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Abstract 

Centrifuger is an efficient taxonomic classification method that compares sequenc-
ing reads against a microbial genome database. In Centrifuger, the Burrows-Wheeler 
transformed genome sequences are losslessly compressed using a novel scheme 
called run-block compression. Run-block compression achieves sublinear space 
complexity and is effective at compressing diverse microbial databases like RefSeq 
while supporting fast rank queries. Combining this compression method with other 
strategies for compacting the Ferragina-Manzini (FM) index, Centrifuger reduces 
the memory footprint by half compared to other FM-index-based approaches. Further-
more, the lossless compression and the unconstrained match length help Centrifuger 
achieve greater accuracy than competing methods at lower taxonomic levels.
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Background
Metagenomic sequencing enables comprehensive profiling of microbiomes in a sample 
and has been widely applied to study natural environments [1, 2], infectious diseases 
[3], allergies [4], and cancers [5]. Taxonomic classification labels each sequencing read 
with taxonomy IDs representing its most likely taxon of origin. This has become an 
important step in translating raw sequencing data into meaningful microbiome pro-
files [6]. Classification is usually conducted by comparing the read sequence to all the 
sequences in a database of microbial reference genomes, such as RefSeq [7], Gene-
Bank [8], or GTDB [9]. The growth of available microbial reference genomes creates a 
strong need for memory-efficient structures. Many methods turn to lossy representa-
tions of the database. For example, Kraken2 [10] reduces the space by storing min-
imizers [11] instead of all the k-mers as in Kraken [12]. Other approaches, such as 
MetaPhlAn [13, 14] and CLARK [15], build the database out of only a selected subset 
of sequences, i.e., marker genes or discriminative k-mers. Ganon [16] and KMCP [17] 
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utilize probabilistic data structures that discard k-mer identity but support checking 
k-mer presence with false positive probability. While these strategies reduce the mem-
ory requirement, they lose valuable sequence information, which may lower accuracy 
when classifying read to lower taxonomic levels. We previously co-developed the taxo-
nomic classification method Centrifuge [18] that used the memory-efficient Burrows-
Wheeler transformed (BWT) sequence [19] and the Ferragina-Manzini (FM) index 
[20]. Centrifuge searches for semi-maximal matches with no length constraints, avoid-
ing the decreased taxonomic specificity of k-mers when the genome database is large 
[21]. However, the FM-index grows linearly with the database size and the lossy com-
pression strategy proposed in Centrifuge is not scalable, making Centrifuge less usable 
in the context of large and growing genome databases.

Related genomes share similar sequences, giving genome databases a degree of repeti-
tiveness. Lempel–Ziv family indexes [22], context-free grammars [23], run-length 
compressed BWT indexes (RLBWT) [24], and the move structure [25] exploit this 
repetitiveness to reduce index size losslessly while supporting efficient search queries. 
For example, r-index [26] builds upon the RLBWT and fits in O(r) words, where r is the 
number of runs in the BWT sequence. The FM-index, by contrast, usually requires O(n) 
words, where n is the size of the database and is also the length of the BWT sequence.

While O(r)-space methods achieve good compression for highly repetitive sequences 
such as collections of human genomes, microbial genomes are more diverse. Applying 
these compact representations may take more space than the uncompressed wavelet 
tree [27]. Therefore, we designed two compact data structures, called run-block com-
pressed BWT (RBBWT) and hybrid run-length compressed BWT, to effectively com-
press the BWT sequence for the intermediate level of repetitiveness characteristic of 
microbial genome databases. RBBWT achieved the best overall performance in both 
time and space efficiency when compared to other compression methods. Inspired by 
this observation, we developed the software tool Centrifuger (Centrifuge with RBBWT), 
which rapidly assigned the taxonomy IDs for a sequencing read while consuming half 
the memory of a conventional FM-index.

Results
Method overview

Centrifuger assigns a taxonomic ID to each input read or read pair by searching against 
a losslessly compressed FM-index built from a microbial genome database (Fig. 1, Meth-
ods). The FM-index contains two memory-consuming components, the data structure 
supporting rank queries over the BWT sequence, and the sampled suffix array. We 
propose a novel compact structure, the run-block compressed sequence, to reduce the 
size needed to store the BWT sequence. For the sampled suffix array, we save space by 
storing only the sequence ID for each sampled position on the BWT sequence, omit-
ting information about the offset within the genome. The classification algorithm scans 
the read twice, once for the original sequence and once for the reverse-complement 
sequence. Each scan looks for semi-maximal matches, by repeatedly extending the 
match with the backward search until reaching a mismatch, then skipping the base 
immediately after the point where the backward search terminates. We call the match 
semi-maximal because only one end of the match cannot be extended further. For each 
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match, Centrifuger retrieves the sequence IDs associated with entries in the match-
ing BWT interval. Centrifuger adds a score, which is a quadratic function of the match 
length, for each retrieved sequence ID. After all the valid matches are processed, the 
highest-scoring taxonomy IDs translated from the sequence IDs are reported as the clas-
sification result. When the number of reported IDs exceeds the user-specified threshold 
(default report threshold 1), Centrifuger reduces the number to within the threshold by 
promoting some taxonomy IDs to their lowest common ancestors (LCAs) in the tax-
onomy tree. In other words, Centrifuger reports the LCA of the taxonomy IDs for a read 
by default, as in Kraken2.

The computational efficiency of run‑block compression

Run-block compressed sequence is a novel compact data structure that achieves sub-
linear space usage both in theory ( O n√

l
logσ  bits. l  : average run length, i.e., nr  ; σ : 

alphabet size) and practice. Centrifuger applies run-block compression to reduce the 
size of the BWT sequence, yielding the RBBWT: Run-Block compressed BWT. Rank 

Fig. 1 Overview of Centrifuger. Left: classification procedure on the forward read. Centrifuger searches 
from the end of the read and applies the backward search to extend the match until reaching a mismatch. 
This yields the first 60-bp exact match hitting three sequences {X, Y, Z} in the database. Centrifuger then 
skips the mismatch and restarts the search again, giving the second 39-bp match hitting two sequences 
{X, Y}. The same search procedure applies to the reverse complement of the read. Centrifuger then scores 
each matched sequence and classifies the read to the sequences with the highest scores, where the 
example read is classified to the sequence X with the score 2601. Right: the structure of Centrifuger’s lossless 
compressed FM-index. Centrifuger utilizes the RBBWT representation for the BWT sequence. In the example 
of compressing the BWT sequence “AAA AAC GTA AAA ”, RBBWT represents it as two sequences “AA” and “ACGT” 
when the block size is 4. For the sequence IDs that are sampled on the BWT sequence, Centrifuger will 
compact their bits representation. In this example, there are four sequences in the database (W, X, Y, Z), so 2 
bits are sufficient to represent the sequence ID. Therefore, for the substring of the BWT sequence shown in 
the example, Centrifuger spends 6 bits to represent sequence IDs that are sampled every other four positions 
on the BWT sequence
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queries on the RBBWT, which form the basis for LF-mapping in the backward search, 
are also highly efficient, having a time complexity of O(logσ) (more information in the 
“Methods” section).

We compared RBBWT with three other representations of BWT sequences: the 
standard wavelet tree, the RLBWT as implemented in the r-index package [28] using 
sdsl library [29], and the hybrid run-length compression (Methods). We measured the 
change in space usage when adding non-plasmid sequences from the species Escheri-
chia fergusonii (taxonomy ID 564) to the structure. While the wavelet tree grew line-
arly as more genomes were added, RBBWT, RLBWT and its hybrid version grew more 
slowly (Additional File 1: Fig. S1A). When there was little repetitiveness in the genomes, 
RBBWT and hybrid run-length compression took almost the same amount of space as 
the wavelet tree. From another perspective, when the average run length of the BWT 
increased, the number of bits to represent a nucleotide in the wavelet tree remained 
constant (0.31 bits/bp in our implementation), and the other three compression meth-
ods needed fewer bits (Fig. 2A). RBBWT consumed the least or similar space compared 
with the run-length-based compression methods when l was less than 10. When the 
BWT was constructed from all the genomes under taxonomy ID 564 with l equaling 
18.8, RBBWT was still small, consuming 57.8% less space than the wavelet tree and 
29.8% more space than RLBWT. We also compared the space usage of the BWT repre-
sentations by adding the genomes from the species Chlamydia trachomatis (taxonomy 
ID 810) whose strains had highly similar sequences [18]. Again, RBBWT was the most 
memory-efficient data structure when l was less than or around 10 (Additional File 1: 
Fig. S2A). For this species, l reached 56.0 after adding all the genomes, and RBBWT’s 
space was about a quarter of the uncompressed wavelet tree’s and twice as much as 
RLBWT’s in this case.

We next compared the space usage when compressing the BWT sequence for genomes 
from the same genus. We examined the genus Legionella (taxonomy ID 445) contain-
ing 150 genomes. Since genomes from the same genus were more diverse than genomes 
from the same species, the final  l was 7.1 after adding all the non-plasmid sequences. 
RBBWT consumed the least memory among the benchmarked compression methods, 
using 46.9%, 24.8%, and 2.3% less space than wavelet tree, RLBWT, and hybrid run-
length compressed BWT, respectively, in the end (Fig. 2B and Additional file 1: Fig. S1B). 

Fig. 2 Computational efficiency of the wavelet tree, RLBWT, hybrid run-length compression, and RBBWT. 
A Bits used to represent one base pair (bp) as the average run length of the BWT sequence ( n/r ) increases 
when representing increasingly more genomes with species ID 564 (Escherichia fergusonii). B Bits used to 
represent one bp when representing genomes with genus ID 445 (Legionella). C Rank query time
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A similar trend was observed when conducting the experiment on the genomes from the 
genus Chlamydia (taxonomy ID 810, Additional file 1: Fig. S2B). We further compared 
the speed of rank queries by averaging the time for finding the rank of ‘A’ for each of 
the first ten million positions in the BWT sequence of all the Legionella’s genomes, i.e., 
the average time of calling  rank‘A’(1, BWT) to  rank‘A’(10,000,000, BWT). Rank query in 
RBBWT was about five times faster than in RLBWT and only three times slower than 
using a wavelet tree (Fig. 2C). Hybrid run-length compression was the slowest method. 
In both the species ID 564 and the genus ID 445 analysis, the block size of RBBWT was 
automatically determined to be 8 (Methods) after adding all the genomes, supporting 
the mild repetitiveness in the microbial genome database. To summarize, RBBWT is 
more memory-efficient and supports faster rank queries compared to RLBWT when 
compressing microbial genomes.

Performance on classifying simulated data

We compared Centrifuger, Centrifuge, Kraken2, Ganon, and KMCP’s accuracy on one 
million 100-base-pair (bp) paired-end short reads simulated by Mason [30] from 34,190 
prokaryotic complete genomes (RefSeq bacteria + archaea). We set the sequencing error 
rate in Mason to be 1%, a value that was higher than the Illumina sequencing platform, to 
model the microbial genome variations in real data. All five methods built the database 
indices on the same set of genomes. The average run length of the BWT was about 6.8, 
and the block size of RBBWT was automatically determined to be 8. We used TP (true 
positive) for the number of reads that are correctly classified at the specified taxonomy 
node or in its subtree, T (true) for the number of input reads, and P (positive) for the 
number of reads that were correctly classified at the specified taxonomy level or below. 
Therefore, we define the sensitivity as TPT  , and precision as TPP  . The strain-level classifica-
tion evaluation in each method was for the reads classified to leaf nodes in the taxonomy 
tree. On this simulated data set, Centrifuger achieved the best accuracy at all taxon-
omy levels and was significantly better than other methods at species and genus levels 
(Fig.  3A, Additional file  1: Table S1). For example, Centrifuger’s sensitivity was 34.5% 
higher than both Centrifuge and Kraken2, 20.0% higher than Ganon, and 116.0% higher 
than KMCP at the species level. All five classifiers had comparable precision except at 
the  strain level. Centrifuge’s low sensitivity could be due to its policy of not resolving 
taxonomy IDs for matches hitting too many places in the database, where the threshold 
for the number of hits of a match was 40·report_threshold (default value of Centrifuge’s 
report threshold for the taxonomy IDs is 5). The strategy of handling matches on repeti-
tive regions was one of the main differences between Centrifuger and Centrifuge during 
the classification stage (Methods). In addition to Mason, we compared the five classifi-
ers on another set of one million 100-bp paired-end short reads simulated by ART [31], 
where the error rate was set to ART’s default value (about 0.15%). All methods produced 
similar accuracy as the Mason-generated data. Centrifuger still achieved significantly 
higher sensitivity at the species and genus level while having comparable precision as the 
other methods (Additional file 1: Fig. S3). In both simulated data sets, the sensitivity at 
the strain level was very low (< 25%) for all five methods, suggesting that most reads can-
not be uniquely assigned to a strain in the RefSeq prokaryotic genome database.
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We utilized the simulated data set generated by Mason to compare the classifi-
ers’ computational efficiency. Centrifuger was the most memory-efficient method, 
classifying the reads against the 140 billion bp (GBp) database using 43 gigabytes 
(GB) of memory (Fig.  3B). Methods like Kraken2, Ganon, and KMCP reduce the 
memory usage by discarding k-mer information. We also explored the space usage 
of succinct colored k-mer representations [32], which can keep all the k-mer infor-
mation along with their color (sequence ID) information. We created the index on 
these RefSeq prokaryotic genomes using Themisto v3.2.1 [33], a pseudoalignment 
method based on the spectral BWT [34], using a k-mer size of 31. Its index, without 
the color component, took 44 GB space (the.tdbg file), which was already more than 
Centrifuger’s 41-GB full index size. Since Themisto is not designed for taxonomic 
classification, we excluded it from other evaluations. Nevertheless, this observa-
tion suggests that succinct colored k-mer representations could be memory-efficient 
enough for read classifications against a large microbial genome database. For the 
classification speed, Kraken2 was the fastest method. Centrifuger and Centrifuge 

Fig. 3 Performance of Centrifuger, Centrifuge, Kraken2, Ganon, and KMCP on the simulated data generated 
from June 2023 RefSeq prokaryotic genomes. A Sensitivity (left) and precision (right) of each classifier at 
various taxonomy ranks. B Peak memory usage of each classifier. C Classification speed of each classifier with 
a single thread
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were also efficient and processed more than 100,000 read pairs per minute using a 
single thread (Fig.  3C). Centrifuger was about three times slower than Centrifuge, 
reflecting the earlier observation that the rank query on RBBWT was three times 
slower than on an uncompressed data structure. Ganon and KMCP were the slow-
est methods in the evaluation; they were about 3.6 times and 5.3 times slower than 
Centrifuger, respectively.

We next evaluated each method’s performance on a simulated data set when true 
genomes were missing in the genome database. We created another index for each 
method on a trimmed database with 1,931 genomes, where we randomly selected 
one genome per genus. We then removed all reads originating from the selected 
genomes in the Mason-generated simulated data. This yielded a simulated data 
set with about 946K read pairs whose true origin was not in the database. On this 
trimmed database, Centrifuger, Centrifuge, and Kraken2 had similar accuracy, 
where they were more sensitive but less precise than Ganon and KMCP (Additional 
file  1: Fig. S4A). Due to the large discrepancies in sensitivity and precision among 
the five classifiers, we compared their F1 scores, defined as 2·(sensitivity*precision)/
(sensitivity + precision). Centrifuger, Centrifuge, and Kraken2 achieved very similar 
F1 scores across the taxonomy ranks. Centrifuger’s F1 scores were 4.1–17.1% and 
21.6–30.2% higher than Ganon’s and KMCP’s, respectively, ranging from the genus 
level to the phylum level (Additional file  1: Fig. S4B). Ganon outperformed other 
classifiers at the species level, with the F1 score 5.2% higher than Centrifuger’s. We 
observed that the Centrifuger and Centrifuge had almost identical performance on 
this trimmed database, suggesting that the difference in their performance on the 
full database was primarily due to the redundancy of the genomes.

In addition to the comparisons on our own simulated data sets, we also evaluated 
the accuracy of these five classifiers on 10 simulated short-read samples from the 
Critical Assessment of Metagenome Interpretation 2 (CAMI2) [35] challenge data-
sets. Each sample has about 6.7 million 150-bp read pairs. Since the truth table from 
CAMI2 was mostly at the species level, we skipped the strain-level comparison. As 
in the previous simulated data evaluation, Centrifuger achieved significantly better 
classification results at species and genus levels than other methods (Fig. 4) and the 
highest F1 score across all the taxonomy ranks (Additional file 1: Fig. S5). For exam-
ple, at the species level, the mean sensitivity of Centrifuger was 72.9% and 54.1% 
higher than Centrifuge’s and Kraken2’s, and the mean precision was 8.3% and 11.0% 
higher than Centrifuge’s and Kraken2’s, respectively. Centrifuger’s average sensitiv-
ity was 13.7% higher than Ganon’s while obtaining almost identical precision at the 
species level. Though Centrifuger’s average precision was 4.8% lower than KMCP’s 
at the species level, its sensitivity was 2.3 times higher than KMCP’s. We concat-
enated the 10 samples into a large data set containing about 67 million read pairs 
to compare the speed of the classifiers running with eight threads. Kraken2 was the 
fastest method (finished in about 7  min), followed by Centrifuge (42  min), Cen-
trifuger (1  hour 35  min), and Ganon (3  hours 33  min). With multithreading, Cen-
trifuger was about 2.3 times slower than Centrifuge, reducing the threefold speed 
difference when running on a single thread. KMCP did not scale well and took more 
than 18 hours to finish.
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Performance on classifying bacterial whole‑genome sequencing data

We next evaluated Centrifuger, Centrifuge, Kraken2, Ganon, and KMCP on real bac-
terial whole-genome sequencing (WGS) data using the same database indexes as the 
simulated data evaluation. The true taxonomy IDs for each WGS sample were extracted 
in corresponding SRA RunInfo entries. We considered two scenarios: one where the 
RefSeq database contained some genomes from the same species (species-in), and one 
where the database did not include any same-species genomes but did include some 
same-genus genomes (species-not-in). We collected 100 WGS samples for each sce-
nario, and all the classifiers, except KMCP, successfully processed these samples. KMCP 
failed to finish SRR23033313 and SRR23885914 in the species-in scenario on our server 
due to its long running time. Sensitivity and precision were defined in the same way 
as the simulated data evaluations, and we focused on the accuracy at the species and 
genus levels for species-in and species-not-in scenarios, respectively. For the species-
in scenario, Centrifuger achieved the highest average sensitivity and average precision. 
In particular, Centrifuger achieved 10.6%, 1.3%, 9.6%, and 101.9% higher average sen-
sitivity, 5.8%, 18.6%, 1.7%, and 6.7% higher average precision than Centrifuge, Kraken2, 
Ganon, and KMCP, respectively (Fig. 5A). When comparing with KMCP, we excluded 
the two samples that KMCP did not finish. For the species-not-in scenario, Centrifuger, 

Fig. 4 Sensitivity (top) and precision (bottom) of Centrifuger, Centrifuge, Kraken2, Ganon, and KMCP at 
various taxonomy ranks on the 10 simulated data sets from CAMI2
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Centrifuge, and Kraken2 had comparable sensitivity, Kraken2’s precision was 10.2% and 
21.2% higher than Centrifuger and Centrifuge, respectively (Fig.  5B). Though Ganon’s 
average precision was similar to Kraken2’s and was 11.1% higher than Centrifuger’s, its 
average sensitivity was 22.2% lower than Centrifuger’s. KMCP obtained the highest pre-
cision, with an average precision 23.1% higher than Centrifuger’s, but its average sen-
sitivity was 40.6% lower than Centrifuger’s. We further examined the F1 score for each 
classifier. Kraken2 achieved the highest F1 score, closely followed by Centrifuger, and 
their F1 scores were consistently greater than Ganon’s and KMCP’s (Additional file  1: 
Fig. S6). Our analysis also showed that the species-not-in scenario had inferior accuracy 
compared with the species-in scenario, suggesting that having a comprehensive database 
may substantially improve classification results by reducing the species-not-in chance.

Performance on classifying SARS‑CoV‑2 Oxford Nanopore WGS data

When a read can be uniquely classified to a sequence, Centrifuger reports the sequence 
ID in addition to the taxonomy ID, while many methods like Kraken2 provide only the 
taxonomy ID information. Centrifuger’s additional output is desirable for virus analy-
sis. For example, SARS-CoV-2 variants’ genomes are all under the same taxonomy ID 
2697049 in RefSeq and GenBank. To explore the effectiveness of sequence-level classifi-
cation, we downloaded Oxford Nanopore (MinION) WGS data from two SARS-CoV-2 
projects with NCBI BioProject accession numbers PRJNA673096 and PRJEB40277, 
where PRJNA673986 were samples from the USA and PRJEB40227 were samples from 

Fig. 5 Performance of Centrifuger, Centrifuge, Kraken2, Ganon, and KMCP on bacterial WGS data sets. A 
Sensitivity (left) and precision (right) if species of bacteria are present in the database. B Sensitivity (left) and 
precision (right) if species of bacteria are not in the database but their genera are present in the database
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Ireland. For each project, we selected 100 samples with the greatest number of reads 
(Additional file 1: Table S2). Since RefSeq only had one SARS-CoV-2 sequence, we added 
the 92 SARS-CoV-2 sequences from GenBank and created indices comprising RefSeq 
human, prokaryotic, virus, and GenBank SARS-CoV-2 genomes for Centrifuger, Cen-
trifuge, Kraken2, and Ganon, respectively. We also incorporate two long-read taxo-
nomic classifiers: MetaMaps [36] and Taxor [37]. However, due to the large memory 
requirement for running MetaMaps and a different taxonomy structure when building 
the Taxor’s index, we tested these two methods with indices that only contained the 
93 SARS-CoV-2 genomes. We added the parameter “--rel-cutoff 0.12 --rel-filter 0.9” 
to Ganon for long reads as mentioned by the experiments in Taxor. Centrifuger classi-
fied about 99.95% of all the input reads to the taxonomy ID 2697049 on average, while 
Kraken2 and Ganon were slightly less sensitive and classified 99.90% and 98.96% reads to 
the ID 2697049 on average, respectively. Centrifuge had a slightly different LCA search 
implementation, so it classified 98.90% of the reads to either ID 2697049 or ID 694009, 
where ID 694009 was the parent of ID 2697049 on the taxonomy tree. Despite using 
a SARS-CoV-2-only database, MetaMaps and Taxor only classified 78.04% and 70.91% 
reads on average, respectively. The lower sensitivity for MetaMaps was mainly due to 
its default setting of skipping reads shorter than 1000  bp, while it mapped almost all 
the remaining reads of sufficient length. When looking at the sequence-level classifica-
tion, Centrifuger assigned 23.7% of the input reads with unique sequence IDs across all 
the samples. For the other tested methods, only Centrifuge, Ganon and Taxor reported 
sequence-level classifications, but they uniquely classified 15.1%, less than 0.1% and 
about 0.1% of the reads, respectively.

The large number of sequence-level classifications from Centrifuger allowed us to 
observe that the read fraction for each variant, namely sequence ID, in the Irish sam-
ples and US samples showed distinct patterns (Fig.  6A, heatmap with raw read frac-
tion in Additional file 1: Fig. S7A). This observation was also supported by Centrifuge’s 
sequence-level classification results (Additional file 1: Fig. S7B). We further conducted 
a principal component analysis (PCA) based on each sequence’s read fraction, normal-
ized by the number of reads with sequence IDs. Samples from the US and Ireland were 
well separated into two clusters (Fig. 6B) based on the first two principal components 
(PCs), suggesting that variants found in the two projects may have different sequence 
features. When inspecting the SAR-CoV-2 variant that contributed the most to the PC1 
relative to the contribution to PC2, we found that variants detected in the Irish samples 
might have homologous regions to MT019531.1 while US samples did not (Fig. 6C). On 
the other hand, when checking PC2’s major contributors, the MT159706.2 variant was 
commonly detected in both projects, suggesting that PC1 captured the project-specific 
variants or batch effects.

Discussion
We conducted comprehensive benchmarks to demonstrate that the RBBWT can sig-
nificantly reduce the memory usage of the FM-index built over a microbial genome 
database. For additional space savings, we store the sequence ID rather than the 
full coordinate information in the sampled suffix array, a strategy also used in Cen-
trifuge. The space for the sampled sequence IDs is further trimmed by bit-compact 
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representation, making it a less impactful factor in space usage. For example, in Cen-
trifuger’s 41-GB index of RefSeq prokaryotic genomes, 23  GB was for the RBBWT 
and 17 GB was for the sampled sequence IDs. Nevertheless, the overall space com-
plexity of Centrifuger is still O(n) words due to the structure of sampled sequence 
IDs, making it worse than r-index’s O(r) words in the future as the repetitiveness of 
the genome database may grow fast. Though users can select a sparser sampling rate 
to maintain the space usage, this is at the expense of time efficiency. For instance, the 
index size became 32 GB when increasing the sampling rate from the default 16 to 32, 
but the classification speed of a thread decreased from 163K read/min to 102K read/
min. Future work is needed to design a representation of the sampled sequence ID in 
sublinear space without sacrificing classification speed for microbial genomes.

Resolving the sequence IDs for each match is a time-consuming step in Centrifuger, 
especially when a match hits many sequences. Centrifuger’s current implementa-
tion follows the traditional FM-index paradigm, by repeatedly applying the LF map-
ping for each hit until reaching a sampled sequence ID. Alternative techniques like 
the document array profile [38] support rapid sequence ID retrieval, but are designed 
for highly repetitive genomes like human pangenome. Therefore, a memory-efficient 
algorithm for sequence ID resolving in microbial genomes is still needed. Since the 

Fig. 6 Sequence-level classification for SARS-CoV-2 WGS samples with Centrifuger. A Fractions of reads 
hit on each SARS-CoV-2 variant. The rows are SARS-CoV-2 variants present in the RefSeq and GenBank, and 
the columns are the Oxford Nanopore WGS samples. The value for each row is standardized as z-scores. B 
PCA based on the read fraction for each variant. The numbers in the parenthesis are the variance fraction 
explained by each PC. C Left: histogram of read fractions classified to MT019531.1 which has the most 
significant contribution to PC1 relative to its PC2’s contribution; right: histogram of read fractions classified to 
MT159706.2 which has the most significant contribution to PC2 relative to its PC1’s contribution
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default setting in Centrifuger is to report the LCA taxonomy ID for a read, algorithms 
like KATKA [39] that directly find the LCA taxonomy ID for a k-mer might suggest 
ways to avoid the overhead of repeated LF mappings in Centrifuger as well.

The current Centrifuger index stores nucleotide-based sequences. The Kraken2 
and Kaiju [40] studies, however, observed that translated search, i.e., finding matches 
based on amino acids by translating nucleotides, could improve the classification accu-
racy for viral genomes. Since the wavelet tree data structure supports arbitrary alpha-
bet sets, the RBBWT representation can be naturally extended to process amino acid 
sequences. RLBWT and RBBWT’s implementations are scalable for large alphabet set 
sizes, with a factor of log(σ ) or the entropy in the space complexity. We found an alter-
native form of run-length encoded BWT, exported from ropeBWT2 [41] (with -dRo 
option) as the Fermi’s [42] format. RopeBWT2’s representation was 12.5% smaller than 
RLBWT on average with comparable rank query speed as RLBWT when compressing 
Escherichia fergusonii’s genomes. The slimmer size of ropeBWT2’s output might be 
attributed to its implementation being designed for small σ , where its space complex-
ity is linear to σ . This may suggest that the efficiency of RBBWT and Centrifuger could 
be further improved for nucleotide search with tailored implementations that are less 
scalable for σ.

Besides taxonomic classification, another important problem in metagenomic data 
analysis is taxonomic profiling, i.e., determining the abundance for each species or at 
user-specified taxonomic ranks. It is feasible to profile the abundances directly without 
taxonomic classification for reads, such as in Meta-Kallisto [43] and Sylph [44]. However, 
many profiling methods still require taxonomic classification results which can identify 
species of low abundance with few reads supporting them. For instance, Bracken uses 
Kraken2’s input for taxonomic profiling with a Bayesian method [45]. Ganon, KMCP, 
and Taxor, which are benchmarked in this work, need to conduct taxonomic classifi-
cations before profiling. Centrifuge integrates the abundance estimation based on the 
Expectation–Maximization (EM) algorithm [46] internally. After the release of Centri-
fuge, some methods, like AGAMEMNON [47] and Centrifuge+ [48], improve the pro-
filing accuracy by adjusting the likelihood function and the EM algorithm procedure. 
We still need to systematically compare these profiling techniques and either integrate 
them into Centrifuger or make Centrifuger’s output compatible with these methods in 
the future. For example, Centrifuger provides the script to summarize the classification 
results into a Kraken-style report file that can serve as the input for Bracken.

Conclusions
Centrifuger is an efficient and accurate taxonomic classification method for processing 
sequencing data, including metagenomic sequencing data. Centrifuger adopts a novel 
compact data structure, run-block compressed sequence, to achieve sublinear storage 
space for BWT sequence without sacrificing much time efficiency. Specifically, Cen-
trifuger can represent the 140 GBp Refseq prokaryotic genomes with an index of size 
41 GB and classifies about 163K microbial reads every minute per thread. Furthermore, 
the lossless representation nature and the unconstrained pattern match length help Cen-
trifuger achieve significantly better accuracy, in both sensitivity and precision, for clas-
sifications at the species or genus level. We expect that Centrifuger will contribute to 
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microbiome studies by allowing the incorporation of the recent, more comprehensive 
microbial genome database. Centrifuger is a free open-source software released under 
the MIT license and is available at https:// github. com/ mouri sl/ centr ifuger.

Methods
Sequencing data and benchmark details

We generated the simulated data from the current RefSeq database using Mason v0.1.2 
[30] with the option “illumina -pi 0 -pd 0 -pmms 2.5 -s 17 -N 2000000 -n 100 -mp -sq -hs 
0 -hi 0 -i”, which simulated two million 100-bp read pairs with 1% error rate. We further 
filtered the reads from the sequences without taxonomy information and kept the first one 
million read pairs as the final simulated data set. We also obtained one million randomly 
selected 100-bp read pairs using the simulator ART v2.5.8 [31] with Illumina profile set-
ting (“art_illumina -ss HS25 -m 1000 -s 100 -l 100 -f 0.003”) followed by the same filtra-
tion procedure as was used for Mason. The error rate of Art-generated simulated data was 
estimated to be around 0.15% by examining the aln file produced by Art. In addition to our 
own simulated data, we downloaded the 10 simulated samples from the CAMI2 Challenge 
datasets at https:// frl. publi sso. de/ data/ frl: 64255 21/ strain/ short_ read/ by lexicographi-
cal order, i.e. sample_0 to sample_9. For the bacteria WGS data, we first downloaded the 
RunInfo from NIH NCBI SRA using the search word “(“Bacteria”[Organism] OR “Bacte-
ria Latreille et al. 1825”[Organism]) AND (“2022/01/01”[MDAT]: “2023/08/01”[MDAT]) 
AND (“biomol dna”[Properties] AND “strategy wgs”[Properties] AND “platform 
illumina”[Properties] AND “filetype fastq”[Properties])”. Then based on whether the spe-
cies or genus is present in the RefSeq database, we randomly pick 100 SRA IDs (Additional 
file 1: Table S3), without repeating species or genus, for species-in and species-not-in eval-
uations, respectively.

We benchmarked the performance of Centrifuger v1.0.1, Centrifuge v1.0.4, and 
Kraken2 v2.1.3, Ganon v2.0.0, and KMCP 0.9.4 in this study. For the application on long-
read data sets, we also tested MetaMap with GitHub commit ID 633d2e0 and Taxor 
v0.1.0. Taxonomy information and microbial genomes were downloaded using the “cen-
trifuger-download” script in June 2023. Each classifier was used to build its own index 
on dustmasked [49] genome sequences. Kraken2 used its own built-in masking module. 
Though we used Ganon v2.0.0 in evaluations, we failed to create the index with the hier-
archical interleaved bloom filter data structure implemented in this version [50]. There-
fore, we used the index based on the interleaved bloom filter (--filter-type ibf ) for Ganon, 
and we referred to this method as “Ganon” rather than Ganon2. The commands used 
to run each method are listed in Additional file  1: Table S4. Methods like Centrifuge, 
Ganon, and KMCP might report multiple equally good taxonomy IDs for a read, and we 
merged them into LCAs before the evaluations. Ganon’s default option for coalescing 
the taxonomy IDs of a multiple-classified read is to reassign the read to the taxonomy 
ID with the highest abundance inferred by the EM algorithm using the initial classifi-
cations. This approach substantially improves Ganon’s classification sensitivity at lower 
taxonomy levels, leading to a higher F1 score. For example, in the Mason-generated 
simulated data, Ganon with reassignment’s F1 score at the species level was 1.3% and 
12.1% higher than Centrifuger’s and Ganon using LCA’s, respectively (Additional file 1: 
Fig. S8). We implemented a similar workflow to reassign the multiple-classified reads 

https://github.com/mourisl/centrifuger
https://frl.publisso.de/data/frl:6425521/strain/short_read/
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from Centrifuger. Specifically, we ran Centrifuger with “-k 5” so that the initial classifica-
tion for a read could include up to five equally good classification results. We then cal-
culated the abundance for each taxonomy ID in the taxonomy tree based on the number 
of reads classified to this taxonomy node and its subtree. For a multiple-classified read, 
we included its count starting from its LCA. Lastly, we reassigned the taxonomy ID with 
the highest abundance among the initial results to a read as the final classification result. 
When there were multiple highest-abundance taxonomy IDs for a read, we took their 
LCA as the final result. We observed this reassignment strategy without the EM algo-
rithm improved Centrifuger’s classification results at lower taxonomy levels too, with 
the F1 score 2.7% higher than Ganon’s reassignment results at the species level (Fig. S8). 
However, the strategy of hard reassignment based on the taxonomic profiling result may 
result in systematic underestimations of taxa with lower abundances. Therefore, we con-
tinue to utilize the LCA strategy to process multiple classified reads, where the results 
can be directly used for downstream analyses, including taxonomic profiling.

All the benchmarks were conducted on the 2.8 GHz AMD EPYC 7543 32-core proces-
sor machine with 512 GB memory. The memory footprint was measured as the “Maxi-
mum resident set size” value from the “/usr/bin/time -v” command. When measuring 
speed, each classifier was run four times. The reported classification speed was calcu-
lated by taking the fastest runtime after excluding index loading time.

Run‑block compressed sequence

Run-block compressed sequence is a compact data structure supporting rank que-
ries for any position in a sequence. For the input sequence T of length n and alphabet 
set � of size σ , we first partition T into equal-size substrings (blocks), T1,T2, . . . ,Tm , 
where m = ⌈n

b
⌉ and b is the block size. The first component of the run-block compressed 

sequence is a bit vector BR of size m indicating whether the corresponding block is a 
run block, i.e., a block consisting of one alphabet character repeated b times. We will 
then split T into two substrings, by concatenating run blocks and non-run blocks, i.e., 
TR′ = Ti1Ti2 . . .Til ,TP = Tj1Tj2 . . .Tjm−l

 , and Tik is the k-th run blocks in T with the 
alphabet σik . In the notation, we will use the subscript “R” to denote run-block com-
pressed sequence, and “P” to represent the plain uncompressed sequence. Since the 
last block can still be determined as a run or non-run block even if it is shorter than b , 
we can assume that n is divisible by b for simplicity. TR′ can be losslessly represented as 
TR = σi1σi2 . . . σil , where |TR| =

|TR′ |
b

 . The space saving comes from using one character 
to represent a run block of size b, a strategy we call run-block compression. For example, 
for a sequence T = “AAA AAC GTA AAA ”, when b = 4, it will be split into “AAA AAA AA” 
and “ACGT” guided by BR = 101 . For the subsequence formed by the run blocks, we will 
use one character to represent each block in it. Therefore, the example sequence T will 
be represented by two sequences TR=“AA” and TP=“ACGT”, reducing the original length 
from 12 to 6 characters (Fig. 1). We next show that run-block compression allows fast 
rank queries and sublinear space usage as the repetitiveness in the sequence increases. 
The rank query is the core operation in LF mapping during the backward search in 
FM-index.
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Theorem 1 The time complexity for rank query on run-block compressed sequence is 
O(logσ).

Proof: We will use the function rankc(i,T ) to denote the rank for the alphabet c at posi-
tion i of text T, where the index is 1-based. Equivalently, rankc(i,T ) counts the number 
of c’s that occur before T[i], including T[i]. We can decompose the rankc(i,T ) to the sum 
of corresponding ranks with respect to TR and TP . There are two cases, depending on 
whether i is in a run block or not. Let k denote the block containing i, namely k = ⌈ i

b
⌉ . 

We compute the number of run blocks and non-run blocks before the block containing k 
as rr = rank1(k ,BR), andrr = rank0(k ,BR) = k − rr , respectively. The rank1(k ,BR) is the 
conventional rank query on bit vectors counting the number of 1 s before or on position k 
in BR. With these notations, we can write the equations to compute rankc(i,T ).

When i is in a run block, i.e., BR[k] = 1 , we have:

Where ITR[rr ]=c is an indicator that equals 1 if the subscript is true and equals to 0 other-
wise. The last term is the special treatment if i is in a run block with alphabet character c. 
When i is in a non-run block, we have:

If we apply the wavelet tree to represent TR and TP , then rankc(i,T ) can be answered by 
at most two wavelet tree rank queries, one rank query on bit vector Br , and one wavelet tree 
access on TR . Therefore, the total time complexity is 3O(logσ)+ O(1) = O(logσ).

The naïve implementation for calculating ITR[rr ]=c is to access the value of TR[rr] , requir-
ing O(logσ) time if using wavelet tree. We note that the ITR[rr ]=c can also be inferred dur-
ing the wavelet tree’s rank query on TR , by checking whether the bits labeling the relevant 
root-to-leaf path form the bit representation for c. This strategy further accelerates the 
rankc(i,T ) operation, and is also applicable to other compressed sequence representations, 
including RLBWT.
Theorem 2 The space complexity of run-block compressed sequence is O( n√

l
logσ) bits, 

where l = n
r  is the average run length and r is the number of runs in the sequence.

Proof: The key observation is that each non-run block contains at least one run head. 
Therefore, we have at most r non-run blocks. As a result, the minimum length of TR 
is n

b
− r , and the maximum length of TP is rb . The length of the BR is n

b
.

We can use wavelet trees to represent the run-block subsequence and the plain subse-
quence. Let A be the number of bits to represent one character in the wavelet tree, then the 
asymptotic total space usage in bits is n

b
+ A

(
n
b
− r

)
+ Arb , where the terms are for BR , TR , 

and TP , respectively. We can rewrite the space usage bound as:

which is minimized when b =
√

1+An
Ar  . Because b is an integer, we take the block size as 

b∗ = ⌈
√

1+An
Ar ⌉ . Substituting this for b , we have:

rankc(i,T ) = b(rankc(rr ,TR))+ rankc(rrb,TP)+ ITR[rr ]=c((i − 1)%b+ 1− b)

rankc(i,T ) = b(rankc(rr ,TR))+ rankc((rr − 1)b+ (i − 1)%b+ 1,TP)

S(b) = Arb+
1+ An

b
− Ar,
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where the inequality is based on
√

1+An
Ar ≤ ⌈

√
1+An
Ar ⌉ <

√
1+An
Ar + 1 . We can rewrite 

S(b∗) by using the definition of r = n
l
 , obtaining S(b∗) = O

(
A n√

l

)
. To ensure the worst 

rank query time on the data structure is small, the wavelet tree is in the shape of a bal-
anced binary tree in our implementation, and  A = O(logσ) . Further space could be 
reduced if we use techniques like Huffman-shaped wavelet tree [51], and A will be 
O(H0(TR)) and O(H0(TP)) for TR and TP, respectively, where H0 is the Shannon entropy 
of the sequence.

The b∗ found in the proof is to bound the worst-case space usage, where each non-run 
block has exactly one run head in the middle. The optimal block size can be different. For 
example, when every run has an identical length, the optimal block size is nr and every block 
is run-block compressible, yielding O

(
n
l
logσ

)
-bit space complexity. To find the appropriate 

block size efficiently, we search the size of powers of 2, e.g., 4, 8, 16,.., and select the block  
size b̂ with the least space usage among them. Suppose b̂′ is the smallest power of 2 that  
is larger or equal to the block size b∗ defined in the proof, then we have 

b∗ ≤ b̂
′
≤ 2b∗

 . 

Therefore, S
(
b̂
)
≤ S

(
b̂′
)
≤ 2Arb∗ + 1+An

b∗ − Ar ≤ 2S(b∗)+ Ar = O
(
An√
l

)
 , where the sec-

ond inequality is by applying b∗ ≤ b̂′ ≤ 2b∗ . Therefore, the block size inferred from inspect-
ing powers of 2 is not a bad estimator and gives the same asymptotic space usage as b∗ in the 
worst case. Furthermore, since Ar ≤ A

√
nr < S(b∗) , S

(
b̂
)
 is no more than three times of 

the S(b∗) . To reduce the bias of the sparse search space, we also inspect the space usage of 
block sizes b∗ and 3b̂2  before making a final decision. When l is small, the block size minimizing 
the overall space usage is the length of the genome (TP = T), and run-block compression is 
equivalent to the wavelet tree representation. In practice, Centrifuger uses the first one million 
characters of the BWT sequence instead of the full sequence to infer the block size.

Index construction

Centrifuger uses the blockwise suffix sorting algorithm [52] to build its index, as in 
Bowtie [53] and Centrifuge. The advantage of blockwise suffix sorting is to control 
the overall memory footprint and parallelize the construction procedure. The array 
that holds the BWT sequence is pre-allocated, and the sequence is filled in block-by-
block as blocks of the suffix array are constructed. Another important component 
in the FM-index is the sampled suffix information. During construction, the index 
stores the genome coordinate information for every 16th offset on the BWT, which 
can be adjusted by the user. After that, the offsets are transformed into sequence IDs 
and using a bit-efficient representation of the IDs. For example, the RefSeq prokary-
otic genome database contained 75,865 sequences (including plasmids) from 34,190 
strains with complete genomes, so sequence IDs can be distinguished by a 17-bit 
integer. Instead of saving the IDs in an array of 32-bit integers, the bit patterns are 
stored consecutively without any wasted space. Therefore, the total size for the bit-
compact array for the sampled ID list is 17·m bits, or 0.26·m 64-bit words, where m 
is the number of sampled IDs.

S
(
b
∗) = Ar⌈

√
1+ An

Ar
⌉ +

1+ An

⌈
√

1+An

Ar
⌉
− Ar <

√
Ar(1+ An)+

√
Ar(1+ An) = O

(
A
√
nr
)
,
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Taxonomic classification

For taxonomic classification, Centrifuger follows Centrifuge’s paradigm by greedily 
searching for semi-maximal exact matches, where only one side of a match cannot be 
extended to form a longer match to the database (Fig.  1). For each read pair, Centri-
fuger searches the matches twice, one using the forward strand and the other using the 
reverse-complement strand. Using the forward strand search as an example, Centrifuger 
starts from the last position of the read and extends the match backward as much as 
possible using LF mapping until the match cannot hit any sequence in the index. In the 
example in Fig. 1, the first match is the right-most 60 bp. Centrifuger will then skip the 
next base on the read, as a putative variant or sequencing error, and start a new search. 
As a result, the next search starts from the 62nd bp, counting from the right end, and 
finds a match of length 39.

To find the best taxonomy ID for the read, Centrifuger scores the sequence IDs 
retrieved from the matches. Let lM denote the length of a match M . Centrifuger will 
filter a short match M if 2n/4lM > 0.01 , as it is likely a random match. For example, we 
kept the matches with lengths greater or equal to 23 as valid matches when classifying 
reads using the 140 GBp RefSeq prokaryotic database. Each valid match M of length lM 
will contribute a score (lM − 15)2 to the corresponding strand, and the matches from the 
less-scored strand will be removed. Centrifuger resolves sequence IDs contained in each 
valid match by using LF-mapping in the compressed FM-index to find sampled sequence 
IDs. Specifically, each match M corresponds to an interval on the BWT sequence, 
denoted as [sM , eM] , then we will resolve the sequence ID for each position on the BWT 
sequence between [sM , eM] , by applying LF-mapping. The LF-mapping procedure for 
resolving the position p ∈ [sM , eM] , terminates when it reaches a position p′ on the BWT 
sequence with a sampled sequence ID, i.e., p′mod16 = 0 with the default parameter. The 
sampled sequence ID at p′ is the sequence ID corresponding to p . In the example of 
Fig. 1, the Centrifuger found the first 60-bp exact match M1 hit sequences with IDs X, 
Y, and Z, and the second 39-bp exact match M2

 were from sequence IDs W and X. If 
both strands have an equal score, the sequence ID will be resolved for both strands. For 
each resolved sequence ID, Centrifuger will sum up its scores across the matches using 
the formula score(sequenceI) =

∑
M∈sqeuenceI (lM − 15)2 , where M ∈ sequenceI means 

the match M is found in the sequence with ID I . In the example of Fig. 1, the score for 
sequence ID X is (60− 15)2 + (39− 15)2 = 2601 as both matches hit this sequence. 
This scoring function was empirical and was designed during the development of Cen-
trifuge. The sequence IDs with the highest score and their corresponding taxonomy IDs 
will be reported as the final classification result for the read, where the example read in 
Fig. 1 is classified to the sequence X. When the number of highest-scoring sequence IDs 
is more than the report threshold that can be specified by the user (default 1), Centri-
fuger will merge the IDs to their LCAs in the taxonomy tree until the number is within 
the threshold.

For a match that hits many sequences in the database, i.e., eM − sM + 1 is large, 
Centrifuger will resolve the sequence IDs for at most 40·report_threshold entries 
evenly distributed in the BWT interval. For example, if sM = 100 and eM = 490 , then 
Centirufger will resolve the 40 sequence IDs for positions at 100, 110, 120,.., 480, and 
490 on the BWT sequence with the default setting. Though this is a heuristic that can 



Page 18 of 21Song and Langmead  Genome Biology          (2024) 25:106 

cause the algorithm to miss the true genome of origin, it is likely to generate scores for 
sequences in the same phylogeny branch and may help identify the correct taxonomy 
IDs at higher levels. This is the main difference between Centrifuge and Centrifuger 
in the classification stage, where Centrifuge ignores a match M if eM − sM + 1 > 200 
with the default setting.

Hybrid run‑length compression

In addition to the run-block compression, we designed another compression scheme 
called hybrid run-length compression, using run-length compression for each fixed-
size block. Hybrid run-length compressed BWT uses the same amount of space as 
the wavelet tree representation when the repetitiveness of the sequence is low, and its 
space usage converges to the RLBWTs when the repetitiveness grows. In our imple-
mentation, a block is marked as run-length compressible (BR = 1) if its average run-
length is more than six based on the comparison between RLBWT and wavelet tree 
(Fig. 2A, B). The substrings from blocks are separated into two subsequences based 
on BR, and the subsequences will be concatenated into two sequences, TR and TP, 
respectively. TR will be compressed by the run-length method as in RLBWT, and TP 
will be represented as a wavelet tree. The block size is inferred in the same fashion 
as in RBBWT. The rank query on the hybrid run-length compressed sequence is like 
the run-block compression, where we combine the ranks from TR and TP, making it 
slower than the rank query on RLBWT. The idea of hybrid run-length compression 
is similar to the wavelet tree when using fixed-block boosting [54]. Our implementa-
tion avoids explicitly recording the accumulated count at the beginning of a block 
and is therefore well suited to mildly repetitive sequences needing small blocks. For 
example, the block size of the hybrid run-length compressed BWT was only 12 for the 
genus Legionella’s genomes. Despite being less computationally efficient than other 
representations, the hybrid run-length compressed BWT is flexible and allows meth-
ods to handle various texts with a wide range of repetitiveness without altering the 
underlying data structure.
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