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Background
Early tumor detection is one of the major factors in successful cancer treatment 
that could significantly reduce cancer-related mortality and healthcare cost burden. 
Liquid biopsies are gaining prominence as a method for early cancer detection and 
management because they are minimally invasive compared to tissue biopsies. Most 
liquid biopsy-based methods employ circulating cell-free DNA (cfDNA) from plasma, 
which is composed of circulating tumor DNA (ctDNA) as well as background non-
ctDNA [1–3]. Reflected in ctDNA fragments, released from the tumor into the blood, 
are a range of molecular alterations occurring in tumor cells, such as somatic point 
mutations, copy number alterations, and cytosine modifications. Non-ctDNA also 
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Methylation‑based liquid biopsies show promises in detecting cancer using circulat‑
ing cell‑free DNA; however, current limitations impede clinical application. Most assays 
necessitate substantial DNA inputs, posing challenges. Additionally, underrepresented 
tumor DNA fragments may go undetected during exponential amplification steps 
of traditional sequencing methods. Here, we report linear amplification‑based bisulfite 
sequencing (LABS), enabling linear amplification of bisulfite‑treated DNA fragments 
in a genome‑wide, unbiased fashion, detecting cancer abnormalities with sub‑nano‑
gram inputs. Applying LABS to 100 patient samples revealed cancer‑specific patterns, 
copy number alterations, and enhanced cancer detection accuracy by identifying 
tissue‑of‑origin and immune cell composition.
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contains critical information such as tumor microenvironment and patient immune 
cell composition.

The first generation of sequencing-assisted liquid biopsy assays relied on identify-
ing specific somatic mutations including actionable mutations from cfDNA [4, 5]. 
However, the diagnostic scope of these assays has been limited for tumors with low 
mutation rates like hematological cancers and tumor types that lack recurrent muta-
tions due to their inherent heterogeneity. As low mutation rates have limited can-
cer detection using liquid biopsies, researchers have been focusing on the analysis 
of DNA methylation (5-methylcytosine or 5mC), a crucial epigenetic modification 
relevant to cancer development. In the past decade, several DNA methylation-based 
assays have been proposed for early cancer detection using cfDNA. Comprehensive 
5mC profiles hold the promise of simultaneously detecting cancer and identifying the 
tissue of origin (TOO) through genome-wide analysis of alterations in methylation 
patterns [3, 6–13]. Whole-genome bisulfite sequencing (WGBS) is the “gold stand-
ard” for measuring DNA methylation at a single base pair (bp) resolution. Cost-
effective targeted bisulfite sequencing (TBS) was also developed to direct sequencing 
towards more informative parts of the genome through target-specific enrichment of 
regions using probe hybridization capture or non-specific enrichment of CpG-dense 
regions by reduced-representation bisulfite sequencing (RRBS). Unfortunately, all 
these existing methods require large amounts of input DNA (Illumina TruSeq requir-
ing at least 250  ng, NuGen RRBS requiring at least 100  ng) that are often prohibi-
tive for clinical biospecimens, thus hampering methylome-based assays from being 
used in “real-world” clinical applications. For example, the existing methods cannot 
be used in clinically feasible volumes of plasma (e.g., a few milliliters) that contain 
probably less than 10 ng of cfDNA as the input. Additionally, ctDNA from tumors or 
cfDNA reflecting tumor-adjacent tissues may be present at even lower levels in the 
total cfDNA. These tumor-related components of cfDNA are often underrepresented 
in the current DNA methylation assays because exponential amplification is used in 
sample treatments, leading to reduced detection coverage and sensitivity.

To address the challenges posed by complex and DNA-limited clinical samples, we 
have developed a new assay called linear amplification-based bisulfite sequencing 
(LABS). This new procedure can linearly amplify 5mC signals, making it possible to 
analyze sub-nanogram amounts of input DNA. Our benchmarking experiments dem-
onstrated that the LABS could robustly profile genome-wide 5mC at single base-pair 
resolution, with an input amount as low as 10 pg, thereby overcoming the limitations 
of conventional assays. For cfDNA samples, the LABS preserves underrepresented 
DNA components and copy number aberrations, which could add an extra dimension 
of signals for cancer detection. The linear amplification further enables TOO identi-
fication and immune cell deconvolution, therefore improving the power of methyla-
tion-based cfDNA analysis. Using plasma-derived cfDNA samples from a set of 100 
cfDNA samples, including 50 from colorectal cancer (CRC) donors, 16 from pancre-
atic ductal adenocarcinoma (PDAC) donors, and 34 from healthy controls, we dem-
onstrated that the LABS enabled accurate detection of patients with different cancer 
types, by integrating methylation, copy number, and cellular deconvolution results 
from the LABS data.
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Results
Scheme of the LABS

In the LABS protocol, a fully methylated T7 adaptor is ligated to each end of the DNA 
fragment, and the resulting construct is treated with bisulfite. The T7 adaptor includes 
a T7 RNA polymerase promoter sequence and a 3′-end blocked short helper to form 
a partial double-stranded DNA structure for ligation. During the bisulfite treatment, 
all cytosines (C) are converted into uracils (U), while the 5mC remains unchanged. 
The T7 promoter sequence remains intact as well. After the bisulfite treatment, the 
promoter region is annealed and extended with a complementary T7 primer, which 
will initiate in vitro transcription (IVT). In IVT amplification, trace amounts of DNA 
fragments will be evenly amplified into multiple RNA copies. The RNA products 
will be subjected to reverse transcription, second-strand synthesis, adaptor ligation, 
library amplification, and sequencing (Fig. 1a).

The LABS protocol avoids potential amplification bias that could be introduced 
by conventional protocols of strand displacement. The single-stranded DNAs (ssD-
NAs) are generated linearly from 5′- to 3′-ends or to the bisulfite-damaged nicking 
bases, by tagging the T7 adaptor before bisulfite treatment and initializing T7 RNA 
polymerase-based IVT after bisulfite treatment. Therefore, the LABS approach helps 
preserve genomic information and measures the entire methylome in an unbiased 
fashion.

Technical robustness of the LABS

To test how well the LABS performed with varying amounts of input materials and 
identify any technical limitations, we used 100 ng, 10 ng, 1 ng, 100 pg, 50 pg, 20 pg, 
and 10 pg of genomic DNA (gDNA) from the E14Tg2a mouse embryonic stem cells 
(mESCs) for the experiment, with 2 biological replicates for each amount (Addi-
tional file 1: Fig. S1a, Additional file 2: Table S1). Each library generated an average 
of 31.3 million reads (with a standard deviation of 6.2 million). We found consistent 
CpG methylation levels across all samples, averaging at 42.7%, while CHG and CHH 
(where H is A, C, or T) methylation levels were low, averaging at 0.81% and 0.72%, 
respectively (Additional file  1: Fig. S1b). The comparison revealed a high level of 
accuracy in the LABS results, with a Pearson correlation coefficient of 0.88 for 10 ng 
input DNA (Fig.  1b). We also found that the biological replicates of the LABS data 
showed high reproducibility, with a Pearson correlation coefficient of 0.92 (Fig.  1c). 
Relatively low DNA methylation levels were observed at promoter regions and rela-
tively high levels at gene body regions, which were reported to repress initiation of 
spurious transcription and ensure transcription fidelity, consistent with known DNA 
methylation patterns (Fig. 1d) [14–16]. Integration of the LABS profiles with histone 
modification profiles in mESCs revealed negative correlations between DNA meth-
ylation and H3K4me3/H3K27ac and a positive correlation between DNA methylation 
and H3K27me3, indicating high specificity of the LABS data (Fig. 1e, Additional file 1: 
Fig. S1d). Further annotations of the LABS-covered CpGs indicated that this method 
reliably captured genome-wide CpGs, with the majority of them found to be located 
in intronic (30.0% on average) and intergenic regions (27.7% on average) (Fig. 1f ).
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Fig. 1 Development and validation of the LABS. a The schematic for the LABS. Fully methylated T7 adaptors 
were ligated to each end of DNA fragments and then treated with bisulfite (BS). The promoter region was 
further annealed and extended with a complementary T7 primer and then initiated in vitro transcription 
(IVT). b High correlation between the LABS and bulk reference. c High correlation between the LABS 
replicates. d Metagene plot of the LABS profiles showing low methylation levels at promoters and high 
methylation levels at gene bodies. e Heatmaps showing negative correlations of the LABS profiles with 
H3K4me3 and H3K27ac signals and positive correlations with H3K27me3 signals at TSS flanking regions. 
TSS, transcription start sites. f Annotation of covered CpGs for all three methods from different input DNA 
amounts. g Genomic coverage of the LABS from different amounts of input DNA, compared to the two 
competing methods. h Covered CpGs of the LABS from different amounts of input DNA, compared to the 
two competing methods. i Saturation curves of the LABS from different amounts of input DNA, compared 
to the two competing methods. j Distribution curves showing that the LABS has better coverage at regions 
with extreme GC percentages. k Genome browser view showing the LABS profiles from different amounts of 
input DNA, compared with the two competing methods
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To further assess the performance of the LABS compared to the existing methods, 
we performed whole-genome bisulfite sequencing (WGBS) on the same mESC line 
using two commercially available methods, i.e., MethylC-seq and EpiGnome, with 
input amounts of 100 ng, 10 ng, 1 ng, and 100 pg of mESC gDNA (Additional file 1: 
Fig. S1a). The libraries were sequenced to comparable sizes, averaging 44.9 ± 10.3 
million reads per library.

It is noted that high duplication rates are commonly observed for WGBS librar-
ies from low-input DNA, thus resulting in limited useful information and hamper-
ing the application of these assays to low-input cfDNA samples. We compared the 
duplication rates using different methods. We found that LABS displayed the lowest 
duplication levels across all input DNA amounts (Additional file 1: Fig. S1g). In con-
trast, MethylC-seq and EpiGnome showed extremely high duplication rates when 
using 100 pg input DNA, with rates of 96.87% and 97.47%, respectively. In compari-
son, the LABS achieved a duplication ratio as low as 9.72% for the same amount of 
input DNA. Furthermore, despite limiting at 10  pg of input DNA, only 40.77% of 
reads were duplicates for the LABS, indicating a dramatically improved detection 
limit compared to existing methods.

Next, we evaluated the coverage across the different methods, as high coverage 
rate is critical to obtain sufficient information, especially for low abundant DNA 
components. Overall, the LABS showed higher coverage of CpGs, genomic regions, 
and chromosomes, compared to the existing methods (Fig.  1g, h, and Additional 
file 1: Fig. S1e) at the same amount of input DNA. The coverage decreased slightly 
with reduced input DNA, with an average decrease of 12.9% for a tenfold reduc-
tion in input from 10 ng to 100 pg. In contrast, the coverage decreased by 70.9% for 
EpiGnome and 75.8% for MethylC-seq under the same conditions.

Coverage bias towards GC-rich regions has been reported as a drawback for the 
WGBS methods, which can be attributed to incomplete bisulfite conversion, PCR 
amplification bias, and some polymerases used in library construction [17]. Of 
the three methods evaluated in this study, the LABS showed the highest uniform-
ity across regions with varying percentages of GC content and maintained good 
performance even with only 100 pg of input DNA (Fig. 1j). The LABS also signifi-
cantly reduced bias towards GC content compared to the two competing methods, 
achieving high coverage for extreme regions (GC percentages > 80% or < 20%). The 
coverage patterns on both DNA strands were comparable for all three methods 
(Additional file 1: Fig. S1c).

In line with the low duplication levels, high genomic coverage, and low coverage 
bias observed in this study, the LABS demonstrated slow saturation with increasing 
input DNA amounts, resulting in greater library complexities (Fig. 1i, k, Additional 
file 1: Fig. S1f ). In contrast, MethylC-seq and EpiGnome showed early saturation at 
2 million reads on 100 pg of input DNA (Fig. 1i). We further conducted a compari-
son of the LABS on 1 ng and 100 pg of 12 commercial cfDNA samples. Unsurpris-
ingly, the performance of the LABS was only slightly compromised at 100 pg of input 
cfDNA, with low duplication rate and high genomic coverage observed in both sam-
ples (Additional file 1: Fig. S1h, S1i).
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Fig. 2 LABS reveals abnormal genomes and epigenomes in cfDNA. a Genome browser view of SEPT9 
promoter regions for all 3 groups. The schematic of the clinical experiment design was shown on the left. 
CRC, colorectal cancer; HEA, healthy controls; PDAC, pancreatic ductal adenocarcinoma. b PCA plot showing 
that deep‑sequenced CRC and HEA samples can be separated by methylation levels of promoters of 41 
differentially expressed genes from TCGA. c Numbers of differentially methylated region‑related genes in 
different combinations of comparisons across the three groups (FDR < 0.01, methylation difference > 15%). 
d Functional enrichment results of differential gene groups from c. e Circos plots showing the copy number 
alterations and methylation levels of 1 healthy control sample, 1 CRC sample, and 1 PDAC sample. Inner 
circles, methylation levels; outer circles, normalized copy numbers. f Heatmap showing the normalized 
copy numbers for all 50 CRC samples. Sequencing depth is shown on the right. g Heatmap showing the 
normalized copy numbers for all 16 PDAC samples. Sequencing depth is shown on the right
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LABS can detect epigenomic abnormality of cfDNA

We tested the feasibility of using the LABS on clinical cfDNA samples from 50 patients 
with CRC, 16 patients with PDAC, and 34 race-, age-, gender-matched healthy controls 
(Fig. 2a, Additional file 1: Fig. S2a, Additional file 3: Table S2). The CRC plasma samples 
were prospectively collected from consented patients undergoing surgical resections at 
the University of Chicago Medical Center (UCMC). The PDAC samples were obtained 
from archived plasma sample collections from patients undergoing the Whipple proce-
dures either at UCMC or at Ochsner Medical Center (provided by City of Hope). The 
healthy control plasma samples were collected from consented donors undergoing 
screening colonoscopies at UCMC. After extracting cfDNA from the plasma samples, 
we generated LABS sequencing libraries using 1  ng of cfDNA per sample (2.5  ng for 
PDAC) and, on average, sequenced 76.1 million reads per sample.

We observed substantial differences between the CRC and healthy control groups at 
the SEPT9 promoter region, the current FDA-approved methylation biomarker for CRC 
[18] (Fig.  2a), suggesting that the LABS is capable of recapturing this established bio-
marker. In comparison, the PDAC samples showed low methylation levels in the same 
region, lending support for the CRC specificity of the SEPT9 methylated promoter and 
sensitivity of the LABS.

To further investigate the promoter methylation patterns of known cancer-associated 
genes, we systematically identified 3188 differentially expressed genes (DEGs) from 
The Cancer Genome Atlas (TCGA) colon adenocarcinoma (COAD) dataset as colon 
cancer-associated genes by applying a relatively stringent filtering criterion (FDR (false 
discovery rate) ≤ 0.05 and logFC (fold change) ≥ 2 or ≤  − 2). Next, we extracted the cor-
responding promoter regions for these DEGs by flanking 1 kb of each transcription start 
site (TSS). We then calculated the methylation percentages of these promoter regions in 
our high-coverage CRC and healthy control samples. Through this process, we identi-
fied 41 differentially methylated promoter regions between the CRC and healthy control 
samples (percent methylation difference ≥ 12%, FDR < 0.01, Additional file 1: Fig. S2d). 
To further validate the significance of these regions, we utilized them as input to perform 
a principal components analysis (PCA) and observed that the CRC and healthy control 
samples were separated based on the methylation levels of these promoter regions, con-
firming the reliability of promoter DNA methylation based on the LABS data to corre-
late with at least part of gene expression changes associated with colon cancer (Fig. 2b 
and Additional file 1: Fig. S2d, S2e).

Next, we identified 1362–10,716 3-kb differentially methylated regions (DMRs) 
in the genome from cfDNA methylation profiles (Additional file  1: Fig. S2b). Intrigu-
ingly, both highly methylated regions specific to the control group and lowly methyl-
ated regions specific to CRC and PDAC samples were predominantly localized at the 
intergenic regions, consistent with what is known as the genome-wide demethylation 
during tumorigenesis (Additional file  1: Fig. S2b, S2c). In addition, functional enrich-
ment analysis of the DMR-related genes (i.e., host genes with DMRs in their promoters) 
revealed pathways known to be involved in tumorigenesis in each group (Fig. 2d). For 
example, the pathway “cellular response to DNA damage stimulus” was enriched in the 
CRC-specific highly methylated genes, while “carbohydrate biosynthetic process” was 
enriched in the PDAC-specific highly methylated genes. Importantly, we also observed 
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that “inflammatory response” was enriched in cancer-specific lowly methylated genes 
for both CRC and PDAC, while “immune response-activating signaling pathways” and 
“immune effector processes” were enriched in cancer-specific highly methylated genes 
for both cancer types.

LABS can detect copy number alternations in cfDNA

During our analysis of the LABS datasets from clinical cfDNA samples, we also observed 
copy number alterations (CNAs) in cfDNA derived from cancer patients. Standard 
WGBS methods are prone to PCR amplification bias, resulting in the underrepresenta-
tion of DNA fragments (e.g., tumor-derived DNA) that exist in low abundance in the 
cfDNA. We realized that the linear amplification in our protocol might have additional 
advantages of retaining DNA fragment composition information of the original, unam-
plified sample. To test whether we were able to leverage the low coverage bias inherent 
in linear amplification in order to obtain new information previously unavailable with 
exponential amplification, we carefully assessed genome-wide copy number altera-
tions in each cfDNA sample. Indeed, we observed substantial chromosome-scale copy 
number alterations for some patient samples independent of methylation level changes 
(Fig. 2e). While all healthy controls showed uniform copy ratios, 18/50 CRC and 8/16 
PDAC patients showed abnormal copy number alterations (Fig.  2f, g). These identi-
fied CNAs from cfDNA were further confirmed as tumor-derived based on previously 
known CNAs from the TCGA database, with 10 COAD amplification markers and 9 
COAD deletion markers found in at least 1 CRC patient cfDNA profile (Additional file 1: 
Fig. S2f ). These results further supported the high accuracy and sensitivity of the LABS 
on cfDNA.

LABS can reveal TOO and immune cell composition of cfDNA

Successful application of the LABS to detect CNAs in cancer patient cfDNA prompted 
us to search for additional information that the LABS could uniquely offer in contrast 
to traditional assays based on exponential amplification. Of note, circulating cfDNA 
contains DNA fragments from different tissues and blood cells in the background [19]. 
Although human tissues possess the same genomic DNA sequence, they have unique 
DNA methylation patterns [20, 21]. Because the linear amplification nature of the LABS 
avoids bias introduced by exponential amplification as shown in CNA detection, we pro-
ceeded to ask whether we could apply certain algorithms to estimate the relative pro-
portions of TOO sources for DNA fragments or cell origins using the published cell 
type-specific methylation patterns as reference.

By analyzing the tissue or cell-specific methylation signatures, it is possible to deter-
mine the origin of cfDNA fragments using deconvolution algorithms (see the “ Meth-
ods” for details). In particular, we found that neutrophils contributed the most to cfDNA 
(Additional file  1: Fig. S3, S4), consistent with a previous report [22]. As a proof-of-
concept, we also observed that both CRC and PDAC patients had a lower percentage 
of neutrophil-derived cfDNA fragments compared to healthy controls (Wilcox test, 
P-value = 0.059 for CRC and 0.1 for PDAC, Additional file 1: Fig. S4a). Interestingly, the 
percentages of cfDNA originating from the colon were significantly higher in CRC com-
pared to both healthy controls and PDAC patients (Wilcox test, P-value = 0.047), with 
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CRC samples showing low methylation levels at colon-specific, lowly methylated regions 
(Fig.  3a, b). We did not observe significantly higher levels of pancreas-specific contri-
butions in PDAC-derived cfDNA samples, compared to either healthy controls or CRC 
patients (Fig. 3c).

Furthermore, functional enrichment results of cancer-specific DMRs showed signifi-
cant changes in immune-related pathways (Fig. 2d), suggesting the possible existence of 
distinct immune cell compositions of cfDNA. Results from our immune cell type-specific 
deconvolution analysis showed notable differences between PDAC samples and healthy 
controls in their CD8 + T cell proportions, with CD8 + T cells being almost depleted 
in those PDAC samples (Wilcox test, P-value = 0.06, Fig. 3d). This finding is consistent 

Fig. 3 Deconvolution of the LABS profiles reveals tissue‑of‑origin and immune cell compositions. a Genome 
browser views showing CRC‑specific low methylation at colon‑specific regions with low methylation. b 
Relative proportions of colon‑derived cfDNA in all samples. c Relative proportions of pancreas‑derived cfDNA 
in all samples. d Relative proportions of CD8 + T cell‑derived cfDNA in all samples. e Relative proportions of 
CD4 + T cell‑derived cfDNA in all samples. f Relative proportions of monocyte‑derived cfDNA in all samples. 
g Relative proportions of B cell‑derived cfDNA in all samples. h Relative proportions of five different cell types 
from deconvolution of the COAD and PAAD transcriptome datasets in TCGA. COAD, colon adenocarcinoma; 
PAAD, pancreatic adenocarcinoma; TCGA, The Cancer Genome Atlas
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with the immune suppressive features of enriched fibroblast cells in the tumor microen-
vironment of PDAC. In contrast, the immune cell compositions in CRC samples were 
more heterogeneous than in PDAC patients. Still, when compared with healthy controls, 
we observed elevated levels of CD4 + T cells (Wilcox test, P-value = 0.00061, Fig. 3e) in 
CRC samples. Monocytes-derived cfDNA was also decreased in both CRC and PDAC 
groups (Fig. 3f ). We did not find significant differences in B cell-derived cfDNA across 
the three groups (Fig.  3g). We also applied the similar deconvolution method on the 
COAD (n = 290) and pancreatic adenocarcinoma (PAAD) (n = 179) transcriptome data-
sets from TCGA, further confirming less CD8 + T cell compositions in PAAD samples 
(Fig. 3h). Overall, our method allowed deconvolution of immune cell types directly from 
cfDNA methylation analysis and provided insights into the tumor microenvironment in 
different cancer types when compared to healthy controls (Additional file 1: Fig. S4b).

Finally, we evaluated the performance of the LABS, MethylC-Seq, and EpiGnome 
methods for immune cell decomposition using the same approach. Our analysis revealed 
that the LABS consistently produced accurate estimates of different cell types across 
varying amounts of DNA input (Additional file  1: Fig. S4c). In contrast, MethylC-Seq 
was unable to detect any T/NK cells (the data range for CD4T + cells are as follows: con-
trol 0–23%, MethylC-seq 0–3%, LABS 0–30%, EpiGnome 2–40%; the data range for NK 
cells are as follows: control 0–28%, MethylC-seq 0%, LABS 0–14%, EpiGnome 0–18%), 
while EpiGnome overestimated the proportion of eosinophils (the data range for eosin-
ophils are as follows: control 0–51%, MethylC-seq 5–100%, LABS 0–30%, EpiGnome 
32–50%). These discrepancies in accuracy were likely caused by their nonlinear amplifi-
cation approach, which is known to introduce bias into the final amplified products.

A multi‑faceted approach to increase the accuracy of CRC detection using cfDNA

We evaluated whether an integrated model that combined multiple types of features 
obtained from the LABS could provide higher predictive accuracy than methylation bio-
markers alone (Fig. 4a), using CRC samples, with which we had a relatively larger sam-
ple size. Specifically, we randomly divided the 84 samples (comprising CRC and healthy 
individuals) into a training set and a test set, in a 1:3 ratio. We obtained 3 types of data: 
methylation, copy number, and immune cellular compositions, and utilized both ran-
dom forest and support vector machine (SVM) to build classifiers. We initially tested 
methylation features within TSS regions alone and then added copy number ratios and 
immune cell compositions to evaluate the performance of the integrated model. For 
methylation features and copy number ratios, we conducted PCA to reduce dimensions. 
All features were rescaled and standardized (details provided in the “ Methods” section).

In the testing samples (n = 84), our findings indicated that using TSS methylation 
alone, the random forest algorithm achieved an area under the curve (AUC) of 0.79. 
However, by incorporating copy number data, the AUC increased to 0.91, and the fur-
ther inclusion of immune cell proportions resulted in an AUC of 0.93 (Fig.  4b). Con-
versely, training on immune cell proportions alone and copy number alone yielded 
lower AUCs of 0.59 and 0.88, respectively. Similarly, SVM produced comparable results 
(Fig. 4d). Notably, the most significant feature identified by both random forest and SVM 
was a principal component generated from the methylation data (Fig. 4c and Additional 
file 1: Fig. S5b), including TSS methylation of FGFR1, MYO6, and CDK9, among others. 
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Functionally, high expression of FGFR1 has been shown to be associated with increased 
proliferation and invasion of colorectal cancer cells [23]; MYO6 is known to be an onco-
gene in CRC [24], while CDK9 has been used as a potential target for the treatment of 
CRC [25]. Overall, our analysis indicated that combining multiple feature types obtained 
from the LABS could lead to higher detection accuracy than methylation biomarkers 
alone.

Discussion
Although cfDNA analysis holds great potential for non-invasive early cancer detec-
tion, there are still obstacles to overcome before broad applications in “real-world” 
clinical settings. A major challenge is the variation in the amount of ctDNA pre-
sent in different samples, which can range from less than 0.01% to over 90% of 
total cfDNA [2]. This variability affects the sensitivity of the assay and ultimately 
impacts its clinical utility. The value of liquid biopsies for cancer detection is there-
fore contingent on our ability to detect ctDNA within a larger amount of back-
ground DNA. Our LABS method utilizes T7 RNA polymerase-based in  vitro 
transcription to generate single-stranded DNA fragments after bisulfite treatment, 
preserving genomic information in a lineal and unbiased fashion of amplification. 
This strategy avoids potential amplification bias that is typically associated with 

Fig. 4 Integrating multiple layers of information from the LABS provides a better prediction. a Diagram of 
the integrated model. TSS methylation and copy number variations were first analyzed by PCA to find the 
most informative PCs. b ROC curves showing better prediction accuracy of the integrated random forest 
model for CRC compared to methylation biomarkers alone. CNV, copy number variation; ROC curve, receiver 
operating characteristic curve. c Variable importance of the random forest model shown in b. Each bar 
represents a variable, i.e., a principal component based on TSS methylation/a copy number variant, or the 
relative percentage of a particular immune cell type. d ROC curves showing better prediction accuracy of the 
integrated SVM model for CRC compared to methylation biomarkers alone. SVM, support vector machine
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exponential amplification approaches and is particularly suitable for cfDNA as the 
short lengths of cfDNA fragments may not be efficiently amplified by multiple dis-
placement amplification type approaches. As a result, the LABS is shown to achieve 
high genomic coverage and low coverage biases using sub-nanogram input DNA, 
representing a significantly improved DNA methylation profiling technique that 
will benefit cfDNA-based cancer detection and screening, for example, featuring 
with ~ 20-fold increased sensitivity when compared with MethylC-Seq and EpiG-
nome methods at 0.1 ng of input DNA.

Moreover, the high genomic coverage and unbiased amplification provided by the 
LABS allows for a wide range of analyses to be performed which were not previ-
ously possible. The linear amplification of all cfDNA fragments preserves underrep-
resented cfDNA components and allows sensitive detection of methylation features 
especially from ctDNA. The methylation signals within the promoter regions of 
ctDNA are well-known predictors of gene expression, allowing elucidation of func-
tional pathways associated with the tumor. Secondly, the linear amplification of our 
LABS method enables sensitive detection of copy number alterations even from sin-
gle cells [26], making CNA detection possible from limited input of cfDNA.

Importantly, we demonstrated that the LABS could be used for cellular deconvo-
lution in order to reveal the TOO of cfDNA sources and immune cell composition 
from the original, unamplified cfDNA. The unique methylation patterns of specific 
cell types have long been used to classify different cell or tissue types. The abili-
ties of the LABS data to be used to deconvolute and assess relative levels of cfDNA 
fragments derived from different cell types based on methylation signatures could 
open unprecedented opportunities. As we showed, approximately 50% of cfDNA 
in cfDNA samples was derived from neutrophils, with the remainder coming from 
other cell and tissue types. With the ability to identify the origin of cells at the read 
level and examine tissue-specific methylation signatures of different cfDNA frag-
ments, we may be able to reduce background noise and improve the accuracy of 
cancer detection. This new method allows us to detect and assess levels of not only 
ctDNA from human cancers but also cfDNA sources that represent altered immune 
cell composition or tumor-adjacent tissues. We showed that the deconvolution of 
immune cells-derived cfDNAs from PDAC samples resulted in lower percentages 
of CD8 + T cell component, consistent with the immune-resistant characteristics of 
PDAC. The levels of cfDNA components derived from CD4 + T cells and intestinal 
cells detected by the LABS could be promising markers themselves to enhance the 
sensitivity and specificity for colon cancer detection and screening. Sensitive detec-
tion and assessment of multiple features encoded in cfDNA revealed by the LABS 
can thus provide tumor and immune cell status simultaneously, showing the promise 
to be assessed for prognosis and/or guiding immunotherapies as well in the future.

In addition, the same approach as described in the current work can be applied to 
a wide range of human diseases beyond cancers. Circulating cfDNA from diseased 
cells, adjacent tissues, and immune cells could be used to tease apart pathogenic 
mechanisms underlying these disorders. A promising avenue for future research is 
to further develop machine learning and artificial intelligence (AI)-based models 
that can separate reads based on the origins of their DNA fragments in cfDNA.
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Conclusions
The LABS is a highly sensitive and effective method for methylation profiling, copy 
number aberration detection, and cell type deconvolution using amounts of input DNA 
feasible from clinical biospecimens. By extending information beyond differential meth-
ylation sites or regions, the LABS may significantly improve the power of methylation-
based cfDNA analysis, thus helping to establish liquid biopsies as a standard tool in 
health care in the future.

Methods
Cell culture and genomic DNA isolation

The mouse embryonic stem cells (mESC) were grown on gelatin-coated plates in Dul-
becco’s modified Eagle medium (DMEM) (Invitrogen Cat. No. 11995) supplemented 
with 15% FBS (Gibco), 2 mM l-glutamine (Gibco), 1X nonessential amino acids (Gibco), 
1% penicillin/streptavidin (Gibco), 1 × β-mercaptoethanol (Sigma), 1000 u/mL leukemia 
inhibitory factor (Millipore Cat. No. ESG1107), 1 μM PD0325901 (Stemgent, dissolved 
in DMSO), and 3 μM CHIR99021 (Stemgent, dissolved in DMSO). All cells were cul-
tured at 37 °C under 5.0%  CO2 and passaged every 2 days. For genomic DNA isolation, 
cells were harvested by centrifugation for 3 min at 1000 × g. DNA was extracted with the 
AllPrep DNA/RNA Mini Kit (Qiagen) according to the manufacturer’s protocol.

Patient recruitment and collection of plasma samples

A total of 50 patients with colorectal cancer (CRC), 15 patients with pancreatic ductal 
adenocarcinoma (PDAC), and 34 healthy individuals were recruited at the University of 
Chicago Medical Center. One additional PDAC patient sample was supplied by the City 
of Hope, with original patient consent and collection at Ochsner Medical Center in New 
Orleans. Blood from patients with CRC and PDAC was collected prior to surgical resec-
tion (CRC), Whipple treatment (PDAC), and adjuvant chemotherapy or other radical 
treatments. Blood from healthy individuals was collected from those individuals who 
underwent screening colonoscopies at the University of Chicago Medical Center with 
no malignant diseases nor advanced adenomas found upon post-colonoscopy pathologi-
cal analyses. Blood samples were collected in  K2 EDTA or Streck vacutainers and were 
centrifuged for 1350 × g for 12 min at 4 °C twice, and 13,500 × g for 5 min at 4 °C. The 
plasma fraction was reserved and stored at − 80  °C until cfDNA extraction. Circulat-
ing cfDNA was isolated from 0.3–2 mL plasma using the QIAamp Circulating Nucleic 
Acid Kit (Qiagen). CfDNA was quantified with Qubit. The informed consent form was 
obtained from each study participant. All patients were consented under IRB-10–209 A. 
The protocol is approved by the University of Chicago Institutional Review Board.

Preparation of T7 adaptors

Oligos for the T7 sequence /5Phos/iMe-dC/iMe-dC/iMe-dC/TAT AGT GAGT/iMe-dC/
GTA TTA ATTT/iMe-dC/G/iMe-dC/GGGG/iMe-dC/T and short helper CGA CTC 
ACT ATA GGGT/3Phos/ were dissolved in annealing buffer (10 mM Tris–HCl pH 8.0, 
0.1 mM EDTA, 50 mM NaCl). The T7 adaptors were prepared by mixing the two oligos 
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equally to 50 μM and were annealed using a PCR machine (95 °C 5 min, − 0.25 °C/min 
cooling down to 4 °C). The adaptors were diluted to 15 μM with the annealing buffer and 
stored at − 20 °C.

Bisulfite conversion

Bisulfite treatment was carried out on fragmented gDNA or cfDNA using the Methyl-
CodeTM Bisulfite Conversion Kit (Invitrogen, MECOV50), producing 9–20 μL eluate in 
nuclease-free  H2O.

MethylC‑seq WGBS library preparation

The mESC gDNA was fragmented into 150–400-bp dsDNA fragments. Sequencing 
libraries were prepared using the NEXTflex® Bisulfite Sequencing Kit (PerkinElmer) 
according to the manufacturer’s protocol. Briefly, after end repair and 3′-adenylation 
reaction, the methylated adaptor was ligated to two ends of DNA fragments. Then, DNA 
was subjected to bisulfite conversion. Finally, the library was amplified using the KAPA 
Hifi Uracil Plus Polymerase (Kapa Biosystems) and purified by 0.8X AMPure XP beads 
twice. The library was sequenced using the NextSeq 500 SR80 platform at the University 
of Chicago Genomics Core Facility.

Epignome WGBS library preparation

The TruSeq DNA Methylation Kit (Illumina, Inc., San Diego, USA) was used. gDNA or 
cfDNA was subjected to bisulfite conversion at first. Synthesis random primers were 
annealed to converted ssDNA and following the manufacturer’s protocol. DNA strands 
containing a specific sequence tag from random primers were synthesized. Then, 
a known sequence tag was added to the 3′-end of DNA strands. The di-tagged DNA 
was purified by using 1.6X AMPure XP beads. The library was amplified by the Fail-
safe PCR enzyme system and cleaned up with 1.0X AMPure XP beads. The library was 
sequenced with the NextSeq 500 SR80 platform at the University of Chicago Genomics 
Core Facility.

LABS library preparation

Extracted cfDNA or fragmented gDNA was ligated with T7 adaptor using KAPA Hyper 
Prep Kit (Roche Cat. No. KK8504). Briefly, DNA in nuclease-free  H2O was mixed with 
end repair and A-tailing buffer and end repair and A-tailing enzyme mix and incu-
bated at 20 °C 30 min and 65 °C 30 min. Next, the homemade T7 adaptor,  H2O, ligation 
buffer, and DNA ligase were added and incubated at 20  °C for 4  h or 4  °C overnight. 
After post-ligation clean-up using 1.4X AMPure XP Beads, DNA was subjected to 
bisulfite treatment. Bisulfite-converted DNA was extended via using EpiMark Hot Start 
Taq DNA Polymerase (NEB, M0490S) with T7 Primer (AGC CCC GCG AAA TTA ATA 
CGA CTC ACT ATA GGG, IDT with HPLC purification). Qiagen protease (Qiagen, Cat. 
No. 19155) was added and incubated at 50  °C for 2 h, followed by heat inactivation at 
75 °C for 30 min. The T7-tagged dsDNA fragments were used as a template to generate 
in  vitro transcription via HiScribe™ T7 High Yield RNA Synthesis Kit (NEB, E2040S) 
and SUPERase•In™ RNase Inhibitor (Life Technologies, AM2694) and were added in the 
reaction. The reaction was incubated at 37 °C for 12–16 h.



Page 15 of 18Cui et al. Genome Biology          (2024) 25:157  

After overnight T7 in vitro transcription, DNase I (NEB, M0303S) and digestion buffer 
were added to digest DNA templates at 37 °C for 10 min. Then, RNA transcripts were 
purified by RNA Clean and Concentrator kit (Zymo Research, R1013). RNA yield was 
quantified by Qubit 2.0 RNA HS Assay Kit (Life Technologies, Q32855). A maximum 
of 100  ng RNA was used for library construction (Roche, KAPA RNA HyperPrep kit, 
KK8541) following the manufacturer’s protocol. Libraries were sequenced at the Univer-
sity of Chicago Genomics Core Facility.

Processing of the LABS data

Sequencing adaptors and low-quality nucleotides were trimmed from raw sequencing 
reads by Trim_Galore and then aligned to the human reference genome (hg19) by Bis-
mark according to a published processing procedure. Further duplication removal and 
methylation calling were performed by scripts of the Bismark package. The methylation 
proportion of each CpG (at least 3 ×) was determined using the methylKit R package. 
Besides CpG-level data, for analytical convenience, data was also summarized into unbi-
ased, genome-wide 3-kb sliding windows for downstream analyses, represented by the 
weighted mean of CpGs for each bin. Differential methylation regions were detected 
by methylKit R package, with a cutoff of FDR < 0.01 and methylation differences larger 
than 15%. Metagene plot and Lorenz curve were generated by deepTools. GC content 
bias was assessed by Picard tools. IGV was used for the genome browser view. To avoid 
comparison bias by different sequencing depths, we down-sampled 15 million uniquely 
mapped reads for each sample for methods comparison. Assignment of CpGs to differ-
ent genomic features (e.g., exons, introns) was done by Homer with a default priority list.

Copy number detection

For copy number alteration analysis, we keep all sites with 1 × coverage. We used bed-
tools to extract counts for each genomics bin of 100 kb in hg19 for each sample from its 
bam file. Then, we pooled together counts for all normal samples as a panel of synthetic 
controls. We used SynthEx (v1.0.5) to compute the copy ratio for each cancer sample.

Tissue‑of‑origin and cell type‑specific deconvolution

For TOO and cell type-specific deconvolution analysis, we keep all sites with 1 × cover-
age. For tissue-of-origin analysis, 1013 previously curated markers were used to iden-
tify the tissue-of-origin for cfDNA [22]. These markers represent genomic regions that 
exhibit a methylation level that is significantly different in 1 tissue compared to others. 
The methylation level for each genomic region in each sample was estimated by cal-
culating the proportion of methylated reads that cover all sites within the same group. 
To address missing values in our dataset, we applied the impute.knn function from R. 
Next, we used EpiDISH [27] to perform deconvolution analysis with the Cibersort-CBS 
method.

For immune cell deconvolution, we used a similar approach to the tissue-of-origin 
analysis. We selected 333 CpG sites from PBMC samples as reference sites for immune 
cell deconvolution using EpiDISH [27]. Detecting all reference sites in a single LABS 
data sample can be difficult due to coverage insufficiency. To overcome this issue, the 
reference sites were split by dendrogram using the cutree function into 32 groups. The 
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sites within each group were then aggregated to form a mega site, and singleton clusters 
were removed, resulting in a final set of 26 mega sites. Each mega site consists of 2 to 50 
CpG sites. Missing values were imputed by the impute.knn function. We then used these 
mega sites to perform cell type deconvolution using EpiDISH with the Cibersort-CBS 
method. For statistical analysis, we employed the t.test function.

Binary classification of CRC and healthy controls

We randomly divided the 84 samples (comprising CRC and healthy individuals) into 
a training set and a test set, in a 1:3 ratio. We obtained three types of data: methyla-
tion, copy number, and immune cellular compositions. We preprocessed these data 
separately.

For methylation data, we computed beta values for 30,984 TSS regions (flanking 1 kb 
of each TSS) based on GENCODE annotations. We standardized and normalized the 
methylation training data using the preProcess function from the caret package. Next, 
we performed principal component analysis (PCA) on the standardized and normalized 
training data using the prcomp function in the R Statistical Environment [28] to reduce 
the dimensionality of the data. We retained 54 principal components (PCs) based on the 
cumulative proportion of variance explained by the components (95%). We obtained the 
reduced training data by taking the principal components from the PCA output, and we 
applied the PCA transformation to the test set.

For copy number data, we used the  log2 copy ratios within each 100-kb genomic bin. 
In total, we had 28,823 100-kb genomic bins in the hg19 genome. We removed any bin 
with “NA” values, leading to a list of 26,903 bins. We performed rescaling and PCA on 
copy number data, resulting in 28 PCs as input features.

To limit collinearity, we excluded one cell type (i.e., eosinophils) from the immune cel-
lular compositions data, after which the proportion data of the remaining six immune 
types were standardized and normalized.

The methylation, copy number, and proportion data were combined for the training 
and test sets. We trained a random forest model on the training data using the train 
function in caret with fivefold cross-validation. The model’s performance was evaluated 
on the test set using the predict function, and the ROC curve was plotted using the roc 
and plot functions from the pROC package.

The variable importance of the trained model was visualized using the varImp and plot 
functions in caret. Additionally, we used the train function in caret to train a support 
vector machine model using a radial kernel. The recursive feature elimination imple-
mented in the kernlab package was used to assess feature importance for SVM. We also 
trained models using only methylation or copy number data, using the same settings.
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