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Abstract 

RNA-binding proteins (RBPs) regulate key aspects of RNA processing including alterna-
tive splicing, mRNA degradation and localization by physically binding RNA molecules. 
Current methods to map these interactions, such as CLIP, rely on purifying single 
proteins at a time. Our new method, ePRINT, maps RBP-RNA interaction networks 
on a global scale without purifying individual RBPs. ePRINT uses exoribonuclease XRN1 
to precisely map the 5′ end of the RBP binding site and uncovers direct and indirect 
targets of an RBP of interest. Importantly, ePRINT can also uncover RBPs that are differ-
entially activated between cell fate transitions, including neural progenitor differentia-
tion into neurons.
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Main
Physical interactions between RNA binding proteins (RBPs) and RNAs regulate key 
aspects of cellular homeostasis including RNA biogenesis, splicing, transport, localiza-
tion, and decay [1]. Disruption of these regulatory interactions leads to cellular dysfunc-
tion and disease [2]. Several RBPs have been implicated in human diseases including 
cancers and neurodegenerative disorders [3, 4]. Current gold-standard methods to 
map RBP targets involve biochemical purification of the RBP-bound RNA followed by 
sequencing of the RNA cargo [5, 6]. This necessitates availability of high-quality antibod-
ies to perform the RBP-RNA purification which excludes a majority of RBPs expressed 
in mammalian cells. RBPs regulate thousands of genes including those encoding RBPs 
within intricate interaction networks. Mapping these networks on a global scale requires 
immunopurification of hundreds of RBPs, a massively expensive and laborious task, espe-
cially if the goal is to compare changes in RBP-RNA networks across cell states (for exam-
ple disease vs healthy). To circumvent these issues, we developed exonuclease-assisted 
mapping of protein-RNA interactions (ePRINT), a new method that allows mapping 
RBP-RNA interactions across the transcriptome without the need to purify specific RBPs. 
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Our method exploits the recent observation that organic extraction of UV cross-linked 
cell lysates causes RBP-RNA complexes to migrate to the interphase [7]. We enrich these 
RBP-RNA complexes and sequence the RNA to identify the footprint of the bound pro-
tein (Fig. 1A). Using bioinformatic analyses, we then uncover the identity of the RBP at 
each locus and map changes in RBP activity between experimental conditions.

We performed organic extraction on UV-crosslinked HEK293T cells and quantified 
the amount of RNA retained in the aqueous phase. As expected, treating cells with UV 
doses of 200  mJ/cm2 and 400  mJ/cm2 led to a dose-dependent decrease in the levels 

(See figure on next page.)
Fig. 1 ePRINT identifies bonafide RBP-RNA interactions. A Schematic of the ePRINT protocol. Briefly, cells 
are cross-linked using UV irradiation and then lysed. Protein-RNA complexes are isolated, and then RBP-RNA 
binding sites are isolated by heat fragmentation followed by 5′–3′ exonuclease digestion. Finally, the protein 
is digested and the RNA encoding the protein footprint is sequenced. B RT-qPCR indicating siRNA-mediated 
depletion of FUS mRNA in HEK293T cells after 72 h. N = 4. *** indicates pval < 0.001 by Student’s t-test. Error 
bars indicate SEM. C Representative images indicating siRNA-mediated depletion of FUS protein in HEK293T 
cells after 72 h. D UCSC genome browser snapshot showing an example RBP peak in exon 4 of the XIST 
gene that is enriched in ePRINT vs input, and unchanged between experimental conditions. E Mutational 
analysis showing percentage of peaks with deletions (DEL) or point mutations (MUT). Single nucleotide 
polymorphisms (SNP) indicate that the mutation/deletion was found within the 1000 genomes database 
[8]. F Distribution of all ePRINT peaks identified in HEK293T cells across the following gene features: introns, 
exons, 5′ UTRs, 3′ UTRs and intergenic regions. Numbers indicate percentages of ePRINT peaks mapped 
to a given feature. G Number of ePRINT peaks per 100 kb within introns, exons, 5′ UTRs and 3′ UTRs. H 
Enrichment of RBP motifs in peaks mapping to different intragenic gene features. UTR5, EX, IN, and UTR3 
indicate peaks where both the start and end sites map within the same 5′ UTR or exon or intron or 3′ UTR, 
respectively. EX_EX indicates peaks where the start and end sites map to different exons. EX_IN indicates 
peaks where the start and end sites map to exons and introns respectively. IN_EX indicates peaks where the 
start and end sites map to introns and exons respectively. IN_IN indicates peaks where the start and end sites 
map to different introns. I RBP motifs are enriched at peak start sites indicated by 0 on the x-axis. Peak start 
sites were extended by 100 bp (+ / −). Scores for individual motifs were estimated at each bp along each 
peak using the position weight matrices. Per bp scores were averaged across all peaks and converted into 
z-scores: higher z-scores (red) indicate a higher probability of locating the motif(s). The left panel indicates 
peaks identified in ePRINT samples. The right panel indicates randomly generated peaks. J UCSC genome 
browser snapshots showing example RBP peaks that are altered in the siFUS condition compared to the 
siNEG control. DOWN/Reduced peak (upper left panel): region: 3′ UTR of the ITM2C gene. Log2FC − 8.64, 
padj 5.02e − 07. UP/Enhanced peak (upper right panel): region: exon 6 of the RPSA gene. Log2FC 2.47, 
padj 4.65e − 09. Adjacent UP/DOWN peak (lower panel): region: 3′ UTR of the SMARCC1 gene. UP peak: 
Log2FC = 1.41. Padj = 5.90e − 13. DOWN peak: Log2FC =  − 0.86. Padj = 4.35e − 04. K Peak set enrichment 
analysis of FUS binding sites identified using eCLIP in HEK293T cells. X-axis indicates ePRINT peaks ranked 
from most significantly upregulated (left side) to most significantly downregulated (right side). A total of 4121 
FUS eCLIP peaks mapped to genes considered expressed in the ePRINT analysis; ePRINT captured 25% of 
these peaks (Fig. S4D). NES indicates normalised enrichment score identified by GSEA. L Hypergeometric test 
to determine enrichment of FUS target genes that display enhanced (UP) or reduced (DOWN) ePRINT peaks 
upon FUS knockdown. Genes with peaks in both directions are excluded in the UP ONLY and DOWN ONLY 
comparisons. Values shown in blue indicate fold enrichment of the observed FUS targets in each ePRINT 
peak group compared to the expected value. M Top 10 RBP motifs identified as enriched in peaks that are 
enhanced (red) or reduced (blue) after FUS knockdown. An enhanced peak indicates that the associated 
RBP has more binding events, or is more active, after FUS knockdown. A reduced peak indicates that the 
associated RBP has fewer binding events. NES indicates normalised enrichment score identified by GSEA. 
N, O Network analysis to identify direct and indirect effects of FUS knockdown. FUS eCLIP data was used to 
identify direct targets of FUS. eCLIP datasets (N) or ePRINT peaks (O) were then used to identify targets of the 
RBPs showing a change in activity shown in Figs. 1 M and S6B. eCLIP captures 30/53 of the genes that are 
differentially expressed upon FUS knockdown (DEGs). ePRINT captures 38/53 DEGs. Colour legend on the 
left indicates expression changes for RBPs and genes. The flow chart on the right displays the strategy used 
to map the network. P Hierarchical clustering of the reduced ePRINT peak set based on sequence similarity. 
Clusters are indicated by coloured rectangles. Q Enrichment of 6-mers in the identified reduced peak clusters. 
U nucleotides were converted to T to comply with the R alignment package. P-values are indicated as not 
significant (NS), < 0.05 or < 0.01. The green rectangle indicates 6-mers containing the GUGG (GTGG) or GGUG 
(GGTG) FUS motifs. The blue rectangle indicates 6-mers that are similar to the TDP43 motif (UGU GUG )
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of aqueous phase RNA, with 400 mJ/cm2 recovering ~ 90% of the total RNA from the 
interphase (Fig. S1A). Having confirmed that covalently bound protein-RNA com-
plexes can be effectively purified, we sought to identify the RNA footprint occupied by 
the bound protein. We heat fragmented the RNA before organic extraction (Methods) 
to a median size of 100–200 nucleotides (Fig. S1B) and purified the protein-RNA com-
plexes from the interphase. As expected, crosslinked lysates allowed efficient recovery 
of fragmented RNA while non-crosslinked lysates showed a significant loss of material 
(Fig. S1B). However, we observed recovery of low amounts of fragmented RNA from 

Fig. 1 (See legend on previous page.)
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the non-crosslinked samples. To get rid of the observed background, we treated the 
recovered RNA with T4 polynucleotide kinase to introduce a 5′ phosphate and then 
digested the repaired RNA with the exonuclease XRN1. We hypothesised that XRN1 
activity will cause complete digestion of the unbound RNA while covalently bound pro-
tein will physically occlude XRN1 progression, enabling precise mapping of the 5′ end 
of the protein footprint. XRN1 digestion further reduced RNA amounts from both the 
non-crosslinked and cross-linked samples with significantly more RNA being recovered 
from the cross-linked sample (Fig. S1B). However, we were unable to completely remove 
RNA from the non-crosslinked sample. This could be due to a subset of the RNAs being 
resistant to XRN1 digestion, possibly due to the 5′ end of the RNAs being protected by 
a 5′ cap or incomplete repair leading to retention of a 5′ hydroxyl group. Subsequently, 
we digested the RNA-bound protein with Proteinase K to release the RNA and prepared 
Illumina-compatible libraries for sequencing using the NEBNext small RNA kit. Our 
library preparation protocol requires adapter ligation to the 3′ and 5′ ends of the RNA. 
Hence, any RNA fragments with protected 5′ ends were not expected to be included in 
the final library. In parallel, we purified 1/10th of each cross-linked sample without per-
forming any enrichment to be used as an RNA fragment size-matched input.

We applied ePRINT to detect global RBP-RNA interaction networks regulated by 
the RBP FUS. FUS is normally localised to the nucleus and is involved in the regula-
tion of various RNA processing events including alternative splicing, microRNA biogen-
esis, mRNA stability, transcription, translation and transport, and is also a well-known 
component of cellular stress granules [9]. It is also found to be dysregulated in multiple 
cancers as well as neurodegenerative disorders including Amyotrophic Lateral Sclero-
sis [4, 10]. Given its importance in cellular homeostasis, multiple studies have explored 
the downstream targets of FUS using CLIP [11–13] making it an attractive choice to 
validate ePRINT. We knocked down FUS using siRNAs in HEK293T cells (Fig. 1B, C) 
and performed ePRINT across two biological replicates. We deployed the peak calling 
software CLIPper [14, 15] to identify RBP binding events. We detected 204,736 peaks 
that were present in at least two out of the four samples. Analysis of individual bind-
ing events across genes showed the importance of using an un-enriched size matched 
input to filter out background read densities in ePRINT experiments (Fig. S2). We only 
retained peaks that were significantly enriched relative to the size-matched input and 
further filtered them based on the peak amplitude and host gene expression (Methods) 
generating 41,567 high-confidence RBP-RNA binding events (example peak, Fig. 1D).

The identified ePRINT sites overlapped significantly more with at least one ENCODE 
eCLIP peaks compared to randomly selected sites in the transcriptome (29.84% in 
ePRINT vs 10% in random simulations, p-value < 2.2e − 6) indicating that ePRINT was 
identifying true binding events. Distribution of the ePRINT peaks across gene features 
revealed an abundance of sites in introns (Fig. 1F), probably due to their large size rela-
tive to other gene features. However, when normalised for the length of each feature, 
ePRINT peaks had the highest density in the 5′ UTR (Fig. 1G), possibly emphasising the 
role of RBPs in translational control and mRNA stability. We performed motif enrich-
ment analysis to uncover the identities of the RBPs that potentially bind specific gene 
features (Fig. 1H). Out of 41,567 binding events, 37,972 were assigned to a known RBP 
motif. Peaks associated with more than one RBP motif (Fig. S3A) may be indicative of 
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competitive binding, sequence similarity, or localisation of RBP binding sites in close 
proximity. We found that certain RBP motifs were more promiscuous, such as the RBP 
KHDRBS3 which is known to bind AU-rich elements (Fig. S3B) [16]. Notably, we also 
identified RBP motifs that were frequently found together. For example, the motifs 
M146_0.6 and M062_0.6 have considerable overlap, relating to the RBPs PABPC1 and 
SART3. This overlap is due to the sequence similarity between these motifs, which both 
target A-rich sequences. Strikingly, motifs enriched in introns were assigned to RBPs 
known to function in the nucleus including ELAVL3, SFPQ and several HNRNP pro-
teins, indicating that the identified proteins bind pre-spliced mRNAs in the nucleus 
(Fig. 1H). These motifs were significantly depleted in other gene features such as exons 
and UTRs (Fig. S3C). On the other hand, motifs enriched in exons or UTRs belonged 
to RBPs known to be involved in translational regulation or mRNA localization includ-
ing LIN28 and FMR1 (Fig. 1H). As expected, such motifs were depleted in the introns 
indicating these RBPs function in the cytosol (Fig. S3C). Similar results were obtained 
when the motif enrichments were calculated relative to random peak coordinates 
selected from within each gene feature (Fig. S3D). We ensured that the random back-
ground had 10 times the number of peaks in each feature as compared to ePRINT. 
Motifs for HNRNPs, CELF3, and SFPQ were enriched in introns while ELAVL3 motifs 
were enriched at the exon–intron junctions in accordance with our earlier analysis. SRSF 
and LIN28 motifs were enriched in exons but were also found to be enriched in introns. 
The differences observed could be because the random simulations were not enriched 
for regions associated with protein-binding. Mapping motif locations relative to peak 
start coordinates revealed that most motifs were enriched close to the start site (Fig. 1I). 
This indicates that XRN1 digestion continues until it is impeded by the protein-RNA 
crosslinking site allowing precise mapping of the crosslinked location.

Next, we investigated whether ePRINT can identify genome-wide FUS binding sites. 
We expected that the knockdown of FUS would lead to a decrease in ePRINT peak 
amplitude at FUS binding sites. Using DESeq2 (Methods), we identified 2753 peaks as 
increasing in amplitude (enhanced peaks) and 2403 as decreasing in amplitude (reduced 
peaks) in response to FUS knockdown (example peaks in Fig. 1J). We first identified FUS 
direct targets in HEK293T cells by performing eCLIP (sequencing statistics included in 
Table S1). De novo motif analysis of our FUS eCLIP data identified a GGUG/GUGG-
containing sequence as the top enriched motif (Fig. S4A), recapitulating previous FUS 
CLIP results [17]. Additionally, the FUS-associated 5-mers GGGGG and GGUGG iden-
tified by RNA-Bind-N-Seq (RBNS) [11, 18] were strongly enriched in our FUS eCLIP 
peaks (Fig. S4B). Finally, almost 90% of the transcriptome-associated FUS peaks were 
mapped to introns, as reported previously for FUS binding [19] (Fig. S4C). These results 
confirmed that our eCLIP data recapitulated FUS binding profiles and was of high qual-
ity. We then compared the location of FUS eCLIP binding sites with ePRINT peaks, 
calculating how close they were to each other. Around 25% of FUS binding sites were 
within 200 base pairs (bp) of an ePRINT peak, which was significantly higher com-
pared to a random peak set generated within the transcriptome (Fig. S4D). Out of the 
4121 high-confidence FUS eCLIP sites identified in HEK293 cells (Methods), only 52 
were proximal to at least one of the 4013 enhanced ePRINT peaks (p-adjusted < 0.05 
and log2 fold change > 1), while 136 FUS sites were proximal to at least one of the 3496 
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reduced ePRINT peaks detected using the same thresholds (p-adjusted < 0.05 and log2 
fold change <  − 1). To avoid setting hard thresholds, we used the FUS eCLIP peaks to 
perform gene set enrichment analysis (GSEA) on our sorted list of ePRINT peaks (most 
enhanced to most reduced) (Methods). In accordance with our hypothesis, ePRINT 
peaks that overlapped with FUS eCLIP were significantly represented in the reduced 
ePRINT peak set (Fig. 1K, Fig. S4E).

We noticed that the number of FUS eCLIP peaks that overlapped with unchanged 
ePRINT peaks was higher than ePRINT peaks enhanced due to FUS knockdown (Fig. S4E). 
This could be because an unchanged ePRINT peak might reflect the binding of another 
RBP to the same site upon FUS knockdown. We did not observe any bias in the enrichment 
of the RBNS motifs in FUS peaks that overlapped with enhanced, unchanged or reduced 
ePRINT peaks (Fig. S4E).

We further validated the overlap between ePRINT and eCLIP datasets at the gene 
level, allowing us to incorporate additional FUS CLIP datasets in our analysis [20–22]. 
We first mapped all FUS CLIP peaks within intragenic regions to the corresponding gene 
to define direct FUS targets. Next, we applied the same criteria to differential ePRINT 
peaks and calculated the overlap between the ePRINT and CLIP gene sets by a hyper-
geometric test. The overlap was calculated separately for the set of genes that showed 
enhanced or reduced ePRINT peaks. We noticed that a significant proportion of genes 
displayed both enhanced and reduced peaks within the gene body. To avoid confound-
ing our results, we also performed the overlap analysis after removing such genes. Gene 
targets of ePRINT peaks that were reduced after FUS knockdown showed the most sig-
nificant overlap with FUS eCLIP gene targets (Fig. 1L, Fig. S4F, Additional file 1: eprint 
vs FUS gene targets), with the enrichments at par when comparing FUS targets across 
cell lines (Fig. S4G).

Strikingly, the overlap at the gene level returned highly significant p-values compared 
to the overlap at the peak level. This suggests that FUS has multiple closely aligned bind-
ing sites per gene, in accordance with previous observations [23], and each CLIP data-
set might be capturing only a subset of these sites. Overall, our analysis indicates that 
ePRINT can identify FUS binding events across the whole transcriptome with high con-
fidence. De novo motif enrichment analysis on the reduced set of ePRINT peaks identi-
fied a GU-rich motif similar to the motif detected in FUS eCLIP (Fig. S4H), that was 
not detected in the enhanced set of ePRINT peaks. However, the motif was observed in 
only 5% of the reduced peaks. Previous studies on FUS motif analysis have noted a lack 
of consistency in assigning a sequence motif to FUS [17]. It is possible that FUS uses a 
range of motifs for target recognition depending on the cell type.

Based on the available ENCODE data, CLIP experiments typically detect ~ 3000 bind-
ing events per RBP (Fig. S5A). HEK293T cells express ~ 1400 RBP proteins [7], indicating 
we should expect around 4 million binding events total, assuming that each RBP binds 
independently to its target site and no sites overlap perfectly. Our reported number of 
binding events (41,567) was much lower than expected, likely due to stringent filtering of 
the initial set of peaks identified by CLIPper. To ascertain whether the observed results 
were dependent on the number of peaks detected, we lowered detection thresholds for 
CLIPper and input thresholding to identify 89,887 intragenic ePRINT peaks in total. 
Subsequent analysis of motif location and FUS CLIP overlap obtained similar results to 
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our previous thresholds (Fig. S5B–E). Expansion of our peak set resulted in a majority 
of genes having both peaks that go up and down. This is unsurprising, as transcripts are 
highly unlikely to be interacting with only a single RBP. This caused a lower number of 
genes to be included in the DOWN only analysis resulting in higher but still significant 
p-values (Fig. S5E). To keep computation times low, we proceeded with the original set 
of 41,567 peaks for further analysis.

Since ePRINT, in principle, can capture protein-RNA binding events in an unbiased 
manner, we used the data to evaluate changes to the RBP-RNA interaction network in 
response to FUS knockdown. Knockdown of FUS resulted in a change in the distribution 
of ePRINT peaks across gene features, notably a reduction in the proportion of peaks 
within exons and 3′ UTRs, and an increase in intronic peaks (Fig. S6A). This suggested 
compensatory binding of other RBPs to introns, in the absence of FUS. We identified 
other RBPs that may be affected by FUS knockdown by performing motif analysis on the 
differentially bound ePRINT peaks (Methods). The reduced set of peaks was found to 
be enriched for the SRSF RBPs (Fig. 1M, Fig. S6B) in line with the expected role of FUS 
in regulating alternative splicing. Motif analysis also retrieved the RBP FMR1 (Fig. S6B), 
which is known to act synergistically with FUS [24]. Accordingly, we observed an enrich-
ment of FMR1 binding sites detected by eCLIP in the set of reduced peaks (Fig. S6C). 
Our analysis indicates that knockdown of FUS impairs FMR1 binding to cognate RNAs. 
On the other hand, enhanced peaks were enriched for the HNRNP proteins HNRNPH, 
HNRNPF, and HNRNPC and TIA1 (Fig. 1M, Fig. S6B). FUS belongs to the HNRNP fam-
ily, sometimes known as hnRNP P2 [25]. Our analysis indicates that in the absence of 
FUS, these RBPs might expand their target repertoire to regulate FUS targets, potentially 
as a compensatory mechanism.

A key limitation of using motif-based analysis for RBP identification is a reliance on 
the availability of high-quality motif datasets. To address this, we performed GSEA 
analysis using ENCODE eCLIP peaks as genesets and the sorted set of ePRINT peaks 
to identify RBPs affected by FUS knockdown. We found 84 RBPs whose direct targets 
were enriched in reduced peaks (Fig. S6D), and only 1 RBP whose targets were enriched 
in up peaks (Fig. S6E). Importantly, top candidates identified by the motif analysis as 
having a reduction in binding events were also identified by CLIP, including the PCBP 
proteins, SRSF1, FMR1 and LIN28B, while HNRNPC was identified as enriched in the 
enhanced peaks. RBPs identified using both motif and CLIP-based analysis provide the 
highest confidence of RBPs with a change in activity. However, this approach will be lim-
ited by the availability of such complete datasets. Also, RBPs can have different sets of 
targets depending on the cell type and species as demonstrated by the overlap of FUS 
CLIP between cell lines (Fig. S4G). A motif-centric approach offers the advantage of 
not being dependent on CLIP data available for the specific cell type or species under 
investigation.

FUS depletion in HEK293T cells resulted in the differential expression of 53 genes 
(FUS KD DEGs) (Additional file  1: FUS siRNA vs ctrl siRNA DEG). Analysis of our 
CLIP data suggested that FUS directly interacts with only 8 of these, indicating that the 
remaining 45 genes could be regulated by RBPs that are downstream from FUS. From 
the list of RBPs identified from our motif analysis that showed differential binding upon 
FUS knockdown, we identified 18 RBPs that are direct FUS targets (FUS-RBPs) using 
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FUS CLIP data. Next, we used the ENCODE CLIP datasets to determine which of the 
53 FUS KD DEGs are direct targets of our FUS-RBPs. CLIP datasets were available only 
for 8 out of the 18 FUS-RBPs. Using this approach, we were able to link 30/53 of the FUS 
KD DEGs to at least one of the FUS-RBPs (Fig.  1N). We repeated this analysis using 
our ePRINT data to link the FUS KD DEGs to FUS-RBPs. As we were no longer limited 
by the availability of CLIP datasets, we were able to analyse all candidate RBPs that are 
directly regulated by FUS. This resulted in linking 38/53 FUS KD DEGs to at least one 
FUS RBP (Fig. 1O). Importantly, we were able to generate a denser network of the inter-
actions between proteins and RNA within the cell type of interest. Using RBNS motifs 
instead of the transite motif data in our network analysis led to similar results where we 
identified 41/53 DEGs (compared to 38 using transite) but a lower number of network 
edges (244 vs 336) (Fig. S7). An obvious approach to expand the ePRINT-identified net-
works would be to combine the position-weight matrices with RBNS-identified k-mers 
to call RBP targets. Thus, using ePRINT, we were able to generate a significantly more 
comprehensive network of the indirect effects of FUS depletion as compared to using 
available CLIP datasets (Table S2).

Several RBPs recognise their motifs within structural contexts [26]. We deployed 
PRIESSTESS [26] to identify motifs that incorporate information on both sequence and 
structure. We ran PRIESSTESS on ePRINT peaks with enhanced/reduced peaks, and on 
our FUS eCLIP dataset (Fig. S8). Strikingly, we identified the conventional GUGG motif in 
unpaired RNA structures in both the FUS eCLIP and ePRINT reduced peaks (Fig. S8A, B). 
This fits previous observations where FUS was shown to bind stem loop structures [27]. 
Interestingly, we also observed enrichment of a GAGG motif on RNA loops in both the 
CLIP and ePRINT reduced peaks (Fig. S8A, B), suggesting that this could also be a widely 
used FUS motif in HEK293T cells.

Finally, we performed an unbiased clustering analysis to discover novel motifs in 
our ePRINT peaks (Fig. S9A). We clustered enhanced and reduced peaks separately 
based on the presence/absence of unique 6mer sequences (Fig. 1P, Fig. S9B). We then 
performed an enrichment analysis to determine 6mer sequences enriched in particu-
lar clusters compared to all ePRINT peaks (Fig. 1Q, Fig. S9C). Using this approach, we 
were able to identify a single cluster in reduced peaks (cluster 11) that was enriched for 
GUGG sequences (Fig. 1Q). FUS and TDP-43 are closely related in structure, function 
and implication in diseases such as Amyotrophic Lateral Sclerosis (ALS) [28]. Using 
our kmer approach, we identified a small cluster of reduced peaks matching repetitive 
UG sequences, which is commonly associated with TDP-43 [29] (Fig.  1Q). This could 
indicate that FUS depletion leads to a reduction in specific TDP-43 binding events. 
To explore the potential of ePRINT for identifying novel RBPs, we lastly grouped the 
enriched kmers into known/unknown groups based on presence/absence in the Transite 
database. We then took the unknown kmers and performed GSEA analysis to con-
firm enrichment in enhanced or reduced peaks, resulting in a final set of 133 unknown 
kmers linked to a change in RBP activity (Fig. S9D, Additional file  1: Unknown kmer 
enrich FUSeprint). Notably, many of these 133 kmers have similar sequences, likely cor-
responding to only a handful of RBPs. Future experiments combining ePRINT analysis 
and Bind n Seq assays could identify RBPs linked to these novel motifs [30].
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Next, we evaluated the efficacy of ePRINT in determining RBP-RNA network changes 
across cell state transitions. The differentiation of self-renewing stem cells into neural 
progenitors and post-mitotic neurons is regulated by an intricate network of RBPs [31–
33]. We deployed ePRINT to identify key RBPs regulating the transition of motor neu-
ron progenitors (MNPs) into motor neurons (MNs). OLIG2 + MNPs were derived from 
human iPSCs and further differentiated into OLIG2-/ISL1 + MNs by pharmacologically 
inhibiting NOTCH signalling [34] (Methods). Immunostaining for OLIG2, ISL1 and 
NFM indicated that MNPs and MNs were generated at high efficiency using our proto-
col (Fig. 2A). ePRINT and peak finding was performed as described above with minor 
modifications (Methods).

We did not observe any significant changes in the distribution of peaks across gene 
features between the MNP and MN ePRINT samples (Fig. 2B). Differential peak analysis 
using DESeq2 identified 889 peaks as enriched in MNPs and 5123 peaks enriched in 
MNs. Example peak changes can be seen in Fig. 2C. Motif analysis on the differentially 
expressed peaks identified RBP motifs specifically enriched in MNPs or MNs (Fig. 2D, 
Fig. S10). We mapped motif locations with respect to the peak coordinates and observed 
an enrichment of the motif around the peak start site for several top candidates (Fig. S11, 
Fig. S12). We decided to focus our attention on the RBP motifs that displayed a sharp 
enrichment at the peak start site, and that were predicted to drive MNP self-renewal 
(Fig.  2E). We hypothesised that overexpression of RBPs responsible for maintaining 
MNPs in a state of self-renewal would inhibit neuronal differentiation. We delivered 
constructs encoding the RBPs HNRNPF and SRSF9 to MNPs and then induced them to 
differentiate using NOTCH inhibition (Fig. S13). Strikingly, over-expression of both can-
didate RBPs resulted in a significant reduction in neurite outgrowth compared to over-
expression of GFP alone (Fig. 2F, Fig. S14). Although both genes show downregulation 
at the transcript levels from MNP to MN (Fig. 2G, H), neither rank highly in the list of 
163 RBPs which are differentially expressed between cell states (Additional file 1: MN vs 
MNP RBP DEG). This highlights the power of ePRINT in identifying RBPs in terms of 
their activity and not simply a change in expression between cell states, a feature that will 
be instrumental for understanding RNA regulation in development, health and disease.

To further ascertain the mechanism behind the observed phenotypes, we sought to 
identify the downstream targets of these RBPs. To accomplish this, we mapped the 
motifs of HNRNPF and SRSF9 to ePRINT peaks upregulated in MNPs vs MNs. The 
identified peaks for each RBPs were then mapped to protein-coding genes that were 
deemed as downstream targets of the said RBPs. Based on this analysis, we identified 
995 peaks mapping to 857 genes for SRSF9 and 695 peaks mapping to 623 genes for 
HNRNPF. Gene ontology enrichment analysis on these genesets uncovered pathways 
targeted by these RBPs (Fig. S15). HNRNPF targets were enriched for cell–matrix adhe-
sion, which are highly active in differentiation, embryonic development and remodelling 
events [35]. SRSF9 targets were enriched for morphological and developmental pro-
cesses, alongside histone methylation. This suggests that SRSF9 may regulate cell mor-
phology and chromatin accessibility.

ePRINT simultaneously estimates transcriptome-wide RBP binding thereby captur-
ing a comprehensive picture of the role of all RBPs under a given condition and time 
point. However, that comes with the limitation of reliance on motif-based analytics to 
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tease apart the roles of individual RBPs. In this study, we used 174 motifs mapping to 
142 RBPs from the transite database [36]. These numbers are expected to increase with 
advancements in motif detection and the availability of high-quality CLIP datasets. 
Our ePRINT analysis is predicated on the hypothesis that changes in RBP target pro-
files are detectable through differential motif analysis in ePRINT peaks. Such changes 
could result from alterations in RBP expression, localization, or regulated binding, like 
needing a specific partner for the target location. ePRINT can identify shifts in RBP 

Fig. 2 ePRINT uncovers RBPs regulating cell fate transition from motor neuron progenitors (MNPs) to 
post-mitotic motor neurons (MNs). A Representative images of day 10 motor neuron progenitors (MNPs) and 
day 15 post-mitotic motor neurons (MNs). B Distribution of ePRINT peaks across gene features in MNPs vs 
MNs. Numbers indicate percentages of ePRINT peaks mapped to a given feature. C UCSC genome browser 
snapshots showing example RBP peaks. Unchanged peak (left panel): region: exon 5 of the PTPRS gene. 
Log2FC 4.86e − 03, padj 1 (0.9999719). DOWN peak (middle panel): Peak that was identified as reduced in 
MNs compared to MNPs. Region: intron 1 of the KALRN gene. Log2FC − 8.76, padj 8.21e − 05. UP peak (right 
panel): Peak that was identified as enhanced in MNs compared to MNPs. Region: exon 19 of the SRCIN1 gene. 
Log2FC 12.45, padj 6.46e − 07. D Top 10 RBP motifs identified as enriched in peaks that are enhanced (red) 
or reduced (blue) in MNs compared to MNPs. NES indicates normalised enrichment score identified by GSEA. 
E Motifs M151_0.6 (HNRNPH2, HNRNPH1, HNRNPF) and M065_0.6 (SRSF9) display enrichment at the peak 
start site (indicated as 0 on the x-axis). Peak start sites were extended by 100 bp on either side for the motif 
analysis. F Representative images of day 16 MNs after RBP overexpression (OE) (left panel) and quantification 
of total neurite outgrowth normalised by cell count (right panel). Control indicates eGFP expression. Cells 
were stained with NFM to define the soma and neurites. Nuclei were stained using Hoechst (blue). G Volcano 
plot of differentially expressed genes from day 10 MNP to day 15 MN. SRSF9, HNRNPF and HNRNPH1 have 
been annotated (light grey labels; triangle points). HNRNPH2 was not expressed in either MNPs or MNs. H 
RT-qPCR analysis of SRSF9 and HNRNPF mRNA expression levels between day 10 MNPs and day 15 MNs. 
N = 3. * indicates pval < 0.05. ** indicates pval < 0.01. *** indicates pval < 0.001 by Student’s t-test. Error bars 
indicate SEM



Page 11 of 20Hawkins et al. Genome Biology          (2024) 25:140  

target profiles if these RBPs recognise certain motifs. However, motif enrichment does 
not always imply higher RBP binding. This discrepancy can arise from motifs hidden 
in secondary structures leading to alternative RBP binding, competitive binding of two 
RBPs to similar motifs where the RBPs display opposite binding patterns across the two 
conditions, and if multiple RBPs share similar motifs. Another limitation of our study is 
the undersampling of binding events. This could be due to the library preparation pro-
tocol we used that relies on ligating adapters to both 5′ and 3′ ends of the RNA frag-
ments first and then converting the RNA into cDNA using reverse transcription. Since 
the reverse transcriptase commonly terminates at the protein-RNA cross-linking site, 
these fragments will not be enriched by PCR and will be lost. This is likely to lower the 
sensitivity of our peak detection analysis. Future applications of ePRINT can improve 
recovery of binding sites by incorporating the eCLIP library protocol [37] and increasing 
the depth of sequencing. Although the overlap between the reduced ePRINT peaks and 
FUS eCLIP sites was significant, the extent of the overlap was modest (Fig. S4E). This 
could be attributed to ePRINT undersampling global binding sites in addition to eCLIP 
detecting only a subset of the multiple closely aligned FUS binding loci. Additionally, 
FUS knockdown likely induces significant secondary changes in RBP profiles across the 
transcriptome that dominate the RBP binding landscape detected by ePRINT.

It must be noted that ePRINT may fail to detect true positives. For instance, MSI1 
and MSI2 are RBPs important for the self-renewal of neural stem cells that our study 
did not identify. This could be because the motifs identified for these RBPs are of 
low quality. Additionally, the thresholds we used to identify motifs in ePRINT data 
might not have been ideal. We chose a relative log-odds threshold of 0.8 for identify-
ing motifs, but this might not work best for all motifs, depending on their specific-
ity. Selecting thresholds based on background score distributions could lead to more 
accurate detection of RBPs [38].

Our method improves on existing methods that also aim to map transcriptome-wide 
RBP binding events [39–41]. ePRINT does not rely solely on organic extraction or nitro-
cellulose-based purification to enrich RBP-RNA complexes as this alone is insufficient to 
deplete unbound RNA. Additionally, the method by Schueler et al. [41], relies on over-
digestion of the RNA to get a higher resolution footprint (20–60 nt fragments). This 
makes mapping the reads to junctions challenging. Our method uses multiple rounds 
of organic extraction followed by XRN1 digestion to get rid of free RNA thus allowing 
a much higher signal-to-noise ratio. Additionally, the XRN1 digestion allows mapping 
the 5′ end of RNA footprint at near single-nucleotide resolution while leaving a longer 
3′ end fragment. This allows precise mapping of the RNA fragment across the genome 
including spliced junctions. Thus, we maintain the resolution of the RBP footprint with-
out compromising our mapping abilities. Further, ePRINT can be applied for post-mor-
tem tissue analysis, as live cells are not a requirement. Our analysis approach enables 
global identification of RBPs with a change in activity between cell states, whereas pre-
vious methods have focused on RBP profiles on a small subset of RNAs in a given cell 
state. Finally, by mapping ePRINT peaks to gene features, our analysis is accurately able 
to predict the cellular localisation of RBPs (Fig. 1H, Fig. S3C, Fig. S3D). This could be 
instrumental in uncovering mislocalisation events often observed in neurodegenerative 
diseases such as ALS.
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In summary, ePRINT can be deployed to identify downstream targets of a single 
RBP or map changes in the RBP interactome on a global scale as cells transition from 
one state to another in a cost-effective manner. With the increasing evidence implicat-
ing RBPs in a variety of diseases including neurodegeneration and cancer, we expect 
ePRINT will be a powerful method to understand the mechanistic basis of how RBP net-
works are altered in diseases.

Methods
293T maintenance

HEK293T cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM; 
Merck) supplemented with 10% foetal bovine serum (Merck), 2 mM GlutaMAX (Gibco) 
and 10 mM Hepes (Gibco).

FUS knockdown

HEK293T’s were seeded at a density of 200,000 cells per 6-well. The next day, cells were 
transfected with 5 nM Silencer Select siRNA (Thermo Fisher; siNeg, siFUS) using cal-
cium-phosphate (Takara). Media was changed at 24 h and samples were collected 72 h 
post-transfection.

Immunofluorescence

Cells were fixed in 4% paraformaldehyde, permeabilized in ice-cold methanol and blocked 
in 10% serum (HEK293T) or 1% BSA (MN). Primary antibodies (FUS 1:100 Santa Cruz 
Biotech sc-47711; ISL1 1:500 Abcam ab109517; OLIG2 1:100 R&D Systems AF2418; NFM 
1:1000 Merck MAB1621) were added in 1% BSA and incubated at 4 °C overnight. The next 
day, wells were washed with PBS, then incubated with Alexa-Flour secondary antibodies 
(Molecular probes; 1:2000) and Hoechst 33,542 (Molecular probes, 1:1000) at RT for 1 h. 
Cells were imaged using the ImageXpress Pico (Molecular Devices), or DMi8 microscope 
(Leica). Image quantification was completed using Cellprofiler [42].

RT‑qPCR

Cells were lysed and RNA extracted using the Monarch Total RNA Miniprep Kit (NEB) or 
RNA cleanup kit (NEB) according to manufacturer instructions. cDNA was reverse tran-
scribed using random hexamers and the High Capacity reverse transcription system from 
Applied Biosystems. Quantitative PCR was performed using the SYBR GREEN PCR Mas-
ter Mix from Applied Biosystems and the target gene mRNA expression was normalised to 
the expression of 2–4 housekeeping genes (HPRT1, RPL13, GAPDH and ACTB). Relative 
mRNA fold changes were calculated by the ∆∆Ct method. Primer sequences are included:

Target Forward 5′ to 3′ Reverse 5′ to 3′

FUS CAG ACA GGG AAA CTG GCA AGCT GGC GAG TAG CAA ATG AGA CCTTG 

HPRT1 CAT TAT GCT GAG GAT TTG GAA AGG CTT GAG CAC ACA GAG GGC TACA 

RPL13 CCT GGA GGA GAA GAG GAA AGAGA TTG AGG ACC TCT GTG TAT TTG TCA A

GAPDH CAG CCT CAA GAT CAT CAG CA TGT GGT CAT GAG TCC TTC CA

ACTB TGA CAT TAA GGA GAA GCT GTG CTA C ACT TCA TGA TGG AGT TGA AGG TAG T

SRSF9 CCT GCG TAA ACT GGA TGA CACC CCT GCT TTG GTA TGG AGA GTCAC 

HNRNPF CTC AGT GAT GGC TAC GGC TTCA TGT GGT GCT CTG CAC TGT GAAC 
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ePRINT

UV crosslinking

At least 200,000 cells were washed 1 × with ice-cold PBS (+ 0.49 mM MgCl2, + 0.9 mM 
CaCl2) and replaced with fresh ice-cold PBS. Cells were irradiated at 400 mJ/cm−2 and 
then cooled by the addition of further ice-cold PBS. Cells were either lysed directly from 
the plate or gently scraped from the plate and centrifuged at 1200 RPM, 5 min, 4 °C and 
supernatant discarded. Pellets were stored at − 80 °C.

Lysis and protein‑RNA isolation (phase separation 1)

Cells were lysed in QIAzol according to manufacturer instructions. A representative 
sample was isolated for input processing prior to the addition of 1/5th volume of chloro-
form (200 μL chloroform per 1000 μL QIAzol). The solution was thoroughly mixed and 
allowed to stand for 2–3 min prior to phase separation at 12,000 g for 15 min at 4 °C. The 
interphase was isolated and precipitated using 9 × ice-cold methanol, then washed 1 × in 
0.3 M guanidine hydrochloride in 95% ethanol, 1 × in 80% ethanol and then allowed to 
air dry for 5 min. The isolated protein-RNA complexes were then resuspended in a pro-
tein resuspension buffer (0.5% SDS, 50 mM Tris–HCl, pH 7.5) for 15–30 min at 60 °C, 
300 RPM.

Fragmentation

Protein-RNA complexes were fragmented using heat and magnesium (HEK293T cells) 
or ultrasonic shearing (MNPs and MNs). Briefly, HEK293T samples were diluted in pro-
tein resuspension buffer with 10 mM MgCl2, 1 mM DTT and 100 mM NaCl, then frag-
mented at 94 °C for 30 min with no shaking. Samples were cooled quickly on ice. MNPs 
and MNs were diluted in protein resuspension buffer, then sonicated for 15 cycles using 
the BioRuptor plus (Diagenode) and finally heated at 80 °C for 15 min, 300 RPM. Sonica-
tion was used in this instance to aid in resuspension of the protein-RNA complexes as 
well as fragment RNA to the desired size range. Sonication was conducted twice after 
each phase separation.

Phase separation 2

To deplete non-protein-bound RNA after fragmentation, samples were phase separated 
a second time using QIAzol and chloroform. After separation, the aqueous phase was 
replaced with nuclease-free water and samples were mixed and re-centrifuged. The 
aqueous phase was removed again, and the entire interphase and organic phase were 
precipitated using 9 × ice-cold methanol. This was to ensure that any protein transferred 
to the organic phase due to the short length of bound RNA, or large protein size, was 
also recovered. Precipitated protein-RNA complexes were washed and resuspended as 
before.

Exoribonuclease digestion

Please note, this section is demonstrative of a sample size of 2–300,000 HEK293T 
cells. Reagents should be scaled appropriately to the sample size used.



Page 14 of 20Hawkins et al. Genome Biology          (2024) 25:140 

SDS from the protein resuspension buffer was sequestered using an equal volume of 
20% TX-100. Samples were then diluted in 1 × T4 DNA ligase buffer with 10 mM ATP 
(NEB B0202A), 5 U DNase I (NEB M0303), 10 U T4 PNK (NEB M0201), 5 U XRN1 
(NEB M0338) and 60 U murine RNase inhibitor (NEB M0314S). Samples were incu-
bated for 1 h at 37 °C.

Protein digestion and RNA isolation

Immediately following exoribonuclease digestion, the protein was digested using 
5.3 mg/mL proteinase K (NEB T2001-1) for 2 h, 53 °C, 300 RPM. RNA was isolated 
using the Monarch RNA cleanup kit (NEB T2040) as per manufacturer instructions.

Input preparation

A representative sample of whole cell lysate (isolated prior to phase separation for 
MNP/MN samples or reconstituted using protein-bound and ‘free’ RNA from the aque-
ous phase for HEK293T samples) was precipitated in 9 × ice-cold methanol, washed 
and resuspended as described above. Protein was immediately digested, then RNA 
isolated as described above. The isolated RNA was fragmented and then treated with 
DNase and PNK, prior to the final enzymatic cleanup.

Sequencing

DNA libraries were prepared using the NEBNext rRNA depletion kit (NEB, E6310) 
and NEBNext Small RNA library kit (E7330) according to manufacturer instructions. 
RNA fragment sizes were assessed by RNA pico chip (Agilent, 5067–1513). Libraries 
were selected for fragments ranging from 200 to 400 bp equivalent to RNA fragments 
measuring 80–280 nt. Sequencing was performed at the Exeter sequencing centre 
using the NovaSeq platform.

Peak calling and differential analysis

Reads were mapped to the hg19 genome using STAR [43]. Initial peak calling was 
performed for each sample using CLIPper [14, 15] and peaks significant at 1e − 8 
were retained. Peaks with genomic overlap in at least two ePRINT samples were iden-
tified and their genomic coordinates merged to define the candidate peak superset 
(204,736 peaks) using HOMER [44]. Of these, 192,010 were identified as intragenic 
when mapped to hg19 gene annotations. These peaks were then filtered using the 
input, retaining those significantly enriched in the ePRINT samples in comparison to 
the corresponding input samples (p-value < 0.001, 50,342 peaks). Peaks with cumula-
tive read counts < 50 across all four ePRINT samples were removed, retaining 41,980 
peaks. Finally, peaks mapping to genes with cumulative counts across all four input 
samples < 50 (lowly expressed genes) were discarded generating 41,567 peaks. These 
high confidence peaks were then input to DESEQ2 for differential analysis [45]. The 
design formula incorporated input base gene expression for each ePRINT peak as a 
covariate. Differentially bound protein-RNA sites were identified using a statistical 
model that normalises the change in ePRINT peak amplitude to the change in host 
gene expression. For this reason, intergenic peaks were not included in the differential 
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peak analysis. For the FUS data, we also included batch as an additional covariate. To 
generate the expanded peak set for FUS ePRINT, we lowered the CLIPper p-value 
threshold to 1e − 4 detecting 337,125 peaks. After input filtering at a lower p-value 
threshold of 0.01, we identified 90,784 peaks. Further filtering on peak and gene 
counts as above retained 89,887 peaks. For the MNP/MN analysis, one of the repli-
cates for the MN input displayed significantly higher percentages of ribosomal reads 
and was excluded from further analysis. An adjusted p-value 0.01 and fold change of 
2.0 were used to determine differential peaks. Hypothesis testing and p-values were 
generated using the Wald test with multiple testing corrections using the Benjamini 
and Hochberg method. Differentially expressed genes were identified using conven-
tional DESeq2 analysis on the input samples.

Peak visualisation

Bam files were converted into bedgraph tracks using samtools and read density was nor-
malised to sequencing depth for visualisation in the UCSC genome browser [46] as indi-
vidual bedgraph tracks.

Mutational analysis

Mutation calling was conducted using GATK RNA sequencing variant calling workflow 
and known mutations (SNPs or deletions) were identified using the 1000 genomes data-
base [8].

Motif analysis

For the motif location analysis, peaks were scanned for the presence of RBP motifs in 
a 200-bp window centred on the peak start (0). Motif position weight matrices (PWM) 
were derived from the Transite database [36]and motif scanning was performed using 
the universalmotif R package with a relative log-odds threshold of 0.8 [47]. Scores were 
averaged for each motif across all peaks at each bp and converted to Z scores for plot-
ting. For motif enrichment analysis, we only scanned a 50-bp window centred on the 
peak start site.

To identify if any of the RBP motifs were associated with an increase or decrease in 
binding events, we sorted the peaks from most enhanced to most reduced. The set of 
peaks identified as carrying a given motif was deemed as a peakset for that particular 
motif. Enrichment was calculated by running a directional gene set enrichment analysis 
(GSEA) for each motif using the fgsea package [48].

To calculate motif enrichment in individual gene features, peak start sites and end sites 
were annotated separately using the CHIPpeakAnno package [49] as mapping to one of 
the following gene features: exon, intron, 5′ UTR, 3′ UTR. If a peak start and end site lay 
within an exon, the peak was called exonic. If the peak start mapped to an exon and the 
end mapped to an intron, the peak was identified as spanning junctions (EX-IN). Similar 
rules were applied for other features. Peaks matching to RBP motifs were probed for 
enrichment or depletion of genomic loci (intron, exon, UTR(s) and intron–exon junc-
tions) by hypergeometric test.
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To identify de novo sequence motifs in ePRINT and FUS eCLIP peaks, we analysed a 
50-bp window centred on ePRINT start sites or FUS eCLIP window centres. To iden-
tify structural motifs, we used a 101-bp window. We used PRIESTESS [26] that uses 
STREME [50] to perform motif enrichment analysis.

eCLIP and overlap analysis

FUS eCLIP was performed as described by Van Nostrand et al. (2020) [11]. Reads were 
mapped to human genome hg38 and significant FUS binding sites were identified using 
Skipper [51]. Sites were then lifted over to hg19 using the UCSC liftOver tool. Sites were 
considered significant if they had a p-value < 0.001 and an enrichment > 2 (4344 enriched 
windows total). De novo motif analysis was performed using these 4344 enriched win-
dows. For overlap analysis with ePRINT peaks, we only retained FUS eCLIP binding 
sites that mapped within hg19 annotated genes, resulting in 4121 windows. We iden-
tified ePRINT peaks that were within 200  bp of any FUS eCLIP peak. These ePRINT 
peaks were used as a “geneset” in the GSEA where ePRINT peaks were sorted from most 
enhanced to reduced. Similar, overlaps were calculated for the ENCODE eCLIP analysis. 
GSEA was performed using the R fgsea package [48].

Network analysis

Direct RNA targets of FUS, including downstream RBPs (FUS-RBPs), were identified 
using FUS CLIP data from HEK293T cells (see eCLIP methods). For Fig.  1N, down-
stream RNA targets of FUS-RBPs were identified using ENCODE eCLIP datasets, 
which were obtained from www. encod eproj ect. org. Downstream targets of FUS-RBPs 
in Fig. 1O were identified using ePRINT motif analysis (Transite). In Fig. S7, all RBP tar-
gets were identified using the RBNS database motifs. Networks were plotted in R using 
the GGally extension [52] to the ggplot2 package [53]. Simulations were completed by 
generating 53 random genes from the HEK293T transcriptome, to compare to the 53 
differentially expressed genes after FUS knockdown.

Sequence clustering and kmer analysis

ePRINT peaks were first separated into enhanced or reduced peaks. Pairwise align-
ments were conducted between these peak sequences and all potential 6mers using the 
Biostrings package [54]. Peaks within the reduced and enhanced sets were clustered 
separately based on alignment scores using hierarchical clustering, such that peaks 
containing similar 6mers were grouped together. Hypergeometric tests were deployed 
to identify kmers enriched within clusters, and then these kmers were checked against 
the Transite database [36] to determine if they were attributed to particular RBPs. Any 
unknown kmers were re-assessed by GSEA to confirm enrichment in up/down peaks.

iPSC maintenance and MN differentiation

Healthy human iPSCs (GM23279A) were obtained from the Coriell Institute for Medical 
Research. iPSCs were maintained as colonies on human ES-qualified Matrigel (Corning) 
in StemFlex (StemCell Technologies). Colonies were routinely passaged using EDTA and 
mycoplasma testing was conducted regularly to rule out contamination of cultures.

http://www.encodeproject.org
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For differentiation to MN, iPSCs were plated as colonies onto Matrigel and treated 
with neuronal differentiation media (DMEM/F12:Neurobasal in a 1:1 ratio, HEPES 
10 mM, N2 supplement 1%, B27 supplement 1%, L-glutamine 1%, ascorbic acid 5 μM) 
supplemented with SB431542 (40 μM), CHIR9921 (3 μM) and LDN8312 (0.2 μM) from 
day 0 till day 4. Cells were caudalized by treatment with 0.1 μM retinoic acid starting on 
day 2 and ventralized with 1 μM purmorphamine starting on day 4 and continued till 
day 8. On day 8, motor neuron progenitors (MNPs) were re-plated onto poly-D-lysine/
laminin-coated wells. Differentiation was induced by treating the cells with N2B27 
media supplemented with retinoic acid, purmorphamine and DAPT 10  μM. DAPT 
treatment was stopped at day 13 and media was changed to N2B27 supplemented with 
BDNF 10 μg/ml and GDNF 10 μg/ml. Samples were collected on day 10 (MNP) and day 
15 (MN) for ePRINT.

RBP overexpression

HNRNPF, SRSF9 and eGFP mRNA sequences were inserted into the inducible pLV-
TetO vector, replacing NGN2. Viral particles were produced using the pspax2 packaging 
vector and the pMD2.G envelope vector. The three expression vectors (eGFP, SRSF9 and 
HNRNPF) were transfected into HEK293T cells along with the packaging plasmids at 
equal amounts to generate the lentiviruses. The tet-encoding virus pLV_hEF1a_rtTA3 
was generated in parallel. We added 0.625 μL of each virus to 10,000 progenitors in a 
96-well that had 50 μL of culture media. These conditions were kept the same for all 
three constructs. MNPs were transduced at day 9 and RBP expression was induced with 
2 μg/mL doxycycline (dox) at day 10 (Fig. S13). Notch inhibition was conducted at day 
11 using DAPT as described above and maintained until day 16 when cells were fixed 
for immunofluorescence. Twenty-four hours prior to fixation, cells were selected with 
500 ng/mL puromycin. Dox-containing media was replenished every 48 h.

p3x-FLAG-hnRNPF was a gift from Mariano Garcia-Blanco, addgene #21,926 [55]. 
SRSF9_2xRRM_pGEX was a gift from Christopher Burge, addgene #135,120 [56]. pLV-
TetO-hNGN2-Puro was a gift from Kristen Brennand addgene #79,049 [57]. psPAX2 
and pMD2.G were gifts from Didier Trono (Addgene plasmid #12,260 and #12,259). 
pLV_hEF1a_rtTA3 was a gift from Ron Weiss addgene #61,472 [58].

Gene ontology

Leading edge peaks matching the HNRNPF or SRSF9 associated motif(s) were mapped 
to genes to form our gene sets of interest (see the ‘ Motif analysis’ section). Using these 
gene sets, against all genes with an identifiable peak, we probed for enrichment of bio-
logical processes using the ClusterProfiler package in R [59].
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