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Abstract 

Background:  Single-cell RNA sequencing (scRNA-seq) and spatially resolved tran-
scriptomics (SRT) have led to groundbreaking advancements in life sciences. To 
develop bioinformatics tools for scRNA-seq and SRT data and perform unbiased 
benchmarks, data simulation has been widely adopted by providing explicit ground 
truth and generating customized datasets. However, the performance of simulation 
methods under multiple scenarios has not been comprehensively assessed, making it 
challenging to choose suitable methods without practical guidelines.

Results:  We systematically evaluated 49 simulation methods developed for scRNA-seq 
and/or SRT data in terms of accuracy, functionality, scalability, and usability using 152 
reference datasets derived from 24 platforms. SRTsim, scDesign3, ZINB-WaVE, and scDe-
sign2 have the best accuracy performance across various platforms. Unexpectedly, 
some methods tailored to scRNA-seq data have potential compatibility for simulating 
SRT data. Lun, SPARSim, and scDesign3-tree outperform other methods under cor-
responding simulation scenarios. Phenopath, Lun, Simple, and MFA yield high scal-
ability scores but they cannot generate realistic simulated data. Users should consider 
the trade-offs between method accuracy and scalability (or functionality) when mak-
ing decisions. Additionally, execution errors are mainly caused by failed parameter 
estimations and appearance of missing or infinite values in calculations. We provide 
practical guidelines for method selection, a standard pipeline Simpipe (https://​github.​
com/​duoho​ngrui/​simpi​pe; https://​doi.​org/​10.​5281/​zenodo.​11178​409), and an online 
tool Simsite (https://​www.​ciblab.​net/​softw​are/​simsh​iny/) for data simulation.

Conclusions:  No method performs best on all criteria, thus a good-yet-not-the-best 
method is recommended if it solves problems effectively and reasonably. Our compre-
hensive work provides crucial insights for developers on modeling gene expression 
data and fosters the simulation process for users.
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Background
Rapid advancements in scRNA-seq and SRT technologies provide unprecedented oppor-
tunities to investigate gene expression at the cellular and spatial levels, thereby unrave-
ling the cellular heterogeneity and underlying molecular mechanisms of biochemical 
processes [1–5]. The widespread adoption of these technologies has generated a huge 
amount of scRNA-seq and SRT data, which has fueled the emergence of computational 
bioinformatics tools [6]. In this context, researchers have implemented evaluations of 
the algorithms used in each analytical step to assist users in selecting the most suitable 
methods [7–19]. Besides the utilization of real data produced by experiments, simulated 
data have been extensively used as an important reference in benchmark studies [7–9, 
12–19], since the well-built data simulation strategy can not only provide explicit ground 
truth, but also allow users to generate specialized datasets for particular cases by adjust-
ing parameters according to their needs.

In recent years, a plethora of tools have been developed to simulate scRNA-seq data 
[6] and methods tailored to simulate SRT data have emerged in 2023 [20–22]. Most 
simulation methods were developed mainly based on statistical distributions, in which 
a reference dataset was used to estimate important parameters. The new gene expres-
sion values were then drawn from the sample space using those estimated parameters 
[23–26]. Those parametric methods with distributional assumptions are flexible and 
enable to handle simulation tasks under various scenarios, but the assumptions may not 
always hold true due to the biological and technical variability in the data [27]. Alterna-
tively, a deep learning-based method was proposed to generate in silico scRNA-seq data 
[28], utilizing generative adversarial networks (GAN) to avoid pre-defined assumptions. 
To enhance the interpretability of these methods, researchers have shifted their focus 
toward simulating scRNA-seq data based on the principle of gene expression regulation 
[29] and RNA velocity theory [30]. Apart from the gene expression matrices, numer-
ous methods can also be applied to four simulation scenarios for generating different 
types of ground truth, including disparate cell groups (or spatial domains), differentially 
expressed genes (DEGs), cell batches, and trajectories. This versatility enables research-
ers to assess the performance of analytical methods across a spectrum of simulated bio-
logical contexts and enhance the robustness of experimental designs.

Given the diversities of underlying models implemented in the simulation methods 
and various applicable scenarios, it is necessary to comprehensively evaluate their per-
formance. Efforts have been made toward the benchmarking of simulation methods for 
scRNA-seq data [31, 32], but they solely focused on partial simulation scenarios where 
methods could be applied, without fully assessing the fidelity and reliability of the simu-
lated ground truth by multiple metrics from different viewpoints. Thus, this incomplete 
evaluation limits the broad adoption of methods with varied functionalities. For exam-
ple, Cao et al. [31] only assessed the ability of methods to simulate genes with different 
expression patterns, and the study by Crowell et al. [32] merely considered the method 
functionalities of generating different cell batches and clusters. In particular, the simula-
tion methods for SRT data have not been systematically evaluated by previous bench-
mark studies, and their abilities to generate realistic data and their performances under 
specific simulation scenarios (e.g., the simulation of spatial domains) are still unclear. 
Additionally, it is not beneficial for users to choose and use appropriate methods in a 
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user-friendly way, without offering an explicit guideline for method selection and a 
standard pipeline from data simulation to result assessment. For some simulation meth-
ods, execution errors frequently arise during the process of parameter estimation and 
data simulation, but the underlying reasons have not been summarized and analyzed. As 
a result, it is not conducive to improving current methods and advising users to adopt 
the methods with low error rates. In conclusion, addressing these limitations is impera-
tive, as gaining a comprehensive understanding of the pros and cons of existing methods 
will empower users to make informed decisions. Moreover, it will assist developers in 
refining algorithms and provide new insights into the characteristics of scRNA-seq and 
SRT data.

Here, we conducted a comprehensive assessment of 49 simulation methods for 
scRNA-seq and/or SRT data using 152 real reference datasets to evaluate their accuracy, 
functionality, scalability, and usability. Different from previous studies, we adopted vari-
ous metrics and proposed several novel approaches to fully quantify the reliability of the 
simulated datasets and the functionality performance of methods under four simulation 
scenarios. Besides measuring the required time and occupied computational resources, 
we explored the time and memory complexity with respect to the cell or gene numbers 
for each simulation method. Additionally, we gathered up the error messages during the 
study and analyzed the underlying reasons for those execution failures. By elaborately 
summarizing the evaluation results, we provided an explicit guideline of method selec-
tion for users and a standard pipeline called Simpipe to achieve the process from data 
simulation to result assessment. Moreover, users can also access our interactive web-
site (https://​www.​ciblab.​net/​softw​are/​simsh​iny/) to select suitable methods and simulate 
datasets. Our evaluation provides valuable insights for the development of new simu-
lation algorithms and highlights the promising future of data simulation strategies for 
other prominent research fields, such as multi-omics and multi-modality.

Results
The overall benchmark framework

A systematic and comprehensive evaluation of 49 simulation methods was performed to 
assess their accuracy, functionality, scalability, and usability, by using 101 scRNA-seq and 
51 SRT datasets generated by 24 platforms, such as Smart-seq2 and Stereo-seq (Fig. 1a, 
Additional file 1: Fig. S1 and Additional file 2: Table S1-3). To clarify the simulation sce-
narios that current methods can be applied to, we summarized four essential aspects of 
functionality, including the abilities to simulate cell groups (or spatial domains), DEGs, 
cell batches, and cell differentiation trajectories (Fig. 1b). All methods were categorized 
into 5 classes, according to the type and number of simulation scenarios they can be 
employed (Fig. 2a, Additional file 2: Table S1 and Methods). Moreover, we unified the 
parameter names across different functionalities and methods to simplify user-defined 
settings (Additional file 1: Supplementary Note Sect. 1, Additional file 2: Table S2).

Except for the methods lacking functionality (assessed by three criteria), the remains 
were assessed using four criteria (Fig. 1b, Methods): (1) Accuracy was assessed by 8 met-
rics based on 15 data properties on the cell or gene level, reflecting the ability to generate 
“realistic” simulated data. (2) Functionality evaluation was an unbiased quantification of 
method performance in four simulation scenarios with different metrics. (3) Scalability 

https://www.ciblab.net/software/simshiny/
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Fig. 1  Overall framework of the benchmark study. a The evaluation pipeline. Key estimated parameters were 
learned from 152 reference datasets and then used to simulate new datasets through 49 simulation methods. 
Next, the method performance in terms of accuracy, functionality, scalability, and usability was evaluated. 
Based on the benchmark results, a guideline for method selection and an online simulation tool were 
provided for users. b Four evaluation criteria. The adopted criteria include accuracy, functionality, scalability, 
and usability. Method accuracy was assessed through 8 metrics based on 15 data properties. Functionality 
was quantified using different metrics under four simulation scenarios. Scalability evaluation was performed 
to uncover the trend complexity with varying cell or gene numbers and the scalability datasets were 
modeled for prediction. Usability was evaluated through 27 scoring items across six aspects and the causes 
of execution errors were summarized. c The guideline of method selection and suggestions for users and 
developers. d The standard simulation pipeline Simpipe with corresponding vignettes and online simulation 
tool. DEA, differential expression analysis; SVGs, spatially variable genes
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evaluation was performed to monitor the occupied computational resources and unveil 
the relationship between execution time or memory usage and the number of cells or 
genes. (4) Usability assessment was conducted by manually scoring the terms of the 
checklist which was summarized from nine authoritative references [33–41]. Usability 
covered six aspects: method availability, code quality, self-evaluation, maintenance, doc-
umentation, and publication (Additional file 2: Table S4).

Fig. 2  Characteristics of methods and evaluation results based on the four criteria. a Method characteristics. 
The programming language, model, ability to simulate SRT or omics data, required prior information and 
functionality of 49 methods are listed. All methods were categorized into 5 classes according to the type 
and number of functionalities they possess (see “ Methods”). They were ranked by the overall scores in 
each class. b Scores of four criteria and overall performance of methods. Due to the absence of simulated 
cell group labels in zingeR and zinbwaveZinger, results of the functionality of simulating cell groups and 
DEGs were not available. Notably, BASiCS frequently suffered from execution errors on many datasets; 
thereby, the functionality performance of simulating cell batches was missing. GP, gamma-Poisson; BGP, 
beta-gamma-Poisson; BP, beta-Poisson; ZINB, zero-inflated negative binomial; ZILNP, zero-inflated log-normal 
Poisson; GAN, generative adversarial network; GN, gamma-Normal; GAMLSS, generalized additive model 
for location, scale and shape; Four models, which means that these methods determine an appropriate 
distribution to model gene expression from four candidate distributions, including Poisson, zero-inflated 
Poisson (ZIP), negative binomial (NB, i.e., GP), and ZINB distribution
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Guidelines and recommendations for users to select the suitable method were pro-
vided based on our benchmark results. We also encapsulated 49 methods within the 
Simmethods package with comprehensive vignettes (https://​github.​com/​duoho​ngrui/​
simme​thods). Furthermore, we established a standard pipeline called Simpipe (https://​
github.​com/​duoho​ngrui/​simpi​pe), along with an online data simulation tool Simsite 
(https://​www.​ciblab.​net/​softw​are/​simsh​iny/), to streamline simulation tasks and evalu-
ate their outputs (Fig. 1c, d).

Accuracy performance of methods over various metrics and data properties

We observed that SRTsim, a specialized simulator for SRT data, achieved the highest 
accuracy score (0.84), followed by scDesign3-tree (0.78), ZINB-WaVE (0.77), scDesign3 
(0.76), and scDesign2 (0.74) (Fig. 2a, b). It is noted that ZINB-WaVE has also been vali-
dated to generate more realistic data by other studies [31, 32]. In contrast, CancerInSil-
ico, hierarchicell, MFA, scMultiSim, VeloSim, and dyntoy cannot generate realistic data 
due to their poor performance in accuracy assessment. Although each class had at least 
one method ranking within the top 10 for accuracy, Class2 methods performed better 
and ranked higher than other classes in general, with a mean accuracy score of 0.60.

SRTsim, ZINB-WaVE, scDesign3-tree, scDesign3, SPARSim, muscat, and scDesign2 
showed superior performance on all accuracy metrics (Fig. 3a, b), while some methods 
such as phenopath, Lun2, and hierarchicell typically yielded low scores. Additionally, for 
Class2 methods, the scores of most metrics (e.g., KS: 0.68 ± 0.11, MAD: 0.59 ± 0.06, and 
OV: 0.64 ± 0.12) were higher and more robust than those of other classes (Additional 
file 1: Fig. S2a), suggesting that they possess the powerful ability to simulate data which 
resembled the real data.

Regarding the scores given to each data property, some methods constantly 
achieved good performance on the characterization of different properties from real 
data (e.g., SRTsim, scDesign3, and ZINB-WaVE), while some of the others (e.g., hier-
archicell, MFA, scMultiSim, and CancerInSilico) demonstrated poorly to simulate 
data that resembled the real one (Additional file 1: Fig. S3). We also found that some 
data properties, such as the cell–cell correlation (CCC) and fraction of cell outliers 
(FCO), can only be captured well by certain methods. For instance, the FCO property 
was well characterized by SPARsim (score = 0.89) and SRTsim (score = 0.86). SRTsim 
also showed an obviously good performance in CCC (score = 0.90). Remarkably, the 
methods showing significant differences in accuracy scores between gene-level and 
cell-level properties performed excellently in the former but faltered in the latter 
(Additional file 1: Fig. S4). That is probably because current methods mainly focus on 
the modeling of various gene-level properties, such as mean and standard deviation 
of gene expression, gene-wise dropout, and gene–gene correlations, but only a few of 
cell-level properties (e.g., cell library size and cell-wise dropout) were characterized 
from real data. For the Class2 methods, they still showed appreciable performance 
across many data properties (Additional file 1: Fig. S2b), such as library size per cell 
(LS: 0.70 ± 0.11), effective library size per cell (ELS: 0.69 ± 0.11), and fraction of zeros 
per cell (FZC: 0.60 ± 0.10), as their scores were more robust and higher than those of 
other classes.

https://github.com/duohongrui/simmethods
https://github.com/duohongrui/simmethods
https://github.com/duohongrui/simpipe
https://github.com/duohongrui/simpipe
https://www.ciblab.net/software/simshiny/
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Accuracy performance of methods on different platforms and techniques

Except for Mix sources2 (Pearson’s r = 0.58, P < 0.01), strong correlations were observed 
between the scores of different platforms and overall accuracy (Additional file  1: Fig. 
S5). It suggests that the methods with excellent performance in accuracy (e.g., SRTsim, 
scDesign2, scDesign3, and ZINB-WaVE) can also be used across a wide range of plat-
forms (Fig. 4a and Additional file 1: Fig. S3b). Additionally, the significant differences in 
accuracy performance between the read-based and UMI-based platforms were observed 
in many methods (Additional file 1: Fig. S6), showing their distinct preferences for the 
count quantification strategy of a given data.

The accuracy scores obtained from SRT and scRNA-seq techniques were highly cor-
related (Pearson’s r = 0.92) (Fig. 4b). By employing “spatial-level” metrics (“spatial-KDE” 

Fig. 3  Detailed results of the four evaluation criteria. a Methods used for the benchmark study. They are 
ranked according to their overall score within each class (see Fig. 2). b The accuracy scores of each metric. 
c Metric scores for each simulation functionality. SPsimSeq produced errors on the reference datasets with 
batch effects, which led to the missing results on the functionality performance of simulating cell batches. 
The reasons for the missing results in zingeR, zinbwaveZinger, and BASiCS have been illustrated in Fig. 2. d 
Scalability scores for execution time and memory usage in parameter estimation or data simulation step. e 
Usability scores in six aspects and the information of execution errors for each method
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and “spatial-multiKS,” see “  Methods”) to specifically quantify the similarity between 
simulated and real SRT datasets, we still observed a high correlation of method accuracy 
performance (Pearson’s r = 0.83) on two types of reference data (Fig. 4c). It was revealed 
that well-performed simulation methods tailored to scRNA-seq data can also gener-
ate reliable SRT datasets without obvious conflicts. Unexpectedly, some methods like 
Splat, SPARSim, SCRIP (containing all five different variants), SplatPop, dropsim, and 

Fig. 4  Accuracy performance of methods on different platforms and techniques. a Heatmap of accuracy 
scores on different platforms. Methods are grouped by each class and ranked according to their accuracy 
scores. “Mix sources1” indicates the data derived from two experimental platforms (Smart-seq2 and 
10 × Genomics). “Mix sources2” indicates the mixture data derived from platforms of CEL-seq and CEL-seq2. b 
The correlation between the accuracy scores on SRT datasets and scRNA-seq datasets (Pearson’s r = 0.92). The 
95% confidence interval is shown in gray. c The “spatial-level” metrics (spatial-KDE and spatial-multiKS) were 
adopted to recalculate the accuracy scores for the simulated SRT datasets (see “ Methods”). The correlation 
analysis was performed between the “spatial-level” scores on SRT datasets and scores on scRNA-seq datasets 
(Pearson’s r = 0.83). d Boxplots of accuracy scores on the datasets generated by scRNA-seq or SRT technology 
for each method. Each dot represents one method applied on a platform. The two-sided Wilcoxon test was 
performed on the accuracy scores derived from scRNA-seq and SRT datasets. *, P < 0.05; **, P < 0.01; ***, 
P < 0.001; ****, P < 0.0001
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ZINB-WaVE performed significantly better on SRT data than scRNA-seq data (P < 0.01), 
highlighting their strong compatibility in simulating SRT data (Fig.  4d). In contrast, 
powsimR (P < 0.05), Lun (P < 0.05), muscat (P < 0.05), scDesign (P < 0.0001), and scGAN 
(P < 0.001) were more adept at simulating scRNA-seq data (Fig. 4d).

Accuracy performance of different models

To uncover the accuracy performance of methods based on different distributional 
assumptions or algorithms, we summarized the scores across methods with the same 
underlying models (Fig. 5a). In general, the methods with the optimal-chosen model or 
generalized additive model for location, scale, and shape (GAMLSS) had superior perfor-
mance in accuracy, while the methods using kinetic model and beta-Poisson (BP) distri-
bution demonstrated poorly and yielded low accuracy scores. Additionally, we observed 
the considerably varied performance of methods within the same model group. ZINB-
WaVE, built on the zero-inflated negative binomial (ZINB) distribution, had the highest 
accuracy score in the model group. SCRIP-paths and muscat performed best among the 
methods employing Gamma-Poisson (GP) distribution. However, CancerInSilico and 
scMultiSim had the lowest ranking of accuracy within their categories. It was indicated 

Fig. 5  Accuracy performance of different models. a The bar plot of the accuracy scores of different models. 
Each dot represents a simulation method belonging to the model group. The error bar represents the 
mean ± s.e. of the accuracy scores in each model. b–d The heatmap showing the scores of different models 
across data properties, metrics, and transcriptomics technologies. The optimal-chosen model is defined as 
the algorithm used to determine the best-fit statistical distribution for each gene when modeling. All models 
are clustered into 4 groups using the k-means algorithm
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that besides the choice of prior distributional assumption, the accuracy performance of 
methods may also be influenced by other crucial factors, such as the ability of methods 
to characterize diverse gene expression patterns and account for the data variability.

Based on the scores of different metrics and data properties, the models were clus-
tered into four clusters. The optimal-chosen model and GAMLSS consistently showed 
the powerful ability to characterize different data properties (Fig. 5b) from real data and 
better performance under various metrics (Fig. 5c). The models based on zero-inflated, 
Poisson, and Beta-Gamma-Poisson (BGP) distributions were clustered together, as they 
yielded mediocre scores of metrics and data properties in general. We also observed that 
the original Poisson distribution model consistently outperformed other variants (e.g., 
BP and GP) across all properties and metrics (Fig. 5b, c), thus resulting in a higher over-
all accuracy score than other variant models (Fig. 5a). Furthermore, we found the prop-
erty of CCC cannot be well captured by most models (Fig. 5b). The relation of library 
size and zero proportion of cells (RLZ) was also hard to be characterized, especially for 
the GAN and kinetic model. That was because they obtained low scores both on the 
library size (LS) and the fraction of zeros per cell (FZC).

The optimal-chosen model and GAMLSS demonstrated excellent simulation out-
comes across real datasets generated by various platforms, whereas the BP distribution 
merely performed well on a few platforms (Fig. 5d). Compared with the models based 
on GP, BGP, Gamma-Normal (GN) distributions and GAN, Poisson, and zero-inflated 
distribution models showed better performance on most scRNA-seq and SRT platforms 
in general. Notably, the Poisson distribution model yielded a particularly low accuracy 
score on Smart-seq.

Method performance on different functionalities

To assess the performance of the methods in each functionality, rankings were deter-
mined based on their respective functionality scores (Fig. 6a). Lun was the best method 
for simulating datasets with specified cell groups (score = 0.71) and DEGs (score = 0.90). 
Among methods with simulation functionality of cell batches, SPARSim achieved rela-
tively high scores in all metrics (Additional file 1: Fig. S7) and showed the most remark-
able performance (score = 0.77), followed by scMultiSim (0.56) and Lun2 (0.53) (Fig. 6a). 
Class1 methods performed poorly on F1milestones and Cordist metrics (Additional file 1: 
Fig. S7), resulting in low scores in trajectory evaluation. This suggested that current 
methods cannot accurately simulate the cells that should be assigned to the correct mile-
stones or positions within a trajectory.

We conducted the correlation analysis to explore the relationship between the 
method performance of different functionalities. The results revealed that the func-
tionality scores of cell groups were correlated with those of DEGs (Pearson’s r = 0.66) 
(Fig.  6b). Additionally, the functionality performance of simulating cell groups and 
batches (Pearson’s r = 0.65), as well as DEGs and cell batches (Pearson’s r = 0.81), also 
exhibited the positive consistency (Additional file  1: Fig. S8a,c), but the correlation 
was relatively low between the functionality scores of cell groups and trajectories 
(Pearson’s r = 0.38, Additional file 1: Fig. S8b).

Moreover, we noticed that a few methods, such as SPARSim and muscat, con-
sistently demonstrated favorable performance in both accuracy and functionality. 



Page 11 of 29Duo et al. Genome Biology          (2024) 25:145 	

However, several methods, including Lun, hierarchicell, and scDesign3, exhibited con-
siderable differences between their accuracy and functionality performance (Fig. 2). 
Generally, the correlation between the scores of the accuracy and functionality 
assessment was not statistically significant (Pearson’s r = -0.01, P = 0.95), which also 
indicated the disagreement of method performance on the two evaluation criteria 
(Additional file 1: Fig. S9).

Specifically, we adopted Moran’s I statistics to quantify the degree of autocorrelation 
for the simulated spatially variable genes (SVGs) in mimicked SRT data. The results 
showed that Moran’s I statistics were close to 0 (Additional file  1: Fig. S10), indicat-
ing that there is no relationship between the gene expression levels within adjacent 
spots. Consequently, the simulation methods can hardly generate SRT data with clear 

Fig. 6  Functionality performance of methods. a Lollipop plots of the ranked methods in each simulation 
functionality. Method classes are marked by different colors. b The correlation between the functionality 
scores of simulated cell groups and DEGs (Pearson’s r = 0.66). The 95% confidence interval is shown in gray. c 
Functionality scores of methods applied to the reference data generated by different platforms. The methods 
are grouped by each class and ranked according to their functionality scores. d The correlation between the 
functionality scores on SRT datasets and scRNA-seq datasets (Pearson’s r = 0.74)
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expression patterns of SVGs in space. This limitation may arise from the incapacity of 
scRNA-seq data simulators to additionally integrate spatial coordinates and effectively 
capture the gene expression patterns across spatial domains from reference SRT data.

Functionality performance on datasets generated by diverse platforms and techniques

We further investigated the effect of reference datasets generated by different platforms 
on the functionality performance. Many methods in Class3 such as Lun, scDesign, mus-
cat, and scMultiSim performed well on all platforms (Fig.  6c), and the functionality 
scores were generally higher than those of other classes (Additional file  1: Fig. S11a). 
However, the performance of scDesign3, SymSim, and POWSC was completely oppo-
site (Fig. 6c), resulting in low functionality scores (Fig. 2b). When it came to simulating 
cell groups, Class3 methods still had the outstanding ability on many platforms. While 
Class2 methods performed well in accuracy, they showed the inferior ability to simulate 
cell groups (Additional file 1: Fig. S11b).

There was a high correlation (Pearson’s r = 0.74, P < 0.001) between the functionality 
scores of the SRT and the scRNA-seq data (Fig. 6d). This correlation also held true when 
evaluating the functionality of groups (Pearson’s r = 0.82, P < 0.001) (Additional file  1: 
Fig. S12a) or DEGs (Pearson’s r = 0.80, P < 0.001) (Additional file 1: Fig. S12b), showing 
the consistent performance of method functionalities between datasets generated by 
both scRNA-seq and SRT techniques. For the group simulation functionality, the major-
ity of the top performing methods (e.g., Lun, ESCO-tree, scMultiSim, ESCO-traj, Velo-
Sim, and scGAN) (Fig.  6a) obtained higher scores on scRNA-seq data than SRT data 
(Additional file 1: Fig. S13a). Conversely, for the functionalities related to DEGs and tra-
jectories, most simulation methods tailored to scRNA-seq data exhibited better perfor-
mance on SRT data (Additional file 1: Fig. S13b,c).

Scalability evaluation of simulation methods

For users, running time and consumed computational resources are essential for the 
practical applications of methods. By constructing the generalized linear model (see 
“ Methods”), we analyzed the effects of cell or gene numbers on running time and mem-
ory consumption. Our findings revealed that most methods exhibited either linear or 
sublinear time (or memory) complexity with respect to the cell or gene numbers (Addi-
tional file  1: Fig. S14-21). However, dyntoy had the quadratic time complexity in the 
estimation step and quadratic memory complexity in the simulation step as the cell or 
gene numbers increased. We also observed that the memory consumption of SRTsim 
tended to increase super-quadratically with the cell numbers when it was modeling gene 
expression data, while scDesign exhibited this trend as the gene numbers increased in 
the data simulation step. We illustrated the reasons for the negative slopes of the fitted 
lines for some methods and other special situations in Additional file 1: Supplementary 
Discussion.

To predict the time and memory consumption required by each simulation method, 
we modeled the data of execution time and memory usage using random forest (RF) 
and the shape constrained additive model (SCAM) [42] (“ Methods”). Subsequently, the 
actual time (memory) and the predicted time (memory) were compared by calculating 
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the Pearson correlation coefficients between them, which revealed a high degree of cor-
relation (Additional file 1: Fig. S22-23).

In the parameter estimation step, scGAN, BASiCS, scDD, scDesign2, scDesign3, 
TedSim, Lun2, and ZINB-WaVE exhibited longer execution time compared with other 
methods, while some methods such as scDesign2, scDesign3, scDesign3-tree, zinb-
waveZinger, SparseDC, ZINB-WaVE, and BEARscc consumed more memory resources 
(Fig. 3a, d). In particular, we found that scDesign2, scDesign3, and ZINB-WaVE showed 
powerful capability of generating more realistic data in accuracy assessment (Fig. 2) at 
the expense of more time and memory consumption for modeling the gene expression 
data. In the simulation step, SimBPDD, SPsimSeq, scMultiSim-tree, scMultiSim, dyn-
gen and VeloSim demonstrated lower time scalability scores. Additionally, dyngen and 
Velosim also required significantly more memory, indicating that they may not be suit-
able for simulating large datasets (Fig.  3a, d). Overall, some methods were capable of 
completing simulation tasks within reasonable time and memory constraints, such as 
phenopath, Splat, Simple, Lun, PROSSTT, and dropsim, allowing users to make a trade-
off between accuracy and scalability in certain situations.

Usability and execution errors

To quantify the usability of each method, scoring rules were established in terms of 
method availability, code quality, self-evaluation, documentation, and publication 
(Additional file 2: Table S4). We found that not all methods met the basic principles. 
For instance, zinbwaveZinger lacks usage instructions and illustrative examples, and 
an official software license, thus it has the lowest usability score (Additional file  1: 
Fig. S24a,b). Although no method achieves flawless performance across all six aspects 
(Fig.  3e), some methods such as Kersplat (score = 0.73), Lun (score = 0.73), Lun2 
(score = 0.73), Simple (score = 0.73), Splat (score = 0.73), SplatPop (score = 0.67), 
SymSim (score = 0.66), SPsimSeq (score = 0.66), and scDD (score = 0.66) demon-
strated excellent usability (Fig. 2a, b and Additional file 1: Fig. S24a). Therefore, they 
can be served as paradigms for software development, evaluation, and maintenance.

We further summarized 10 categories of execution errors (Fig. 3e, Additional file 2: 
Table S5). Approximately 61% of methods encountered errors, and the error propor-
tions varied greatly across methods, ranging from 0.7% (SCRIP-BGP-trendedBCV 
and ZINB-WaVE) to 88.9% (BASiCS) (Fig. 3a, e). The error type called “appearance 
of missing (infinite) values” accounted for a substantial part in many methods. This 
can be attributed to unexpected missing values in vectors or matrices, resulting in 
errors when they are utilized in conditional statements or mathematical calculations. 
Certain methods, such as BASiCS, hierarchicell, and ESCO, frequently encountered 
failures in parameter estimation. It was the error termed “failed estimation for genes” 
that generally occurred in the situation where the expression values of some genes 
may not conform with the distribution or the gene-level properties cannot be suc-
cessfully fitted by the model implemented in these methods. Drawing upon the main 
causes, we provided developers with practical recommendations to avoid common 
errors (Additional file 2: Table S6).
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Practical guidelines for method selection

Based on the benchmark results, we provided a practical guideline to assist users in 
selecting appropriate simulation methods (Fig.  7). Users should consider whether to 
simulate SRT data and use the method functionality under specific simulation scenar-
ios. As no method excels across all evaluation criteria, users are supposed to consider 
the trade-offs between accuracy and scalability, as well as accuracy and functionality. 
In some cases, a good-yet-not-the-best method is recommended as long as it provides 
a feasible solution. To facilitate this process, we have developed an online website that 
guides users step by step in selecting the suitable simulation method based on their 
requirements (https://​www.​ciblab.​net/​softw​are/​simsh​iny/).

Discussion
We comprehensively evaluated 49 simulation methods designed for scRNA-seq and/
or SRT data in terms of accuracy, functionality, scalability, and usability with practical 
guidelines for method selection. Generally, the accuracy performance of most simula-
tion methods may be influenced by three key factors: (1) the choice of prior distribu-
tional assumption, (2) the diversity of gene expression patterns, and (3) the ability to 
account for data variability (i.e., technical and biological variation). Most simulation 
methods typically assume that the gene expression in scRNA-seq data follows a specific 
distribution (e.g., Poisson, ZIP, NB, and ZINB). However, there is no consensus on the 
distributional assumption adopted for modeling gene expression in scRNA-seq data. For 
example, some studies argued that NB is sufficient for modeling UMI-based scRNA-seq 
data [24, 43, 44], while others advocated the Poisson distribution is a better fit [45, 46]. 
For plate-based scRNA-seq data, there is still a controversy regarding whether zero-
inflated models should be used [24, 43, 47]. Given these disagreements, developers are 
advised to initially model the data using several candidate statistical distributions and 
subsequently adopt the appropriate distributional assumption to better accommodate 
diverse gene expression data [48]. It has been proven that the expression levels of all 
genes within a scRNA-seq dataset do not follow the same statistical distribution [24, 47, 
48], reflecting the diversity of gene expression patterns. Consequently, modeling gene 
expression data using a single parametric distribution may lead to the loss of important 
information about data properties. Additionally, confounding technical and biological 
effects can prevent the simulation method from accurately capturing the heterogeneity 
in the scRNA-seq data, which may affect the reliability and fidelity of simulated data. 
Effectively disentangling these variance effects is pivotal in modeling gene expression 
data, which is conducive to explicitly identifying gene expression patterns, improving 
the goodness-of-fit of the model and generating more realistic simulated data. In brief, 
to improve the accuracy and flexibility of simulation methods, developers should com-
prehensively consider and account for diverse gene expression patterns and data vari-
ability based on the reasonable choice of a distribution assumption.

According to the results of the accuracy assessment, we found the performance of 
different models varied considerably (Fig.  5a). Based on the optimal-chosen model, 
SRTsim and scDesign2 exhibit superior accuracy performance (Fig.  2). Specifically, 
they judged and selected the most suitable distribution for each gene from four candi-
date distributions (Poisson, ZIP, NB, and ZINB), avoiding the limitation of modeling 

https://www.ciblab.net/software/simshiny/
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gene expression data only using a single parametric distribution. This strategy can 
effectively characterize diverse gene expression patterns in real data, improve the 
goodness-of-fit, and can be applied across a broad spectrum of gene expression data. 
Furthermore, scDesign3, a multi-omics data simulator derived from GAMLSS, has 
two outstanding advantages in effectively characterizing data properties and gene 
expression heterogeneity from real-world data. On the one hand, scDesign3 allows 
the introduction of smooth functions and various covariates (e.g., experimental con-
ditions, cell types, pseudotime, and spatial coordinates) to model mean gene expres-
sion, dispersion, and the proportion of zeros, which can be flexibly adapted to the 
data with different cell states and experimental designs. On the other hand, scDesign3 
and scDesign2 model the joint distribution of multiple genes based on the marginal 
distributions of individual genes. By preserving the structure of gene correlations, 
both methods can precisely delineate intricate relationships across different levels of 
gene expression in real datasets, thus the expression patterns will be further consoli-
dated in simulated data. While scGAN, a deep learning-based method, can discern 
different gene expression patterns, its performance on accuracy and functionality 
was found to be mediocre (Figs.  2 and Fig.  6a). This may stem from its sensitivity 
to the variance effects because generating high-quality cells usually requires training 
scGAN on the library-size normalized data, as mentioned in the original paper [28]. 
The methods relying on the two-state kinetic model, such as VeloSim, SymSim, Ted-
Sim, and scMultiSim-tree, exhibited poorly in terms of accuracy (Fig. 2) because they 
solely simulate data based on the provided topology structure and kinetic parameters, 
neglecting the characterization of gene expression and variability from the real data.

Well-performed methods in accuracy (e.g., scDesign3, ZINB-WaVE, SPARSim, 
Splat, and SCRIP-GP-trendedBCV, see Fig. 2) employ disparate approaches to accu-
rately capture and interpret the sparsity and variability nature of scRNA-seq data. 
For example, ZINB-WaVE models the probability of dropouts in terms of cell- and 
gene-level covariates, which can accurately characterize the sparsity in scRNA-seq 
data. ZINB-WaVE also included a set of unobserved covariates to account for the 
presence of unwanted variation (e.g., batch effect) and the biological effect of inter-
est (e.g., cell type). SPARSim considers the compositionality nature of RNA sequenc-
ing data [49], in which RNA capture and sequencing are the sampling process from 
a fixed sample size without replacement. By applying a multivariate hypergeometric 
distribution, SPARSim can explicitly model the biological and technical variability, as 
well as effectively reproduce the sparsity in terms of percentages of zeros. Another 
popular simulation method Splat learns the probability that a gene count should be 
a zero by exploring the relationship between the mean gene expression and the pro-
portions of zeros through a logistic function. Furthermore, Splat enforces the mean–
variance trend by utilizing the biological coefficient of variation (BCV) for each gene 
to simulate biological effects based on the dispersion estimated from real data. Built 
upon the model implemented in Splat, SCRIP-GP-trendedBCV describes the depend-
ency between mean gene expression and BCV through a generalized additive model 
(GAM) to capture the biological variability from the real data, which can achieve the 
accurate simulation of data dispersion.
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Conversely, simulation methods tend to demonstrate poorly in accuracy if the char-
acteristics of real data are not comprehensively captured (e.g., scDD, BASiCS, Simple, 
Lun, scMultiSim, and VeloSim, see Fig. 2). As scDD samples from genes with less than 
75% zero values, it can only simulate relatively highly expressed genes and lack the abil-
ity to characterize the high proportion of zeros in scRNA-seq data. BASiCS is capable 
of explicitly characterizing the unexplained technical variability or noise, by modeling 
the observed values of 92 extrinsic molecules derived by the External RNA Controls 
Consortium (ERCC). Currently, this is the most effective way to distinguish confound-
ing technical variability of the data. Nevertheless, BASiCS does not characterize the data 
properties associated with zero values to account for sparsity. As a basic data simulation 
method, Simple only models the mean gene expression using a Gamma distribution and 
simulates genes with over-dispersion merely by customizing the dispersion parameter, 
which cannot accurately reproduce many properties of the real data, such as the library 
size of cells and the proportion of zeros per cell. Built upon the Simple, Lun adjusts the 
mean expression of each cell using a transformed scaling factor drawn from a normal 
distribution, which represents the contribution of technical variability to observed gene 
expression. However, it does not account for the sparsity and biological variability of 
scRNA-seq data. Some methods, such as scMultiSim, VeloSim, dyntoy, SymSim, and 
dyngen, only required the pre-defined trajectory topology or the tree-structured input 
which describes the differentiation relationship of cell types for data simulation. Thus, 
they ignore the strict characterization of essential data properties from real data and 
cannot generate simulated data that resembles the real one.

Our results also revealed that some simulation methods developed for scRNA-seq data 
have powerful compatibility to simulate SRT data (Fig. 4d). This is because most SRT and 
scRNA-seq data share common features in terms of gene expression and data character-
istics, such as the excessive zeros and the over-dispersion [50]. Importantly, gene expres-
sion of most SRT data also follows the NB or Poisson distribution [50], which is similar 
to that of scRNA-seq data. Hence, based on these similarities, it is reasonable that the 
methods tailored to scRNA-seq data can also simulate reliable SRT data. In addition, 
the study by Zhao et al. has also confirmed that the over-dispersion and zero inflation 
observed in SRT data are primarily due to the heterogeneity of gene expression and spa-
tial distribution of cell types across regions [50]. Thus, over-dispersion and zero inflation 
in SRT data can be regarded as biologically important information, which is concordant 
with the interpretation and understanding of scRNA-seq data [51, 52]. It is suggested 
that in some cases, developers can generally transfer the modeling strategy from scRNA-
seq data to SRT data. However, caution should also be exercised to ascertain whether the 
method consistently demonstrates excellent performance and flexible applicability, given 
the SRT data derived from different technologies and experimental designs.

Some simulation algorithms may cause data distortion and over-simulation when gen-
erating datasets with ground truth. Methods such as Splat, SCRIP, Lun, and scMultiSim 
solely rely on the customized parameters to simulate the ground truth, without utilizing 
prior information (e.g., real labels of cell types and batches) to capture heterogeneity or 
variance effects in real data. Many gene- or cell-level data properties in the simulated 
data are controlled by customized parameters, such as the difference of gene expression 
levels, the number of cell groups and the degree of batch effects. However, excessively 
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flexible parameter settings can easily distort the data, so that the simulated data cannot 
reflect the real biological changes or differences, which may lead to over-simulation and 
affect the accuracy of the method. In some cases, when users need to distinguish techni-
cal and biological variations of the data, they should be cautious in choosing these meth-
ods for simulating datasets with ground truth.

Moreover, a positive correlation between the scores of different functionalities was 
observed in our results (Fig.  6b and Additional file  1: Fig. S8), indicating a potential 
relationship between the performance of methods across different functionalities. For 
instance, the gene expression levels of DEGs between cell groups may influence the reli-
ability of the simulated cell groups, because whether cell groups can be clearly distin-
guished largely depends on the extent of differences in the expression levels of DEGs. 
When there are substantial differences in gene expression, it can enhance the heteroge-
neity between simulated cell groups and result in a clear separation of different popu-
lations in the plots of t-distributed stochastic neighbor embedding (t-SNE) or uniform 
manifold approximation and projection (UMAP). Conversely, if the difference is not 
significant, the gene expression patterns of different cell groups will be more similar, 
thereby reducing the purity and distinctiveness of cell groups.

Conclusions
Overall, the simulation methods built upon the optimal-chosen model (i.e., SRTsim and 
scDesign2) and GAMLSS (i.e., scDesign3) had the best accuracy performance. ZINB-
WaVE, SPARSim, Splat, SCRIP-paths, muscat, and SCRIP-GP-trendedBCV also dem-
onstrated competitive ability to simulate realistic datasets. Additionally, Splat, SPARSim, 
SCRIP, SplatPop, dropsim, and ZINB-WaVE had powerful compatibility for simulating 
SRT data. Lun was the best method for simulating data with explicit cell groups and 
reliable DEGs, while SPARSim and scDesign3-tree performed best in the simulation 
functionality of cell batches and trajectories, respectively. As no methods consistently 
outperformed others on all evaluation criteria, trade-offs should be carefully considered 
for users between accuracy and functionality, as well as accuracy and scalability. For 
usability, more than half of the methods would produce execution errors with consider-
ably varied proportions. “Failed estimation for genes” and “Appearance of missing (infi-
nite) values” are the two main causes of the execution failures. Based on the evaluation 
results, we provided practical guidelines, a standard simulation pipeline Simpipe and an 
interactive tool Simsite for users to select the suitable method and perform simulation 
tasks. Our study will help users to navigate the space of prevalent simulation methods, 
guide developers toward proposing more scalable and efficient methods and promote 
their understanding of the characteristics of gene expression data.

Methods
Simulation methods

We collected 49 simulation methods designed for scRNA-seq and SRT data under 
the survey of literature (Additional file 2: Table S1). Among them, SRTsim, scDesign3, 
scDesign3-tree, scMultiSim, and scMultiSim-tree were specifically developed for simu-
lating SRT data. We classified the methods into 5 categories through two steps. First, 
the methods that were able to simulate trajectory data were gathered into a separate 
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category, because the requirement of simulating cell trajectories should be initially 
considered when users intend to apply the method functionality based on the practical 
guideline (Fig. 7). Next, we divided the remaining methods into 4 classes, by the num-
ber of application scenarios where they can be applied. The classification of methods is 
shown below:

•	 Class1 methods can simulate data with cell differentiation trajectory;
•	 Class2 methods can be simultaneously applied to three simulation scenarios: simula-

tion of cell groups (or spatial domains), DEGs, and cell batches;
•	 Class3 methods are limited to concurrent use in only two simulation scenarios;
•	 Class4 methods have only one useful simulation functionality;
•	 Class5 methods can only simulate gene expression data without having other func-

tionalities.

Additionally, we unified the names of some key parameters across different meth-
ods, making them convenient and easy to set in our standard simulation pipeline. These 
parameters control the settings related to the simulated data size, cell groups, DEGs, cell 
batches, and the ERCC RNA spike-in. The detailed information of these parameters and 
settings in the R programming environment are illustrated in Additional file 1: Supple-
mentary Note Sect. 1. The available parameters of each method are listed in Additional 
file 2: Table S2.

Real reference datasets

In total, 152 real reference datasets (101 scRNA-seq and 51 SRT datasets) with raw 
counts were collected from 13 scRNA-seq platforms and 11 technologies for spatial 
transcriptomics. For data preprocessing, cells (or spots in spatial data) with zero count 
across all genes were removed. Given the absence of benchmark datasets with explicit 
spatial trajectory, we collected and processed 13 SRT datasets generated from 6 cancer 
types, since the process of cancer invasion and metastasis has been well known to fol-
low a linear trajectory model [53, 54], which was also verified in our study (Additional 
file 1: Supplementary Note Sect. 2 and Additional file 1: Fig. S25). Among them, seven 
10 × Visium datasets lack domain annotation, and deconvolution analysis was per-
formed using SpaCET [55]. The annotation result was the cell type with the highest pro-
portion in each spot. The detailed information of the datasets is available in Additional 
file 2: Table S3.

The reference datasets contain four types of prior information as input: (1) labels of 
cell groups; (2) labels of cell batches; (3) ERCC spike-in controls; (4) information of cel-
lular differentiation trajectory, such as the milestone network, trajectory topology, and 
Newick string representing the differentiation process. For those methods that nec-
essarily demand for the prior information as input, the datasets were selectively used 
based on the method functionality. For example, scDD requires the labels of cell groups 
as input for parameter estimation, thus only the reference datasets with explicit prior 
knowledge of cell groups were used.
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Parameter estimation and data simulation

Parameter estimation is a critical step for methods to extract and learn the characteris-
tics from the real datasets. However, SPsimSeq, scDesign, and SimBPDD have merged 
the parameter estimation and data simulation steps, so their performances in the param-
eter estimation step are not evaluated. In addition, scMultiSim-tree, SymSim, VeloSim, 
PROSSTT, dyntoy, and dyngen do not have an independent function for estimating the 
parameters, so we defined the process of converting the raw reference datasets into the 
input data as their parameter estimation step (Additional file  1: Supplementary Note 
Sect. 3.3).

In the data simulation step, an important problem is how to fully use the informa-
tion of the reference datasets (such as the number of cell groups and the proportion 
of DEGs) to conduct an objective and unbiased evaluation. Before the simulation, we 
extracted and prepared the input information related to cell groups, DEGs, and batches 
from the reference datasets, to ensure the consistency of some cell- or gene-level infor-
mation between the simulated and real data in this study. For example, if the real data 
contains two cell batches and three cell groups, we will simulate datasets with the same 
number of cell batches and groups. Similarly, data consistency is ensured by setting the 
proportion of DEGs between cell groups. Specifically, the input information is option-
ally used depending on the parameters that the methods contain. Detailed descriptions 
of extracting information and setting parameters before the simulation are illustrated in 
Additional file 1: Supplementary Note Sect. 4.2.

Except for scGAN, all computations were performed under Ubuntu 20.04.6 LTS with 
Intel Xeon(R) W-2255 (3.70 GHz) processors and 256 GB of RAM using a single CPU 
core in R (Version 4.2.3). The evaluation of scGAN was implemented under the CenOS 
release 7.4.1708, and the computational process was accelerated by the NVIDIA GeForce 
RTX 2080 Ti GPU (12GB).

Summary of data properties

Fifteen data properties (7 on the cell level and 8 on the gene level) were summarized 
to compare the similarity between the real and simulated datasets. Most of them are 
characterized by one-dimensional vectors (cell level: 6 data properties, gene level: 5 data 
properties). For the property of cell–cell correlation, the upper triangle matrix from the 
cell correlation matrix was extracted using the upper.tri function in R. To represent the 
intrinsic characteristics of gene expression matrices, we also considered the relation-
ship of two properties (1 out of 7 on the cell level and 3 out of 8 on the gene level). The 
included data properties are shown below and the detailed information can be found in 
Additional file 2: Table S7.

•	 LS: Library Size per cell
•	 FZC: Fraction of Zeros per Cell
•	 CCC: Cell–Cell Correlation
•	 TMM: TMM normalization factor per cell
•	 ELS: Effective Library Size per cell
•	 FCO: Fraction of Cell Outliers
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•	 RLZ: Relation of Library size and the fraction of Zeros in cells
•	 ME: Mean Expression values of genes
•	 SD: Standard Deviation of gene expression values
•	 CV: Coefficient of Variance of gene expression values
•	 FZG: Fraction of Zeros per Gene
•	 FGO: Fraction of Gene Outliers
•	 RMS: Relation of Mean expression and Standard variance values of genes
•	 RMZ: Relation of Mean expression values and the fraction of Zeros in genes
•	 RDM: Relation of the Dispersion values and Mean expression values of genes

Accuracy evaluation

The accuracy of simulation methods was assessed using eight metrics to compare the 
similarity of data properties derived from the real and corresponding simulated data. For 
one-dimensional properties, the values in the numeric vectors were sorted in ascending 
order, and six metrics were calculated based on them, including median absolute devia-
tion (MAD), Kolmogorov–Smirnov distance (KS distance), mean absolute error (MAE), 
root mean square error (RMSE), overlapping index (OV) [56], and Bhattacharyya dis-
tance (BH distance). For two-dimensional data properties, the multi-dimensional Kol-
mogorov–Smirnov test (multiKS) [57, 58] and the kernel-density based on two-sample 
comparison test (KDE) were performed. The metrics used for the accuracy evaluation 
were illustrated in detail in Additional file 1: Supplementary Note Sect. 5.1.

Specifically, we employed the variant versions of multiKS and KDE, termed “spatial-
multiKS” and “spatial-KDE,” to account for the “spatial level” of accuracy for the simu-
lated SRT data. They can quantify the similarity between the simulated and real SRT 
data by considering the spatial positions or coordinates (axes of X and Y) as two-dimen-
sional features defined in both the real and simulated data. Unfortunately, except for 
SRTsim and scDesign3, other methods do not provide spatial positions for the simulated 
SRT data, which raised an inevitable challenge in calculating the metrics. To solve this 
problem, we adopted the Hungarian algorithm to match the simulated spatial spots with 
those spots in the real SRT data, so that the spatial coordinates of spots in real data can 
be transferred to the matched simulated spots.

Functionality evaluation

Assessment of simulated cell groups/spatial domains

To quantify the reliability of simulated cell groups in scRNA-seq data or spatial domains 
in SRT data, we adopted six metrics that are commonly used to evaluate different 
aspects of clustering performance [59], including average silhouette width (ASW) [60], 
Dunn index, Connectivity [61], Davies-Bouldin index (DB index), clustering deviation 
index (CDI) [62], and ROUGE [63]. The detailed information of the metrics is described 
in Additional file 1: Supplementary Note Sect. 5.2.

Assessment of simulated cell batches

Seven metrics were used to measure the degree of batch effects in the simulated data, 
including cell-specific mixing score (CMS) [64], local inverse Simpson’s index (LISI) [65], 
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mixing metric (MM) [66], Shannon entropy [67], kBET [68], average silhouette width for 
batch (ASW batch), and principal component regression score (PCR score) [68]. The five 
metrics, CMS, LISI, MM, Shannon entropy, and kBET, determined the degree of batch-
wise diversity within the k-nearest neighborhood (KNN) graphs, while the remaining two 
metrics reflected the reliability of batch populations and contribution of batch effects in the 
simulated data. In the study, we set k =

√
n (n is the cell number in the data) to construct 

KNN graphs [69]. The detailed information about these batch-specific metrics is illustrated 
in Additional file  1: Supplementary Note Sect.  5.3. It should be noted that the methods 
were expected to demonstrate powerful performance under this simulation scenario when 
the prominent batch effects were detected in the simulated data.

Assessment of simulated DEGs

Three approaches were applied to evaluate the ability of methods to simulate DEGs.
(1) We chose the most optimal algorithm (edgeRQLFDetRate, edgeR QLF model includ-

ing the cellular detection rate [70]) that performed best in a previous benchmark study to 
identify DEGs [8]. All identified DEGs were considered as the ground truth. Then, the ratio 
of candidate DEGs (returned by the simulation method) to the true DEGs was calculated. 
For three or more groups, it was weighted by the proportion of DEGs from pairwise groups 
to all DEGs.

where Ptrue is the proportion of true DEGs identified from two cell groups through the 
edgeRQLFDetRate algorithm; Ngiven

i  denotes the DEG number returned by the simula-
tion method from the i th group pair; Ngiven denotes the total DEG number of all group 
pairs.

(2) We hypothesized that if there are no DEGs between two-sample groups, the false 
positive rate of detected DEGs should be approximately 0.05 and P values should follow a 
uniform distribution [8]. Otherwise, the potential DEGs exist between pairwise groups. To 
determine the reliability of potential DEGs returned by the simulation methods, we directly 
removed them from the gene expression matrix and then the differential expression analy-
sis was performed using edgeRQLFDetRate to obtain the P values. Next, we defined the 
null hypothesis that the P values follow a uniform distribution. The Pearson chi-squared 
test was then used to determine whether to reject the null hypothesis under the thresh-
old ( P ≤ 0.05 ). If the null hypothesis is accepted for the dataset, the distribution score is 
assigned to 1. For three or more groups, the DEGs in each pair of groups were removed 
and the null hypothesis was tested. Finally, the distribution score was defined as the mean 
values across all group pairs.

where Si is the distribution score of the i th group pair; N = n
2  , which denotes the 

number of paired groups. n is the number of cell groups.

P =

{

Ptrue (n = 2)
∑n

i=1
Ptrue
i ·N

given
i

Ngiven (n > 2)

distribution score =
{

0 or 1 (n = 2)
1
N

∑N
i=1 Si (n > 2)
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(3) The third approach is to construct support vector machine (SVM) models using 
the simulated gene expression matrices. Genes with expression values of zero standard 
deviation were filtered out. All DEGs in the simulated gene expression matrix were then 
extracted to form a new dataset. We randomly split 80% of the new data as the training 
set and the remaining 20% as the test set. SVM models were trained using the radial 
kernel and tenfold cross-validation. Accuracy, precision, recall, F1 score and area under 
ROC curve (AUC) were applied to assess the model performance. For multi-class clas-
sification, macro-averaged precision, recall and F1 score were computed.

Assessment of simulated SVGs

For the simulated SRT data, the reliability of spatially variable genes (SVGs) was also 
assessed by the approaches used for the DEGs in simulated scRNA-seq data. Further-
more, we evaluated the simulated SVGs using Moran’s I statistics which are commonly 
used to quantify the degree of autocorrelation of gene expression in space [71–73]. 
The expression patterns of SVGs are supposed to exhibit high spatial autocorrelation if 
the expression values of spots have a strong relationship with those spots near them. 
Moran’s I statistics range from − 1 to 1, where a value close to 1 indicates a clear spatial 
pattern, a value close to 0 indicates the random gene expression and a value close to − 1 
indicates a chessboard-like pattern.

Assessment of simulated trajectories

To quantify the similarity between the simulated and the real trajectory, we performed 
trajectory inference for the simulated data using Slingshot [74] and then applied four 
metrics proposed by Saelens et  al. [17], including Hamming–Ipsen–Mikhailov dis-
tance (HIM), F1 score for branches (F1branches), F1 score for milestones (F1milestones), 
and Correlation between geodesic distances (Cordist). Each of the four metrics targets 
a different aspect of the trajectory. HIM quantifies the similarity of two trajectories in 
terms of global topology and local degrees. The F1 scores reflect the arrangements of 
cells assigned to either branches (F1branches) or milestones (F1milestones) in both simu-
lated and real trajectories. The metric Cordist calculates the correlation of relative dis-
tances of matched simulated and real cells. The detailed information about the metrics is 
described in Additional file 1: Supplementary Note Sect. 5.4.

Scalability evaluation

To assess scalability, we up- and down-scaled seven reference datasets to generate 40 
new datasets between 100 and 10,000 cells, and 500 and 10,000 genes (Additional file 2: 
Table S8). Time consumption and memory usage were monitored using the peakRAM 
function in the peakRAM R package. To alleviate the impact of irrelevant factors on the 
detection of memory usage and time consumption, each dataset was repeatedly tested 
three times. The maximum running memory was no more than 256 GB; otherwise, the 
missing values were produced.

Inspired by Saelens et  al. [17], we built a generalized linear model: 
y ≈ log(x)+ sqrt(x)+ x + x2 + x3 , to explore the relationship between the cell (gene) 
numbers and the execution time (memory usage). Here, y denotes the time (s) or 
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memory (MB), and x denotes the cell or gene numbers. The trend and complexity of the 
relationship can be determined by the coefficient coef :

If no coefficient is above 0.25, the largest coefficient will be chosen. In addition, if there 
are two or more terms whose coefficients are above 0.25, the more complex trend is 
adopted.

Because of the high proportions of errors that occurred in certain methods such as 
BASiCS, there are limited training samples for these methods. Therefore, we united the 
datasets monitored within all executions and the scalability datasets detected from the 
pre-defined data with gradient cell or gene numbers. Next, we randomly split the com-
bined datasets into the training (80%) and test data (20%) and applied the shape con-
strained additive model (SCAM) [42] and random forest (RF) to construct models for 
each method, in order to predict the execution time and memory usage when the cell 
and gene numbers are given. After that, we evaluated the models by calculating the Pear-
son correlation coefficients between the log10-transformed values of the predicted time 
(or memory) and the actual time (or memory).

The selection of the tree numbers in RF is of great importance for the model perfor-
mance. To deal with this issue, we employed RF by setting different tree numbers (10, 
20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 800, 1000, 3000, 4000, 5000) and 
repeated the procedure 10 times under the settings of each tree number. Finally, we 
chose 500 trees to grow in RF as the Pearson correlation coefficients showed high stabil-
ity and robustness in this watershed (Additional file 1: Fig. S26-29).

Usability evaluation

Based on the evaluation criteria and recommendations from nine authoritative refer-
ences [33–41], we created a checklist of scoring rules (Additional file  2: Table  S4) for 
usability evaluation, including method availability, code quality, self-evaluation, mainte-
nance, documentation, and publication.

The method availability refers to whether the method is freely accessible to users, easy 
to install, and whether it requires any special equipment or hardware. The code qual-
ity covers the aspects of code modularization, classifications, and the implementation 
of unit testing. The self-evaluation category is frequently overlooked, which checks 
whether the evaluation or comparison has been performed between the newly devel-
oped methods and others in the original paper. Also, it assesses the test for the method 
sensitivity and the number of adopted criteria. In the maintenance category, we quanti-
fied the method in the aspects of the method updates, version control, and responses 
to the questions raised by users. The documentation of a method plays an essential role 
in usability for users. We quantified it in terms of the documentation interface, func-
tion descriptions, installation guides, and result presentations attached to the method. 



















sublinear, coef log(x) > 0.25 or coef sqrt(x) > 0.25

linear, coef x > 0.25
quadratic, coef x2 > 0.25
superquadratic, coef x3 > 0.25
negative slope, coef < 0
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Finally, we assessed some aspects related to the publication in which the method was 
proposed, such as whether the manuscript has been peer-reviewed or not.

To obtain usability scores, firstly we allocated weights for the scoring items depending 
on the frequency they were mentioned in the nine references. We multiplied the manual 
scores by the corresponding weights to get the values and they were then summed up by 
each aspect of usability. Next, the values from the same aspect of usability were scaled to 
the standard normal distribution (μ = 0, σ = 1) and were subsequently transformed into 
(0,1) by the cumulative distribution function (CDF). The values of six aspects are visual-
ized in Fig. 3e. The final usability score for each method was obtained (Fig. 2b) by calcu-
lating the arithmetic mean of values from the six aspects of usability.

Score normalization and aggregation

We summarized the final scores of accuracy, functionality, and scalability by two stages 
of data processing. In the first stage, we normalized the scores on three levels: datasets, 
metrics, and data properties, to transform them into the range from 0 to 1. In particular, 
the raw measurements of scalability were initially log2-transformed before being pro-
cessed in downstream steps. As an example of calculating the accuracy scores (Addi-
tional file 1: Fig. S30), we first scaled the scores from the same dataset across different 
methods to the standard normal distribution (μ = 0, σ = 1). They were then transformed 
into (0,1) by the CDF. As the values closing to 1 usually indicate higher accuracy, the val-
ues of some metrics therefore need to be subtracted from 1 to keep them harmonized. 
Subsequently, across different methods and datasets, we scaled the scores from the same 
data property and metric into [0, 1] by the following formula:

where xpm indicates the scores of the data property p on the metric m.
In the stage of score aggregation, we aggregated the scores across data properties, 

datasets and metrics, sequentially. In this way, we finally obtained the summarized 
scores of the accuracy criterion. Similarly, the process for aggregating functionality and 
scalability scores can be conducted following the above steps. However, the calculation 
process of the functionality or scalability scores does not involve the level of aggregating 
data properties.

To rank methods, the overall score for each method was calculated using the formula:

Additionally, for methods without functionality, the following formula was adopted:

Web‑based vignettes, guidelines, and data simulation tool

We established a website (https://​www.​ciblab.​net/​softw​are/​Simsi​te/) to illustrate 
the usage of our simulation pipeline (https://​github.​com/​duoho​ngrui/​simpi​pe) [75] 

x
p
m −min(x

p
m)

max(x
p
m)−min(x

p
m)

overall score =
scoreaccuracy + scorefunctionality + scorescalability+ scoreusability

4

overall score =
scoreaccuracy + scorescalability + scoreusability

3

https://www.ciblab.net/software/Simsite/
https://github.com/duohongrui/simpipe
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by using rmarkdown (v2.23) and blogdown (v1.18) R packages. The online guideline 
of method selection and data simulation tool was built using golem (v0.4.1), shiny 
(v1.7.4.1) and shinythemes (v1.2.0) R packages, which can be accessed at https://​
www.​ciblab.​net/​softw​are/​simsh​iny/. The local version of the online tool can also be 
installed in R from Github (https://​github.​com/​duoho​ngrui/​simsh​iny) [76].

Supplementary Information
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