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Background
Complex tissues are typically composed of many cell types (sub-populations) located 
at various positions to execute the corresponding biological functions [1–3]. Thus, it is 
of great significance to simultaneously exploit the expression and spatial information 
of cells, which is the foundation for understanding the underlying mechanisms of biol-
ogy systems [4]. For example, the combination of expression and spatial information of 
cells provides an effective strategy to precisely characterize the heterogeneity of tumor 
micro-environment, which is critical for diagnosis and therapy of cancers [5]. Fortu-
nately, advances in biological techniques ensure the generation of expression profiles 
of cells while retaining spatial relative context in situ, known as spatial transcriptomics, 
which presents unprecedented opportunities to explore the organization and function of 
tissues in a spatial context. On the basis of principles of preserving spatial information, 
current technologies are broadly classified into two categories, i.e., imaging- and next-
generation sequencing (NGS)-based methods [6]. The typical imaging-based approaches 
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include fluorescence in situ hybridization (FISH) [7] and its variants [8–10], which are 
criticized for their limited capacity to detect RNA transcripts. To address this issue, 
NGS-based methods employ spatial barcoding and NGS, including Slide-seq [11], Ste-
reo-seq [12], and 10 × Visium [13]. The accumulated spatial transcriptomics data pro-
vide a great opportunity to investigate the functions and cellular structure of tissues by 
exploiting interesting patterns and features that cannot be identified from other data.

Spatial domains, that are regions where cells inside are coherent with similar expres-
sion profiles and spatial proximity, are one of the typical patterns in spatial transcrip-
tomics data. They are the prerequisites for downstream analysis, such as tracking disease 
progression [14] and tissue development [8]. According to strategies of dissection, avail-
able methods for the identification of spatial domains are divided into two categories, 
i.e., biological experiments and computational approaches. Specifically, former methods 
employ anatomy to obtain the spatial information of cells and manually select spatial 
domains. This approach is precise and reliable given that expertise knowledge is seam-
lessly incorporated. However, these methods are criticized for efficiency because man-
ual selection mode poses a great challenge in terms of time and finance. Computational 
methods, which identify spatial domains with machine learning, provide an alternative 
to overcome limitations of biological experiment-based methods.

Specifically, unsupervised clustering is a widely adopted strategy for identifying spa-
tial domains in spatial transcriptomics data. Current computational methods for spa-
tial domain identification are roughly categorized into two classes, i.e., non-spatial and 
spatial clustering algorithms. Non-spatial clustering methods, such as DRjCC [15], 
SCANPY [16], K-means, and Louvain [17], are deliberately designed for transcriptom-
ics data without spatial information. These methods are criticized for their undesirable 
performance because identified spatial domains deviate from tissue sections, highlight-
ing the importance of spatial information for the analysis of spatial transcriptomics data.

However, spatial clustering integrates gene expression and spatial location to address 
the aforementioned issues. This immediate purpose is to account for spatial dependency 
of gene expression, which results in better matching spatial location. In comparison to 
non-spatial clustering, spatial clustering significantly enhances the performance of algo-
rithms, which indicates that spatial information plays an indispensable role in the iden-
tification of spatial domains. The greatest difference among these algorithms lies in how 
to obtain and integrate spatial and transcriptional features of cells. For example, Bayes-
Space [18] and SpatialPCA [19] employ Hidden-Markov random field to enforce physi-
cally proximal cells belonging to the same domains by assigning higher probability to 
proximal cells. However, these algorithms achieve an excellent performance if and only 
if cell types are well separated, that is the division boundary is very clear. Actually, the 
boundaries of spatial domains are unclear because of the hierarchical structure of cell 
types.

To exploit the latent structure of cells, SpaGCN [20] and STAGATE [21] adopt graph 
neural networks to learn the topological structure of cells, which can be concatenated 
with transcriptional features to facilitate identification of spatial domains. These algo-
rithms differ greatly in strategies used to learn graph features of cells for characteriz-
ing spatial information. For example, SEDR [22] employs auto-encoder to learn spatial 
embedding, whereas CCST [23] addresses complex global cell interactions across tissues. 
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BANKSY [24] simultaneously considers transcriptome of cells and their local neighbors, 
and DeepST [25] integrates transcriptomics and morphological features of cells with 
data augmentation, which provides a compatible strategy for spatial domain. SPARK-X 
[26] and SpatialDE [27] detect spatial variable genes to link spatial domains with biologi-
cal functions for further integrating knowledge from multiple resources.

Although great efforts have been devoted to identifying spatial domains, many urgent 
but unaddressed problems exist. Current algorithms directly integrate the spatial and 
expression data. However, they are criticized for failing to remove heterogeneity of 
spatial transcriptomics data, which results in an undesirable performance. Second, the 
transcriptional and spatial features of cells are independently learned, where the rela-
tions among spatial and expression information are neglected, which leads to a failure to 
precisely model spatial domains. Third, available algorithms are devoted to characterize 
and identify spatial domains with deep features of cells, reducing interpretability of cell 
features. Finally, vast majority of algorithms are designed for specific platforms, which 
hinders the application and transplanting to others. Thus, precisely modeling and identi-
fying spatial domains from spatial transcriptomics data is still challenging.

We propose a multi-layer network model for spatial transcriptomics data (MNMST) to 
accurately identify spatial domains with joint learning for addressing the aforementioned 
issues. As shown in Fig.  1, MNMST consists of three major components: multi-layer 
network construction, spatial and expression feature learning, and spatial domain identi-
fication. Specifically, MNMST first constructs a network for spatial and expression data 
to overcome the heterogeneity of spatial transcriptomics data. This procedure results in 
homogeneous multi-layer networks. Subsequently, it transforms spatial domain identi-
fication into multi-layer network clustering problem. Then, it employs joint learning to 
integrate constructed multi-layer networks by projecting cells into a subspace, where the 
low-dimensional and compatible features of cells are learned. To enhance the interpret-
ability of features, MNMST employs self-representation learning (SRL) to construct an 
affinity graph of cells with cell features. Experimental results demonstrate that the pro-
posed multi-layer network model not only outperforms state-of-the-art algorithms on 
identification of spatial domains, but also covers all spatial transcriptomics platforms, 
including 10 × Visium, osmFISH, STARMap, Stereo-seq, and Slide-seq V2. These results 
further prove that MNMST achieves the best performance for spatial domains identifi-
cation, demonstrating that MNMST is promising for analyzing spatial transcriptomics 
data and understanding of tissue architecture and functions.

Results
Overview of the multi‑layer network model for spatial domain identification

To smooth the reading and understanding of this study, we first describe the rationale 
of MNMST in this section (more technical description can be referred in the “Methods” 
section). For the sake of convenience, we use cells to represent measurement units in 
spatial transcriptomics, which can be freely replaced to spots in various platforms, such 
as 10× Visium.

For any spatial transcriptomics data, the traditional clustering approaches [16, 28, 29] 
first perform feature learning for spatial and expression information of cells and then 
identify spatial domains by clustering the low-dimensional features of cells. However, 
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these algorithms are criticized for the undesirable performance because features of cells 
fail to model and characterize the intrinsic and indirect relations among cells. To over-
come this limitation, network-based algorithms, such as DeepST [25], SpaGCN [20], 
and STAGATE [21], first construct cell graph(s) by integrating spatial, expression infor-
mation, etc. And, these algorithms then learn features by exploiting topological struc-
ture of the constructed cell networks, thereby dramatically enhancing performance of 
spatial domain identification.

However, these network-based algorithms still have several typical limitations that 
urgently need to be addressed. First of all, current algorithms construct cell network by 
calculating distances of cell pairs with concatenated cells features of spatial, expression, 
and morphological information, which are criticized for ignoring heterogeneity of spa-
tial transcriptomics data, reducing quality and reliability of cell networks. Second, even 
though many alternatives are available for measuring distances among cells, it is dif-
ficult to select an appropriate manner to precisely characterize distances of cells (how 
measurement of distance effects performance of algorithms is studied in the “Systematic 
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Fig. 1 Overview of multi-layer network model (MNMST) for spatial domain identification. (A) Cell multi-layer 
network construction. MNMST constructs cell spatial network by exploiting indirect relations among cells 
and learns cell expression network by using self-representation learning (SRL) with local preservation 
constraint. (B) Spatial and expression feature learning. MNMST jointly factorizes cell multi-layer networks with 
non-negative matrix factorization by projecting cells into a common subspace to learn compatible features 
of cells. It automatically learns cell expression networks by utilizing SRL with local preservation constraint 
by exploiting augmented expression profiles of cells. (C) Down-stream analysis of affinity graph of cells, 
including spatial domain identification, topology analysis, and integrative analysis of spatial transcriptomics 
data
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investigation of parameters of multi-layer network model” section). Finally, the learned 
low-dimensional features of cells only preserve the topological structure of cell net-
works, which neglect relations among spatial and expression information, failing to fully 
characterize the structure of spatial domains.

To address these issues, we propose a multi-layer network model (MNMST) to char-
acterize and identify spatial domains in spatial transcriptomics data by integrating gene 
expression and spatial information of cells (Fig. 1). Specifically, to remove heterogeneity 
of spatial transcriptomics data, MNMST constructs two cell networks for spatial and 
expression data, respectively. In this case, MNMST converts the heterogeneous data 
integration problem into the homogeneous graphs clustering problem. Furthermore, 
MNMST learns features of cells by jointly exploiting topological structure of cell spatial 
and expression network, where the relation between spatial and expression information 
is implicitly learned, thereby improving quality of features of cells. In details, as shown 
in Fig.  1, MNMST consists of three major components, i.e., cell multi-layer network 
construction, cell feature learning, and spatial domain identification. On multi-layer 
network construction issue, MNMST first employs Euclidean distance to construct cell 
spatial network by exploiting indirect topological structure. Then, it automatically learns 
cell expression networks by utilizing self-representation learning (SRL) with local pres-
ervation constraint, where cell spatial information is incorporated to augment expres-
sion profiles of cells (Fig. 1  (A); see the “Methods” section). In this case, MNMST not 
only avoids selecting measurements of distances for cells, but also enhances quality of 
constructed graph.

On the cell feature learning issue, current algorithms independently learn spatial and 
expression features of cells, which ignores the latent relations among them. MNMST 
simultaneously learns spatial and expression features of cells to overcome this limitation. 
It does so by jointly decomposing cell multi-layer networks with nonnegative matrix fac-
torization, which ensures the compatibility and quality of features (Fig. 1 (B)). MNMST 
automatically learns an affinity graph of cells with low-rank and sparse constraint to per-
form spatial domain identification. This way improves interpretability of spatial domains 
(Fig. 1 (B)). On the basis of affinity graph, MNMST identifies spatial domains and down-
stream analysis (Fig. 1 (C)).

Notice that, as far as we know, MNMST is the first multi-layer network model for spa-
tial domain identification, which provides an alternative for modeling and analyzing spa-
tial transcriptomics data.

Benchmarking MNMST against feature‑based state‑of‑the‑art baselines

Human dorsolateral prefrontal cortex (DLPFC) data [30] consist of manually annotated 
cortical layers (L1–L6) and white matter (WM) of 12 slices with gene markers and cyto-
architecture. These data are generated with 10 × Visium platform, serving as a publicly 
available benchmarking dataset for spatial domain identification (Fig.  2A). Seven fea-
ture-based state-of-the-art algorithms, namely SCANPY (with Leiden clustering) [16], 
Giotto [29], stLearn [28], BayesSpace [18], SpaGCN [20], DeepST [25], and SEDR [22], 
are selected as baselines to fully validate performance of MNMST. Notably, SCANPY 
is non-spatial, and others are spatial-based methods. Adjusted rand index (ARI) [31] is 
selected to measure the performance of algorithms (details in the “Methods” section).
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Figure  2A visualizes slice 151675 of DLPFC with seven layers labeled with differ-
ent colors, and MNMST is much more precise to identify these layers than baselines 
(Fig. 2B). Specifically, ARI of MNMST is 0.631, whereas that is 0.224 for Giotto, 0.263 
for stLearn, 0.524 for BayesSpace, 0.461 for SpaGCN, and 0.521 for DeepST, respec-
tively. Interestingly, SpaGCN, DeepST, and MNMST dramatically outperform others, 
demonstrating that topological structure of cell networks is also critical for character-
izing spatial domains. However, DeepST and SpaGCN independently learn spatial and 
expression features of cells and explore relations of cell features with post-processing 
techniques. However, they ignore the latent relations among features. MNSMT jointly 
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UMAP visualizations of PAGA graphs of slice 151675 for SCANPY (left) and MNMST (right). E Topology of 
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learns features of cells by decomposing matrices associated with multi-layer networks 
to overcome this limitation, where the latent relations of features are implicitly explored, 
thereby enhancing quality of features. Notice that MNMST is the only algorithm to dis-
criminate L1 and L2 cortical layers, which cannot be delineated by others (Fig. 2B).

Furthermore, the proposed algorithm is also superior to baselines on spatial domain 
identification for other slices of DLPFC (Additional file 1: Figs. S1-S2), and Fig. 2C sum-
marizes performance of various algorithms for DLPFC data, where x-axis denotes ARI to 
measure similarity of the predicted spatial layers and manually annotated layers. These 
results demonstrate that spatial algorithms significantly outperform non-spatial meth-
ods, showing that spatial information is critical need for spatial domain identification. In 
details, ARI of SCANPY is 0.208 ± 0.049 (median ± standard deviation), whereas ARI 
of the worst spatial algorithm is 0.250 ± 0.078. Specifically, ARI of MNMST is 0.553 ± 
0.073, whereas ARI of the best baseline DeepST is 0.515 ± 0.001. Moreover, MNMST 
obtains the best performance in slice 151670 (Additional file 1: Fig. S1, ARI = 0.750), 
151674 (Additional file 1: Fig. S2, ARI = 0.610), 151675 (Additional file 1: Fig. S2, ARI 
= 0.631), and 151676 (Additional file 1: Fig. S2, ARI = 0.588). These results prove that 
MNMST is superior to DeepST and SpaGCN, showing that the proposed multi-layer 
network model is much precise than current network ones. To investigate why multi-
layer network model is more discriminative than baselines for spatial domain identi-
fication, PAGA [32] is employed to infer relations of identified spatial domains, where 
organization of various cortical layers is derived. Figure 2D illustrates trajectory of lay-
ers, where spatial domains identified by MNMST are well discriminated, and those by 
SCANPY are mixed, demonstrating that network model precisely exploits intrinsic 
structure of spatial domains.

Strikingly, we find that spatial domains can be clearly characterized by topology of cell 
affinity graph learned by MNMST. Figure 2E (left) visualizes topology structure of sub-
graphs included by L1 and L2 layer, where connectivity is strong within layers, and weak 
across layers, corresponding to clusters of graphs. Four topological indexes, namely 
edge weight, degree (sum of weights on adjacent edges to a vertex), eigenvector cen-
trality (importance of vertices with the largest eigenvector), and closeness (number of 
edges through a vertex), are selected to validate the difference between L1 and L2 layers 
for investigating the relation of spatial domains and topological structure of the affinity 
graph (right panel of Fig. 2E). Specifically, weights on edges across layers are much lower 
than those inside layers (p = 4.1E−10, Mann-Whitney U test). Furthermore, degrees, 
centrality, and closeness of cells in L1 and L2 layers significantly differ (degree: p = 
7.3E−18, centrality: p = 3.9E−4, closeness: p = 4.0E−2, Mann-Whitney U test). These 
results demonstrate that the topological structure of cell networks is highly associated 
with spatial domains, providing an alternative for analyzing spatial transcriptomics data.

Next, spatial transcriptomics data of mouse brain tissue generated by 10 × Visium 
platform is also adopted to evaluate the performance of MNMST. Brain anatomical ref-
erences from the Allen Mouse Brain Atlas [33] are selected as baselines. MNMST pre-
cisely detects the cornu ammonis in mouse brain, and cerebellar cortex region in the 
sagittal posterior (Fig. 2F), which matches reference annotations [33]. Spatial domains 
identified by various algorithms for mouse brain tissue, and Silhouette Coefficient 
(SC) and Davies-Bouldin (DB) scores of them demonstrate that stLearn, DeepST, and 
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MNMST are comparable (Additional file 1: Fig. S3). stLearn integrates spatial, transcrip-
tional, and morphological information to comprehensively characterize structure of spa-
tial domains in brain, whereas MNMST and DeepST fully exploit topological structure 
of cell networks for spatial domains. However, boundary of spatial domains identified by 
stLearn is non-smooth because it fails to fully exploit relations among spatial, transcrip-
tional, and morphological information. These results show that the proposed multi-layer 
network model is also promising for characterizing complex spatial structure in mouse 
brain slices.

Systematic investigation of parameters of multi‑layer network model

MNMST learns features of cells with matrix factorization for multi-layer networks, 
implying that the theoretical complexity of MNMST is expensive (Additional file  1: 
Section 1.5). The comparative comparison of various algorithms on the time and space 
complexity is performed with different spatial transcriptomics data, where Giotto and 
BayesSpace are slower than stLearn and MNMST, and SCANPY, SpaGCN, and DeepST 
are faster than others (Additional file  1: Section  1.6 and Fig. S4). Specifically, running 
time of MNMST for DLPFC data is 4.3 ± 2.5 minutes, while that is 10.6 ± 2.9 (Giotto), 
6.3 ± 2.2 (BayesSpace), 3.6 ± 0.4 (stLearn), 2.2 ± 0.4 (DeepST), 1.4 ± 0.3 (SpaGCN), 0.6 
± 0.1 (SEDR), and 0.1 ± 0.0 (SCANPY) respectively (Additional file 1: Fig. S4 A1). And, 
these results further demonstrate that MNMST achieves the best performance by reach-
ing a good tradeoff between space and running time, proving its superiority for spatial 
domain identification. Furthermore, MNMST can also be accelerated with hardware, 
extending its applicability to large data (Additional file 1: Section 1.6 and Fig. S4).

MNMST constructs the cell affinity network with self-representation learning (SRL) 
and sparsity constraints, whereas baselines directly utilize cell co-expression networks 
by calculating the similarity of cells [16, 25]. Then, we check how performance of 
MNMST changes by replacing the learned cell affinity network with five cell co-expres-
sion networks (Spearman, Pearson, KNN, Cosine, and Euclidean distance). Figure  3A 
depicts ARIs of MNMST with various cell networks on DLPFC data (SRL: 0.553 ± 0.073 
vs KNN: 0.446 ± 0.069, p = 3.5E−4, Student’s t-test). SRL achieves the highest ARI value 
than others, which indicates that MNMST is more precise on characterizing the struc-
ture of spatial domains than current baselines. Furthermore, various cell co-expression 
networks result in distinct hierarchical structure for the same slice (151675), where ARI 
of Pearson is 0.611 and that of KNN is 0.435 for slice 151675. Therefore, spatial domains 
cannot be fully characterized with cell co-expression network. Then, we investigate the 
difference between cell networks learned by MNMST and those used by baselines by 
checking the degree distribution of networks with cumulative distribution function 
(CDF), which calculates probability of random variable if it is less or equal a threshold. 
Figure 3B demonstrates that the learned networks significantly differ from these used by 
baselines (p<2.2E-16, Kolmogorov-Smirnov test), accounting for why the proposed algo-
rithm is promising for spatial domain identification.

Since MNMST jointly learns features of cells, we compare the ARI of MNMST with/
without joint learning (Fig. 3C left panel), where joint learning strategy is promising for 
learning features of cells (joint = 0.553 ± 0.073 vs non-joint = 0.450 ± 0.078, p-value 
= 2.4E−3, Student’s t-test). It shows that joint learning of cell spatial and expression 
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networks enhances quality of features of cells because it implicitly reconciles spatial and 
expression information. Since MNMST utilizes high-order topology structure of cell 
spatial network for spatial domains (details in the “Methods” section), we also compare 
the ARI of MNMST with 1st-order and high-order structures of networks. Right panel 
of Fig. 3C shows that the high-order structure of networks is significantly more precise 
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Fig. 3 Systematic parameter analysis of multi-layer network model, and integrative analysis of spatially 
omics data. A Pirateplot of ARIs of MNMST with various types of cell networks for 12 DLPFC slices, where 
y-axis represents ARI, and x-axis denotes networks. The slice corresponding to the best performance for 
each types of cell networks are visualized. Pirateplot: points, raw data; center line, median; band, inference 
interval. B Cumulative distribution function (CDF) of degree of 1-st and high order cell spatial network (left), 
and of cell co-expression and expression network learned by MNMST (right), where x-axis denotes degree, 
and y-axis represents the probability for a random variable whose degree is less or equal to the given degree 
(Kolmogorov-Smirnov test for significance). C Distributions of ARIs of MNMST with and without joint learning 
(left), and distributions of ARI of MNMST with high- and 1st-order structure of cell spatial network (right, 
Student’s t-test for significance). The lower and upper hinges correspond to the first and third quartiles 
and the center refers to the median value. The upper (lower) whiskers extend from the hinge to the largest 
(smallest) value no further (at most) than 1.5× interquartile range from the hinge. D ARI pirateplot of MNMST 
vs the number of dimensions of cell features (Student’s t-test for significance). Pirateplot points, center line, 
and band are defined the same as in A. E H&E images of mouse anterior and posterior brain Visium data of 
10 × Genomics, which are horizontally aligned (top left). The corresponding anatomical Allen Mouse Brain 
Atlas (top right, https:// atlas. brain- map. org/). Spatial domains identified by DeepST and MNMST (bottom), 
where regions surrounded by squares are domains split by different slices. F Topological structure of cells 
in cornu ammonis (CA) and dentate gyrus (DG) domains (top left). Distribution of degrees of cells (top 
middle) and closeness (top right) in CA and DG domains. Topological structure of cells in domain split by 
slices (surrounded by white dashed line in E, bottom left), and distributions of degrees (bottom middle) and 
closeness (bottom right) of cells in anterior and posterior regions (Student’s t-test for significance). Boxplot 
hinges, median, and whiskers are defined the same as in C 

https://atlas.brain-map.org/
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than 1st-order for spatial domain identification (high-order: 0.553 ± 0.073 vs 1st-order: 
0.488 ± 0.077, p = 1.7E−3, Student’s t-test). The reason is that the relations among cells 
in spatial transcriptomics data are non-linear, which cannot be fully characterized with 
the low-order structure.

We systematically evaluate the hyperparameters of MNMST with various spatial 
transcriptomics data. How dimensional of cell features effect performance of MNMST 
is shown in Fig.  3D, where the number of dimensions in [100, 200] is a good choice 
because performance of MNMST is stable (Student’s t-test). Furthermore, parameter 
effect analysis not only demonstrate that MNMST is quite stable, but also suggest the 
values of parameters for typical spatial transcriptomics data (Additional file  1: Fig. S5 
and Section 1.7).

Multi‑layer network provides an effective and efficient strategy for integrative analysis 

of spatial transcriptomic data

Extensive applications of spatial sequencing technologies generate a great mount of spa-
tially omics data, which poses a great challenge on their integrative analysis. Given that 
current algorithms fail to integrate spatially omics data, it is interesting to design algo-
rithms for integrating multiple datasets from various technologies. MNMST provides a 
novel strategy for integrative analysis of spatial transcriptomics data from three perspec-
tives, i.e., joining multiple sections of whole tissues, integrating multiple slides of specific 
tissues, and integrating datasets from various batches.

Large tissues require multiple slides to cover different sections, and we employ PASTE 
[34] to horizontally align the tissue slices for ensuring their spatial adjacency. Then, 
MNMST directly performs spatial domain identification on aligned slices. Mouse brain 
Visium datasets of 10 × Genomics (https:// www. 10xge nomics. com/), including anterior 
and posterior brain slices, are selected to validate performance of algorithms, where 
aligned slices are shown in Fig. 3E (left top panel), and zoomed regions correspond to 
CA (cornu ammonis) and DG (dentate gyrus). The annotation of domains for aligned 
slices is from the Allen Mouse Brain Atlas (right top panel of Fig. 3E). Visualization of 
spatial domains obtained by DeepST and MNMST is shown in Fig. 3E (bottom panels). 
MNMST significantly outperforms baselines since it precisely discriminates CA and DG 
regions, where these domains are mixed (Additional file 1: Fig. S6). It demonstrates that 
MNMST preserves the structure of spatial domains across various slices, which implies 
that the multi-layer network model is promising for integrating spatially omics data.

Visualization of topological structure of the affinity graph of cells is shown in Fig. 3F 
(left top panel), where cells with the same color form a domain, to determine the reason 
behind the superiority of MNMST over baselines. Obviously, CA and DG correspond 
to two clusters in the affinity graph learned by MNMST, indicating that the topological 
structure of cells facilitates the identification of spatial domains. Specifically, degrees of 
cells in CA are significantly higher than those of DG (top middle panel of Fig. 3F, CA: 2.7 
± 0.4 vs DG: 2.4 ± 0.1, p = 3.4E−5, Student’s t-test), as well as in closeness (top right 
panel of Fig. 3F, p = 8.6E−5, Student’s t-test). Therefore, MNMST maintains consistence 
of the separation boundary of spatial domains across various slices in terms of topologi-
cal structure of affinity graph. Moreover, we investigate whether MNMST can preserve 
the structure of domains split by various slices (surrounded by white dashed line in the 

https://www.10xgenomics.com/
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right bottom panel of Fig. 3F). Visualization of the topological structure of affinity graph 
is shown in Fig. 3F (left bottom panel), where cells are mixed given that they belong to 
the same spatial domain. Topological structure of cells in the anterior and posterior slice 
is subtle (bottom panel of Fig. 3F). These results prove that MNMST is efficient for hori-
zontally integrating spatially omics data.

Then, we hypothesize that vertically adjacent slices are very similar, and integrate 
them to facilitate spatial domain identification. The proposed multi-layer network model 
naturally provides an effective strategy for integration of multiple vertically adjacent 
slices. Specifically, MNMST first stacks multiple slices into one as input, and then learns 
the affinity graph from the stacked slice to promote identification of spatial domains. 
Experiments demonstrate that integrative analysis enhances performance of spatial 
domain identification on DLPFC data (151673, 151674, 151675 and 151676, Additional 
file  1: Fig. S7 A). In details, ARI of spatial domains after integration is 0.570 for slice 
151673, whereas it is 0.554 before integration, which shows that MNMST precisely 
captures complementary information from adjacent slices to promote spatial domain 
identification.

Moreover, we also investigate capability of MNMST for vertical integration with MER-
FISH data, where DeepST and MNMST achieve the comparable performance, demon-
strating that multi-layer network model is insensitive to platforms (ARI: 0.493 vs 0.500, 
Additional file  1: Fig. S7B). These experiments for integrative analysis of spatial tran-
scriptomics data are independently performed by MNMST. Thus, it is natural to ask 
whether MNMST can combine with other algorithms, such as PASTE [34], to perform 
integrative analysis. In other words, MNMST takes data integrated by PASTE [34] as 
inputs and then performs spatial domain identification. Notably, MNMST outperforms 
DeepST on the center slice generated by PASTE, where ARI of MNMST and DeepST 
is 0.597 and 0.537 respectively, demonstrating that multi-layer network model is more 
precise to capture intrinsic structure of spatial domains (Additional file  1: Fig. S7C). 
Furthermore, MNMST also achieves an excellent performance on the vertical stacking 
slices generated by PASTE (Additional file 1: Fig. S7D).

Then, we investigate the capability of MNMST to remove batch effect from spatial 
transcriptomics datasets. Up-to-date methods (DeepST, stLearn, and SEDR) address 
these issues with additional computational modules, while MNMST can be directly 
applied without modifying algorithms. Specifically, MNMST first stacks multiple slices 
from various batches into one slice with SCANPY [16] and then constructs cell spatial 
network and cell expression network for the integrated slice, where cross-slice spatial 
proximity of spots enhances consistence of features of adjacent spots, thereby remov-
ing batch effect at some extent. With four DLPFC slices (1516173-151676), MNMST 
achieves the best performance, where the ARI of MNMST is 0.609 (ARI of DeepST: 
0.448, ARI of stLearn: 0.248, and ARI of SEDR: 0.421, Additional file 1: Fig. S8A). Inter-
estingly, integration of multiple slices enhances the performance of spatial domain iden-
tification, which shows that MNMST can effectively remove batch effect by retaining 
biological content. Except for DLPFC data, mouse slices with breast cancer are aligned 
vertically using PASTE, where there is obvious batch effect (Additional file 1: Fig. S8B). 
It is observed that spatial domains in vertically adjacent slices are highly consistent after 
integration, whereas these domains are mixed without integration (Additional file 1: Fig. 
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S8). These results demonstrate that MNMST effectively leverages spatial information to 
correct batch effects in spatial transcriptomics data.

Multi‑layer network model precisely dissects cancer and non‑cancer spatial domains

Spatial transcriptomics technologies are successfully applied to cancers, and the gen-
eralization power of the proposed multi-layer network model with cancer data can be 
naturally investigated. The public spatial transcriptomics data of human breast cancer 
generated by 10 × Visium, consisting of 3798 spots and 36,601 genes, is selected to vali-
date the capability of identifying cancer-related spatial domains (Fig.  4A). The dataset 

Fig. 4 MNMST precisely dissects cancer and non-cancer spatial domains. A Visium spatial transcriptomics 
data of breast cancer samples annotated by pathologists with different regions, i.e., IDC (invasive ductal 
carcinoma), DCIS (ductal carcinoma in situ), LCIS (lobular carcinoma in situ), tumor edge, and healthy. 
B Spatial domains identified by MNSMT on human breast cancer with domains = 11. C Visualization of 
topological structure of sub-graph induced by cells in healthy, tumor, and tumor edge domains identified 
by MNMST. D Distribution of degrees (left) and edge weight (right) of cells in cell affinity graph learned by 
MNMST for healthy, tumor, and tumor edge domains (Student’s t-test for significance. Box plot: center line, 
median; box, interquartile range; and whiskers, minimum-maximum range). E Heatmap of Pearson correlation 
coefficient among domains. F Differential expression analysis among domains 0, 1, and 2, which corresponds 
to Healthy, IDC, and DCIS/LCIS regions (left); volcano graph of differentially expressed genes (DEGs) between 
domains 1 and 2, where x-axis denotes log2(Fold Change) and y-axis represents -log10(p-value) (right). 
G Distributions of expression levels of DEGs ( log fold change| ≥ 2 ) between domains 1 and 2 (left), and 
spatial distribution of expression of DEGs between domains 1 (orange) and 2 (green), where ∗ denotes p < 
5E−2, ∗∗ p < 1E−2, and ∗ ∗ ∗ p < 1E−3 (Wilcoxon rank-sum test. Dashed line in violin plot: 1

4
 and 3

4
 quantiles. 

Concrete line: median). H Gene ontology enrichment analysis of DEGs between domains 1 and 2, where red 
denotes functions enriched by upregulated genes, and blue by downregulated ones. I Spatial distribution of 
expression of DEGs between domains 1 and 2
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is manually annotated by pathologists based on H&E image and the spatial expression 
of reported breast cancer marker genes, which consists of 20 regions and 4 main mor-
photypes, i.e., ductal carcinoma in situ/lobular carcinoma in situ (DCIS/LCIS), healthy 
tissue (Healthy), invasive ductal carcinoma (IDC), and tumor edge (Fig.  4A). Spatial 
domains identified by MNMST are highly consistent with the manual annotations, with 
an ARI of 0.662 (Fig. 4B), whereas domains obtained by baselines exhibit less regional 
continuity and more outliers (Additional file 1: Fig. S9). These finding implies that multi-
layer network model is also promising for characterizing and extracting cancer spatial 
domains.

However, state-of-the-art algorithms fail to precisely identify tumor edge regions 
because transition from healthy to tumor is difficult to characterize and capture, which 
poses a great challenge in learning discriminative features of cells. The proposed multi-
layer network model captures differences among various domains because indirect 
topological relations among cells are exploited. Specifically, the topological structure of 
sub-graph induced by cells in healthy, tumor edge, and tumor domains is visualized in 
Fig. 4C, where spatial domains correspond to clusters in the learned affinity graph. Spe-
cifically, distributions of degrees of cells in these three domains differ greatly (Fig. 4C 
left, Healthy: 33.2 ± 11.7 vs Tumor: 42.0 ± 17.6, p = 4.1E−16, Tumor edge: 28.7 ± 10.0 
vs Tumor: 42.0 ± 17.6, p = 6.0E−18, Student’s t-test), as well as in closeness (Fig. 4C 
right). These results further demonstrate that the multi-layer network model is also 
effective to characterize cancer spatial domains.

Heterogeneity of tumors is critical for the diagnosis and therapy of cancers [35]. 
Therefore, we hypothesize that tumor heterogeneity can also be reflected by cancer spa-
tial domains. The Pearson correlation coefficient among domains is shown in Fig. 4D, 
where domains are clearly divided into two groups, i.e., tumor (domain 0, 6), and non-
tumor (the rest ones). This result indicates that spatial domains can serve as bio-mark-
ers to characterize tumor heterogeneity. Moreover, we perform differentially expressed 
analysis and gene ontology enrichment analysis to identify differentially expressed genes 
(DEGs) by comparing transcriptional differences among spatial domain 0 (Healthy), spa-
tial domain 1 (IDC), and spatial domain 2 (DCIS/LCIS) (Fig. 4F, details in the “Methods” 
section).

To obtain intra-tumoral transcriptional differences of genes, we detect 396 DEGs ( 
log fold change  ≥ 2, adjusted p < 5.0E−2, Wilcoxon rank-sum test for significance cor-
rected by Benjamini-Hochberg test) between domains 2 and 1 (Fig.  4E–G, Additional 
file 1: Fig. S10 and Additional file 2). Functions enriched by DEGs are listed in Fig. 4H, 
where upregulated genes are involved in immune-related pathways, and downregulated 
ones are associated with signal pathways of fibroblast proliferation (p = 4.2E5, Hyper-
geometric test). CXCL14 encodes secreted proteins involved in immuno-regulatory 
and inflammatory processes, which promotes tumor growth in breast cancer [36], 
and COX6C serves as a bio-marker for cancer therapy [37]. Interestingly, these genes 
are captured with spatial domains as shown in Fig.  4I, where CXCL14 is upregulated 
in IDC, and COX6C is depressed in IDC. Furthermore, APOE, APOC1, C1QA, C1QB, 
and NUPR1 are indicative markers of variations in the infiltration of tumor-associated 
macrophages (TAM) [38, 39], where TAM infiltration is known to be associated with 
unfavorable survival outcomes in solid tumors. This association is owing to its role in 
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promoting tumor angiogenesis, which induces tumor migration, invasion, and metasta-
sis [40–42].

Then, we investigate whether spatial domain DEGs are associated with survival time 
of patients by employing Kaplan-Meier survival analysis with gene expression profiles 
and clinical data of breast cancer in The Cancer Genome Atlas (TCGA). We find that 31 
of 396 DEGs separate patients into high- and low-risk groups with significant survival 
time (Additional file 1: Fig. S12). For example, MORF4L2, PKG1, VPS28, and KLHDC7B 
predict the survival time of patients, indicating that cancer domains also facilitate the 
identification of bio-markers for breast cancer. For example, it is proven that KLHDC7B 
regulates interferon signaling pathway, which is critical for breast cancer tumorigenesis 
[43].

Analogously, we perform differential expression analysis by comparing domain 1 vs 0 
and identify some interesting DEGs that are highly associated with breast cancer (Addi-
tional file 1: Fig. S10, Additional file 2,3). For example, PRDX1 participates in the sign-
aling pathway of fibroblast proliferation, which serves as a bio-marker to characterize 
progression and metastasis of human breast cancer [44]. Additionally, upregulated B2M 
is also associated with a poorer prognosis [45], and NECTIN2 is a potential target of 
antibody therapy for breast cancer [46]. Furthermore, gene analysis between domains 2 
and 0 indicate that NUPR1 is upregulated, which is linked to chemotherapy resistance 
of breast cancer (Additional file 1: Fig. S10 and S12, Additional file 2) [47]. These results 
demonstrate that multi-layer network model also effectively identifies cancer spatial 
domains, which may shed light on revealing underlying mechanisms of cancers.

Multi‑layer network model is applicable for spatial omics data with various platforms

Except for the 10 × Genomics Visium platform, we further determine the applicability 
of the proposed multi-layer network model with spatial transcriptomics data from three 
additional platforms, i.e., imaging-based molecular data (mFISH [48, 49]) and high-reso-
lution spatial transcriptomics data (Stereo-seq [12] and Slide-SeqV2 [50]).

The imaging-based molecular data consist of lattice- and non-lattice-shaped structure, 
and the lattice-shaped STARmap data for mouse visual cortex is selected, which con-
tains 1207 cells, 1020 genes in each cells, and 7 layers as shown in Fig.  5A. MNMST 
outperforms baselines with an ARI of 0.624 (Fig. 5A right, Additional file 1: Fig. S14A), 
whereas that of DeepST is 0.550. Notably, MNMST successfully identifies L1 and L2/3 
layers, whilst baselines fail to discriminate these layers (surrounded by a dashed square 
in Fig. 5A). We further investigate the difference of cells in L1 and L2/3 layers in terms 
of topological structure of networks, where distributions of degrees of cells significantly 
differ (degree L1: 30.9 ± 8.6 vs L2/3: 34.1 ± 10.9, p = 3.6E−5, Student’s t-test), so does 
closeness. These results demonstrate that MNMST can also precisely model spatial 
domains in lattice-shaped STARmap data.

Given that some out-of-date algorithms, such as BaysecSpace [18], are deliberately 
designed for lattice-shaped spatial datasets, we evaluate performance of MNMST 
with non-lattice-shaped spatial transcriptomics data generated by osmFISH [49], 
where spatial domains are labeled with different colors (Additional file 1: Fig. S14B). 
MNMST substantially outperforms baselines for non-linear and non-convex spa-
tial domains with ARI = 0.600, whereas that of DeepST 0.490 (Additional file 1: Fig. 
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S14C). Specifically, MNMST effectively distinguishes layer 2–3 lateral and medial 
regions that cannot be discriminated by baselines. The visualization of topological 
structure of different spatial domains demonstrate that these regions are precisely 
modeled by the cell affinity graph learned by MNMST, and cells within different 
domains significantly differ in terms of topological indexes (Additional file  1: Fig. 
S14D). For example, significant difference of cell degree between Lateral and Medial 
regions is observed (Lateral: 2.0 ± 0.7 vs Medial: 2.9 ± 1.0, p = 2.5E−35, Student’s 
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Fig. 5 Multi-layer network model handles spatial data with various platforms. A Visualization of 
lattice-shaped STARmap data for mouse visual cortex [48] with 7 layers, such as CC, HPC, L1, L2/3, L4–L6 (left). 
Spatial domains identified by DeepST (middle, ARI = 0.550) and MNMST (right, ARI = 0.624), where L1 and 
L2/3 domains are surrounded by a dashed squares. B Topological structure of the affinity graph for cells in 
Layer1 and Layer 2/3 (left), and distributions of degrees (middle) and closeness (right) between layer 1 and 
layer 2/3 (Student’s t-test for significance. Box plot: center line, median; box, interquartile range; and whiskers, 
minimum-maximum range). C Visualization of spatial transcriptomics data generated with Stereo-seq 
platform (left), and spatial domains identified by MNMST (right), where RMS denotes rostral migratory stream, 
ONL is olfactory nerve layer, IPL is internal plexiform layer, GL is glomerular layer, MCL is mitral cell layer, GCL is 
granule cell layer, and EPL is external plexiform layer. D Visualization of spatial transcriptomics data generated 
with Slide-SeqV2 platform (left), and spatial domains identified by MNMST (right). E Dotplot of top 3 DEGs 
of domains in mouse olfactory bulb data generated from Slide-SeqV2 (left). Scatter plot of spatial domains 
generated by MNMST (right, including genes Nrgn, Doc2g, Pcp4, Nrsnl, Fabp7, Mbp, Tacl, and Gap43)
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t-test). These results prove that the multi-layer network model is also effective for 
identifying spatial domains in imaging-based molecular platform.

Then, we apply MNMST to the Stereo-seq data from mouse olfactory bulb tissues 
[12], which fulfills subcellular spatial resolution using DNA nano-ball patterned array 
chips. It contains the rostral migratory stream (RMS), granule cell layer (GCL), internal 
plexiform layer (IPL), mitral cell layer (MCL), external plexiform layer (EPL), and olfac-
tory nerve layer (ONL) (Fig. 5C left panel). MNMST precisely identifies spatial domains, 
where the laminar organization is consistent with annotation of layers (Fig.  5D right 
panel). In particular, MNMST accurately recognizes the narrow tissue structure MCL, 
which is validated with the expression of mitral cell marker Scg2. Moreover, we identify 
bio-marker genes for other domains, including Pcp4 for IPL, Olfm1 for EPL, and Cck for 
GL, respectively (Additional file 1: Fig. S14C).

Finally, we apply MNMST to a mouse olfactory bulb slice profiled by Slide-SeqV2 [50], 
where the annotation is from the Allen Reference Atlas [33] (Fig.  5D left panel). Spa-
tial domains obtained by MNMST are highly consistent with annotations (Fig. 5D right 
panel). Specifically, MNMST accurately identifies the accessory olfactory bulb (AOB), 
and granular layer of the accessory olfactory bulb (AOBgr). We examine the expression 
levels of bio-marker genes for each domain to validate the identified spatial domains, 
and we find that these domains identified by MNMST are well supported by the spatial 
variable genes (Fig. 5E). For example, Pcp4 is upregulated in MCL, which is consistent 
with previous biological experiments [51]. Collectively, these results demonstrate that 
the multi-layer network model precisely identifies domains in spatial domains regardless 
of platforms, showing the superiority of network-based model.

Discussion
In this study, we propose a novel multi-layer network model (MNMST) to integrate gene 
expression and spatial information of spatial transcriptomics data for spatial domain 
identification. MNMST is extensively evaluated on various data from various species 
and tissues. Extensive experimental results demonstrate that MNMST not only pre-
cisely identifies spatial domains (Fig. 2), but also is applicable to spatial transcriptomics 
data generated from various platforms, such as 10 × Genomics, mFISH, Stereo-seq, and 
Slide-SeqV2 (Fig.  5). Furthermore, MNMST precisely dissects cancer-related domains 
from cancer spatial transcriptomics data (Fig. 4).

The proposed multi-layer network model constructs the cell spatial and expres-
sion network and then performs feature learning and spatial domain identification by 
exploiting the structure of networks. MNMST serves as a flexible framework for spa-
tial transcriptomics data, which can be easily extended for particular situations. First, 
although MNMST automatically learns cell multi-layer networks from spatial transcrip-
tomics data, it also takes available networks as inputs. Therefore, MNMST offers users 
an opportunity to construct cell networks by incorporating expert-knowledge with par-
ticular backgrounds. Second, MNMST simultaneously addresses spatial transcriptomics 
data regardless of platforms such that users can directly apply it to available data with-
out modifying the structure of algorithms. Third, MNMST learns an affinity graph of 
cells, where spatial domains correspond to clusters of the graph. It therefore improves 
the interpretability of spatial domains, facilitating the down-stream analysis of spatial 
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transcriptomics data. Finally, although MNMST mainly focuses on the integration of 
gene expression profiles and spatial information to identify spatial domains, it can be 
easily extended to integrate supplementary information, such as morphological informa-
tion, by constructing additional networks.

Rapid developments of spatial transcriptomics technologies can measure large num-
ber of cells with high spatial resolutions at an unprecedent speed, which consequently 
results in the explosion of data. However, cell multi-layer networks constructed by 
MNMST is proportional to the number of cells, which poses a great challenge in accel-
erating MNMST for large- and super large-scale cell networks with millions of cells, 
hampering its application to very large data. Therefore, it is one of important issues to 
accelerate the proposed multi-layer network model. We already show that hardware 
acceleration is a good choice (Additional file  1: Section  1.6 and Fig. S4C). There are 
multiple possible strategies to address this issue, i.e., parallel computation or distrib-
uted learning systems, as well as approximating computation. Moreover, integrating 
genomics and spatial omics to further enhance the resolutions and annotation of spatial 
domains is also interesting.

Conclusion
In conclusion, we design a promising and novel approach MNMST that accurately iden-
tifies spatial domains with the network-based model,. This method facilitates the identi-
fication of tissue organization and enables the discovery of corresponding gene markers, 
providing an effective and efficient model to understand complex biological systems in a 
spatial context. In contrast to existing approaches, MNMST demonstrates its superiority 
for spatial domain identification and allows for the integrative analysis of spatial tran-
scriptomics across multiple tissue sections. We demonstrate the benefits of MNMST 
through comprehensive experiments with various spatial transcriptomics data generated 
by different platforms, providing a novel multi-layer network model for spatial transcrip-
tomics data.

Methods
Data preprocessing

For all datasets, spots (cells) outside the primary tissue regions are removed. By using 
SCANPY package [16], the raw expression data is filtered and normalized with log-trans-
formed according to library sizes. By following Seurat [52], genes that are expressed in 
less than 10 spots are also filtered. Only top 3000 genes remain for downstream analysis 
according to variance of gene expression, and expression of each spot is enhanced with 
its adjacent ones with BANKSY [24]. Principal component analysis (PCA) is employed 
for dimension reduction on the augmented gene expression profiles to obtain the low-
dimensional cell expression matrix X ∈ Rn×ι , where n and ι is the number of cells and 
dimensions respectively (usually ι=50 [20, 25]).

Construction of cell multi‑layer networks

MNMST constructs a graph for each of spatial and expression information in spatial 
transcriptomics data, resulting in the multi-layer network G = {G[s],G[e]} , where G[s] 
is the cell spatial network, and G[e] corresponds to the cell expression network. The 
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adjacent matrix of a cell network G is denoted by W ∈ Rn×n , where element wij denotes 
weight on edge connecting the i-th and j-th cell. Thus, constructing a network is equiva-
lent to obtaining its adjacent matrix.

On the construction of cell spatial network G[s] , MNMST first constructs a initial cell 
spatial network W [s] with using K-nearest neighbor algorithm (by following Squidpy 
[53], the number of neighbors k is 6 for 10 × Genomics data, 8 for Slide-seq and Stereo-
seq data, and 15 for imaging-based platforms), where weight w[s]

ij  for the i-th and j-th cell 
is inverse proportional to the spatial Euclidean distance between them (denoted by rij ), 
i.e., w[s]

ij = (rij)
−1 . Recently, evidence demonstrates that indirect relations, such as multi-

ple hops among cells, is more precise characterize topological structure of network [54]. 
MNMST takes pointwise mutual information (PMI) matrix [55] as adjacent matrix of 
cell spatial network G[s] (denoted by M[s] ). And, element m[s]

ij  of M[s] is defined as

where dl is the degree of l-th cell in network W [s] , and κ is the number of non-negative 
samples (default set to 1). In this study, we refer PMI matrix M[s] as the high-order topo-
logical structure of network G.

On the construction cell expression network G[e] , the cell expression matrix X is 
first augmented with the initial cell spatial network W [s] according to Ref. [24]. Then, 
MNMST utilizes sparse self-representation learning (SRL) [56–58] with local preser-
vation constraint [59] to automatically learn adjacent matrix W [e] , which is under the 
assumption that each cell can be well represented with its neighbors. And, the objective 
function for constructing cell expression network G[e] is formulated as a minimization 
problem as

where L[e] = D[e] −W [e] is the Laplacian matrix, Tr(A) denotes the trace of matrix A 
(i.e., Tr(A) = i aii ), � · �2 and � · �1 are l2− and l1-norm respectively, and α and β are 
parameters. The constraint diag(W [e]) = 0 avoids trivial solutions (formulation and 
optimization of Eq. 2 are shown in Additional file 1: Section 1.1 and 1.2).

Spatial and transcriptional feature learning by factorizing cell multi‑layer networks

Given cell multi-layer networks, the most intuitive strategy is to independently learn cell 
features for each graph, which are adopted by current algorithms because of simplicity. 
However, this strategy is criticized for the low quality of cell features considering that 
it neglects relations between cell spatial and expression network. In our previous study 
[60], we demonstrate that jointly factorizing multi-layer networks is promising in cap-
turing the relations of various graph, which significantly enhances the quality of features. 
Herein, MNMST utilizes a joint model with non-negative matrix factorization [61] to 
decompose the cell multi-layer network as

(1)m
[s]
ij = log

w
[s]
ij

∑

l dl

didj
− logκ

(2)
min

∥

∥

∥
X − XW [e]

∥

∥

∥

2

+ α

∥

∥

∥
W [e]

∥

∥

∥

1
+ βTr

(

W [e]LW [e]′
)

s.t. W [e] ≥ 0, diag
(

W [e]
)

= 0,
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where matrix B denotes the shared feature of cells.
Similar to Eq.  2, MNMST automatically learns an affinity graph based on matrix B 

with the denoising model and self-representation learning, which is formulated as

where B′ denotes the transpose of B, E is the error matrix, �Z�∗ is the nuclear norm of Z 
[62], and ‖E‖2,1 is the l2,1-norm, respectively (mathematical model for Eq. 4 in Additional 
file 1: Section 1.1).

Independence of feature learning and affinity graph construction fails to characterize 
patterns in spatial omics data, resulting in unsatisfactory spatial domain identification 
performance entirely, i.e., MNMST without joint learning. Previous studies [15] demon-
strate that joint learning is more precise to characterize structure of networks, and [63] 
verifies that joint learning is also applicable to spatial omics data. Inspired by previous 
studies, MNMST joints feature learning and affinity graph construction by combining 
Eqs. 3 and 4; objective function of feature learning is formulated as

where γ and � are parameters for tuning. The Alternating Direction Method of Multipli-
ers (ADMM) method [64] is employed to optimize Eq. 5, and update rules are deduced 
(Additional file 1: Section 1.3).

Clustering and visualization

Based on the learned affinity graph, MNMST employs Leiden algorithm [65] to obtain 
graph partitioning, where each cluster corresponds to a spatial domain. If the number 
of spatial domains is known in advance, MNMST performs grid search with gap of 0.01 
until the number of clusters is reached. Instability of nonnegative matrix factorization is 
adopted to obtain the number of domains when it is unknown [60]. To visualize distri-
butions of cells in tissues, the uniform manifold approximation and projection (UMAP) 
algorithm is selected [66].

Clustering criteria

When annotations of spatial domains are missing, two extensively adopted cluster-
ing criteria, including Silhouette Coefficient (SC) and Davies-Bouldin (DB) scores, 
are selected to validate the performance of clustering in terms of computation. Spe-
cifically, SC takes into account compactness within and separation across clusters as 
(b− a)/max(a, b) , where a is the mean intra-cluster distance, and b is the mean nearest-
cluster distance. It ranges between −1 and 1, where a higher score refers to more coher-
ent clusters. SC=0 means that the sample is on or close to the boundary of neighboring 
clusters, whereas negative values denote potentially wrong clusters. DB score is the 

(3)
min

∥
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∥
W [e] − BF [e]

∥

∥

∥

2

+

∥

∥

∥
M[s] − BF [s]

∥

∥

∥

2

s.t. B ≥ 0, F [e] ≥ 0, F [s] ≥ 0,
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average ratio of within-cluster distances to between-cluster distances, favoring farther 
apart and less dispersed clusters with low values.

Spatial trajectory inference

PAGA [32] infers trajectories of cell types for single-cell transcriptomics data, which 
generates graph-like maps of cells by preserving continuous and disconnected structures 
at multiple resolutions. Specifically, it outputs a graph, where nodes are clusters and 
edges are connectivity (or similarity) of clusters. Here, we adopt it to infer relations of 
spatial domains by inputting affinity graph of cells as well as labels of domains.

Identification and functional analysis of differentially expressed genes

MNMST performs differential expression analysis of genes for each spatial domain 
by using Wilcoxon rank-sum test implemented in SCANPY package [16]. Genes are 
expressed in 80% cells/spots in each domain and are with the absolute value of log 
fold change ≥ 2, and an adjusted FDR ≤ 0.05 is selected as differentially expressed 
genes (DEGs). The overlapping genes between DEGs and highly variable genes (HVG) 
obtained by spatialDE [27] are used for down-stream analysis. Gene ontology enrich-
ment analysis is performed with clusterProfiler [67].

Benchmarking

Seven state-of-the-art methods, namely SCANPY [16], Giotto [29], stLearn [28], SEDR 
[22], BayesSpace [18], SpaGCN [20], and DeepST [25], are selected as baselines, where 
SCANPY is non-spatial, and others are spatial clustering algorithms. All these algo-
rithms are executed with the suggested values of parameters to achieve the best perfor-
mance for fair comparison.

For datasets with known annotations of spatial domains, given ground truth P∗ and 
predicted domains P, the adjusted rank index (ARI) is defined as [31]

where n is the number of cells, nij is the number of cells of class label C∗ ∈ P∗ assigned to 
cluster Ci in partition P, and ni / nj is the number of cells in cluster Ci / Cj of partition P.
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