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Abstract 

Cell deconvolution is the estimation of cell type fractions and cell type-specific gene 
expression from mixed data. An unmet challenge in cell deconvolution is the scarcity 
of realistic training data and the domain shift often observed in synthetic training data. 
Here, we show that two novel deep neural networks with simultaneous consistency 
regularization of the target and training domains significantly improve deconvolu-
tion performance. Our algorithm, DISSECT, outperforms competing algorithms in cell 
fraction and gene expression estimation by up to 14 percentage points. DISSECT can 
be easily adapted to other biomedical data types, as exemplified by our proteomic 
deconvolution experiments.
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Background
A prominent approach to studying tissue-specific gene expression changes in human 
development and disease is RNA sequencing (bulk RNA-seq). Tissues, however, usually 
consist of multiple cell types in different quantities and with different gene expression 
programs. Consequently, bulk RNA-seq from tissues measures average gene expression 
across the constituent cells, disregarding cell type-specific changes. The quantification of 
the cellular composition and cell type-specific expression that underlies bulk RNA-seq 
data is therefore of pivotal importance to understanding disease mechanisms and identi-
fying potential therapeutic interventions [1].

A recent technological advancement, single-cell RNA-seq, allows for investigating gene 
expression in single cells for thousands of individual cells of a given tissue sample in a single 
experiment. However, while it provides unprecedented insights into single-cell biology, it 
suffers from severe technical limitations, most notably the presence of zero values in gene 
expression due to methodological noise, termed as “dropouts” [2]. In addition, the technol-
ogy is still very costly, which essentially prohibits its application in clinical and diagnostic 
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settings. Bulk RNA-seq, on the other hand, can be performed for a fraction of the cost and 
is widely used in clinical oncology and drug discovery [3, 4].

Computational inference of cell type fraction and cell type-specific gene expression is a 
source-separation task, termed as “cell deconvolution” within the context of cell biology. 
The estimation of cell type-specific gene expression is a well established and challenging 
problem in the field. Prior work includes but is not limited to TAPE [5], bMIND [6], Baye-
sPrism [7], and CibersortX (CSx) [8]. The basic aim is to provide cell type-specific gene 
expression information at a group or sample level. The resultant information allows deep 
biological insights into cell type-specific gene expression and pathway changes from bulk 
data. For cell deconvolution, recent computational methods utilize single-cell sequencing 
data to create simulated references with known fraction and expression for training [9]. 
While this approach achieves good deconvolution results, its performance suffers from the 
substantial domain shift between single-cell RNA-seq training (reference) data and the bulk 
RNA-seq target data. Domain refers to the statistical distribution of the source of a dataset 
[10]. Domain shift refers to a change in the statistical distribution of samples, which can be 
due to covariate shift, the presence of open sets, or both. In gene expression datasets, the 
covariate shift between real data and simulated datasets occurs due to changes in cell type-
specific gene expression and can arise from different dropout rates and tissue conditions, 
for instance. When domain shifts have purely technical reasons, they are often termed 
batch effects. CSx [8] has previously approached the problem of batch effect removal 
between single cell gene expression datasets [11], using Combat [12] to remove changes 
in cell type-specific gene expression between a single-cell reference signature matrix and 
bulk RNAseq data. Open sets may occur when new cell types are encountered during test 
time, such as the presence of differing cell lineages [13]. Since cells go through different 
differentiation states, domain shift between real data and simulations may be a combina-
tion of both, the covariate shift and presence of open sets. Among many possible sources 
of domain variation, the most prevalent might be the presence of batch effects that refer to 
technological differences between two sequencing experiments and gene expression differ-
ences of biological nature.

In this work, we first formally define the task of cell deconvolution and outline the 
hypothesis that semi-supervised consistency regularization should improve bulk RNA-seq 
deconvolution when learning from single cell RNA-seq data. We then provide evidence 
that two novel deep learning algorithms with semi-supervised consistency regularization 
outperform competing state-of-the-art algorithms in deconvolution, both on a cellular 
and gene expression level, across a wide range of datasets. On the datasets with ground 
truth flow cytometry cell type proportions, DISSECT achieves consistently better Jensen-
Shannon distance (JSD): 0.063 ± 0.015 and root mean squared error (rmse): 0.021 ± 0.019. 
In addition, DISSECT shows state-of-the-art gene expression deconvolution performance, 
achieving the best sample- and gene-wise correlations. Our algorithm can easily be adapted 
to other biomedical data types, as exemplified by our bulk proteomics and spatial expres-
sion deconvolution experiments.
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Results
In this section, we first formally define the cell deconvolution task, then present our 
hypothesis and DISSECT deep learning models, and compare DISSECT’s performance 
to other state-of-the-art deconvolution algorithms.

Task of cell deconvolution

Given an m× n gene expression matrix B consisting of m bulk gene expression vectors 
measuring n genes, the goal of deconvolution is to find an m× c matrix X of cell type 
fractions, where c is the number of cell types present in bulk samples such that,

where fractions and gene expression satisfy non-negativity 0 ≤ Xik , and 0 ≤ Skj , 
∀i ∈ [1,m], ∀j ∈ [1, n] and ∀k ∈ [1, c] and sum-to-1 criterion, i.e., 

c

k=1

Xik = 1, ∀i ∈ [1,m] . 

Here, S is known as the signature matrix and is unobserved. Each row Sk· is a gene 
expression profile (or signature) of cell type k. To utilize a reference based framework, S 
can be replaced with Sref  derived from a single-cell experiment by identifying the most 
representative cell type specific gene expression [8].

The problem of reference-based cell deconvolution can alternatively be formulated 
as a learning problem, where a function f such that f (B) = X is learnt. Since only B is 
available and X is generally unknown, simulations from a single-cell reference can be 
used to learn f. Clearly, from the above formulation of the cell deconvolution task, it 
is reasonable to assume linearity of deconvolution, i.e., each bulk mixture is a linear 
combination of expression vectors of cells spanned with corresponding cell type frac-
tions. Thus, as defined previously in Scaden [9], multiple single cells can be combined 
in random proportions to generate training examples Bsim and Xsim , where each row of 
B
sim is defined as,

where ekl  is the expression vector of cell l belonging to cell type k, and αk ,i is the number 
of cells belonging to cell type k sampled to construct Bsim

i·  . Correspondingly, each ele-
ment of Xsim is the proportion of a cell type k in that sample i and is defined as,

In this case, since each simulated sample has a distinct signature (i.e., gene expression 
profile), S is a three dimensional matrix with each element Skji denoting gene expression 
of gene j in cell type k for sample i. It is computed as following,
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The predictor f, learned from a simulated dataset, can then be applied to B to esti-
mate X . Note that, the genes expressed may differ between vectors el and B and as such 
before learning function f, each ek

l
 is subsetted to include genes common with B . This is 

the reason why this learning problem is transductive and a separate model needs to be 
reconstructed for each B.

Exploiting the linearity of deconvolution

The deconvolution task is to learn a cell type-specific gene-expression matrix (or signa-
ture matrix) S , which serves to accurately predict cell fractions and their correspond-
ing gene expression from a bulk gene expression matrix B . The actual mixing process 
of cells to form a tissue is assumed to be linear and, as such, the relationship between 
B and S is linear. However, S is unobserved, and the deconvolution algorithm is learned 
using simulations. This learning process involving simulations is highly dependent on 
the reference being the single-cell dataset used to generate simulations, and is subjected 
to an inherent strong domain shift [14]. To address this, we hypothesize that a consist-
ency-based regularization penalizing the non-linearity of mixtures of real and simulated 
samples would result in a mapping f̂  that is closer to true mapping f. Non-linearity of 
mixtures of real and simulated samples refers to the violation of Eq. 4, defined later, for 
estimated Xi·,X

sim
i·  and Xmix

i·  using mapping f.

Consistency regularization

Consider that B represents gene expression matrices of real (test) bulk RNA-seq that we 
want to deconvolve and and Bsim represents gene expression matrix of simulated bulk 
samples. The number of rows (representing samples) in these two matrices may differ. 
To simplify the notation, we use the same index i to denote indices for real bulk samples, 
simulations ( sim ) and their mixtures ( mix , defined further). Given a true bulk RNA-seq 
sample Bi· , and a simulated sample Bsim

i·  with paired proportions Xsim
i·  defined over a 

common set of genes, we can generate a mixture Bmix
i·  such that

Which gives us the relation

where Xi· represents cell fractions of sample i and where β ∈ [0, 1] . Cell types are charac-
terized by a few marker genes that are invariant across cell states and even across tissues 
[15]. A network that accurately predicts cell type fractions based on gene expression of 
simulated or real bulk RNA-seq data would thus have to learn them. In the estimation of 
cell type fractions, we therefore assume that the expression of these marker genes should 
be identical in signatures Smix

·i· , S·i· and S
sim

·i·  . Hence,

Equation 4 serves as the formulation to generate pseudo ground-truths for these mix-
tures during learning, and it enables the use of consistency regularization without hav-
ing to explicitly estimate signatures. In an iterative learning process Xi· can be replaced 

(2)B
mix
i· = βBi· + (1− β)Bsim

i· ,

(3)X
mix
i· S

mix
·i· = βXi·S·i· + (1− β)Xsim

i· S
sim
·i· .

(4)X
mix
i· = βXi· + (1− β)Xsim

i· ,
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with predictions of the algorithm from the previous iteration. Naturally, it is also pos-
sible to only mix real samples with each other. The number of bulk RNA-seq samples is, 
however, considerably lower (tens to hundreds) than the amount of single-cells present 
in a single-cell experiment (thousands or more). Equation 4 allows to generate pseudo 
ground truth proportions for mixtures Bmix

i·  at each step of learning cell type fractions, 
while Eq. 3 allows to generate pseudo ground truth signatures at each step of learning 
gene expression profiles.

Network architecture and learning procedure

We approach the two tasks, estimation of cell type fractions and estimation of gene 
expression profiles per cell type as two different tasks because of their differing assump-
tions. For the estimation of cell type fractions, we assume that signatures are identical 
for each sample, both simulated and bulk, while to estimate gene expression, we relax 
this condition and involve complete consistency regularization (Eq. 3). An illustration of 
the method is presented in Fig. 1.

Estimation of cell type fractions

The underlying algorithm of the first part of our deconvolution method is an average 
ensemble of multilayered perceptrons (MLPs). The ensembling is performed to reduce 
the variance by averaging different runs [16]. Each MLP consists of the same architec-
ture initialized with different weights. Each MLP has an architecture: Input (# genes) - 
ReLU6 (512) - ReLU6 (256) - ReLU6 (128) - ReLU6 (64) - Linear (# cell types) - Softmax. 
ReLU6 (output of ReLU activation clipped by a maximum value of 6) [17, 18] was chosen 
out of tested activations over grid search on (Linear, ReLU, ReLU6, Swish [19]). The final 

Fig. 1 A Illustration of the simulation procedure using reference single-cell data. The figure shows the 
simulation of one sample which consists of cell type fractions, simulated gene expression and cell type 
specific gene expression profiles (i.e., signature matrix). B Detailed overview of an MLP used to estimate cell 
type fractions. C Overview of an autoencoder used to estimate cell type specific gene expression profiles
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application of a softmax activation function allows to achieve the non-negativity and 
sum to 1 criteria of deconvolution. We train the network with batch size 64 to minimize 
the loss function per batch defined below with an Adam Optimizer with initial learning 
rate of 1e − 5.

where LKLdivergence(·, ·) is the Kullback-Leibler divergence and Lcons(·, ·) is the consist-
ency loss defined as:

To generate mixtures, for each batch, we sample β uniformly at random for Eq. 4. The 
interval [0.1, 0.9] was chosen for the uniform distribution to allow for at least some real 
and some simulated gene expression in the mixture. Since the number of simulations is 
generally larger (in our experiments, set to 1,000 times the number of cell types) than 
that of real data, we sample real data to create additional bulk samples, Bi· , until the size 
equals that of the simulated data, Bsim

i·  . This pair of data together with simulated propor-
tions, Xsim

i·  , is then used to create training batches of size 64. For every batch, we gener-
ate mixtures according to Eq. 2.

Our loss is inspired by MixMatch [20], which uses unlabelled samples to mix up and 
match sample predictions. Our adaptation in Eq. 5 addresses the limited samples avail-
able from true bulk RNA-seq, unavailability of sample fractions and is derived from 
the definition of the task itself. In essence, Eq. 5 integrates domain knowledge into the 
objective.

To avoid a scenario where the network does not learn and outputs predictions such 
that f (Bmix

i· ) = f (Bsim
i· ) = f (Bi·) , which is a solution to Eq. 4, we first let the model learn 

purely from simulated examples. This allows the model to learn meaningful expression 
profiles to achieve accurate results on simulated examples. We selected �1 based on a 
grid search over constant and step-wise functions. We adopt a step-wise function for �1 , 
given as:

We train the network for a predefined number of steps as opposed to epochs, since it 
is possible to generate infinitely many simulated samples without increasing the intrinsic 
dimensionality of the data. In our experiments, we limit the number of steps to 5000 as 
found optimal in Scaden [9].

Estimation of per sample cell type specific gene expression profiles Estimation of cell type 
fractions from bulk RNA-seq requires an assumption that signatures of cell types are 
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shared across single cell and bulk RNA-seq. However, cell type gene expression profiles 
(at least for genes that are not invariant across tissue states) may differ between samples. 
Previously, works such as CSx [8] and TAPE [5] have explored utilizing cell type fractions 
to estimate gene expression per sample. Here, we make use of a β-variational autoencoder 
with standard normal distribution as prior to estimate average gene expression of the dif-
ferent cell types from bulk RNA-seq expression levels. To jointly train the network on all 
cell types, we condition the decoder (at its input layer) with cell type labels. This allows 
for training a single model to estimate gene expression of each cell type for a sample. To 
make use of bulk RNA seq during the training, we regularize the reconstruction loss with 
a consistency loss defined over per cell type signature. Denoting f as before and g(·, k) as 
the output of the autoencoder with condition k (corresponding to cell type label) on the 
decoder input, this consistency loss is defined as:

where Bmix
i  is given by Eq. 2, and  f (Bmix

i· )k is the proportion of cell type k in sample i 
as estimated during cell type fraction estimation and is fixed during training. In imple-
mentation, we replace f (Bmix

i· )k with βf (Bi·)k + (1− β)Xsim
i·  . Thus, this loss forces the 

learned signature for cell type k, g(Bmix
i· , k) , to be closer to signatures for both real and 

simulated bulk samples. This loss function makes the assumption that mixing two bulk 
samples is similar to mixing individual cell type specific signatures that constitute those 
bulks. We added this loss function with a regularization parameter �2 (with default value 
0.1) to the loss of the standard β-variational autoencoder (the weight on the KL diver-
gence, denoted as βVAE , is set to 0.1 by default). The total loss function sums up to:

where N (0, 1) is standard normal distribution, and µ and σ are the empirical mean and 
standard deviation estimated from the output of the encoder. Both the encoder and 
decoder consist of two hidden layers. Under default settings used throughout this work, 
we train the network to minimize the loss function with an Adam optimizer with initial 
learning rate of 1e − 3 , and the values for hyperparameters �2 and βVAE are respectively 
0.1 and 1e − 2 . The network is trained for 5000 ×k , k being the number of cell types.

Estimation of cell type fractions and comparison with flow cytometry

To quantitatively assess the deconvolution algorithm, we first deconvolve six different 
peripheral blood mononuclear cells (PBMC) bulk datasets for which cell type propor-
tions have already been quantified using flow cytometry (Additional file 1: Table S1). To 
evaluate deconvolution performance, we utilize root-mean-squared error (rmse) and 
Pearson correlation (r) for cell type-wise comparisons and Jensen-Shannon distance 
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(JSD) for sample-wise comparisons between estimated fractions and ground truth 
proportions. The evaluation metrics are defined in the “Evaluation metrics” section. 
To evaluate our approach, we compared it to state-of-the-art deconvolution methods, 
MuSiC [21], CSx [8], Scaden [9] and TAPE (TAPE-O and TAPE-A) [5], BayesPrism and 
BayesPrism-M [7], and bMIND [6]. MuSiC and CSx were chosen for their best perfor-
mances in benchmarking studies [22, 23]. Scaden and TAPE are selected as both are 
deep learning-based deconvolution approaches, the latter of which, TAPE-A, performs 
an adaptation of the network weights for test samples. Since deconvolution is linear, we 
also considered linear MLPs as a deconvolution algorithm. Further details can be found 
under the “State of the art” section.

We utilize the PBMC8k single cell RNA-seq dataset as reference (Additional file  1: 
Table  S2) for all methods. The first two principal components of combined simulated 
and real PBMC datasets are visualized in Additional file 2: Fig. S1A, illustrating a domain 
shift between datasets.

For each dataset, DISSECT always obtained the best JSD across all datasets (Fig. 2A), 
leading to an average improvement over the second-placed algorithms of 6 percent-
age points. On the GSE65133 dataset, for instance, DISSECT outperforms second-
paced Scaden by 8 percentage points (DISSECT: JSD = 0.145, Scaden: JSD = 0.222). 
Similarly, DISSECT always obtains the best rmse across all datasets and improves over 

Fig. 2 Evaluation of deconvolution algorithm on six datasets with ground truth information. A Per-sample 
Jensen-Shannon divergence (JSD). Each plot corresponds to a dataset. From left to right and top to bottom: 
SDY67, Monaco I, Monaco II, GSE65133, GSE107572, and GSE120502. B Root mean-squared-error (rmse, top) 
averaged over cell types for each of the dataset. Datasets are listed on x-axis. Pearson’s correlation (r, bottom) 
averaged over cell types
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second-placed algorithms by 2 percentage points, on average (Fig.  2B). In addition, it 
achieved the best r on 4 out of 6 datasets (Fig. 2B).

Furthermore, we computed macro- level r and rmse by computing the metrics without 
making a distinction of cell types as performed previously in [9]. Note that in this set-
ting, JSD remains unaffected as it is a sample-level metric and is therefore excluded. We 
observe that DISSECT achieves consistently best rmse across all datasets while achiev-
ing best r on 5 out of the 6 datasets (Additional file 2: Fig. S1).

Since MuSiC can take advantage of multi-sample references, we also evaluated MuSiC 
using blood data from the Immune Cell Atlas (ICA) (Additional file  1: Table  S2). We 
also evaluated MuSiC with pre-selected marker genes (MuSiC-M) that were selected by 
CSx. MuSiC-M showed increased performance in 4 out of 6 datasets (Additional file 2: 
Fig. S2A-B). MuSiC also shows improved performance in the multi-sample setting in 
both rmse (Additional file 2: Fig. S2A) and r (Additional file 2: Fig. S2B). DISSECT still 
reaches best performance in rmse (on average 8 percentage points better) and r (on aver-
age 13 percentage points better) across all datasets.

Next, we evaluated the cell fraction deconvolution performance on the Monaco I 
(Additional file 1: Table S1) dataset, which contains several closely related and rare cell 
types and constitutes a relatively hard cell deconvolution task, using Ota dataset (Addi-
tional file 1: Table S1). With a correlation of 0.6, DISSECT’s average performance is 14 
percentage points better than the second placed Scaden (Additional file  1: Table  S3), 
while Scaden’s average RMSE was marginally (1 percentage point) better than second 
placed DISSECT (Additional file 1: Table S4). To validate that the performance improve-
ment in DISSECT is due to the semi-supervised learning and consistency loss, we 
performed an ablation study on data SDY67 by successively and cumulatively remov-
ing components of the algorithm and testing it again. The following components were 
removed successively: consistency regularization, KL Divergence loss (mean squared 
error instead), and the nonlinear activation function (identity function instead). The 
ablation results are shown in Additional file 1: Table S5.

In summary, these results provide strong evidence that DISSECT consistently outper-
forms current state-of-the-art cell type deconvolution algorithms across six different 
datasets with ground truth information.

Consistency of predictions and relationship between cell type fractions and biological 

phenotypes

To further corroborate the above results, we evaluate DISSECT’s performance on three 
datasets that do not have paired flow cytometry data. In this section, we compare to 
other established biological facts as well as divergences over different reference single-
cell datasets. The bulk datasets together with literature-based expected biological rela-
tionships of cell types are listed in Additional file 1: Table S1.

Brain

The ROSMAP dataset consists of 508 bulk RNA-seq samples from the dorsolateral pre-
frontal cortex (DLPFC) of patients with Alzheimer’s disease (AD) as well as non-AD 
samples (Additional file 1: Table S1). For 463 of these samples, Braak stages of disease 
severity have been quantified. Correspondingly, single-nuclei RNA-seq (snRNA-seq) 
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for 48 individuals from the same cohort is available [24]. For 41 of these samples, cell 
type fractions based on immunohistochemistry (IHC) from a previous work exist [25]. 
It should be noted that IHC was performed for all neurons and as a result, comparison 
with respect to excitatory vs inhibitory neurons was not possible. Here, we consider two 
biological ground truths: first is the ratio of excitatory neurons to inhibitory neurons 
(Additional file 1: Table S1), and second is the neurodegeneration, or the loss of neurons 
with increasing Braak Stages [26]. We deconvolved ROSMAP using the Allen Brain Atlas 
reference (Additional file 1: Table S2).

We computed the JSD between the estimated fractions and IHC cell type propor-
tions. DISSECT estimated fractions had the best average JSDs and provides the expected 
excitatory-inhibitory neuron ratio of (3:1–9:1), while other methods generally underesti-
mated this ratio (Fig. 3A). All methods recover a negative correlation between increasing 
Braak stages and the fraction of neurons (Additional file 2: Fig. S3).

Fig. 3 A Left: Box-plots showing JSD between estimated fractions and IHC based cell type proportions 
from 41 individuals from ROSMAP. Right: Ratio of excitatory to inhibitory neurons computed from ROSMAP. 
Expected ratios lie between 3:1 and 9:1 as indicated by dashed lines. B Boxplots showing microglia 
proportion as estimated by different methods. Median proportions of microglia estimated using snRNA-seq 
and IHC are labeled. C Correlations between estimates (y-axis) and IHC cell type proportions (x-axis). D JSD 
between predicted proportions from Kidney between experiments with Miao and Park as references. E 
Predictions from TAPE-O and DISSECT from Kidney. From left to right: Proximal tubule (PT), ductal convoluted 
tubules (DCT), and macrophages (Macro). Each row indicates a reference. Error bars show standard 
deviations, while height of the bars shown mean prediction
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Previously, it has been noted that snRNA-seq and IHC data provide different esti-
mates for some cell types, notably microglia and endothelial cells [25]. It is interesting to 
observe that DISSECT and Scaden were the only methods where the estimates of micro-
glia resembled closely those obtained from snRNA-seq and IHC data (Fig. 3B). We also 
computed r and rmse between the IHC cell type proportions and estimated fractions 
(Fig. 3C). With a correlation r of 0.901 DISSECT proved to be 14 percentage points bet-
ter than the second-placed linear MLP. DISSECT also displayed the best rmse at 0.079.

Overall, the comparison to IHC and snRNA-seq ground truth information for the 
ROSMAP data further strengthens our claim that consistency regularization with DIS-
SECT robustly improves cell deconvolution.

Pancreas

The GSE50244 bulk RNAseq dataset consists of 89 pancreas samples from healthy and 
type 2 diabetes (T2D) individuals (Additional file 1: Table S1). For 77 of these samples, 
hemoglobic 1C levels are available as ground truth information. We performed the 
deconvolution using three single-cell reference datasets Baron, Segerstolpe, and Xin 
(Additional file  1: Table  S2). Both Baron and Segerstolpe datasets contain alpha, beta, 
gamma, delta, acinar, and ductal cell types. While only alpha, beta, gamma, and delta cell 
types were present in the Segerstolpe dataset. To measure the consistency of deconvolu-
tion algorithms, we measured JSDs between estimated fractions using each of the three 
references (Additional file  2: Fig. S4A). While several methods showed considerable 
divergences, indicating reference-dependent deconvolution results, DISSECT displayed 
the most consistent results with a JSD of ∼0.1–0.2 across the three pairs. In terms of 
recovery of significant negative correlations between the estimated fractions of beta cells 
and hemoglobin 1C (hba1c) levels, DISSECT provided highly significant correlations of 
between − 0.45 and − 0.47 across the three references (Additional file 2: Fig. S4B). These 
results further suggest that DISSECT is both precise and robust in cell type deconvolu-
tion on real data and is comparatively less affected by the choice of single-cell reference.

Kidney

The GSE81492 dataset consists of 10 kidney samples of APOL1 mutant mice, which is a 
mouse model of chronic kidney disease (CKD) (Additional file 1: Table S1). We decon-
volved the dataset using two single cell references: Miao and Park (Additional file  1: 
Table S2). Similar to our experiments on the pancreas tissue, we computed JSD between 
the estimated cell type fractions from the two references. DISSECT provided the best 
average JSD (0.09) out of all considered methods (Fig.  3D). We further compare the 
methods on the recovery of expected relation of cell type fractions with the biological 
phenotype (Additional file 1: Table S1). Figure 3E compares two best methods on JSD, 
DISSECT, and TAPE-O, while Additional file 2: Fig. S5 presents these results on all cell 
types for all methods. It is known that CKD results in the decrease in proximal tubule 
cells (PT) and distal convoluted tubules (DCT). Cell type fractions estimated with DIS-
SECT showed a significant loss of PTs and DCTs and a corresponding increase in mac-
rophages, while TAPE-O provided much smaller differences between the control and 
CKD model (Fig. 3E). PTs are the most abundant cell type in kidney making up around 
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50% of a mouse kidney [27]. DISSECT correctly estimates the high abundance of PTs in 
healthy kidney, while TAPE-O underestimates them (Fig. 3E).

In summary, it is noteworthy that DISSECT shows state-of-the-art precision and 
robustness in cell type deconvolution across various ground truth information and 9 
datasets, including PBMC, brain, pancreas, and kidney bulk RNA-seq samples. DIS-
SECT also shows superior robustness to the choice of single cell reference.

Application to proteomics and spatial transcriptomics

It is conceivable that DISSECT’s consistency regularization for bulk RNA-seq cell type 
deconvolution should also lend itself to other biomedical datatypes in which domain 
shifts might be a problem. Applications might include, for example, the deconvolution 
of spatial transcritomic (ST) and bulk proteomic data with supra-cellular resolution. 
In order to evaluate these potential use-cases, we performed deconvolution of spatial 
transcriptomics and proteomics samples. Here, our aim is to test the hypothesis of 
applicability of DISSECT on these data modalities and we do not intend to perform an 
exhaustive comparison to multiple methods developed for these modalities. For com-
parisons on spatial transcriptomics, we consider four state-of-the-art spatial deconvolu-
tion methods, RCTD [28], Cell2location (C2L) [29] as shown to perform among the best 
in the benchmarking study [30]. We also include SONAR [31] and CARD [32], both of 
which can utilize spatial information. For comparisons on proteomic deconvolution, we 
consider the tested bulk deconvolution methods.

Spatial transcriptomics

We evaluated DISSECT on the task of spatial deconvolution using mouse brain and 
human lymph node samples (Additional file  1: Table  S1). As a ground truth, we con-
sidered relationships with biological phenotypes in line with our application of kidney 
and pancreas datasets (Additional file 1: Table S1). Due to the spatial nature of the ST, 
we could verify the recovery of neuronal layers in brain (Additional file 2: Fig. S6) and 
discernment of germinal centers in lymph node (Additional file  2: Fig.  S7). DISSECT 
performs on par with C2L and RCTD on both datasets. The results are provided and 
discussed in detail in the Additional file 2: Supplementary Note.

Proteomics

To compare the ability of the tested deconvolution methods to recover cell type propor-
tions from proteomics mixtures, we utilized 50 human brain samples (Additional file 1: 
Table  S1). We applied each deconvolution method on these samples using the Allen 
Brain Atlas reference (Additional file  1: Table  S2). Compared to other methods, DIS-
SECT recovered excitatory neurons to be the expected majority population in both data-
sets while maintaining the excitatory to inhibitory neuron ratio to be around expected 
range of (3:1–9:1) (Additional file  2: Fig.  S8). These results strongly suggest that DIS-
SECT reaches state-of-the-art performance on proteomic cell type deconvolution and 
might be applicable to other biomedical data types.
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Evaluation of DISSECT under domain shifts

To assess the impact of consistency regularization on the performance of DISSECT and 
other algorithms, we used Ota dataset (Additional file 1: Table S1). Using this dataset 
in a dynamic domain shift setup (see the “Domain shift experimental setup” section), 
we evaluated the performance of deconvolution methods. We also included DISSECT 
without consistency (DISSECT w/o consistency) to asses the impact of semi-supervised 
learning under varying shifts. The performance of all methods dropped significantly for 
test sets with domain shifts (Additional file 2: Fig. S9). However, the drop in performance 
was much lower for DISSECT than other methods. Furthermore, a clear advantage of 
semi-supervised learning with consistency regularization is observed in comparison to 
DISSECT without consistency, especially in terms of rmse.

Estimation of cell type‑specific gene expression

So far, we have shown that DISSECT can reliably deconvolve cell fractions. In this sec-
tion, we focus on the deconvolution and inference of cell type-specific gene expression 
from bulk RNA-seq mixtures using our novel conditional autoencoder based algorithm 
(Fig. 1). While we were able to use ground truth flow cytometry data for the evaluation 
of cell fractions, no such gold-standard is available for cell type-specific gene expression 
information. In consequence, we measure DISSECT’s gene expression inference perfor-
mance on simulated bulk RNA-seq data. To maintain a domain shift between the train-
ing and test datasets, we simulated data for training and testing using different single-cell 
datasets. We compared the performance of DISSECT with that of TAPE-A, bMIND, 
and BayesPrism, all of which can infer cell type-specific gene expression per sample. 
We simulated bulk samples from one of the four reference single-cell PBMC datasets 
listed in Additional file 1: Table S2 and created training simulations from the remaining 
three. Simulations from each single-cell dataset consisted of 6000 samples. To evaluate 
the performance of DISSECT and other methods, we compared the true and estimated 
gene expression profiles of each cell type for each simulated sample (sample-wise) and 
for each gene (gene-wise) using Spearman correlation. These sets of results were aggre-
gated across cell types and averaged. DISSECT displays the best sample- and gene-wise 
correlations in 6 out of 8 experiments, outperforming TAPE-A by 0.025 ± 0.023 in the 
sample-wise comparisons and by 0.012 ± 0.029 in the gene-wise comparisons (Table 1). 
Moreover, DISSECT exhibited an improvement in both sample and gene-wise metrics, 
exemplifying its advantage.

These results indicate that DISSECT’s consistency regularization robustly performs 
state-of-the-art cell type-specific gene expression deconvolution.

Discussion
In this work, we first formally define the task of cell deconvolution and outline the 
hypothesis that semi-supervised consistency regularization should improve bulk 
RNA-seq deconvolution when learning from single cell RNA-seq data. We then pro-
vide evidence that our novel deep learning-based algorithm, DISSECT, outperforms 
competing state-of-the-art algorithms in deconvolution, both on a cellular and gene 
expression level, across many different datasets. This included 6 PBMC datasets with 
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ground truth flow cytometry information and 3 datasets (brain, pancreas, and kid-
ney) with other established biological facts as ground truth information. Across the 
board, DISSECT provided the best cell type deconvolution results when compared 
to four state-of-the-art methods, while also being comparatively robust to the choice 
of single-cell reference. We follow a two-step procedure because the assumptions for 
each of the algorithms differ, and we do not foresee any significant benefit from itera-
tively deconvolving cell type fractions and gene expression. In a case study, we also 
show how our algorithm can easily be adapted to deconvolve cell types of proteomic 
and spatial expression data. For the spatial transcriptomics data, DISSECT estimates 
cell type fractions per spot, which are constrained to sum to 1. To be able to estimate 
the number of cells per cell type for each spot, and to map single cells, DISSECT esti-
mates can be used as a prior for algorithms such as CytoSpace [33]. CytoSpace infers 
both the number of cells in each spot and solves an optimization problem to map 
single cells to their spatial locations. To estimate only the number of cells per cell type 
for each spot, the total number of cells as estimated by CytoSpace can be multiplied 
with the output of DISSECT. While these results are not exhaustive, they neverthe-
less show the applicability of DISSECT on other biomedical data types, a research 
avenue we might pursue in more depth in the future. In addition to DISSECT’s state-
of-the-art cell type fraction deconvolution (an average improvement of 0.063 in JSD 
and 0.021 in rmse over the state of the art on the datasets with ground truth cell type 
fractions), it achieved best cell type-specific gene expression deconvolution results in 
6 out of 8 comparisons across four simulated datasets with an average improvement 
of 0.025 in the sample-wise and 0.012 in the gene-wise comparisons.

While we focused on MLPs for the estimation of cell type fractions and an autoen-
coder for gene expression estimation in this work, consistency regularization might also 
improve other deconvolution algorithms.

No gold standard ground truth exists for quantitative assessment of estimated cell 
type-specific gene expression between two conditions for real bulk RNA-seq data-
sets. This is a limitation of the experimental setup presented for cell type-specific gene 

Table 1 Spearman correlation between ground truth and estimated gene expression profiles on 
simulated datasets averaged over samples. The column Dataset indicates the single-cell dataset 
used to create simulations for the test set

For each dataset, values with the highest mean correlation are displayed in bold font

Dataset TAPE‑A bMIND BayesPrism DISSECT

sample-wise r

    PBMC6k 0.83±0.09 0.80 ± 0.07 0.83 ± 0.11 0.82 ± 0.08

    PBMC8k 0.79 ± 0.09 0.80 ± 0.08 0.81 ± 0.09 0.84±0.11
    DonorA 0.85 ± 0.11 0.84 ± 0.09 0.80 ± 0.09 0.89±0.10
    DonorC 0.81 ± 0.12 0.83±0.11 0.80 ± 0.08 0.83±0.08

gene-wise r

    PBMC6k 0.42 ± 0.14 0.46±0.14 0.41 ± 0.14 0.46±0.15
    PBMC8k 0.51±0.12 0.44 ± 0.18 0.45 ± 0.12 0.48 ± 0.14

    DonorA 0.48 ± 0.20 0.45 ± 0.16 0.46 ± 0.18 0.48±0.18
    DonorC 0.45 ± 0.11 0.43 ± 0.15 0.45 ± 0.12 0.49±0.12
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expression estimation. A potential solution will be to develop biologically valid bench-
mark datasets that can be evaluated at scale.

While DISSECT outperforms competing algorithms in cell type fraction and cell type-
specific gene expression deconvolution, some results leave room for further improve-
ment. DISSECT accurately distinguishes cell types where the transcriptional difference 
reflects cell subtypes, for instance PBMCs (CD4 T cells and CD8 T cells), pancreas (pan-
creatic islets), kidney (tubular epithelial cells), and brain (OPC and oligodendrocytes). 
However, when estimating granular cell type proportions in the Monaco I dataset, error 
rates exceeded the ground truth proportions (rmse>0.01 for cell subsets present at less 
than 1%). Therefore, for cell types that make up less than 1% of all cells and cells with 
very similar gene expression, for instance CD4 T and activated CD4 T cells, deconvolu-
tion algorithms should be used with caution. Future research into semi-supervised and 
contrastive algorithms as well as data augmentation and integration techniques should 
further enhance DISSECT’s performance on hard deconvolution tasks.

Conclusions
In conclusion, DISSECT provides a semi-supervised deep learning framework to esti-
mate cell type proportions and per-sample cell type-specific gene expression, is robust 
across datasets and tissues, and is easily applicable to other data modalities. DISSECT 
delivers state-of-the-art deconvolution performance, as long as cell types are not too 
closely related and make up more than 1% of all cells.

Methods
Evaluation metrics

To quantitively evaluate estimated cell type fractions across samples, we used two met-
rics, namely Pearson’s correlation (r) and root-mean-squared error (rmse). Given x and y 
as estimated fractions and ground truth respectively,

To compute sample-wise divergences two list of fractions xi and yi for the same sample 
i, we used Jensen-Shannon distance (JSD) which is the square root of Jensen-Shannon 
divergence. JSD is given as

where mi =
(xi+yi)

2  and D is the Kullback-Leibler divergence.

(6)r =
cov(x, y)

σx, σy

(7)rmse =
√

Avg(x − y)2

(8)JSD(x�y) =

√

D(xi�mi)+ D(yi�mi)

2
,
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State of the art

Here, we briefly detail the state-of-the-art deconvolution approaches. Out of these 
methods, CSx, TAPE, BayesPrism, and bMIND can also estimate per sample cell type-
specific gene expression signatures.

MuSiC

MuSiC [21] uses weighted non-negative least squares. MuSiC maintains cross-cell 
and cross-sample consistencies by appropriately weighting genes based on their 
informativity during an iterative procedure. We used MuSiC R package (version 
1.0.0). Deconvolution using MuSiC was performed according to the authors recom-
mendations. Since MuSiC is a method that utilizes multi-subject scRNA-seq datasets, 
when available, we used cells from multiple subjects in deconvolution with MuSiC. 
We used the default hyperparameters to execute MuSiC. For single-cell datasets with 
multiple donors (Additional file 1: Table S2), we ran MuSiC with single-cell data from 
all available donors.

CSx

CSx [8] is a deconvolution method that addresses domain gap problems with scRNA-
seq and bulk samples by aiming to correct batch effects. It uses scRNA-seq to gen-
erate a cell type specific signature matrix and uses ν-support vector regression as 
the underlying algorithm. To construct the signature matrix, we used the following 
hyperparameters for CSx as recommended by the authors: kappa = 999, q-value = 
0.01 and number of genes within a range of 300 and 500. The quantile normaliza-
tion was also disabled. CSx comprises two modes, S- and B-modes, to address the 
domain gap. S-mode is used when deconvolving with a signature matrix constructed 
using a scRNA-seq dataset, while B-mode is used when deconvolving with a signature 
matrix constructed using purified samples. We followed the documentation provided 
by the authors to run CSx and used the S-mode. CSx can also predict gene expres-
sion signatures for each sample for which it uses a non-negative matrix factorization 
based iterative algorithm. However, CSx only estimates genes likely to be differentially 
expressed in one of the bulk samples and as such the evaluations for simulations from 
healthy PBMC single-cells are not possible. We ran CSx through docker container 
obtained from [34].

Scaden

Scaden [9] is an average ensemble of three deep neural networks with different archi-
tectures that was developed for cell fraction deconvolution. Each network is trained 
only on simulated pseudo bulk data generated from an scRNA-seq reference similar 
to described above. Scaden is provided as a Python package. We used the official Sca-
den package (version 1.1.2) with the instructions provided by the authors to train the 
networks.
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TAPE

TAPE [5] is a fully connected autoencoder where the bottleneck consists of cell type 
fractions. The architecture of the encoder is similar to the archictecture of Scaden 
but with CeLU activations. The decoder consists of linear activations and outputs 
gene expression of the input vector. The adaptive mode of TAPE (TAPE-A) aims at 
optimizing the network for bulk samples, while the overall mode trains for fractions 
with an added loss function that reconstructs input bulk expression from fractions. 
Since TAPE-A reconstructs gene expression from fractions (bottleneck), the signature 
matrix is visible in the (linear) decoder. To estimate gene expression signatures for 
each bulk sample, decoder weights are optimized per-sample using an iterative opti-
mization strategy. Network weights are changed during the two modes, we compare 
with both and refer to TAPE in overall mode as TAPE-O and in adaptive mode as 
TAPE-A. We used the official scTAPE package (version 1.1.2) implemented in Python.

Linear MLPs

The solution to the deconvolution problem could be, in principle, a linear function. For 
this reason, we also compared to an MLP ensemble that has similar architecture to DIS-
SECT, but in which we replaced all non-linear activations with an identity function and 
removed the consistency loss.

BayesPrism and BayesPrism‑M

Primarily a method developed for oncology bulk datasets, BayesPrism [7] is a Bayesian 
framework to infer cell type fraction and cell type specific per-sample gene expression. 
It models gene expression as multinonmial distribution and calculates the cumulative 
posterior across cell states to derive the statistics for individual cell types. To evaluate 
BayesPrism with preselected marker genes using select.marker function. We utilize offi-
cial implementation of BayesPrism in R (version 2.1.2).

bMIND

bMIND [6] is a Bayesian method to infer cell type specific gene expression per sample 
based on single-cell gene expression for given cell types. Using the prior from single-cell 
gene expression, bMIND models bulk gene expression as the product of gene expression 
and cell type fractions as a Bayesian mixed-effects model. bMIND uses cell type frac-
tions as estimated by other deconvolution methods as its input. We used default settings 
of bMIND in our experiemnts with its R implementation (version 0.3.3).

Pre‑processing and simulations

Quality control

Before simulating from reference datasets, we remove cells with less than 200 expressed 
genes and genes which are expressed in less than 3 cells. Furthermore, we also remove 
cells expressing more than 4% mitochondrial genes. Thereafter, before each deconvolu-
tion, we subset reference and bulk datasets to include only the common genes between 
the two. This quality control step was identical for all methods.
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Simulations for deconvolution of bulk RNA‑seq samples and proteomics

For deep learning methods, we sampled αk ,i uniformly to generate simulations s.t. 
c
∑

k=1

αk ,i = 100, ∀i if the dataset is single-cell. For experiments on granular level cell types 

where simulations are done from purified cell samples, we modified the simulation pro-
cedure to reflect this. In this case, a simulated sample is given by Bsim

i· =
c
∑

k=1

X
sim
ik b

k

l
 , 

where bk
l
 is the expression vector of purified sample l belonging to cell type k. For all 

experiments, we simulated total 1000× c simulations where c is number of cell types in 
the reference dataset.

Simulations for deconvolution of 10x Visium ST samples

We adjusted simulation procedure to mimic ST datasets. 10x Visium (one of the tech-
nologies to generate ST samples) consists of around 10 cells per spot. To reflect this, we 
simulated between 5 and 12 cells to generate one spot (i.e., 

c
∑

k=1

αki ∼ [5, 12] ). Since ST is 

much sparser, to generate one spot, we kept between 2 and 6 cell types. Due to sparsity 
of spots, not all cell types are present in a given spot. To account for this and to make 
comparison across spots possible, we utilized the outputs of the last layer (before per-
forming softmax operation) and set negative predictions to zero. Thereafter, we re-nor-
malized these absolute scores by such that each prediction sum to one. For all 
experiments, we simulated total 1000× c simulations where c is number of cell types in 
the reference dataset.

Deconvolution of proteomics data

For deconvolution of proteomics data, it is not valid to mix protein intensities and gene 
expression due to different normalizations. Instead of mixing simulated samples with 
real samples, proteomics samples were mixed with each other, i.e., at each training step, 
B
mix
i· = βBr1· + (1− β)Br2·, where r1 and r2 are two randomly selected proteomics sam-

ples at the training step.

Pre‑processing for estimation of cell type fractions

For Scaden, TAPE, linear MLPs, and DISSECT, before passing simulated and real bulk 
samples to the network, we normalize samples to sum to a million counts (counts per 
million (CPM)) and log scale them with base 2 after adding 1. CPM normalization was 
performed to maintain total mRNA expressed per gene to be out of a fixed total gene 
expression, and CPM is widely used in computational genomics. During training, for 
each batch, we normalize each sample by MinMax scaling. These are standard preproc-
essing steps [9].

For MuSiC and CSx (under S-mode), data was supplied on a linear scale as suggested 
in their respective publications and no change was made to the default normalization 
methods of both [8, 21].

To estimate cell type specific gene expression profiles, we need to maintain relation-
ship between gene expression of individual cell types and simulated bulks, which would 
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be lost if we perform CPM normalization of both simulated samples and correspond-
ing cell type specific gene expression profiles. Hence, instead of performing CPM nor-
malization of simulated bulks, we normalize each test bulk sample to sum to the mean 
of sums of simulated samples. Furthermore, for estimating cell type specific gene expres-
sion, we want to maintain gene level information across samples. To achieve this, instead 
of normalizing each sample using MinMax scaling, we perform MinMax scaling globally 
over all samples.

For TAPE, since the signature matrix is observed in decoder (see the “State of the art” 
section), preprocessing step is similar to the preprocessing done in estimating cell type 
fractions.

Hyperparameters and fine‑tuning

We fine tuned the network for activation functions, learning rate, and batch size using 
randomized search with hyperopt [35] with the root mean squared error as the objec-
tive function. The following grids were used for the optimization: activations = [lin-
ear, ReLU, ReLU6, Swish], learning rate = [5e−3, 1e−3, 5e−4, 1e−4, 5e−5, 1e−5], �1 
= [0,1,5,10,15] with or without scheduled change at every 2000 steps and batch sizes 
= [32, 64, 128, 256] with 50 iterations on Ascites bulk dataset as used in Scaden [9]. 
Other hyperparameters were fixed to the default hyperparameters of Scaden. The opti-
mal hyperparameters were fixed for all experiments, with batch size = 64, learning 
rate = 1e−5, activation function = ReLU6, �1 according to schedule [0,15,10] at steps 
[0,2000,4000], and number of steps = 5000.

Domain shift experimental setup

Using the Ota dataset (Additional file 1: Table S1) that contains 9852 purified samples 
belonging to immune cell subsets including several B cell and T cell subsets as shown 
in Additional file  1: Table  S3, we created an experimental setup with domain shifts 
involving the following 4 scenarios. 20% split: We randomly split the dataset into train-
ing (80%) and test sets (20%). Activated 1: We used the same split as in 20% split. We 
removed certain CD4 and CD8 T cell subsets, namely, CD4 T memory, CD8 TEM, and 
CD8 TE from the training split while they were kept in the test set. In the test set, on the 
other hand, other subsets (CD4 T naive, CD8 T naive, and CD8 TCM) were removed. 
Activated 2: We followed the same procedure as in Activated 1 except we removed cer-
tain B cell subsets, namely, B NSM, BEx, and BSM from the training set while they were 
kept in the test set. B naive subset was removed from the test set. Finally, for a model-
based domain shift, we used DISCERN [36] to project the test set of 20% split to the 
dataset simulated from pbmc8k and used in deconvolving PBMC bulk RNAseq. The CD4 
T cell, CD8 T cell, and B cell subsets, regardless of their subtype identity, were labeled as 
CD4Tcells, CD8Tcells, and Bcells to allow comparisons. In each scenario, 6000 samples 
were simulated.
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