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Abstract 

Background: Recent studies uncovered pervasive transcription and translation 
of thousands of noncanonical open reading frames (nORFs) outside of annotated 
genes. The contribution of nORFs to cellular phenotypes is difficult to infer using 
conventional approaches because nORFs tend to be short, of recent de novo origins, 
and lowly expressed. Here we develop a dedicated coexpression analysis framework 
that accounts for low expression to investigate the transcriptional regulation, evolution, 
and potential cellular roles of nORFs in Saccharomyces cerevisiae.

Results: Our results reveal that nORFs tend to be preferentially coexpressed 
with genes involved in cellular transport or homeostasis but rarely with genes 
involved in RNA processing. Mechanistically, we discover that young de novo nORFs 
located downstream of conserved genes tend to leverage their neighbors’ promoters 
through transcription readthrough, resulting in high coexpression and high expression 
levels. Transcriptional piggybacking also influences the coexpression profiles of young 
de novo nORFs located upstream of genes, but to a lesser extent and without detect‑
able impact on expression levels. Transcriptional piggybacking influences, but does 
not determine, the transcription profiles of de novo nORFs emerging nearby genes. 
About 40% of nORFs are not strongly coexpressed with any gene but are transcription‑
ally regulated nonetheless and tend to form entirely new transcription modules. We 
offer a web browser interface (https:// carvu nislab. csb. pitt. edu/ shiny/ coexp ressi on/) 
to efficiently query, visualize, and download our coexpression inferences.

Conclusions: Our results suggest that nORF transcription is highly regulated. Our 
coexpression dataset serves as an unprecedented resource for unraveling how nORFs 
integrate into cellular networks, contribute to cellular phenotypes, and evolve.
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Background
Eukaryotic genomes encompass thousands of open reading frames (ORFs). The vast 
majority are so-called “noncanonical” ORFs (nORFs) excluded from genome annotations 
because of their short length, lack of evolutionary conservation, and perceived irrele-
vance to cellular physiology [1–3]. The development of RNA sequencing (RNA-seq) [4] 
and ribosome profiling [5, 6] has revealed genome-wide transcription and translation of 
nORFs across species ranging from yeast to humans [6–14]. Recent studies have char-
acterized individual nORFs that form stable peptides and impact phenotypes, includ-
ing cell growth [10, 13, 15], cell cycle regulation [16], muscle physiology [17–19], and 
immunity [20–22]. Unraveling the cellular, physiological, and evolutionary implications 
of nORFs has become an active area of research [14, 23].

Many nORFs have evolved de novo from previously noncoding regions [24–26]. Thus, 
the study of nORFs and de novo gene birth as evolutionary innovation carries a syner-
gistic overlap where findings in one area could improve our understanding of the other. 
For instance, Sandmann et  al. measured physical protein interactions for hundreds of 
peptides translated from nORFs and proposed that short linear motifs present in young 
de novo nORFs could mediate how nORFs impact essential cellular processes [26]. 
Other studies observed a gradual integration of evolutionary young ORFs into cellular 
networks and showed they could gain essential roles [27–29]. These studies support an 
evolutionary model whereby pervasive expression of nORFs generates the raw material 
for de novo gene birth [24, 25].

The biological interpretation of nORF expression is complex. Some studies suggest 
that the transcription or translation of nORFs could be attributed to expression noise 
[30–32], whereby non-specific binding of RNA polymerases and ribosomes to DNA and 
RNA might cause promiscuous transcription or translation, respectively. How do nORFs 
become expressed in the first place? There are multiple hypotheses on how de novo 
ORFs gain the ability to become transcriptionally regulated [33]. One possibility is the 
emergence of novel regulatory regions along with or following the emergence of an ORF 
(ORF-first), as was shown for specific de novo ORFs in Drosophila melanogaster [34], 
codfish [35], human [36, 37], and chimpanzee [36]. Alternatively, ORFs may emerge on 
actively transcribed loci such as near enhancers [38] or on long noncoding RNAs [39], as 
was shown for de novo ORFs in primates [40] and for de novo ORFs upstream or down-
stream of transcripts containing genes [37] (transcription-first) [41–43]. Transcription 
has a ripple effect causing coordinated activation of nearby genes [44, 45]. Thus, de novo 
ORFs that emerge near established genes or regulatory regions may acquire transcrip-
tional regulation by “piggybacking” [45] on the pre-existing regulatory context [41, 46]. 
This piggybacking could predispose de novo ORFs to be involved in similar cellular pro-
cesses as their neighbors, which in turn would help with characterization. To date, the 
fraction of nORFs that are transcriptionally regulated and contribute to cellular pheno-
types is unknown for any species.

An obstacle to studying nORF expression at scale is their detection, as nORF 
expression levels are typically low and reliant on specific conditions [24, 36]. Recent 
studies demonstrated that integrating omics data [14, 47–49] could effectively 
address detection issues. For example, Wacholder et  al. [14] recently discovered 
around 19,000 translated nORFs in Saccharomyces cerevisiae by massive integration 
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of ribosome profiling data. This figure is three times larger than the number of 
canonical ORFs (cORFs) annotated in the yeast genome. These translated nORFs 
have the potential to generate peptides that affect cellular phenotypes but are almost 
entirely uncharacterized.

Coexpression is a well-established approach for studying transcriptional regulation 
through the massive integration of RNA-seq data. Coexpression refers to the similar-
ity between transcriptional profiles of ORF pairs across numerous samples. Coexpres-
sion has been used successfully to identify new gene functions [50, 51], disease-related 
genes [22, 52, 53], and for studying the conservation of the regulatory machinery [51, 54] 
or gene modules [55] between species. Based on the assumption that genes involved in 
similar pathways have correlated expression patterns, coexpression can reveal relation-
ships between genes and other transcribed genetic elements [56, 57]. Most coexpres-
sion studies have focused on cORFs, but the abundance of publicly available RNA-seq 
data represents a tractable avenue to interrogate the transcriptional regulation of thou-
sands of nORFs at once using coexpression approaches [47, 58–61]. Indeed, RNA-seq is 
probe-agnostic and annotation-agnostic, thereby enabling the reuse of existing data to 
explore these novel ORFs. However, low expression levels can distort coexpression infer-
ences due to statistical biases [62, 63]. A coexpression analysis of translated nORFs that 
addresses the statistical issues arising from low expression is still lacking for any species.

Here, we developed a dedicated statistical approach that accounts for low expres-
sion levels when inferring coexpression relationships between ORFs. We applied this 
approach to the recently identified 19,000 translated nORFs in S. cerevisiae [14] and 
built the first high-quality coexpression network spanning the canonical and noncanoni-
cal translatome of any species. Coexpression relationships suggest that the majority of 
nORFs are transcriptionally regulated. While many nORFs form entirely new nonca-
nonical transcription modules, approximately half are transcriptionally associated with 
genes involved in cellular homeostasis and transport. We show that de novo ORFs that 
piggyback onto their neighbors’ transcription tend to have higher expression and tend 
to be highly coexpressed with their neighbors. We provide a web application to allow 
researchers to easily access this dataset to investigate the coexpression relationships and 
potential cellular roles for thousands of ORFs.

Results
High‑quality coexpression inferences show transcriptional and regulatory relationships 

between nORFs and cORFs

To infer coexpression at the translatome scale in S. cerevisiae, we considered all cORFs 
annotated as “verified”, “uncharacterized”, or “transposable element” in the Saccha-
romyces Genome Database (SGD) [64], as well as all nORFs, ORFs that were either 
unannotated or annotated as “dubious” and “pseudogene”, with evidence of transla-
tion according to Wacholder et al. [14]. To maximize detection of transcripts contain-
ing nORFs, we curated and integrated 3916 publicly available RNA-seq samples from 
174 studies (Fig.  1A, Additional file  1: Table  S1). Many nORFs were not detected in 
most of the samples we collected, creating a very sparse dataset (Fig. 1B). The issue of 
sparsity has been widely studied in the context of single-cell RNA-seq (scRNA-seq). A 
recent study looking at multiple measures of association for constructing coexpression 
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networks from scRNA-seq showed that proportionality methods coupled with center 
log ratio (clr) transformation consistently outperformed other measures of coexpression 
in a variety of tasks including identification of disease-related genes and protein-protein 

Fig. 1 Overview of coexpression inference framework and properties of the dataset. A Workflow: 3916 
samples were analyzed to create an expression matrix for 11,630 ORFs, including 5803 cORFs and 5827 
nORFs; center log ratio transformed (clr) expression values were used to calculate the coexpression matrix 
using proportionality metric, ρ, followed by normalization to correct for expression bias. The coexpression 
matrix was thresholded using ρ > 0.888 to create a coexpression network (top 0.2% of all pairs). Created 
with BioRender.com. B Distribution of the number of ORFs binned based on their median expression values 
(transcript per million—TPM) and the number of samples the ORFs were detected in with at least 5 raw 
counts. C Coexpressed cORF pairs (ρ > 0.888) are more likely to encode proteins that form complexes than 
non‑coexpressed cORF pairs (Fisher’s exact test p < 2.2e−16; error bars: standard error of the proportion); 
using annotated protein complexes from ref. [67]. D Coexpressed ORF pairs (ρ > 0.888) are more likely to have 
their promoters bound by a common transcription factor (TF) than non‑coexpressed ORF pairs (Fisher’s exact 
test p < 2.2e−16; error bars: standard error of the proportion); genome‑wide TF binding profiles from ref. [68] 
and transcription start sites (TSS) from ref. [69] were analyzed to define promoter binding (see “Methods”). 
E Hierarchical clustering of the coexpression matrix reveals functional enrichments for most clusters that 
contain at least 5 cORFs; functional enrichments estimated by gene ontology (GO) enrichment analysis at 
false discovery rate (FDR) < 0.05 using Fisher’s exact test. F Coexpression is informative for predicting the 
inclusion of cORFs in biological processes via a neighbor‑voting scheme; 116 out of 117 GO slim biological 
process (GO BP) terms had a mean area under the receiver operating characteristic (AUROC) greater than 0.5 
across 3‑fold cross‑validation. Dashed vertical line represents null expectation at 0.5
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network overlap analysis [65]. Thus, we used clr to transform the raw read counts and 
quantified coexpression relationships using the proportionality metric, ρ [66].

We further addressed the issue of sparsity with two sample thresholding approaches. 
First, any observation with a raw count below five was discarded, such that when calcu-
lating ρ only the samples expressing both ORFs with at least five counts were considered. 
Second, we empirically determined that a minimum of 400 samples were required to 
obtain reliable coexpression values by assessing the effect of sample counts on the sta-
bility of ρ values (Additional file 2: Fig. S1). These steps resulted in an 11,630 by 11,630 
coexpression matrix encompassing 5803 cORFs and 5827 nORFs (ORF list in Additional 
file 3: Table S2, Additional file 4: Table S3).

The combined use of clr, ρ, and sample thresholding accounted for statistical issues in 
estimating coexpression deriving from sparsity, but the large difference in RNA expres-
sion levels between cORFs and nORFs posed yet another challenge. Indeed, Wang et al. 
showed that the distribution of coexpression values is biased by expression level due 
to statistical artifacts [62]. We observed this artifactual bias in our dataset (Additional 
file 2: Fig. S2A) and corrected for it using spatial quantile normalization (SpQN) as rec-
ommended by Wang et al. [62] (Additional file 2: Fig. S2B). This resulted in a normalized 
coexpression matrix (Additional file 5: Table S4) with ρ values centered around 0.476.

We then created a network representation of the coexpression matrix by considering 
only the top 0.2% of ρ values between all ORF pairs (ρ > 0.888). This threshold was cho-
sen to include 90% of cORFs (Additional file 2: Fig. S3). Altogether, our dedicated analy-
sis framework (Fig. 1A) inferred 124,382 strong (ρ > 0.888) coexpression relationships 
between 9303 ORFs, encompassing 4112 nORFs and 5191 cORFs.

To assess whether our coexpression network captures meaningful biological and regu-
latory relationships, we examined its overlap with orthogonal datasets. Using a curated 
[67] protein complex dataset for cORFs, we found that coexpressed cORF pairs are sig-
nificantly more likely to encode proteins that form a protein complex together compared 
to non-coexpressed pairs (odds ratio = 10.8, Fisher’s exact test p < 2.2e−16; Fig. 1C). 
Using a previously published [68] genome-wide chromatin immunoprecipitation with 
exonuclease digestion (ChIP-exo) dataset containing DNA-binding information for 73 
sequence-specific transcription factors (TFs) and using transcript isoform sequencing 
(TIF-seq) [69] data to determine transcription start sites (TSSs) and promoter regions, 
we observed that coexpressed ORF pairs were more likely to have their promoters bound 
by a common TF than non-coexpressed ORF pairs, whether the pairs consist of nORFs 
or cORFs (canonical-canonical pairs: odds ratio = 3.84, canonical-noncanonical pairs: 
odds ratio = 2.55, noncanonical-noncanonical pairs: odds ratio = 3.22, Fisher’s exact 
test p < 2.2e−16 for all three comparisons; Fig. 1D). Enrichments were robust to differ-
ent coexpression cutoffs (Additional file 2: Fig. S4-S5). Using the WGCNA [70] method 
to cluster the coexpression matrix, we found that more than half of the clusters identi-
fied contained functionally related ORFs (gene ontology (GO) biological process enrich-
ments at Benjamini-Hochberg (BH) adjusted false discovery rate (FDR) < 0.05; Fig. 1E; 
Additional file 2: Fig. S6). Finally, the coexpression matrix was also informative for pre-
dicting known functional annotations of cORFs via neighbor-voting [71]: 99% of func-
tional annotations tested had an average AUROC greater than the null expectation (n = 
117 GO slim biological process terms tested in a 3-fold cross-validation scheme; Fig. 1F). 
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These analyses demonstrate the high quality of our coexpression network and confirm 
that it captures meaningful biological and regulatory relationships for both cORFs and 
nORFs.

Conventional approaches for coexpression analysis include using transcript per mil-
lion (TPM) or reads per kilobase per million (RPKM) normalization, batch correction by 
removing top principal components, and Pearson’s correlation as the similarity metric 
[56, 72, 73]. Compared to these approaches, our framework increased the proportion 
of coexpressed ORF pairs whose promoters are bound by a common TF specifically for 
pairs containing nORFs (Additional file  2: Fig. S7) and yielded coexpression networks 
encompassing the largest number of nORFs at most thresholds (Additional file 2: Fig. 
S8). Correcting for batch effects by removing principal components prior to coexpres-
sion analysis has been shown to increase biological signal [73, 74]; however, we did not 
observe an increase in performance for our analysis. This discrepancy could be because 
these previous studies used much smaller sample sizes (Parsana et al. [73], n = between 
304 and 430 samples; Mostafavi et  al. [74] n = 69 and 60 samples; this manuscript n 
= 3916 samples) suggesting principal component removal could be less effective when 
the sample size or number of batches is very large. Furthermore, our network construc-
tion included nonconventional steps to account for the low expression levels of nORFs 
and to increase the number of nORFs in the network, including thresholding to remove 
RNA-seq observations with a read count of less than 5 and normalizing the coexpression 
values to account for expression level bias. We found that the removal of non-detected 
observations by thresholding to keep only RNA-seq observations with a raw count of 5 
or greater and the use of SpQN to normalize coexpression values increased the propor-
tion of coexpressed ORF pairs whose promoters are bound by a common TF specifically 
for pairs containing nORFs at all cutoffs that allow for at least 10% of nORFs included in 
the network (Additional file 2: Fig. S9, Fig. S10). Hence, our dedicated analysis frame-
work therefore outperforms conventional coexpression approaches for the study of 
nORFs. We offer an R Shiny [75] interface (https:// carvu nislab. csb. pitt. edu/ shiny/ coexp 
ressi on/) to efficiently query, visualize, and download the coexpression data we gener-
ated. To our knowledge, this is the most comprehensive coexpression dataset focusing 
on empirically translated elements, both annotated and unannotated, for any species to 
date.

nORFs tend to be located at the periphery of the coexpression network and form new 

noncanonical transcription modules

Conventional analyses of coexpression networks have been restricted to cORFs. Our full 
coexpression network contains twice the number of ORFs and three times the number 
of strong (ρ > 0.888) coexpression relationships compared to the canonical-only net-
work (Fig.  2A). We sought to compare the network properties of the canonical-only 
and full networks. On average, nORFs have fewer coexpressed partners (degree) than 
cORFs, suggesting that nORFs have distinct transcriptional profiles (Cliff ’s Delta d = 
−0.29, Mann-Whitney U test p < 2.2e−16; Fig. 2B). We found that 91% of cORFs are 
coexpressed with at least one nORF (n = 4726; Fig.  2C), whereas only 59% of nORFs 
are coexpressed with at least one cORF. In contrast, we would have expected an aver-
age of 89% of nORFs to be coexpressed with a cORF according to degree-preserving 

https://carvunislab.csb.pitt.edu/shiny/coexpression/
https://carvunislab.csb.pitt.edu/shiny/coexpression/


Page 7 of 28Rich et al. Genome Biology          (2024) 25:183  

simulations of 1000 randomized networks where edges from nORFs were shuffled (odds 
ratio = 0.174, Fisher’s exact test p < 2.2e−16; Fig. 2D, Additional file 2: Fig. S11). This 
suggests that, while most nORFs are integrated in the full coexpression network, they 
also have distinct expression profiles that differ markedly from those of all cORFs and 
are more similar to those of other nORFs.

To investigate how these seemingly conflicting attributes impact the organization of 
the coexpression network, we analyzed two global network properties: diameter, which 

Fig. 2 Topological properties of the coexpression network. A Visualization for canonical‑only and full 
coexpression networks using spring embedded graph layout [76]. The full network contains more cORFs 
than the canonical‑only network since addition of nORFs also results in addition of many cORFs that are 
only connected to an nORF. B nORFs have fewer coexpression partners (degree in full network) than cORFs 
(Mann‑Whitney U test p < 2.2e−16). C Most cORFs are coexpressed with at least one nORF. D Only 59% of 
nORFs are coexpressed with at least one cORFs and this is less than expected by chance, on average, 89% 
of nORFs are coexpressed with a cORF across 1000 randomized networks generated in a degree‑preserving 
fashion by swapping edges of noncanonical nodes (Fisher’s exact test p < 2.2e−16; error bar: standard error 
of the mean proportion across randomized networks). E Addition of nORFs to the canonical‑only network 
results in the full network being less compact, whereas the opposite is expected by chance, shown by 
the decrease in diameters for the 1000 randomized networks. F Addition of nORFs to the canonical‑only 
network decreases local clustering in the full network; however, this is to a lesser extent than expected by 
chance as shown by the distribution for the 1000 randomized networks. G Most clusters in the coexpression 
matrix encompass either primarily nORFs or primarily cORFs (n = 69 clusters, green represents nORF majority 
clusters, purple represents cORF majority clusters)
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is the longest shortest path between any two ORFs; and transitivity, which is the ten-
dency for ORFs that are coexpressed with a common neighbor to also be coexpressed 
with each other. The incorporation of nORFs in the full network led to a larger diam-
eter relative to the canonical-only network (Fig. 2E). This is in sharp contrast with the 
null expectation, set by 1000 degree-preserving simulations, whereby random incor-
poration of nORFs decreases network diameter. The full coexpression network is thus 
much less compact than expected by chance, suggesting that nORFs tend to be located 
at the periphery of the network. Network transitivity decreased with the incorporation 
of nORFs compared to the canonical-only network, but to a lesser extent than expected 
by chance (Fig. 2F). This suggests that despite their low degree and peripheral locations, 
the connections formed by nORFs are structured and may form noncanonical clusters.

To investigate this hypothesis, we inspected the ratio of nORFs and cORFs among 
the cluster assignments from WGCNA hierarchical clustering of the full coexpression 
matrix (Additional file 2: Fig. S6). Strikingly, we observed a bimodal distribution of clus-
ters, with approximately half of the clusters consisting mostly of nORFs and the other 
half containing mostly cORFs (Fig. 2G). We conclude that nORFs exhibit a unique and 
non-random organization within the coexpression network, simultaneously connecting 
to all cORFs while also forming entirely new noncanonical transcription modules.

Coexpression profiles reveal most nORFs are transcriptionally associated with genes 

involved in cellular transport and homeostasis

To determine whether nORFs are transcriptionally associated with specific cellular pro-
cesses, we performed gene set enrichment analyses [77] (GSEA) on their coexpression 
partners. GSEA takes an ordered list of genes, in this case sorted by coexpression level, 
and seeks to find if the higher ranked genes are preferentially annotated with specific 
GO terms. For each cORF and nORF, we ran GSEA to detect if their highly coexpressed 
partners were preferentially associated with any GO terms (Additional file 2: Fig. S12). 
Almost all ORFs (99.9%), whether cORF or nORF, had at least one significant GO term 
associated with their coexpression partners at BH adjusted FDR < 0.01, suggesting that 
nORFs are engaged in coherent transcriptional programs. We then calculated, for each 
GO term, the number of cORFs and nORFs with GSEA enrichments in this term (Addi-
tional file 6: Table S5). These analyses identified specific GO terms that were significantly 
more (16 terms, BH adjusted FDR < 0.001, odds ratio > 2, Fisher’s exact test; Fig. 3A, 
Additional file 7: Table S6) or less (23 terms, BH adjusted FDR < 0.001, Odds ratio < 2, 
Fisher’s exact test; Fig.  3B, Additional file  7: Table  S6) prevalent among the coexpres-
sion partners of nORFs relative to those of cORFs. Most of the GO terms that were sig-
nificantly enriched among the coexpression partners of nORFs were related to cellular 
homeostasis and transport (Fig. 3A) while most of the GO terms significantly depleted 
among the coexpression partners of nORFs were related to DNA, RNA, and protein pro-
cessing (Fig. 3B). Running the same GSEA pipeline with Kyoto Encyclopedia of Genes 
and Genomes (KEGG) [78] annotations yielded consistent results (Additional file 2: Fig. 
S13, Additional file 8: Table S7, Additional file 9: Table S8). Half of nORFs were coex-
pressed with genes involved in homeostasis (GO:0042592, 53%), monoatomic ion trans-
port (GO:0006811, 49%), and transmembrane transport (GO:0055085, 47%). The nORFs 
transcriptionally associated with the parent term “transport” (n = 2718, GO:0006810, 
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Fig. 3 Biological processes associated with nORF transcriptional regulation. A,B Biological processes that are 
more (A) (odds ratio > 2, n = 16 terms) or less (B) (odds ratio < 0.5, n = 23 terms) transcriptionally associated 
with nORFs than cORFs (y‑axis ordered by nORF enrichment proportion from highest to lowest, BH adjusted 
FDR < 0.001 for all terms, Fisher’s exact test, GO term enrichments were detected using gene set enrichment 
analyses (GSEA), error bars: standard error of the proportion). C nORFs that are highly coexpressed with 
genes involved in transport are more likely to have predicted transmembrane (TM) domains as determined 
by TMHMM [79] compared to nORFs that are not (odds ratio = 1.6, Fisher’s exact test p = 1.3e−4; error 
bars: standard error of the proportion). D nORFs and cORFs that are Sfp1 or Hsf1 targets are more likely to 
be downregulated when Sfp1 or Hsf1 are deleted compared to ORFs that are not targets (Sfp1: cORFs: p < 
2.2e−16; nORFs: p = 2.8e−9; Hsf1: cORFs: p <2.2e−16; nORFs: p = 9.9e−13; Fisher’s exact test, error bars: 
95% confidence interval of the odds ratio; dashed line shows odds ratio of 1; RNA abundance data from SRA 
accession SRP159150 and SRP437124 [80] respectively). E nORFs that are regulated by TFs are more likely 
to be coexpressed with genes involved in processes related to known functions of that TF. Created with 
BioRender.com
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GSEA BH adjusted FDR < 0.01) were 1.6 times more likely to contain a predicted trans-
membrane domain than other nORFs (p = 1.3e−4, Fisher’s exact test; Fig. 3C), in line 
with potential transport-related activities. These findings reveal a strong and previously 
unsuspected transcriptional association between nORFs, and cellular processes related 
to homeostasis and transport.

Hsf1 and Sfp1 nORF targets are part of protein folding and ribosome biogenesis 

transcriptional programs, respectively

Overall, our analyses relating coexpression to TF binding (Fig.  1D) and functional 
enrichments (Fig. 3A,B) suggest that nORF expression is regulated rather than simply 
the consequence of transcriptional noise. To further investigate this hypothesis, we 
sought to identify regulatory relationships between specific TFs and nORFs. We rea-
soned that if nORFs are regulated by TFs in similar ways as cORFs, then genetic knock-
out of the TFs that regulate them should impact their expression levels as it does for 
cORFs [81]. We focused on two transcriptional activators for which both ChIP-exo [68] 
and knockout RNA-seq data [80] were publicly available: Sfp1, which regulates ribosome 
biogenesis [82], and Hsf1, which regulates heat shock and protein folding responses [83].

For both cORFs and nORFs, knockout of Sfp1 or Hsf1 was more likely to trigger a 
significant decrease in expression when the ORF’s promoter was bound by the respec-
tive TF according to ChIP-exo evidence (Fig. 3D). The statistical association between TF 
binding and knockout-induced downregulation was as strong for nORFs as it was for 
cORFs, consistent with nORFs having similar mechanisms of transcriptional activation 
(Sfp1: cORFs odds ratio = 11.1, p < 2.2e−16; nORFs odds ratio = 21.8, p = 2.8e−9, Fish-
er’s exact test; Hsf1: cORFs odds ratio = 12.7, p < 2.2e−16; nORFs odds ratio = 12.1, p = 
9.9e−13, Fisher’s exact test). Therefore, the nORFs whose promoters are bound by these 
TFs, and whose expression levels decrease upon deletion of these TFs, are likely genu-
ine regulatory targets of these TFs. By this stringent definition, our analyses identified 9 
nORF targets of Sfp1 (and 34 cORF targets) and 19 nORF targets of Hsf1 (and 39 cORF 
targets). The coexpression profiles of these Sfp1 and Hsf1 nORF targets were preferen-
tially associated with genes involved in processes directly related to the known functions 
of Sfp1 and Hsf1 (Additional file 10: Table S9). For example, the coexpression profiles of 
9 Sfp1 nORF targets revealed preferential associations with genes involved in “ribosomal 
large subunit biogenesis” and 7 Sfp1 nORF targets involved in “regulation of translation” 
according to our GSEA pipeline (Fisher’s exact test, BH adjusted p-value < 6.7e−4 for 
both terms). Similarly, 13 Hsf1 nORF targets were preferentially associated with genes 
involved in “protein folding” (Fisher’s exact test, BH adjusted p-value = 5.7e−9). These 
results show that nORF expression can be actively regulated by TFs as part of coherent 
transcriptional programs (Fig. 3E).

de novo ORF expression and regulation are shaped by genomic location

Previous literature has shown that many nORFs arise de novo from previously non-
coding regions [24, 26]. We wanted to investigate how these evolutionarily novel ORFs 
acquire expression and whether their locus of emergence influences this acquisition. To 
define which ORFs were of recent de novo evolutionary origins, we developed a multi-
step pipeline combining sequence similarity searches and syntenic alignments (Fig. 4A). 
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Fig. 4 Expression, coexpression, and biological processes similarity of de novo ORFs with respect to genomic 
orientations. A Pipeline used to reclassify ORFs as conserved or de novo. cORFs were considered for both 
conserved and de novo classification while nORFs were only considered for de novo classification. Conserved 
ORFs were determined by either detection of homology outside of Saccharomyces or reading frame 
conservation within Saccharomyces (top). De novo ORFs were determined by evidence of translation, lack of 
homology outside of Saccharomyces, and lack of a homologous ORF in the two most distant Saccharomyces 
branches (bottom). Created with BioRender.com. B Counts of cORFs and nORFs that emerged de novo. C 
Genomic orientations of de novo ORFs that cannot transcriptionally piggyback off neighboring conserved 
ORF (cannot share promoter with neighbor, pink shading) or can transcriptionally piggyback off neighboring 
conserved ORF (possible to share promoter with neighbor, green shading). Created with BioRender.com. D 
Counts of de novo ORFs that are within 500 bp of a conserved ORF in different genomic orientations; ORFs 
further than 500bp are classified as independent. E De novo ORFs in orientations that can piggyback have 
higher RNA expression levels than de novo ORFs in orientations that cannot piggyback (Cliff’s Delta d = 0.4). 
Only de novo ORFs in a single orientation are considered (dashed box in panel D). Dashed line represents 
the median expression of independent de novo ORFs. F De novo ORFs in orientations that can piggyback 
have higher coexpression with neighboring conserved ORFs compared to de novo ORFs in orientations that 
cannot piggyback (Cliff’s Delta d = 0.43). Dashed line represents median coexpression of de novo‑conserved 
ORF pairs on separate chromosomes. G De novo ORFs in orientations that can piggyback are more likely to 
be transcriptionally associated with genes involved in the same biological processes as their neighboring 
conserved ORFs than de novo ORFs in orientations that cannot piggyback (Cliff’s Delta d = 0.31). Dashed 
line represents median functional enrichment similarities of de novo‑conserved ORF pairs on separate 
chromosomes. (For panels E, F, and G: Mann‑Whitney U test, ****: p < 2.2e−16)
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cORFs were considered conserved if they had homologs detectable by sequence similar-
ity searches with BLAST in budding yeasts outside of the Saccharomyces genus or if their 
open reading frames were maintained within the Saccharomyces genus [14]. cORFs and 
nORFs were considered de novo if they lacked homologs detectable by sequence simi-
larity outside of the Saccharomyces genus and if less than 60% of syntenic orthologous 
nucleotides in the two most distant Saccharomyces branches were in the same reading 
frame as in S. cerevisiae. These criteria aimed to identify the youngest de novo ORFs. 
Overall, we identified 5624 conserved cORFs and 2756 de novo ORFs including 77 de 
novo cORFs and 2679 de novo nORFs (Fig.  4B). In general, the coexpression patterns 
of de novo ORFs (Additional file 2: Fig. S14) were similar to those of nORFs (Fig. 3A,B).

We hypothesized that the locus where de novo ORFs arise may influence their expres-
sion profiles through “piggybacking” off their neighboring conserved ORFs’ pre-exist-
ing regulatory environment. To investigate this hypothesis, we categorized de novo 
ORFs based on their positioning relative to neighboring conserved ORFs. The de novo 
ORFs further than 500 bp from all conserved ORFs were classified as independent. The 
remaining de novo ORFs were classified as either upstream or downstream on the same 
strand (up same or down same), upstream or downstream on the opposite strand (up 
opposite or down opposite), or as overlapping on the opposite strand (antisense over-
lap) based on their orientation to the nearest conserved ORF (Fig.  4C,D). We catego-
rized the orientations as being able to piggyback or unable to piggyback based on their 
potential of sharing a promoter with neighboring conserved ORFs, with down opposite 
and antisense overlap as orientations that cannot piggyback and up opposite, up same, 
and down same as orientations that can piggyback (Fig. 4C). The piggybacking hypoth-
esis predicts that de novo ORFs that arise in orientations that can piggyback would be 
positively influenced by the regulatory environment provided by the promoters of neigh-
boring conserved ORFs, resulting in similar transcription profiles as their neighbors and 
increased expression relative to de novo ORFs that do not benefit from a pre-existing 
regulatory environment.

We considered three metrics to assess piggybacking: RNA expression level, measured 
as median TPM over all the samples analyzed, coexpression with neighboring con-
served ORF, and biological process similarity with neighboring conserved ORF. To cal-
culate biological process similarity between two ORFs, we used significant GO terms 
at FDR < 0.01 determined by coexpression GSEA for each ORF (Additional file 2: Fig. 
S12) and calculated the similarity between these two sets of GO terms using the rel-
evance method [84]. If two ORFs are enriched in the same specialized terms, their rel-
evance metric would be higher than if they are enriched in different terms or in the same 
generic terms. We found that de novo ORFs in orientations that can piggyback tend to 
have higher expression (focusing only on ORFs that could be assigned a single orienta-
tion, dashed box in Fig. 4D, Cliff ’s Delta d = 0.4; Fig. 4E), higher coexpression with their 
neighbor (Cliff ’s Delta d = 0.43; Fig. 4F), and higher biological process similarity (Cliff ’s 
Delta d = 0.31; Fig. 4G), compared to ORFs in orientations that cannot piggyback (p < 
2.2e−16 Mann-Whitney U test for all). Thus, all three metrics supported the piggyback-
ing hypothesis.

Closer examination revealed a more complex situation. First, the immediate neighbors 
of de novo ORFs in orientations that can piggyback were rarely among their strongest 
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coexpression partners (only found in the top 10 coexpressed partners for 15% of down 
same, 4.5% of up same, 3% of up opposite ORFs). Therefore, emergence nearby a con-
served ORF in a piggybacking orientation influences, but does not fully determine, the 
transcription profiles of de novo ORFs. Transcriptional regulation beyond that provided 
by the pre-existing regulatory environment may exist. Second, while ORFs in all three 
orientations that can piggyback displayed increased coexpression and biological process 
similarity with their neighbors relative to background expectations (Additional file  2: 
Fig. S15A-B), only down same de novo ORFs displayed increased RNA expression levels 
(Additional file 2: Fig. S15C). The expression levels of up same de novo ORFs were sta-
tistically indistinguishable from independent de novo ORFs, while those of up opposite 
de novo ORFs were significantly lower than those of independent de novo ORFs (Addi-
tional file 2: Fig. S15C). Down same de novo ORFs also showed stronger coexpression 
and biological process similarity with their conserved neighbors than up same and up 
opposite de novo ORFs (Additional file 2: Fig. S15A-B). Therefore, the transcription of 
down same de novo ORFs appeared most susceptible to piggybacking.

To understand the molecular mechanisms leading to the differences in expression, 
coexpression and biological process similarity between the orientations that can piggy-
back, which all have the potential to share a promoter with their neighboring conserved 
ORF, we investigated which actually do by analyzing transcript architecture. Using a 
publicly available TIF-seq dataset [69], we defined down same or up same ORFs as shar-
ing a promoter with their neighbor if they mapped to the same transcript at least once. 
We defined up opposite ORFs as sharing a promoter with their neighbor if their respec-
tive transcripts did not have overlapping TSSs, as would be expected for divergent pro-
moters [85]. According to these criteria, 84% of down same (n = 174), 64% of up same 
(n = 368), and 66% of up opposite (n = 185) de novo ORFs share a promoter with their 
neighboring conserved ORFs (Additional file 2: Fig. S16). Among all de novo ORFs that 
arose in orientations that can piggyback, those that share promoters with neighboring 
conserved ORFs displayed higher expression levels than those that do not (down same: d 
= 0.75, p = 1.06e−8; up same: d = 0.38, p = 1.23e−7; up opposite: d = 0.3, p = 2.9e−3 
Mann-Whitney U test, d: Cliff ’s Delta; Fig. 5A). We also observed a significant increase 
in coexpression and biological process similarity between de novo ORFs and their neigh-
boring conserved ORFs when their promoters are shared compared to when they are 
not (coexpression: down same: d = 0.28, p = 2.99e−9; up same: d = 0.31, p < 2.2e−16; 
up opposite: d = 0.27, p = 2.1e−7; biological process similarity: down same: d = 0.24, p 
= 5.5e−7; up same: d = 0.108, p = 3.78e−3; up opposite: d = 0.24, p = 6.1e−6, d: Cliff ’s 
Delta, Mann-Whitney U test; Fig. 5B, C, respectively). Hence, sharing a promoter led to 
increases in the three piggybacking metrics for the three orientations.

Further supporting the notion that down same ORFs are particularly prone to pig-
gybacking, the down same de novo ORFs that share a promoter with their conserved 
neighbors displayed much higher expression levels, and higher coexpression and bio-
logical process similarity with their conserved neighbor, than up same or up opposite 
ORFs that also share a promoter with their conserved neighbors (expression: down same 
vs up same: d = 0.58; down same vs up opposite: d = 0.55; coexpression: down same vs 
up same: d = 0.29, down same vs up opposite: d = 0.38; biological process similarity: 
down same vs up same: d = 0.37, down same vs up opposite: d = 0.45; d: Cliff ’s Delta, p 
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< 2.2e−16 for all comparisons, Mann-Whitney U test). This could be due to down same 
ORF’s tendency to share promoters more often than up same ORFs, as a larger propor-
tion of transcripts containing down same ORFs also contain a conserved ORF (down 
same vs up same: Cliff ’s Delta d = 0.26, Mann-Whitney U test p < 2.2e−16; Fig. 5D), or 
higher expression levels of conserved ORFs that have down same ORFs on their tran-
scripts compared to conserved ORFs with up same or up opposite piggybacking ORFs 
(down same vs up same: d = 0.2, p = 5.4e−3; down same vs up opposite: d = 0.34, p = 
6.5e−4, Mann-Whitney U test, d: Cliff ’s Delta; Fig. 5E).

Based on these results, we reasoned that transcriptional readthrough could be the 
molecular mechanism underlying the efficient transcriptional piggybacking of down 
same de novo ORFs. To investigate this hypothesis, we examined the impact of tran-
scription terminators Pcf11 or Nrd1 on the frequency of transcript sharing between a 
conserved ORF and its downstream de novo ORF. Analyzing publicly available ChIP-exo 
data [68], we found that the presence of terminators between conserved ORFs and their 
downstream de novo ORFs resulted in a notably lower percentage of shared transcripts 
(Cliff ’s Delta d = −0.39, p = 1.59e−10, Mann-Whitney U test; Fig. 5F). As an illustration, 
consider the genomic region on chromosome II from bases 194,000 to 196,000, contain-
ing the conserved ORF YBL015W and a downstream de novo ORF (positions 195,794 
to 195,847). No terminator factor is bound to the intervening DNA between these two 
ORFs. This pair has high coexpression, with ρ = 0.96, and we observed that nearly all 
transcripts in this region containing the de novo ORF also include YBL015W (Fig. 5G). 
In contrast, the genomic region on chromosome XVI from 639,000 to 641,800, contain-
ing the conserved ORF YPR034W and downstream de novo ORF (positions 641,385 to 
641,534), does have a Pcf11 terminator factor between the pair, and as expected, none of 
the transcripts in this region contain both YPR034W and the de novo ORF, which have 
poor coexpression as a result (ρ = 0.1; Fig. 5H). We conclude that sharing a transcript 
via transcriptional readthrough is the major transcriptional piggybacking mechanism for 
down same de novo ORFs.

Fig. 5 Effects of promoter sharing on expression, coexpression, and biological process similarities of de 
novo ORFs. A De novo ORFs that share a promoter with neighboring conserved ORFs, as determined by 
TIF‑seq transcript boundaries, have significantly higher expression levels than de novo ORFs that do not. 
Considering only ORFs in a single orientation. Dashed line represents the median expression of independent 
de novo ORFs. B De novo ORFs that share a promoter with neighboring conserved ORFs have higher 
coexpression with their neighbors than de novo ORFs that do not share a promoter. Dashed line represents 
median coexpression of de novo‑conserved ORF pairs on separate chromosomes. C De novo ORFs that 
share a promoter have more similar functional enrichments with neighboring conserved ORFs than de 
novo ORFs that do not share a promoter. Dashed line represents median functional enrichment similarities 
of the background distribution of de novo‑conserved ORF pairs on separate chromosomes. D Down same 
de novo ORFs share a promoter with neighboring conserved ORFs significantly more often than up same 
ORFs. E Conserved ORFs with downstream de novo ORFs have a significant increase in expression compared 
to conserved ORFs with upstream de novo ORFs. F Existence of transcription termination factors (Pcf11 or 
Nrd1) in between conserved ORFs and nearby downstream de novo ORFs leads to less shared transcripts. G 
Transcript isoforms (gray) at an example locus where there are no transcription termination factors present 
between conserved ORF YBL015W (pink) and downstream de novo ORF chr2:195794‑195847(+) (blue). H 
Transcript isoforms (gray) at an example locus where there is Pcf11 transcription terminator present (red line) 
between conserved ORF YPR034W (pink) and downstream de novo ORF chr16:641385‑641534(+) (blue). All 
detected transcript isoforms on these loci are plotted for G and F. (For all panels: ****: p ≤ 0.0001, ***: p ≤ 
0.001, **: p ≤ 0.01, *: p ≤ 0.05, ns: not‑significant; Mann‑Whitney U test)

(See figure on next page.)
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Discussion
We explored the transcription of nORFs from multiple angles including network topol-
ogy, associations with cellular processes, TF regulation, and influence of the locus of 
emergence on de novo ORF expression. Delving into network topology, we find that 
nORFs have distinct expression profiles that are strongly correlated with only a few other 
ORFs. Nearly all cORFs are coexpressed with at least one nORF, but the converse is not 
true. Numerous nORFs form new structured transcriptional modules, possibly involved 
in both known and unknown cellular processes. The addition of nORFs to the cellular 
network resulted in a more clustered network than expected by chance, highlighting the 
previously unsuspected influence of nORFs in shaping the coexpression landscape.

Fig. 5 (See legend on previous page.)
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Our study is the first to show a large-scale association between the expression of 
nORFs and cellular homeostasis and transport processes. We anticipate that future 
studies will follow up to test these associations experimentally. We also found nORFs 
to be preferentially associated with cellular processes related to metabolism, transposi-
tion, and cell adhesion but rarely with the core processes of the central dogma, DNA, 
RNA, or protein processing. Genes involved in transport, metabolism, and stress tend 
to have more variable expression compared to genes in other pathways [86]. Pathways 
with more variable expression could be more likely to incorporate novel ORFs, possibly 
as a form of an adaptive transcriptional response. There are several consistent observa-
tions in the literature [47, 87, 88]. For instance, Li et al. [47] showed that many de novo 
ORFs are upregulated in heat shock. Wilson and Masel [89] found higher translation of 
de novo ORFs under starvation conditions. Carvunis et al. [24] found de novo cORFs are 
enriched for the GO term “response to stress.” Other studies showed examples of how 
specific de novo ORFs could be involved in stress response [35, 90] or homeostasis [90, 
91]. For instance, the de novo antifreeze glycoprotein AFGP allows Arctic codfish to live 
in colder environments [35] or MDF1 in yeast [90, 92] was found in a screen to provide 
resistance to certain toxins and mediates ion homeostasis [93]. Our results, combined 
with these previous investigations, argue that a large fraction of nORFs provide adapta-
tion to stresses and help maintain homeostasis, perhaps through modulation of trans-
port processes.

Recent research in yeast has revealed an enrichment of transmembrane domains [15, 
24, 94, 95] within de novo ORFs. Previous studies identified small nORFs and de novo 
ORFs that localize to diverse cellular membranes, such as those of the endoplasmic 
reticulum, Golgi, or mitochondria in different species [10, 15, 96–99]. These findings are 
consistent with the notion that de novo ORFs could play a role in a range of transport 
processes, such as ion, amino acid, or protein transport across cellular membranes. By 
establishing a connection between predicted transmembrane domains and increased 
coexpression with transport-related genes, our findings set the stage for future experi-
mental investigations into the precise molecular mechanisms and functional roles of 
nORFs in diverse transport systems.

Lastly, we explored how the pre-existing regulatory context influences the transcrip-
tional profiles of de novo ORFs. We found that de novo ORFs that piggyback off their 
neighboring conserved ORFs’ promoters had increases in expression, coexpression, 
and biological process similarity with their neighboring conserved ORFs. Strikingly, 
ORFs that emerge de novo downstream of conserved ORFs have the largest increases in 
expression, coexpression, and biological process similarities with their neighbors com-
pared to other orientations, largely due to transcriptional readthrough leading to tran-
script sharing. Previous studies have shown that the transcription of regions downstream 
of genes is functional and regulated [100]. A study in humans showed that readthrough 
transcription downstream of some genes is responsible for roughly 15–30% of intergenic 
transcription and is induced by osmotic and heat stress, creating extended transcripts 
that play a role in maintaining nuclear stability during stress [101]. Another study in 
humans and zebrafish showed that the translation of small ORFs located in the 3′ UTR 
of mRNAs (dORFs) increased the translation rate of the upstream gene [102]. Lastly, a 
study in yeast found that genes preferentially expressed as bicistronic transcripts tend 



Page 17 of 28Rich et al. Genome Biology          (2024) 25:183  

to contain evolutionarily younger genes compared to adjacent genes that do not share 
transcripts, suggesting that transcript sharing could provide a route for novel ORFs to 
become established genes [103]. These findings together with our results suggest that 
genomic regions downstream of genes may provide the most favorable environment for 
the transcription of de novo ORFs.

Our analyses show that the likelihood of a de novo ORF being expressed or repressed 
under the same conditions as the neighboring conserved ORF is influenced by the extent 
to which it piggybacks on the neighboring ORF’s regulatory context. Therefore, in addi-
tion to the evolutionary pressure acting on the sequence of emerging ORFs, our results 
suggest that transcriptional regulation and genomic context also influence their func-
tional potential. However, this influence is not entirely deterministic and much weaker 
when de novo ORFs emerge upstream than downstream of genes. Future studies are 
needed to map regulatory networks controlling nORF expression and reconstruct their 
evolutionary histories.

There are several limitations to our study. First, while SpQN enhances the coexpres-
sion signal of lowly expressed ORFs, it comes at the cost of reducing signals in highly 
expressed ORFs [62]. Given our objective of studying lowly expressed nORFs, this trade-
off is deemed worthwhile. Second, our study provides evidence of associations between 
nORFs and cellular processes such as homeostasis and transport, but these findings are 
based on transcription profile similarities which do not necessarily imply cotranslation 
or correlated protein abundances [104]. Furthermore, our analyses were performed in 
the yeast S. cerevisiae and the generalizability of our findings to other species requires 
further investigation.

Conclusions
In conclusion, our study represents a significant step forward towards the characteriza-
tion of nORFs. We employed advanced statistical methods to account for low expression 
levels and generate a high-quality coexpression network. Despite being lowly expressed, 
nORFs are coexpressed with almost every cORF. We find that numerous nORFs form 
structured, noncanonical-only transcriptional modules which could be involved in regu-
lating novel cellular processes. We find that many nORFs are coexpressed with genes 
involved in homeostasis and transport-related processes, suggesting that these path-
ways are most likely to incorporate novel ORFs. Additionally, our investigation into the 
influence of genomic orientation on the expression and coexpression of de novo ORFs 
showed that ORFs located downstream of conserved ORFs are most influenced by the 
pre-existing regulatory environment at their locus of emergence. Our findings provide a 
foundation for future research to further elucidate the roles of nORFs and de novo ORFs 
in cellular processes and their broader implications in adaptation and evolution.

Methods
Creating ORF list

To create our initial ORF list, we utilized two sources. First, we took annotated ORFs 
in the S. cerevisiae genome R64-2-1 downloaded from SGD [105], which included 6600 
ORFs. Second, we utilized the translated ORF list from Wacholder et al. [14] reported in 
their Supplementary Table 3. We filtered to include cORFs (Verified, Uncharacterized, 



Page 18 of 28Rich et al. Genome Biology          (2024) 25:183 

or Transposable element genes) as well as any nORFs with evidence of translation at 
q-value < 0.05 (Dubious, Pseudogenes, and unannotated ORFs). We removed ORFs with 
lengths shorter than the alignment index kmer size of 25 nt used for RNA-seq align-
ment. In situations where ORFs overlapped on the same strand with greater than 75% 
overlap of either ORF, we removed the shorter ORF using bedtools [106]. We removed 
ORFs that were exact sequence duplicates of another ORF. This left 5878 cORFs and 
18,636 nORFs, for a total of 24,514 ORFs used for RNA-seq alignment.

RNA‑seq data preprocessing

Strand specific RNA-seq samples were obtained from the Sequencing Read Archive 
(SRA) using the search query (saccharomyces cerevisiae[Organism]) AND rna sequenc-
ing. Each study was manually inspected and only studies that had an accompanying 
paper or detailed methods on Gene Expression Omnibus (GEO) were included. Sam-
ples were quality controlled (nucleotides with Phred score < 20 at the end of reads were 
trimmed) and adapters were removed using TrimGalore version 0.6.4 [107]. Samples 
were aligned to the transcriptome GTF file containing the ORFs defined above and 
quantified using Salmon [108] version 0.12.0 with an index kmer size of 25. Samples with 
less than 1 million reads mapped or unstranded samples were removed, resulting in an 
expression dataset of 3916 samples from 174 studies (Additional file 1: Table S1). ORFs 
were removed to limit sparsity and increase the number of observations in the subse-
quent pairwise coexpression analysis. Only ORFs that had at least 400 samples with a 
raw count > 5 were included for downstream coexpression analysis, n = 11,630 ORFs 
(5803 canonical and 5827 noncanonical, Additional file  3: Table  S2, Additional file  4: 
Table S3).

Coexpression calculations

The raw counts were transformed using clr. Pairwise proportionality was calculated 
using ρ [66] for each ORF pair. Spatial quantile normalization (SpQN) [62] of the coex-
pression network was performed using the mean clr expression value for each ORF as 
confounders to correct for mean expression bias, which resulted in similar distributions 
of coexpression values across varying expression levels (Additional file 2: Fig. S2). Only 
ORF pairs that had at least 400 samples expressing both ORFs (at raw > 5) were included. 
This threshold was determined empirically, as detailed below.

Since zero values cannot be used with log ratio transformations, all zeros must be 
removed from the dataset. Proposed solutions in the literature on how to remove zeros, 
all of which have their pros and cons, include removing all genes that contain any zeros, 
imputing the zeros, or adding a pseudo count to all genes [109, 110]. Removing all ORFs 
that contain any zeros is not possible for this analysis since the ORFs of interest are lowly 
and conditionally expressed. The addition of pseudocounts can be problematic when 
dealing with lowly expressed ORFs, for the addition of a small count is much more sub-
stantial for an ORF with a low read count compared to an ORF with a high read count 
[111]. For these reasons, all raw counts below 5 were set to NA prior to clr transfor-
mation. These observations were then excluded when calculating the clr transformation 
and in the ρ calculations. We used clr and ρ implementations in the R package Propr [66] 
and the implementation of SpQN from Wang et al. [62].
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To determine the minimum number of samples needed to express both ORFs in a 
pair, we determined the number of samples needed for coexpression values to converge 
within ρ ± 0.05 or ρ ± 0.1 for 2167 nORF-cORF pairs which have a ρ > 99th percen-
tile (before SpQN). All samples expressing both ORFs in a pair were randomly binned 
into groups of 10, and ρ was calculated after each addition of another sample. Fluctua-
tions were calculated as max(ρ) − min(ρ) within a sample bin. Convergence was deter-
mined as the first sample bin with fluctuations ≤ fluctuation threshold, either 0.05 or 
0.01 (Additional file 2: Fig. S1).

Comparing normalization and batch correction methods for coexpression network 

construction

To compare our approach with a batch correction approach, we used clr to transform 
the expression matrix, followed by removing the top principal component (PC1) of the 
clr expression matrix to do batch correction using the function removePrincipalCompo-
nents from the WGCNA [70] R package. We then calculated ρ values and applied SpQN 
normalization. Additionally, we created a coexpression matrix based on TPM as well as 
RPKM normalized expression values instead of clr and calculated Pearson’s correlation 
coefficient.

Protein complex enrichments

We retrieved a manually curated list of 408 protein complexes in S. cerevisiae from the 
CYC2008 database by Pu et al. [67]. The coexpression matrix was filtered to contain only 
the 1617 cORFs found in the CYC2008 database prior to creating the contingency table. 
Fisher’s exact test was used to calculate the significance of the association between coex-
pression and protein complex formation. Coexpressed was defined as the 99.8th ρ per-
centile (ρ > 0.888) considering all ORF pairs in the coexpression matrix (n = 62,204,406 
ORF pairs) for Fig. 1C.

TF binding enrichments

A ChIP-exo dataset from Rossi et al. [68] containing DNA-binding information for 73 
sequence-specific TFs across the whole genome was used. For each ORF, we identified 
which TFs had binding within 200 bp upstream of the ORF’s TSS. The TSSs for all ORFs 
in the coexpression matrix were determined by the median 5’ transcript isoform (TIF) 
start positions using TIF-seq [69] dataset. Only ORFs found in the TIF-seq dataset were 
considered (n = 5334 cORFs and 5362 nORFs). To calculate the enrichments reported in 
Fig. 1D, Additional file 2: Fig. S5, Fig. S7, Fig. S9, and Fig. S10, the coexpression matrix 
was first filtered to only include ORFs that have at least 1 TF binding within 200 bp 
upstream of its TSS (n = 973 cORFs and 936 nORFs). Fisher’s exact test was used to 
calculate the association between coexpression and having their promoters bound by a 
common TF. Coexpressed was defined as the 99.8th ρ percentile (ρ > 0.888) considering 
all ORF pairs in the coexpression matrix (n = 62,204,406 ORF pairs) for Fig. 1D.

Coexpression matrix clustering

We used the weighted gene coexpression network analysis (WGCNA) package [70] in 
R to cluster our coexpression matrix. To do this, we first transformed our coexpression 
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matrix into a weighted adjacency matrix by applying a soft thresholding, which involved 
raising the coexpression matrix to the power of 12. This removed weak coexpression 
relationships from the matrix. We then used the topological overlap matrix (TOM) simi-
larity to calculate the distances between each column and row of the matrix. Using the 
hclust function in R with the ward clustering method, we created a hierarchical cluster-
ing dendrogram. We then used the dynamic tree cutting method within the WGCNA 
package to assign ORFs to coexpression clusters, resulting in 73 clusters of which 69 
were mapped to the full coexpression network. ORFs in the other four clusters were not 
included in the network as they did not pass the ρ threshold.

GO analysis of clusters

We downloaded GO trees (file: go-basic.obo) and annotations (files: sgd.gaf ) from ref. 
[112]. We used the Python package GOATools [113] to calculate the number of genes 
associated with each GO term in a cluster and the overall population of (all) genes in 
the coexpression matrix. We excluded annotations based on the evidence codes ND (no 
biological data available). We identified GO term enrichments by calculating the likeli-
hood of the ratio of the cORFs associated with a GO term within a cluster given the total 
number of cORFs associated with the same GO term in the background set of all cORFs 
in the coexpression matrix. We applied Fisher’s exact test and FDR with BH multiple 
testing correction [114] to calculate corrected p-values for the enrichment of GO term 
in the clusters. FDR < 0.05 was taken as a requirement for significance. We applied GO 
enrichment calculations only when there were at least 5 cORFs in the cluster (n = 54).

GO neighbor‑voting

Neighbor-voting was performed on the coexpression matrix using the EGAD [71] R 
package to predict the inclusion of cORFs in GO slim biological process terms. The 
coexpression matrix was subsetted to include only cORFs annotated as “Verified” in 
SGD and annotated to at least one GO BP slim term, n = 5133 cORFs. GO slim terms 
were retrieved from SGD on January 20, 2021, and include only annotations from 
manually curated or high-throughput methods [105]. Terms were filtered to include 
only those that have between 20 and 1000 genes, n = 117 terms. Three-fold cross-
validation was used to get a mean AUROC for each GO term.

Network randomization and topology analyses

To create random networks while preserving the same degree distribution, we used an 
edge-swapping method (Additional file  2: Fig. S11). This  method involved randomly 
selecting two edges in the network, which were either cORF-nORF or nORF-nORF 
edges and swapping them. The swap was accepted only if it did not disconnect any nodes 
from the network and the newly generated edges were not already present in the net-
work. We repeated this process for at least ten times the number of edges in the net-
work. Network diameter and transitivity were calculated using  the R package igraph 
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[115] and networks were plotted using spring embedded layout [76] in the Python pack-
age networkx [116].

Gene set enrichment analysis

Gene set enrichment analysis (GSEA) calculates enrichments of an ordered list of genes 
given a biological annotation such as GO or KEGG. For each ORF in our dataset, we 
used ρ values to order annotated ORFs and provided this sorted set to fgsea [117]. We 
used the GO slim file downloaded from SGD [105] for GO annotations. We used the R 
package clusterProfiler [118] to download KEGG annotations using KEGG REST API 
[78] on April 1, 2023 and then used fgseaMultilevel function in the fgsea R package to 
calculate enrichments for both annotations individually. To calculate GO or KEGG 
terms that are enriched or depleted for nORFs compared to cORFs, we calculated the 
number of cORFs and nORFs that had GSEA enrichments at BH adjusted FDR < 0.01. 
Using these counts, we calculated the proportion of nORFs and cORFs associated with 
a GO or KEGG term and used Fisher’s exact test to assess the significance of associa-
tion. p-values returned by Fisher’s exact test were corrected for multiple hypothesis 
testing using BH correction. Odds ratios were calculated by dividing the proportion of 
nORFs by the proportion of cORFs. Proportions for the GO terms with BH adjusted 
FDR < 0.001 and odds ratio greater than 2 or less than 0.5 are plotted in Fig. 3A,B and 
are reported in Additional file 7: Table S6 and proportions for KEGG terms are plotted 
in Additional file 2: Fig. S13 and reported in Additional file 8: Table S7.

Transmembrane domain enrichment

Transmembrane domains were predicted using TMHMM 2.0 [79] for all nORFs. An 
ORF was classified as having a transmembrane domain if it was predicted to have at 
least one transmembrane domain. nORFs were classified as “coexpressed with trans-
port-related genes” if the ORF had a GSEA enrichment at FDR < 0.01 with any of the 
15 GO slim transport terms: transport, ion transport, amino acid transport, lipid trans-
port, carbohydrate transport, regulation of transport, transmembrane transport, vacu-
olar transport, vesicle-mediated transport, endosomal transport, nucleobase-containing 
compound transport, Golgi vesicle transport, nucleocytoplasmic transport, nuclear 
transport, or cytoskeleton-dependent intracellular transport. Fisher’s exact test was used 
to calculate the significance of association between transport-related processes and pre-
diction of a transmembrane domain.

Differential expression analysis for TF deletion and overrepresentation tests

For Hsf1 analysis, RNA-seq samples were from Ciccarelli et  al. (SRA accession 
SRP437124) [80]. Hsf1 deletion strains were compared to wild type (WT) strains when 
exposed to heat shock conditions. For Sfp1 analysis, RNA-seq samples were from SRA 
accession SRP159150. In both cases, deletion strains were compared to WT strains. 
Differential expression was calculated using the  R package DESeq2 [119]. ORFs were 
defined as differentially expressed if the log fold change (FC) in RNA expression between 
WT and control strains was greater than or less than 0.5, i.e., log(FC) > 0.5 or log(FC) 
< −0.5 and BH adjusted p-value < 0.05. ChIP-exo data for Hsf1 and Sfp1 binding was 
taken from Rossi et al. [68] and an ORF was labeled as having Hsf1 or Sfp1 binding if 
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the TF was found within 200 bp upstream of the ORF’s TSS. Fisher’s exact test was per-
formed to see if there is an association between an nORF in a GO biological process 
and being regulated by the TF. We define an nORF to be “in” a GO term if it has a GSEA 
enrichment for that GO term at FDR < 0.01. We defined an nORF as regulated by a TF 
if the nORF had evidence of the TF binding within 200 bp of the nORF’s TSS in ChIP-
exo and has significantly downregulated expression in the TF deletion RNA-seq samples 
compared to the WT samples. BH p-value correction was performed for all GO terms 
tested. Significant GO terms and the associated regulated nORFs are reported in Addi-
tional file 10: Table S9.

Detection of homologs using BLAST

We obtained the genomes of 332 budding yeasts from Shen et al. [120]. To investigate 
the homology of each non-overlapping ORF in our dataset, we used TBLASTN and 
BLASTP [121] against each genome in the dataset, excluding the Saccharomyces genus. 
Default settings were used, with an e-value threshold of 0.0001. The BLASTP analysis 
was run against the list of protein-coding genes used in Shen et al., while the TBLASTN 
analysis was run against each entire genome. We also applied BLASTP to annotated 
ORFs within the S. cerevisiae genome to identify homology that could be caused by 
whole genome duplication or transposons.

Identification of de novo and conserved ORFs

To identify de novo ORFs, we applied several strict criteria. Firstly, we obtained trans-
lation q-values and reading frame conservation (RFC) data from Wacholder et al. [14]. 
All cORFs and only nORFs with a translation q-value less than 0.05 were considered as 
potential de novo candidates. We excluded ORFs that overlapped with another cORF on 
the same strand or had TBLASTN or BLASTP hits outside of the Saccharomyces genus 
at e-value < 0.0001. Moreover, we eliminated ORFs that had BLASTP hits to another 
cORF in S. cerevisiae. From the remaining list of candidate de novo ORFs, we investi-
gated whether their ancestral sequence could be noncoding. To do this, we utilized RFC 
values for each species within the Saccharomyces genus. We classified ORFs as de novo 
if the RFC values for the most distant two branches were less than 0.6, suggesting the 
absence of a homologous ORF in those two species.

We identified conserved ORFs if a non-overlapping cORF has an average RFC > 0.8 or 
has either TBLASTN or BLASTP hit at e-value < 0.0001 threshold.

To identify conserved cORFs with overlaps, we first considered if the cORFs had a 
BLASTP outside of Saccharomyces genus with e-value < 0.0001. Then for two over-
lapping ORFs, if one had RFC > 0.8 and the other had RFC < 0.8, we considered 
the one with higher RFC as conserved. For the ORF pairs that were not assigned as 
conserved using these two criteria, we applied TBLASTN for the non-overlapping 
parts of the overlapping pairs. Those with a TBLASTN hit with e-value < 0.0001 
were considered conserved. We found a total of 5624 conserved ORFs and 2756 de 
novo ORFs.
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Calculation of GO term similarities

GO term similarities were calculated using the Relevance method developed in Schlicker 
et  al. [84]. This method considers both the information content (IC) of the GO terms 
that are being compared and the IC of their most informative ancestor. IC represents the 
frequency of a GO term; thus, an ancestral GO term has lower IC than a descendant. We 
used the GOSemSim [122] package in R that implements these similarity measures.

Termination factor binding analysis

ChIP-exo data for Pcf11 and Nrd1 termination factor binding sites are taken from Rossi 
et  al. [68]. This study reports binding sites at base pair resolution for S. cerevisiae for 
around 400 proteins. We used supplementary bed formatted files for Pcf11 and Nrd1, 
which are known transcriptional terminators, and used in-house R scripts to find bind-
ing sites within the regions between the stop codon of conserved ORFs and the start 
codon of down same de novo ORFs. ORF pairs were classified as having terminators pre-
sent between them if there was either Pcf11 or Nrd1 binding.

Determining shared promoters

To determine whether two ORFs shared a promoter, we reused the TIF-seq dataset from 
Pelechano et  al. [69]. TIF-seq is a sequencing method that detects the boundaries of 
TIFs. We extracted all reported TIFs from the Pelechano et al. supplementary data file 
S1 and identified all TIFs that fully cover each ORF in both YPD and galactose. We then 
used this information to find ORF pairs that mapped to the same TIFs for down same 
and up same pairs, as well as found TIFs with non-overlapping TSSs for up opposite de 
novo-conserved ORF pairs. ORF pairs where the conserved ORF was not found in the 
TIF-seq dataset were not included and pairs where the de novo ORF was not found were 
considered to not share a promoter.

Web application

We utilized R language [123] and the shiny framework [75] to develop a web applica-
tion which allows querying of ORFs in our dataset for information about their coexpres-
sion with other ORFs, network visualization, and GSEA enrichments. It can be accessed 
through a web browser and is available at https:// carvu nislab. csb. pitt. edu/ shiny/ coexp 
ressi on/.

Glossary
Canonical ORFs (cORFs)  open reading frames that have been annotated in the Saccharomyces Genome 

Database as ’Verified’ or ’Uncharacterized’
Noncanonical ORFs (nORFs)  open reading frames that are either annotated as ’Dubious’ or ’pseudo genes’ in the 

Saccharomyces Genome Database or unannotated yet shown to be translated by 
Wacholder and colleagues’ analyses of Ribo‑sequencing data (Wacholder et al. 2023)

de novo ORFs  canonical or noncanonical open reading frames with evidence of translation from 
Ribo‑sequencing data (Wacholder et al. 2023) and evidence of recent evolution from 
an ancestral locus that lacked an ORF (this study)

Conserved ORFs  canonical open reading frames that are evolutionarily conserved across the Saccha-
romyces clade

https://carvunislab.csb.pitt.edu/shiny/coexpression/
https://carvunislab.csb.pitt.edu/shiny/coexpression/
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