fastest structure search tool 
Foldseek [39] and the most abundant structure database AlphaFold DB [40].

Results and discussion
FoldPAthreader overview

The pipeline of FoldPAthreader is shown in Fig.  1, and the details are described in 
“Methods.” Starting from the query sequence of the target protein, the three-dimen-
sional structure is first modeled by AlphaFold2, and remote homologs of the target are 
searched from the AlphaFold DB50 library through the fast structure search method 
Foldseek [39]. Then, structures with TM-score ≥ � are selected for multiple structures 

Fig. 1  Overview of the FoldPAthreader workflow. The pipeline consists of six consecutive steps: 3D structure 
modeling and residue distance extraction, homologous structure search, multiple structures alignment, 
folding information extraction and fragment library generation, statistical and physical potential energy 
function construction, and folding pathway prediction. The predicted folding pathway includes unfolded 
state (U), transition state (T), intermediate (I), and native state (N)
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alignment (MSTA). � is 0.3, a threshold determined through experiments (Additional 
file 1: Table S1). Structures filtered by a lower threshold contain more noise information, 
while structures filtered by a higher threshold are too similar, resulting in a loss of fold-
ing information. Based on different distance deviation thresholds, the residue frequency 
score (F value) is calculated from the MSTA, where a higher value indicates a higher 
frequency of residue alignment at corresponding positions of structures. It reflects the 
conservation of protein structure during evolution. The F value is combined with the 
residual distance information extracted from the predicted structure to further design 
the statistical potential energy function. Meanwhile, the candidate structures screened 
from MSTA are traversed sequentially, and continuous fragments of at least 6 residues 
and at least 3 residues are added to the fragment list in a dihedral angle representation, 
to generate a 6-residue fragment library and a 3-residue fragment library. Additional 
file 2: Text S1 and Additional file 1: Table S2 describe the reasons for selecting 3- and 
6-residue fragment. The fragment libraries implicitly contain folding information and 
are specifically used for folding pathway prediction. Finally, the protein folding path-
way is predicted through three different stages of Monte Carlo conformational sampling 
based on fragment assembly guided by statistical and physical potential energy force 
fields with different energy terms and weights.

Comparison with biological experimental data

We collected 30 proteins to test the performance of FoldPAthreader on folding pathway 
prediction. These proteins have been analyzed by experimental techniques such as cir-
cular dichroism [41], hydrogen deuterium exchange mass spectrometry [42], and fluo-
rescence resonance energy transfer [3] to obtain relevant information that can describe 
the folding process, including intermediates and transition states. Based on the collected 
evidence and descriptions of the folding order of these proteins, we annotated the resi-
due range of the early folded region of the protein. Details are listed in Additional file 1: 
Table S3. The residue range of some proteins may have a deviation of 1–3 residues at 
the boundary because some experimental methods are biased. The experimentally 
determined folding order is shown in Fig. 2 with different colors. The blue regions are 
first folded, followed by the gray. Experiments and molecular dynamics studies gener-
ally focus on detailed investigation of one protein at a time, with each study performed 
under different conditions or using different techniques [12]. We performed multiple 
analyses on this dataset that focused on elucidating basic principles of protein folding 
without discussing the physicochemical properties of each individual protein in detail.

The folding process of FoldPAthreader is divided into three stages: initialization, 
folding nucleation, and structure finalization. The initialization stage uses only physi-
cal potential energy functions to guide the assembly of 3-residue fragments to initial-
ize protein chains. The simulation of folding nucleation and structure finalization stage 
are performed under the guidance of statistical potential and physical potential, with 
different weighted energy terms and number of iterations, respectively. In the folding 
nucleation stage, residues with higher residue frequency score form earlier constraints 
with other residues. Thus, the conformations of the folding nucleation stage have a ten-
dency that the residue pairs with earlier constraints are preferentially formed. In the 
structure finalization stage, the weight of the energy term of F value is reduced, and 
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the overall structure is driven to fold toward the native state. Representative conforma-
tions were obtained by clustering the conformations generated from the folding nuclea-
tion stage. They are structurally superimposed as folding intermediate ensembles, and 
the results are shown in Fig. 2. The complete folding pathway of the 30 cases, including 
potential transition states, intermediates, and final states, are shown in Additional file 3: 
Fig. S1-30. To objectively evaluate the consistency of protein folding order between 
the predicted results and biological experimental data, we quantitatively measured the 

Fig. 2  The results of 30 proteins. The blue-grey structure is an annotated folding order in the native state. 
The blue regions are first folded, followed by the gray. The red-white-blue structures are the intermediate 
ensembles predicted by FoldPAthreader, which are color-coded by the average RMSDnorm (Additional file 2: 
Text S2) of the residues of the intermediate ensembles. The color blue indicates high overlap in the predicted 
intermediate ensemble, suggesting that folding occurs preferentially during the prediction process. The color 
red indicates a low overlap, suggesting that folding occurs later
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predicted results by IDDT score. lDDT is a scoring metric used to evaluate the local 
distance difference of atoms in the model, with larger values indicating greater struc-
tural similarity. It can reflect the quality of local structures at the residue level and effec-
tively evaluate the folding order by comparing local regions of predicted intermediate 
and native state [38]. The IDDT of the early folded region (EFR) and late folded region 
(LFR) were calculated by comparing the predicted intermediates with the native struc-
ture. When the lDDT of the EFR of predicted intermediate is 10% higher than that of the 
LFR, it means that the early folded region forms significantly more near-native contacts 
than the late folded region, indicating that the folding order is consistent with biological 
experimental data. As shown in Fig. 3A,B, the blue triple-stranded β-sheet of CTX III 
is first folded [43], followed by the gray double-stranded β-sheet. The lDDT of the EFR 
is 0.703, which is 28.4% higher than that of the LFR (0.419), indicating that the triple-
stranded β-sheet of the target is preferentially formed during the folding process.

Figure 3C presents the predicted results of 30 cases, including 4 β-sheet proteins, 6 
α-helical proteins, and 20 α/β proteins. The average lDDT of EFR is 0.681 and that of 
LFR is 0.474. On 21 proteins, the lDDT of EFR are significantly higher than that of LFR, 
showing that the folding order of 70% of the proteins predicted by FoldPAthreader are 

Fig. 3  A The blue-gray structure is the native state of CTX III. The blue triple-stranded β-sheet are first 
folded, followed by the gray double-stranded β-sheet. The yellow structure is the predicted intermediate. B 
The distance difference map between the native state and predicted intermediate of CTX III (residue pairs 
within 15 Å). The lDDT of the EFR is calculated based on the residue pairs of the blue box and that of the LFR 
is the remaining map region. C Comparison of lDDT between EFR and LFR of 30 proteins. At the end of the 
histogram is the average IDDT of the 30 proteins
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consistent with the experiment data. Compared with the native state, the final state of 
the folding simulation has an average TM-score of 0.85, indicating that the designed 
folding force field model combined with the three different stage of sampling strate-
gies are capable of folding protein to their native structure following the native folding 
pathway. FoldPAthreader was also compared with Pathfinder, a protein folding path-
way prediction method that explores the transition probabilities of folding intermediate 
through conformational sampling. The results are shown in Additional file 3: Fig. S31. 
On 30 proteins, FoldPAthreader successfully predicted 21 proteins whose intermediates 
were consistent with biological experimental data, and Pathfinder successfully predicted 
12 proteins. The average IDDT of early folding region and late folding region are 0.681 
and 0.474 for FoldPAthreader, and 0.568 and 0.479 for Pathfinder. These results show 
that the performance of FoldPAthreader is significantly better than that of Pathfinder. 
Furthermore, MSTA-derived folding fragment libraries also contribute to accelerating 
the preferential formation of early folded region because the fragment libraries also con-
tain folding information. Additional file 3: Fig. S32 shows the average RMSD of 3-residue 
fragments and 6-residue fragments corresponding to EFR and LFR. On most successfully 
predicted proteins, the fragments corresponding to LFR has a higher RMSD than EFR. 
These results indicate that high F value regions tend to be conserved and the derived 
fragments are similar, which facilitates the rapid assembly of this region. The fragments 
corresponding to low F value regions are diverse, making the low F value regions formed 
later in the assembly process. On the benchmark set, the predicted results are consistent 
with the proposed that conserved regions of protein structures are preferentially formed 
during folding process, proving the applicability of this principle and providing support 
for the method.

The correlation between the evolution and folding

During the evolution, some proteins may undergo conservative changes in structure, 
that is, maintain similar structures during evolution because they perform similar 
functions. Other proteins may undergo innovative changes in structure, meaning they 
undergo structural remodeling to adapt to new environments or perform different func-
tions [26]. If different species have proteins with similar structures or functions, it is 
often interpreted that these proteins may have evolved from a common ancestral protein 
[27]. Therefore, through the comparative analysis of protein structures across various 
species, it is possible to infer the evolutionary conservation of protein families, thereby 
enabling a deeper exploration of the folding information of individual proteins [44].

Here, we target plastocyanin for a detailed analysis of the correlation between pro-
tein evolutionary history and folding pathway. Plastocyanin is a small copper-bind-
ing protein that receive high-energy electrons from the cytochrome b6f complex, and 
then transfer these electrons to the special reaction center P700+ through redox reac-
tions [45]. From a structural point of view, as shown in Fig.  4A, plastocyanin con-
sists of 7 β-sheets (blue β-sandwich) and random helices (green hydrophobic patch 
and yellow acidic patch). Amide hydrogen exchange experiments coupled with NMR 
spectroscopy have demonstrated the existence of a well-populated intermediate state 
during the folding of plastocyanin [46]. The blue β-sheet is folded first, providing the 
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initial context for folding. The other regions (green and yellow) then gradually con-
verge toward the β-sandwich and form the final structure [47].

From the query sequence, we predicted the folding pathway of plastocyanin protein 
by FoldPAthreader. In the AlphaFold DB50 structure databases, a total of 8469 struc-
tures (TM-score ≥ 0.3) were searched for global alignment with the target protein. 
Then, the F value of each residue is calculated, where a larger value indicates a higher 
frequency of residue alignment at the corresponding position of the target protein, 
as shown in Fig. 4B. It is obvious that the F value of the blue region is significantly 
higher than that of the green and yellow regions, indicating that blue β-sandwich are 
present repeatedly in biological structures and are highly conserved in evolution. 
During the folding optimization of plastocyanin, FoldPAthreader generated a total of 
709 conformations, which included gradually folded transition states and intermedi-
ates as shown in Fig. 4C. The transition states and intermediate ensembles show that 
the β-sandwich is preferentially folded, and the other regions then gradually interact 
with the β-sandwich to form the final state. The results show that the folding path-
way simulated by FoldPAthreader is consistent with the biological experiment [46]. 
This excellent performance mainly benefits from two aspects. On the one hand, the 
proposed folding force field focuses on the folding process, which is completely dif-
ferent from the traditional modeling force field such as I-TASSER and Rosetta. In the 
physical potential of folding force field, the hb_srbb, sheet, and rsigma terms promote 
the formation of secondary structures in the early stages of folding, while the hs_pair, 
pair, and env terms favor paired helices or sheet foldons. In the statistical potential, 
residues with a higher F value have a larger score weight, which can promote the for-
mation of contact in the structurally conservative region earlier. By using different 
energy terms and weights, the three sampling stages are able to search for interme-
diate and transition states in the potential basin, rather than reaching the final state 
as quickly as possible. On the other hand, the folding fragment library can capture 

Fig. 4  A 3D structure of plastocyanin (PDB ID: 9PCY) and its functionally similar auracyanin (PDB ID: 1OV8), 
amicyanin (PDB ID: 1ACC), umecyanin (PDB ID: 1X9R), and nitrosocyanin (PDB ID: 1IBY). B F value distribution 
of plastocyanin residues obtained from MSTA. C The folding pathway of plastocyanin simulated by 
FoldPAthreader from unfolded state to native state
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protein folding information from MSTA. The fragments generated from regions with 
high F values will not be diverse, resulting in conserved regions that can be rapidly 
formed through fragment assembly.

In MSTA, we selected four biologically significant proteins for further analysis. These 
proteins are members of the Copper-bind protein family or the homologous superfamily 
related to Copper-bind (Fig. 4A). They are auracyanin from Chloroflexus aurantiacus [47], 
amicyanin from Paracoccus versutus [48], umecyanin from the roots of Armoracia rusti-
cana [49], and nitrosocyanin from Nitrosomonas europaea [50], respectively. These pro-
teins exhibit a β-sandwich architecture akin to that of plastocyanin, with differences in the 
Cu-binding site region and the prominent flap on the right, which is composed of helices, 
random loops, or β-sheets. When the four proteins were superimposed with plastocyanin, 
the average TM-score was 57% for the blue region but only 38 and 34% for the green and 
yellow regions, respectively. The similarities and differences between these structures are 
determined by their respective functions and processes of evolution. It has been experimen-
tally demonstrated that the hydrophobic patch undergoes slight conformational changes 
when copper is removed or mercury replaces copper in plastocyanin. These conforma-
tional differences suggest a flexible region around the copper site that allows copper to be 
added to the folded apoenzyme [51]. As for the acidic patch, related studies have shown 
that it is involved in the interaction with cytochrome and contributes to rapid electron 
transfer in the transient complex [52], suggesting that the hydrophobic and the acidic patch 
of plastocyanin are functional regions with flexibility. In the evolution of billions of years, 
the functional regions of proteins have undergone structural changes in order to adapt to 
new environmental requirements, thus deriving many homologous or remote homolo-
gous structures. For example, the nitrosocyanin monomer is part of a trimer. Its extended 
β-hairpins cap the copper sites of adjacent monomers, facilitating interactions through flex-
ible conformational changes when docking with another protein [50]. For amicyanin and 
umecyanin, the yellow region on the right side is shorter than that of plastocyanin, and the 
current study has not found the functional significance of this flap. Mihwa Lee et al. con-
cluded that it was unlikely to evolve into a smaller molecule, so it was gradually eliminated 
in evolution [47]. The diversity of protein structures observed within protein families is a 
result of evolutionary processes driven by functional selection, which reflect the evolution-
ary history of protein families to some extent. These pieces of evidence suggest that the 
correlation between protein evolutionary history and folding pathway can be revealed from 
the known protein universe. In addition, we analyzed the correlation between F values and 
lDDT of EFR of predicted intermediates (Additional file 3: Fig. S33A) as well as the com-
parison of average F values of EFR and LFR (Additional file 3: Fig. S33B) on 30 tested pro-
teins. The results show that there is a certain correlation between F value and lDDT of EFR 
(Pearson r = 0.577), and 90% of the proteins have a higher F value in the EFR than in the 
LFR. These suggest that conserved evolutionary regions may be preferentially formed dur-
ing the folding process.

FoldPAthreader folding force field captures key features of hydrogen bonding 

and hydrophobic interactions

In structural bioinformatics, protein hydrogen bonding and hydrophobic interac-
tions have always been considered the key features for determining protein folding and 
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stability [10]. In this work, in addition to the statistical potential energy function, hydro-
gen bonding, and hydrophobic interactions are also included in the folding force field to 
capture key features of folding dynamic.

In living organisms, hydrogen bonding interactions accelerate the formation of 
β-sheets and α-helices during protein folding [53]. Both the β-sheet and α-helix utilize 
hydrogen bonding to maintain their specific secondary structures, but the arrangement 
of the polypeptide chains and the locations of the hydrogen bonds are distinct between 
the two structures. The hydrogen bonds in β-sheet are formed between the carbonyl 
oxygen of one strand and the amino hydrogen of an adjacent strand, which can be either 
parallel or antiparallel [54]. The β-sheets or β-barrels formed by the multi-strand β are 
very tightly bound, and their structures are stable and evolutionarily conserved, mak-
ing it highly likely that β-sheets are formed preferentially during the folding process. In 
the α-helix, the hydrogen bonds are formed between the carbonyl oxygen atom of one 
residue and the amino hydrogen atom of a residue located four positions down the chain 
[55]. This regular pattern of hydrogen bonds stabilizes the helical structure so that indi-
vidual helices may preferentially fold. But the stable interaction between helix and helix 
might take more time to establish. From the predicted results, it can be observed that 
FoldPAthreader performs differently on three secondary structure types of proteins. In 
order to eliminate the error caused by the prediction method, we excluded 9 poorly pre-
dicted proteins and analyzed the results of 21 proteins whose predicted folding pathways 
were consistent with the experimental data, as shown in Additional file 1: Table S4. The 
average lDDT of the EFR for β-sheet, α-helix, and α/β type protein intermediates are 
0.778, 0.707, and 0.727, respectively, which are 32.4, 24.7, and 28.9% higher than the LFR 
respectively. It is obvious that the EFR of β-sheet folds the fastest, whereas the LFR of 
α-helix seems to fold faster than both the β-sheet and α/β type proteins, presenting fold-
ing characteristics that are similar to biological behavior.

To further analyze the effect of hydrogen bonding interactions in folding, we calcu-
lated the proportion of secondary structure in the conformations during the initializa-
tion stage. The initial conformations of 30 proteins contained an average of 28% helical 
and 3% sheet structure, which is basically consistent with the results of 12 proteins simu-
lated by David E. Shaw et al. using Anton [12]. They reported that the initial conforma-
tion contained 16% helical and 5% sheet structure. Although the data sets are different, 
the FoldPAthreader results exhibit the same tendency as the MD simulations in that the 
proportion of helices is higher than sheets in the early folding stage, indicating that indi-
vidual α-helix are formed instantaneously and much faster than individual β-sheet in the 
early folding stage. These results again demonstrate that FoldPAthreader is effective as 
well as significantly less computationally expensive than MD simulation.

In addition, early studies have emphasized the importance of distinguishing 
between solvent-exposed and non-solvent-exposed residues in understanding pro-
tein structure and function [56]. Here, we investigated the effect of hydrophobic 
interactions on protein folding nucleation by calculating the relative solvent accessi-
bility (RSA) of residues in EFR and LFR using DSSP [57]. The RSA value of a residue 
is obtained by dividing the absolute accessible surface area by the residue-specific 
maximum accessibility value [58]. If the RSA was below 25%, the residue was clas-
sified as buried residue; otherwise, it was classified as exposed residue. The results 
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are shown in Additional file 1: Table S5. The buried residues of EFR and LFR in the 
native structure are 53.2 and 39.6%, respectively, and the that of intermediate pre-
dicted by FoldPAthreader are 38.4 and 26.7%. The buried residues of the intermedi-
ates by FoldPAthreader are lower than the biological experimental data, which can 
be explained by the fact that the intermediates are not fully folded, resulting in more 
residues being exposed in solution. However, both sets of data show that EFR have 
higher buried residues than LFR, suggesting that hydrophobic amino acids are more 
prevalent in the EFR. This is consistent with experimental reports that proteins typ-
ically form a hydrophobic core region during folding [59], which reduces the free 
energy of the system and thus promotes further folding of the protein toward its 
native state. Overall, the results indicated that the folding force field of FoldPAth-
reader can capture key features of protein folding dynamics such as hydrogen bond 
and hydrophobic interactions, demonstrating FoldPAthreader’s ability to predict 
folding pathways.

The folding process is conserved in homologous proteins

Some studies have reported that protein folding rates are dependent on native topol-
ogy, that is, proteins with similar structures often have same folding rates even if the 
sequences are different [22, 60]. This suggests that the folding process may be conserved 
among homologs, meaning that they may have similar intermediate states or transition 
states during protein folding. In the datasets we collected, CspB and Fyn SH3 domain 
have been reported to be homologs [61, 62]. CspB is a 67-amino acid cold-shock pro-
tein from Bacillus subtilis that helps cells survive at low temperatures [63]. The Fyn SH3 
domain is a protein domain consisting of 59 residues, which exists in a large number 
of eukaryotic proteins involved in signal transduction and cell polarization [64]. The 
sequence identity of the two proteins is only 22.4%, but they are similar in structure. 
As shown in Fig. 2Y and Z, they are composed of five β-strands arranged as two tightly 
packed antiparallel β-sheets, forming a closed β-barrel structure. The difference is that 
the triple-stranded β-sheet of CspB is composed of β1-β3, while that of Fyn SH3 domain 
is β2-β4. There is already sufficient evidence in the existing literature that the folding 
pathway between CspB and Fyn SH3 domain are similar, with folding intermediates 
characterized by folded triple-stranded β-sheet and unfolded remaining regions [22]. 
In the predicted results, the intermediate ensembles of CspB and Fyn SH3 domain are 
both well aligned on the triple-stranded β-sheet, which are consistent with the biologi-
cal experimental data [63, 64]. Furthermore, the plastocyanidin and Apo-azurin in the 
datasets are also homologs and have similar experimental folding orders (Fig.  2I and 
O), that is, the β-sandwich is the preferred folding region [46, 65]. The predicted results 
showed that the lDDT of the EFR of plastocyanidin and Apo-azurin were 0.739 and 
0.828 respectively, which were higher than the 0.531 and 0.508 of the LFR, indicating 
that β-sandwich of folding intermediate predicted by FoldPAthreader are preferentially 
formed. In general, the predicted results reveal the general principle that folding path-
way are conserved among homologs, demonstrating that the proposed method is able to 
capture the potential biological properties of protein folding to some extent.
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FoldPAthreader can successfully predicted the folding pathway of BPTI and TIM

In addition to intermediates, we examined multiple transition states predicted by Fold-
PAthreader on the widely studied bovine pancreatic trypsin inhibitor (BPTI) and tri-
osephosphate isomerase (TIM) proteins, whose folding pathways have been revealed by 
Meng Qin et al. and Kevin T. Halloran et al. using MD simulations [66, 67]. For com-
parison, we present the conformational snapshots of BPTI (Fig. 5) and TIM (Fig. 6) from 
FoldPAthreader and MD, respectively. Figure 5A shows the radius of gyration of BPTI, 
which gradually decreases from the initial conformation to the final state. Interestingly, 
similar to the MD, the conformations of FoldPAthreader also temporarily fall into local 
basin, i.e., conformation d, which indicates that BPTI has intermediates in the fold-
ing process. Furthermore, it can be seen from the folding trajectory of FoldPAthreader 
that the conformations a–h are almost consistent with the snapshots of the conforma-
tions sampled from the MD trajectory (Fig.  5B). As shown in conformations b and c, 

Fig. 5  BPTI protein (PDB ID: 1QLQ). A The folding trajectory generated by FoldPAthreader, showing the 
radius of gyration from the fully reduced starting conformation to the folded state. (a)–(h) show some of 
the conformations sampled in the trajectory. The right side shows the transition state ensembles from 
conformation (e) to conformation (f). B 2000 oxidative folding trajectories simulated by MD. The blue curve 
shows the decrease in the radius of gyration (Rg). The gray lines show formation of various disulfide species 
labeled on the left. Snapshots (a)–(h) show some of the conformations sampled in the trajectory (The image 
B is from ref. [66])

Fig. 6  TIM protein (PDB ID: 7TIM). A Folding pathway predicted by FoldPAthreader. Conformation a is the 
initial state, b,c are the transition states, d–g are the intermediate states, h–j are the transition states, and k is 
the final state. B Multiple folding pathways simulated by MD, the upper right legend shows the transition 
probabilities from Ic to I1A, I2, and I3 (The image B is from ref. [67]) 
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the yellow β-hairpin and C-terminal α-helix adopt a native-like structure in the early 
stages, and the remaining regions are disordered. Next, the C-terminal helix interacts 
with the β-hairpin to form a stable intermediate containing two native S–S bonds, i.e., 
conformations d and e. Finally, the N-terminal helix gradually converges to the C-ter-
minus through a series of transition states to form the final state (conformations f–h). 
The results indicated that the folding pathway predicted by FoldPAthreader for BPTI is 
consistent with the maximum probability pathway of MD simulation.

Figure 6A and B present the folding pathway of TIM predicted by FoldPAthreader and 
simulated by MD, respectively. It can be seen that the central region of conformation 
b,c forms most of the contacts in the early folding stages. Then, the red region at the 
C-terminus forms contacts with the central region, i.e., conformation d–g. Finally, the 
blue region at the N-terminus converges toward the folded core to form the final state 
(conformation h–k). It is observed that the folding pathway predicted by FoldPAthreader 
is consistent with the third folding pathway simulated by MD (red arrow in Fig. 6B). A 
slight difference from the MD is the formation of the intermediates. The intermediate I1A 
simulated by MD has a tight 7-strand barrel structure, which prevent the incorporation 
of N-terminus blue α and β into the barrel structure [67]. In comparison, the intermedi-
ates (conformation d-g) of FoldPAthreader exhibit a 6-strand barrel shape that includes 
a gap. When the N-terminus blue regions are inserted into the barrel, the overall struc-
ture becomes tighter. This suggests that there is a possibility of potential intermediates 
that have not been detected by MD simulation. Overall, these results again demonstrate 
FoldPAthreader’ ability to predict folding pathway. This protocol can greatly improve 
the efficiency of folding simulations compared with computationally intensive MD 
simulations.

The performance of FoldPAthreader is related to the quality of MSTA

The excellent performance of FoldPAthreader is mainly contributed by the folding 
force field and the folding fragment library, which are related to the quality of MSTA. 
Here, we examined whether and how MSTA impact the performance of FoldPAth-
reader by searching for MSTA from AlphaFold DB [40], AlphaFold DB50 [40], and 
Protein Data Bank (PDB) [68] databases respectively with the same Foldseek param-
eters (-s 9.5 -e 0.001 –max-seqs 10000 –alignment-type 2) [39], and without MSTA. 
The AlphaFold DB database, created by DeepMind and EMBL’s European Bioinfor-
matics Institute, contains 214,683,829 entries, providing broad coverage of UniProt. 
AlphaFold DB50, a variant of AlphaFold DB, is a clustered database using MMseqs2 
to achieve 50% sequence identity and 90% bidirectional coverage for AlphaFold DB, 
containing 53,665,860 structures [39, 69]. The PDB is a single global archive of three-
dimensional structure data of biological macromolecules and has deposited more 
than 200,000 proteins as of September 2023 [68]. The results of the ablation experi-
ments are shown in Fig.  7 and Additional file  1: Table  S6. On AlphaFold DB50, the 
lDDT of the EFR is 0.681, which is higher than the other three performances of 0.602, 
0.507, and 0.468. The number of predicted intermediates consistent with the bio-
logical experimental data also performs best on AlphaFold DB50. This is mainly due 
to the fact that the homologous structures from AlphaFold DB50 are more diverse 
than AlphaFold DB and PDB. Although AlphaFold DB has the most homologous 
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structures, they are extremely identical and redundant, resulting in relatively lit-
tle available folding information. Likewise, the smaller PDB database structure also 
results in limited folding information, as evidenced by the number of effective struc-
tures (Neff-str) obtained through clustering the structure of MSTA with Foldseek and 
counting the number of centroids. As shown in Additional file 1: Table S6, the Neff-str 
of AlphaFold DB50 is 562, which is double that of AlphaFold DB and PDB, indicating 
that the correlation between Neff-str and precision of folding pathway is significant.

Furthermore, the experimental results of Non-MSTA show the folding fragment 
library is essential for enabling EFR to form preferentially. Non-MSTA does not use the 
statistical energy function from MSTA in the folding optimization, but it uses the frag-
ment library generated by AlphaFold DB50. As shown in Fig.  7D, the results present 
that there are still 9 protein folding intermediates that are consistent with the biological 
experimental data even without the guidance of the statistical potential function, indi-
cating that the folding fragment library at least partially contain folding information. In 
general, the diversity of MSTA determines the precision of folding force field and the 
quality of fragments, which together drive the protein fold to its final state following the 
native folding pathway.

Fig. 7  Results of MSTA ablation experiments. Head-to-head comparison between EFR and LFR of 
intermediates predicted by FoldPAthreader using AlphaFold DB50, AlphaFold DB, PDB, and without MSTA. The 
number of protein structures in the database is marked in parentheses. Blue circles are targets successfully 
predicted by FoldPAthreader, yellow circles are failed targets
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Conclusions
At present, AI-based protein structure prediction has made a significant breakthrough. 
To some extent, AlphaFold2 provides only a black-box model from sequence to struc-
ture, and does not provide information about how proteins fold, which is crucial to 
understanding the central dogma of biology [1, 70]. In this study, we develop a protein 
folding pathway prediction protocol FoldPAthreader that includes a folding force field 
and a conformational sampling method to reveal the protein folding pathway, which is 
ignored by traditional protein structure prediction methods.

We developed a new folding force field model and folding fragment library with fold-
ing information by searching remote homologous structures from the known protein 
universe (AlphaFold DB50). Different from traditional modeling, the proposed folding 
force field model and fragment library not only performs high-precision modeling, but 
also focuses on exploring folding transition states and potential intermediates. The com-
parison with biological experimental data shows that the proposed folding force field 
at least partially captures the basic physics of protein folding. This work also proves 
that there is a significant correlation between the evolutionary development of protein 
structure and the folding process, that is, evolutionarily conserved structures are pref-
erentially formed during the folding process. Overall, FoldPAthreader provides a new 
tool for revealing protein folding pathway in addition to wet-lab experiments and MD 
simulations. The combination of physicochemical knowledge and folding evolutionary 
information from homologous structures will probably emerge as a new paradigm for 
studying protein folding pathway in the future.

Although proposed method achieves promising results on the given dataset, we also 
note some challenges. First, for rare proteins, there may not be enough homologs in the 
structural database, which will lead to reduced performance in folding pathway predic-
tion. Second, this method predicts protein folding pathways based on the AlphaFold 
models and the patterns from MSAs and is insensitive to point mutations. Third, protein 
folding pathways are also strongly affected by many cellular environmental factors. For 
example, molecular chaperones can interact with folding proteins to provide temporary 
structural support to prevent nonspecific interactions and aggregation. The dynamic 
nature of transmembrane proteins makes it very challenging to determine the struc-
ture of their folding processes. The influence of environmental factors and the dynamic 
interactions during protein folding may also lead to proteins containing multiple folding 
pathways [3, 10]. Therefore, combining biological experimental data in protein folding 
pathway prediction methods will be helpful to improve the prediction accuracy, which 
may be a potential direction for future research.

Methods
Data collection

Over the past few decades, numerous wet-lab experiments have been conducted to 
acquire a deeper understanding of protein folding and dynamics [1]. Some progress 
has been made in identifying the intermediates and transition states of these proteins 
[71, 72]. We collected biological experimental data for a total of 30 proteins, includ-
ing 4 β-sheet proteins, 6 α-helical proteins, and 20 α/β proteins, with lengths ranging 
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from 59 to 363. From the literature, we found evidence and descriptions of the fold-
ing order of 30 proteins and presented them in the Additional file  2: Text S3. We 
annotated the residue range of the EFR of the protein, which has an average length of 
53.7% of the total length. Detailed information is listed in Additional file 1: Table S3.

Folding information extraction

For the input sequence, the three-dimensional structure was first predicted by Alpha-
Fold2 [35], which was used as the input structure of Foldseek [39] (parameters “-s 9.5 -e 
0.001 –max-seqs 10,000 –alignment-type 2”) to search for homologous structures from 
AlphaFold DB50 [40]. The searched structures are globally aligned with the target pro-
tein through TM-align, and structures with TM-score < 0.3 are removed, which improves 
the quality of multiple structures alignment (MSTA). Then the frequency distribution F 
value of each residue of the target protein was calculated according to formula (1) and 
(2), which reflects the conservation of the protein structure during the evolution process.

where L is the length of the target protein; N is the homologous structures number of 
MSTA; di is the Euclidean distance between the ith residue of the target protein and the 
corresponding residue of the aligned MSTA structure.

Folding force field design

The conformational sampling process of FoldPAthreader is divided into three stages, 
including initialization, folding nucleation, and structure finalization. In the initializa-
tion stage, the physical potential energy function Ephysi

score1 is used to guide the confor-
mation initialization. Ephysi

score1 contains two energy terms: vdw and hb_srbb. The vdw 
term represents only steric repulsion and avoids unreasonable conformations with 
atomic collisions. hbond_sr_bb is the short-range backbone-backbone hydrogen bond 
energy term, which is to allow the helix or adjacent β-hairpin to be quickly formed in 
the initial state. Ephysi

score1 is defined as follows:

The folding nucleation stage uses physical and statistical potential energy functions. 
The score3 of Rosetta’s Abinitio protocol is used as a reference [73, 74], and the pair, 
env, sheet, hs_pair, cbeta, and rsigma terms are added to the physical potential energy 
function in the folding nucleation stage. Ephysi

score2 is defined as follows:
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where Epair is the energy term of the electrostatic and disulfide bond interaction of the 
residue pair; Eenv describes the hydrophobic effect of a particular residue; the Esheet term 
favors the arrangement of individual β strand into sheets. The Ehs_pair term describes 
the interaction between the strands and the helices. The Ecbeta is another solvation term 
intended to correct for excluded volume effects introduced by the simulation and favor 
compact structures. Ersigma scores strand pairs based on the distance between them and 
the register of the two strands [75]. Different weights are used for each energy term, and 
the parameters are shown in Additional file 1: Table S7. The statistical potential energy 
function Estati

score1 is designed based on the folding information extracted from MSTA, 
which is defined as follows:

where L is the length of the target protein; di,j is the distance between the ith and jth res-
idues extracted from the 3D structure of the target protein, and di,j is that of the folded 
conformation; d∗ is the normalized scale; and ε is an infinitely small quantity so that d∗ 
is not zero. wi,j is the weight for the distance deviation score between the ith and jth resi-
dues, which is calculated by taking the harmonic mean of Fi and Fj . When both Fi and 
Fj are high, wi,j will be higher. It speeds up the formation of structures corresponding to 
high F value.

In the structure finalization stage, the same physical potential energy function as in 
the folding nucleation stage is used, but the statistical potential energy function is differ-
ent. The weight of the statistical potential energy function is removed to accelerate the 
region with low F value to converge to the folded region and form the final state. Estati

score2 
is defined as follows:

Folding fragment library generation

The folding simulation of FoldPAthreader is based on fragment assembly for confor-
mational sampling. Folding fragment library is a very important component for the 
protocol, which are derived from structures of MSTA. All structures were first ranked 
according to identity (TM-score) to the target protein. Then the top M structures are 

(4)
E
physi
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removed, and the remaining structures are used as candidate structures for generating 
fragments. Finally, each structure is traversed in turn, and contiguous fragments of at 
least 6 residues and at least 3 residues are added to the fragment list to generate a 6-resi-
due fragment library and a 3-residue fragment library. The backbone and side chains of 
each fragment are represented in torsion space. M is defined as follows:

The top M structures have high structural overlap with the target protein, indicating 
that they are very identical to the target protein. The fragments generated from these 
highly identical structures will not carry any folding information. In contrast, the can-
didate structures that were screened out had locally identical or diversified regions. 
Candidate structure-derived fragments can avoid exploring high-energy dead ends of 
conserved structure regions, which accelerates the formation of conserved regions. The 
flexible structure regions will be assembled into more possible conformations.

Folding optimization

FoldPAthreader uses a Monte Carlo simulated annealing search strategy for conforma-
tional sampling. In the initialization stage, the conformation is initialized by random 
20*L times of 3-residue fragment assembly. The assembled trial conformation was scored 
by Ephysi

score1 , and the Metropolis criterion was used for conformational replacement.
In the folding nucleation stage, the trial conformations in the first half of the genera-

tions were generated by 6-residue fragment assembly, and in the second half of the gen-
erations using 3-residue fragment assembly. Then, the Ephysi

score2 and Estati
score1 were used to 

score the trial conformation and the Metropolis criterion was used to select the con-
formation. The flowchart of conformation update is shown in Additional file 2: Text S4. 
The annealing temperatures of the physical potential and the statistical potential energy 
function are different. They are kTphysi = 5 and kTstati = 2 respectively. The function of the 
physical potential energy function is to ensure that the conformation is physically rea-
sonable, but the continuous reduction of physical energy during folding is not necessary. 
On the contrary, high annealing temperature can increase the probability of conforma-
tional update.

In the structure finalization stage, the generation of trial conformations follows the 
same process as in the folding nucleation stage. For the conformation update process, as 
shown in the flowchart of Additional file 2: Text S5, Estati

score2 was first used to score trial 
conformation and Metropolis criterion was used to perform conformational replace-
ment. If it fails, Ephysi

score2 is used for scoring. This greedy search strategy speeds up the 
convergence of protein structures.
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