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Background
Viruses of microbes (VoMs) are the most abundant life entities on Earth [1–3], infect-
ing many microbes at any given time [4]. The interactions between VoMs and their 
microbial hosts can change microbial host community composition [5] and their physi-
ology [6], affecting not only the health of higher organisms (including plants, animals, 
and humans) [7–9] but also the global biogeochemical processes [10, 11]. Besides the 
direct (killing host) and indirect (e.g., recycling of limiting nutrients) ecological effects 
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of viral lysis, VoMs can influence microbial hosts’ physiology by altering metabolic path-
ways through horizontal gene transfer or through the expression of metabolic genes car-
ried within viral genomes during viral infection [6, 12, 13]. Understanding the complex 
interactions between VoMs and their microbial hosts and the ecological roles of VoMs 
could contribute insights on solving crucial global problems, such as infectious diseases, 
climate change, and food crisis [14–16]. Still, improved knowledge on the genetic diver-
sity of VoMs is warranted [17–19]. Acknowledging the genetic diversity of VoMs and 
their high potential for application, there is considerable interest in “mining” these viral 
sequences to discover new candidates for antimicrobial drugs, enzymes for biotechnol-
ogy, and bioremediation purposes [20–22].

Originally, the discovery of most viruses depended primarily on the observation of 
their effect on a host. Nowadays, (meta)genomics has become a major method for virus 
discovery. Despite the fact that there is no universal marker gene carried by all viruses, 
studies of specific hallmark genes have revealed large-scale viral diversity of certain 
viral groups from marine and host associated biomes [23–28]. For example, Sakowski 
et al. 2014 and Wu et al. 2023 found great novel dsDNA bacteriophage diversity from 
marine samples using ribonucleotide reductase [23, 28], while Wolf et al. 2020, Zayed 
et al. 2022, and Edgar et al. 2022 expanded the known RNA viruses using RNA-depend-
ent RNA polymerase as a marker [25–27]. Complementary to marker gene approaches, 
shotgun metagenomic sequencing is suitable for discovering viruses without targeted 
marker genes [29, 30]. Through the shotgun metagenomic approach, total genetic mate-
rial is extracted from environmental samples, either from an enriched viral fraction 
(virome) or from a fraction representing both viruses and their hosts (total metagen-
ome). This is then sequenced randomly. It is common for viral reads to comprise less 
than 5% of metagenomic sequences from a total metagenome sample [29]. Viromic 
datasets are derived from samples that were enriched for viruses by, e.g., size filtration, 
density gradient centrifugation, and/or chemical concentration [15, 31, 32]. Notwith-
standing advances in virus filtration techniques [29, 31, 33], it can still be challenging to 
distinguish viruses in metagenomic/viromic datasets due to (1) the lack of viral marker 
genes [23], (2) limited availability of viral reference genomes [15], (3) the possible high 
sequence similarity between viral and microbial genomes [34], and (4) the presence of 
prophages in microbial genomes. Therefore, it has become of great interest to determine 
which sequences within whole microbial communities are derived from viruses. These 
sequences can occur as free virions, active intracellular infections, particle or host-
attached virions [35], and host-integrated or episomal viral genomes (i.e., proviruses) 
[29, 30, 36].

In the past years, many bioinformatic virus identification tools have been developed 
for the task of identifying viral sequences in mixed metagenomic datasets (Additional 
file 2: Table S1). Some of the tools rely strongly on comparing candidate sequences to the 
sequences in reference databases. For example, VirSorter [37] uses information on the 
enrichment in viral-like genes, depletion in Pfam-affiliated genes, enrichment in short 
genes, and depletion in strand switching. MetaPhinder [38] uses BLASTn and average 
nucleotide identity thresholds to classify viral contigs in metagenomes. Sourmash [39] 
employs MinHash-based algorithms to quickly compare large sets of sequences and esti-
mate their similarity to viruses. Some of the tools used machine learning techniques that 
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also detect other genomic features based on positive and negative training sets. Seeker 
employs long short-term memory (LSTM) models that can identify distant dependencies 
within sequences, to distinguish phages from bacteria. VirFinder [40] is a logistic regres-
sion classifier using nucleotide sequence 8-mers as features to identify viral sequences. 
Some of the machine learning based tools use convolutional neural networks (CNNs). 
DeepVirFinder [41] and PPR-Meta [42] use CNNs that encode long- and short-range 
features of viral genomes. Some of the machine learning tools use hybrid approaches to 
combine the advantage of homology search and machine learning. VIBRANT [43] uses 
viral nucleotide domain abundances in a neural network framework to classify contigs 
having more than four proteins. VirSorter2 [44] integrates the biological signals of Vir-
Sorter in a tree-based machine learning framework. In addition, the training/reference 
databases used in virus discovery are diverse, including sequence databases such as Ref-
Seq [45], virome datasets in specific studies [37, 41, 44], and HMMs [46] of pVOGs [43, 
47]. The number and diversity of virus identification tools make it challenging to choose 
the right tool(s), parameters, and cutoffs.

Several benchmarking studies have compared the performance of various virus 
identification tools [48–53] (Additional file 2: Table S2). Most of them used simulated 
sequencing data or sequencing data from mock community as testing datasets. The 
known fraction of the viral sequence space is limited because most viruses remain 
uncharacterized. To perform reliable benchmarking, one would have to set aside a 
fraction of the small collection of known virus sequences before using the remainder 
as training or reference data for the tools. As many virus identification tools included 
RefSeq data in their training/reference databases, using RefSeq to generate a mock sam-
ple may be expected to bias the results (more true positives). Besides, to avoid overlap 
between training and testing data, one would have to address the redundancy in the Ref-
Seq database which contains many similar cultivated and isolated viral genomes while 
viruses in environmental samples are diverse and remain under-characterized. Finally, 
both the macro- and micro-diversity of viruses in natural samples is usually a lot greater 
than the diversity of viruses in the database, further obscuring the benchmarking results. 
Ho et al. [53] benchmarked tools on a previously sequenced mock community contain-
ing five phage strains, which is low compared to real environmental samples. The newest 
benchmarking from Schackart et al. [52] included two real-world metagenomic datasets 
but did not define a ground truth dataset.

To avoid biases in our comparison and reach the complexity level of microbial/
viral communities in real-world metagenomic datasets, we used simulated and real-
world metagenomic data as testing datasets. We benchmarked nine state-of-the-art 
bioinformatic virus identification tools on paired viral and microbial samples across 
three vastly distinct biomes, including seawater (this study) [54], agricultural soil [31], 
and human gut [55] (Additional file  2: Table  S3 and S4). These three representative 
biomes were distinct in microbial community compositions and diversity [56], and we 
anticipate that viral community would follow similar. The selected viral and micro-
bial samples were obtained through physical size fractionation, where samples went 
through filters with pore size of 0.22 μm to obtain viral (< 0.22 μm) and microbial 
(> 0.22 μm) fractions [57]. To ensure the quality of the fractioned real-world testing 
datasets, we (1) selected studies that treated their virome with DNase, (2) assessed 
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the virome quality using ViromeQC, (3) removed the homologous contigs present in 
both viral and microbial datasets, and (4) validated the viral and microbial fraction 
contigs using robust bioinformatic tools (Fig. 1 and Additional file 1: Fig. S1).

We collected Illumina sequencing datasets of eight paired viral and microbial sam-
ples from each of the three biomes. First, we benchmarked the performance of tools 
on their default cutoffs. Second, we tested the effect of different parameters and cut-
offs on the annotations. Third, we further validated our benchmarking results with 
extra bioinformatics tools. Our comprehensive analysis of virus identification tools 
in diverse biomes highlights the trade-off between specificity and sensitivity and pro-
vides valuable insights for researchers looking to identify viruses in metagenomic 
data (Fig. 1 and Additional file 1: Fig. S1).

Fig. 1 Real‑world metagenomic data benchmarking pipeline. A Samples from three different biomes were 
size fraction filtered through 0.22 μm filters to obtain microbial‑ (> 0.22 μm) and viral‑enriched fractions 
(< 0.22 μm). B DNase treatment was performed in viral‑enriched fractions to remove free DNA before viral 
lysis. C DNA was separately extracted, purified, and sequenced from microbial‑ and viral‑enriched fractions 
to obtain viral and microbial datasets. D Sequenced DNA reads were quality‑controlled and assembled 
into longer contigs. Contigs with lengths shorter than 1500 bp were excluded from downstream analysis. 
E Homologous contigs between viral and microbial datasets were found using minimap2 and removed. 
Unique viral fraction contigs and unique microbial fraction contigs were used as ground truth positives and 
negatives, respectively. F Nine bioinformatic virus identification tools were applied to these datasets. Tool 
names are colored based on algorithms: convolutional neural network tools (red), other machine learning 
tools (green), and homology‑only tools (blue). Viral contigs that are identified as viral and non‑viral are 
considered as true positives and false negatives, respectively. Microbial contigs that are identified as viral and 
non‑viral are false positives and true negatives, respectively
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Results
We benchmarked nine virus identification tools in thirteen modes using simulated and 
real-world metagenomic datasets. For the simulated datasets, we generated mock con-
tigs from reference genomes of viruses and bacteria deposited in the RefSeq database 
after the last tool training database was created. For the real-world metagenomic data-
sets, we used eight dataset pairs from each of three distinct biomes: seawater, soil, and 
human gut. Ground truth positives and negatives were defined as metagenomic contigs 
from viral (< 0.22 μm) and microbial (> 0.22 μm) size filters; overlapping sequences were 
excluded (Fig. 1 and Additional file 1: Fig. S1).

Quality and composition of the real‑world testing datasets from three biomes

To assess the viral enrichment and microbial contamination level of the viral datasets, 
we applied ViromeQC. The total enrichment score of the seawater dataset was 65 times 
higher than the soil dataset and 160 times higher than the gut dataset (Additional file 2: 
Table S5).

Raw sequencing reads were quality-controlled and assembled into contigs. The assem-
bly statistics, including the contig number and length distributions, are summarized in 
Fig. 2, Additional file 1: Fig. S2, and Additional file 2: Table S6. In total, seawater data-
sets contained the greatest number of contigs while gut datasets contained the smallest 
number of contigs. Seawater and gut datasets contained more microbial contigs than 
viral contigs while soil datasets contained more viral contigs than microbial contigs and 
with a greater total length. The soil datasets had the lowest percentage of homologous 
contigs between the viral and microbial datasets. As overlapping viral and microbial 
sequences might represent active and integrated temperate viruses, respectively, we 
hypothesize that there might be more lytic viruses in soil than in seawater and gut, in 
line with previous findings that lysogeny genes are scarce in soil viromes [11, 58–61]. 
These overlapping sequences were removed from our benchmarking analysis. Detailed 
information about the homologous contigs is deposited into the Zenodo repository 

Fig. 2 The number of contigs assembled from eight paired samples from seawater (A), soil (B), and gut (C) 
biomes and their cumulative lengths (D, E, F). X and Y axes of panels (A, B, C and D, E, F) are scaled to the 
same maximum values, so the numbers are comparable between biomes
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(seawater_minimap_wtp_output.txt, soil_minimap_wtp_output.txt, and gut_minimap_
wtp_output.txt).

Assembly coverage and quality were assessed by re-mapping sequencing reads to the 
length-filtered assembled contigs per dataset (Additional file 2: Table S7). The percent-
age of properly paired reads from bwa mem mapping ranged from 11% (gut microbial 
dataset SRR5665119) to 94% (gut viral dataset SRR5665153) with an average of 52% 
(23.69%) for all datasets. Viral datasets usually had a greater percentage of properly 
paired reads than microbial datasets across the three biomes. This might be due to fac-
tors such as (1) the larger genomes of microbes, (2) the higher local microbial commu-
nity complexity, and (3) the persistence of DNA in dead microbial matter [62, 63], which 
should be removed during the DNase step in the virome preparation but may persist in 
the microbiomes. Seawater datasets had the best assembly quality with mean percent-
ages of properly paired reads of 79% and 45% for viral and microbial datasets, respec-
tively. The DNA sequences of assembled scaffolds with lengths of at least 1500 bp are 
deposited into the Zenodo repository (seawater_scaffolds_gt1500.fasta, soil_scaffolds_
gt1500.fasta, and gut_scaffolds_gt1500.fasta). We propose that these datasets may be 
used in future benchmarking studies and that the results may be compared with those 
presented below.

Machine learning tools outperformed homology‑only tools

To compare the ability of the tools to detect viral sequences, the true positive rate (TPR, 
also known as sensitivity) and false positive rate (FPR) were measured based on the 
percentage of contigs from the viral and microbial size fractions that were identified 
with default thresholds (Fig. 3A, B, C and Additional file 2: Table S8). Detailed results 
per contig are available in the Zenodo repository (seawater_minimap_wtp_output.txt, 
soil_minimap_wtp_output.txt, and gut_minimap_wtp_output.txt). All tools, except for 
Sourmash, detected viral contigs. Most tools ranked consistently high or low in each of 
the three biomes. Not many virome contigs were detected in the human gut samples by 
any tool. This was probably due to the contamination of microbes in the virome data-
sets (Additional file 2: Table S5). Thus, optimization of experimental protocols to obtain 
virome from gut/fecal samples is suggested.

The choices of the algorithms and the parameters, the detected biological signals, 
and the compositions of the training databases all play a role in the ability of the tools 
to distinguish viral and microbial sequences. CNN tools outperformed other machine 
learning tools, while the homology-only tools performed the worst. Top performing 
tools, PPR-Meta (TPR or sensitivity: 68% ± 28%; FPR: 13% ± 8%) and DeepVirFinder 
(TPR or sensitivity: 45% ± 18%; FPR: 6% ± 5%), use convolutional neural network 
(CNN) algorithms that can capture short- and long-range signals on viral and micro-
bial genomes. PPR-Meta’s CNN contains two paths—a “base path” and a “codon path” 
while DeepVirFinder only contains the “base path.” The “base path” is beneficial to 
extracting the sequence features of coding or non-coding regions while the “codon 
path” is specifically designed to capture the properties of coding regions. The thor-
ough detection of biological signals encoded in both DNA and codon sequences 
might contribute to the good performance of PPR-Meta. PPR-Meta also detected 
many sequences among the microbial contigs, especially from the seawater biome. 
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These could include microbial sequences that were spuriously detected as viral, 
reflecting a tradeoff between sensitivity and specificity, but it could also be that the 
microbial fraction still contained viral elements, such as integrated prophages and 
intracellular viruses in a successful or unsuccessful infection cycle and thus present 
in the microbial fraction. There were relatively many such matching contigs in sea-
water samples (Fig. 2), possibly indicating the prevalence of actively infecting viruses 
in that biome. The viral signals found in the microbial fraction also confirmed the 
presence of possible viral elements in the microbial fraction (Fig. 5B). We will discuss 
this further in the below section of “Validation of predicted viral contigs in the real-
world testing dataset.” Both PPR-Meta and DeepVirFinder used RefSeq viral genomes 
as training databases, and DeepVirFinder additionally included virome datasets from 
specific studies in the training database. Still, DeepVirFinder did not perform better 
than PPR-Meta in our benchmark.

VirSorter2 and VIBRANT performed similarly, identifying just under half of the 
viral contigs in seawater and soil metagenomes with few false positives (Fig.  3A, B, 
C). The two tools use similar biological signals but different algorithms. Both Vir-
Sorter2 and VIBRANT use viral domain abundance information as biological signals 
for identifying viral contigs. VIBRANT uses a neural network multi-layer perception 

Fig. 3 Percentage of contigs identified as viral in the viral (true positive rate, blue) and microbial (false 
positive rate, orange) datasets, sorted by the average difference in detection rate between eight viral and 
microbial paired datasets in seawater (A), soil (B), and gut (C) biomes. Colors of the tool names as in Fig. 1. 
Convolutional neural network tools outperformed other machine learning tools, while the homology‑only 
tools performed the worst. Receiver operating characteristic (ROC) curves of seven methods based on their 
virus identification scores in seawater (D), soil (E), and gut biomes (F). The dashed diagonal line represents 
classification according to random chance. The area under the ROC curve (AUC) of each tool is listed in 
Additional file 2: Table S9



Page 8 of 23Wu et al. Genome Biology           (2024) 25:97 

classifier while VirSorter2 uses a random forest machine learning framework. Besides 
sequences from NCBI RefSeq, VirSorter2 includes viral sequences of giant viruses 
mined from public databases, viral sequences from seawater biomes, and novel ssDNA 
viruses from animals in its training database. Focusing on the differences, VirSorter2 
outperformed VIBRANT on seawater and gut biomes while VIBRANT outperformed 
Virsorter2 on soil biome. The inclusion of uncultivated viral sequences from seawater 
biomes and human/animal tissues by VirSorter2 might contribute to its better perfor-
mance on the seawater and gut samples than VIBRANT (Fig. 3A, B, C).

Seeker was the only machine learning tool that did not perform well. Seeker uses 
much fewer parameters (~  102) than PPR-Meta and DeepVirFinder (~  106). The low com-
plexity of the model reflected in the low number of parameters might inhibit the model 
to capture the nuanced but important patterns in the viral sequences. Besides, like most 
other tools, Seeker trains on viral and bacterial sequences from NCBI RefSeq, but, dif-
ferently, Seeker includes many more viral than bacterial genomes in the training data-
bases (2232:75 and 7375:240 viral: bacterial genomes for the first and second training 
databases, respectively), while the other tools include more bacterial than viral genomes 
(Additional file 2: Table S1). This class imbalance might lead to loss of important signals 
and bias the tool.

We further evaluated the true negative rate (TNR, also known as specificity), precision, 
and F1 score of each tool (Additional file 1: Fig. S3 and Additional file 2: Table S8). The 
two CNN tools, PPR-Meta and DeepVirFinder, have higher F1 scores than the homol-
ogy-only tools and other machine learning tools, mostly because of their high sensitiv-
ity, but they have lower specificity and lower precision. Homology-only tools tend to be 
highly specific, but they are not very sensitive and have many false negatives (undetected 
viral sequences). These properties should be considered when choosing a suitable tool 
for a specific study. For example, VirSorter2 and VIBRANT were highly specific and rel-
atively sensitive, while PPR-Meta and DeepVirFinder were highly sensitive but less spe-
cific than the other tools. The F1 score attempts to capture both these statistics, as the 
harmonic mean of precision and sensitivity. It is important to note that most machine 
learning tools were developed more recently than the homology-only tools and therefore 
included more updated and complete reference databases. All tools can be expected to 
improve over time as newly discovered viral genomes are added to the training/reference 
databases. In summary, the classification algorithms, biological signals, and training/
reference databases are all crucial factors in determining the performance of the tools. 
Both PPR-Meta and DeepVirFinder exploited CNNs, indicating the promising potential 
of CNN algorithms for sequence analysis.

To investigate influence of the quality of viral contigs on virus discovery, we assessed 
the quality of the viral contigs using CheckV (Fig.  4). Generally, higher quality viral 
sequences were easier to detect. CNN and other machine learning tools had higher 
sensitivity than homology-only tools on all contig quality categories. Compared to 
homology-only tools, machine learning tools had highly improved virus detecting abil-
ity on contigs of medium to complete quality and among which, CNN tools had highly 
improved virus detecting ability on contigs of low and not determined quality. PPR-Meta 
had high sensitivity for almost all categories of contig quality. DeepVirFinder had about 
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half the sensitivity of PPR-Meta in all categories. VirSorter2 and VIBRANT had high 
sensitivity in high-quality viruses (medium to complete), like PPR-Meta, while most low-
quality viruses were missed. Detailed information of the CheckV quality results of each 
contig is deposited into the Zenodo repository (seawater_checkv_quality_summary.tsv, 
soil_checkv_quality_summary.tsv, and gut_checkv_quality_summary.tsv).

The effect of adjusting score thresholds

To further investigate the distinguishing ability of each tool, we performed receiver oper-
ating characteristics (ROC) analysis. Only tools that provided a virus score were ana-
lyzed. We first grouped ROC curves by biome (Fig. 3D, E, F). For the seawater and soil 
biomes, PPR-Meta had the best virus discovery performance, followed by DeepVirFinder 
and VirSorter2. For the gut biome, VirSorter2 had the best performance, followed by 
DeepVirFinder and VirFinder. The results of high performance of PPR-Meta on soil 
datasets (AUC 0.95, Additional file 2: Table S9) were from both the good distinguishing 
ability of the tool and the quality of the testing datasets. Technically, the slightly lower 
performance on seawater datasets (AUC 0.90) could be a result of the tradeoff between 

Fig. 4 The association of the viral discovery rate with viral contig quality. Percentage of viral contigs detected 
by each tool from the viral fraction (true positive rate, as known as sensitivity) for viral contigs of different 
quality from seawater (A), soil (B), and gut (C) biomes, using default cutoffs. The order of the tools on the 
x‑axis and the color of the tool names as in Fig. 3
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sensitivity and specificity of the tool. Biologically, it could be a result of the prevalence 
of inactive prophages in the microbial fraction, which could have led to the detection of 
contigs from the microbial fraction which are counted as false positives in our bench-
mark (see Figs.  2 and 3A, B, C). The homology-only tool MetaPhinder performed no 
better than chance level based on the ROC curves.

We also grouped ROC curves by tool and colored the curves based on the cutoff score 
to investigate the optimal cutoff for different tools on different biomes (Additional file 1: 
Fig. S4). The results show that adjusting virus score thresholds could enhance the virus 
discovery rate by some of the tools. For example, based on default thresholds, PPR-Meta 
and DeepVirFinder had high TPR and relatively low FPR when applied to soil datasets. 
Their thresholds could be decreased with a relatively low risk of false discovery so that 
more divergent viruses can be found. The choices of tools and thresholds depend on 
the goals of the study. Researchers who want to detect more novel viruses can use more 
sensitive tools and decrease the thresholds from the defaults, such as PPR-Meta, Deep-
VirFinder, and VirFinder. Researchers who have more conservative goals can use more 
specific tools and increase the thresholds from the defaults, such as VirSorter2.

Agreement and disagreement between tools

To investigate the agreement and disagreement between tools, we used UpSet plots 
to show the intersections of identified contigs from the two size fractions of seawater 
(Fig. 5), soil (Additional file 1: Fig. S5), and gut (Additional file 1: Fig. S6). Tools using 
similar algorithms clustered together and had more linkages in the UpSet matrices, 
indicating that the annotations of these tools tend to agree with each other. CNN tools 
identified the most viral contigs from the viral fractions and agreed with each other as 
they clustered on the bottom of the UpSet matrices. As expected, most microbial contigs 
were not identified as viral by any tool (the left-most stacked bars are the tallest among 
all bars in the B panels). More consistency of predictions (more linkages in the UpSet 
matrices) was seen in the viral fractions (A panels) than in the microbial fractions (B 
panels), indicating that tools tend to agree with each other more on viral than on micro-
bial contigs. For seawater and soil biomes, most viral contigs were identified by at least 
one tool, but this was not the case for the gut biome (the left-most stacked bar is the 
tallest among all bars in the A panel in Fig. S6), again suggesting that possible microbial 
contamination in the gut viral datasets introduced negative (microbial) sequences into 
the positives (viral) contig set.

Validation of predicted viral contigs in the real‑world testing dataset

To assess the purity of the microbial and viral fractions from each biome, we further 
characterized the contigs using taxonomic and functional annotation tools with CAT 
and hmmsearch, respectively (Fig. 5 (seawater), Additional file 1: Fig. S5 (soil), and S6 
(gut)). CAT is a tool to predict open reading frames from assembled contigs and search 
their homology to the NCBI non-redundant protein database to assign taxonomy to 
contigs. Hmmsearch searches viral and microbial profile HMMs from assembled con-
tigs. Both tools gave an overall trend of viral and bacterial protein signals found from 
the contigs. Generally, more viral signals were found in the viral fraction than in the 
microbial fraction; more microbial signals were found in the microbial fraction than in 
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the viral fraction. The stacked bars above and left of the UpSet matrices visualized the 
CAT classification on the contig subsets. More contigs in viral fraction than in micro-
bial fraction were classified as viral by CAT (more blue color bar in the viral fraction), 
confirming an enrichment of viral sequences in the viral fraction. The heatmaps below 
and right of the upset plots show to what extent the contig subsets contained viral or 
microbial marker gene HMM profiles. Viral markers were found in both the viral and 
microbial fractions but more in viral fraction (the intensity of blue color is stronger in 
the viral fraction than in the microbial fraction), again confirming an enrichment of viral 
sequences in the viral fraction. Microbial markers were mostly found in the microbial 
fraction (the intensity of orange color is stronger in the microbial fraction than in the 
viral fraction), except for gut biome that contained a lot of microbial markers in the viral 
fraction (Additional file 1: Fig. S6).

Fig. 5 UpSet plots summarizing the overlap in predictions between tools for the viral (A) and microbial 
(B) contigs from the seawater samples. The total number of identified viral contigs per tool is shown in the 
stacked bar plots on the left. Stacked bars above the upset plots visualize the number of viral contigs that 
were exclusively identified by each tool or tool combination. The left‑most stacked bars show the number of 
contigs that were not identified as viruses by any of the tools. The CAT classification of the contigs is indicated 
as colors in the bar plots: blue represents contigs classified as viruses, orange represents contigs classified as 
“Bacteria,” “Archaea,” or “Eukaryota,” and gray represents “no support” or “nan” classifications. Heatmaps below 
and right of the upset plots visualize the frequency of viral (blue) or microbial (orange) hallmark genes 
(logarithmic arbitrary units, see the “Methods” section). The intensity of hallmark gene HMM profiles was 
determined by dividing the length sum of all the HMM hits by the contig length. Color of the tool names as 
in Fig. 1. For similar plots based on the soil and gut datasets, see Additional file 1: Figs. S5 and S6, respectively
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Viral contigs that were identified by many tools showed great CAT viral protein sig-
nals and/or viral marker gene HMM profile signals, such as column 5 and 15 in Fig. 5A. 
The coincide of strong viral signals and contigs identified by many tools indicated 
that tools agreed with each other more when the conventional viral signals are strong. 
A strong viral signal was also found in some microbial contigs, such as column 28 in 
Fig. 5B which contains contigs predicted as viral by nine different methods. This viral 
signal from microbial fraction contigs could indicate prophages, free virions, or other 
viral elements that could not be removed by prior experimental and bioinformatic pro-
cesses. A summary of viral and microbial signals on contig subsets can be found in Addi-
tional file 2: Table S10 and S11. Detailed CAT classification and hmmsearch results can 
be found in the Zenodo repository (seawater_cat_taxonomy_official.txt, soil_cat_tax-
onomy_official.txt, gut_cat_taxonomy_official.txt, seawater_hmmsearch_domtblout.txt, 
soil_hmmsearch_domtblout.txt, and gut_hmmsearch_domtblout.txt).

To further investigate whether the identified contigs represent real viral sequences, 
the longest viral contigs that were exclusively identified by each tool in each biome were 
extracted, classified, and annotated. PhaGCN2 placed 6/31 of these contigs into the viral 
taxonomy (Additional file  2: Table  S12). Although the remaining 25 contigs were not 
taxonomically classified, they did contain viral hallmark genes, such as genes encoding 
for portal proteins, head scaffolding proteins, and tail related proteins (Fig. 6 (seawater), 
Additional file 1: Figs. S7 (soil) and S8 (gut)), suggesting that these contigs are derived 
from real novel viruses. This analysis indicates that all tools have their strengths and 
weakness. Some tools may not be able to predict a wide range of viruses, but almost all 
tools, except for Sourmash, still identified certain viral sequences that the other tools 
missed.

Benchmarking tools on the simulated testing datasets derived from the RefSeq database

We constructed a simulated dataset with the viral (6,155 sequences) and bacterial 
genomes (22,552 sequences) deposited into the RefSeq database after the last tool (Vir-
Sorter2) training database was created. We calculated similarity scores of these viruses 
(new viruses) based on their similarity compared to the viruses (old viruses) deposited 
before the last tool training database was created (Additional file 2: Table S13). We cut 
simulated contigs from the viral and bacterial genome sequences and input them for 
virus identification using the nine tools. As above, CNN tools outperformed homology-
only tools (Additional file 1: Fig. S9A, B and Additional file 2: Table S14). This strong 
performance did not depend on the degree of similarity of the new virus genome to the 
older ones (Additional file 1: Fig. S9C and Additional file 2: Table S15). CNN tools even 
outperformed homology-only tools on the viruses with relatively high similarity with 
known viruses. This could be because the CNN tools were built after homology-only 
tools and thus contained more and more diverse reference viruses in their training data-
sets. PPR-Meta performed the best among all tools on the simulated data, but with a 
lower discovery rate than in the real-world metagenomic data (Fig. 3A, B, C). This could 
be due to the short sequence lengths of the mock contigs (mean: 2000 bp) compared to 
the real-world contigs (Additional file 1: Fig. S2). Seeker performed better on the sim-
ulated contigs than on the real-world contigs. Detailed results per contig are available 
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in the Zenodo repository (simulated_bacterial_fragments_wtp_output.txt, simulated_
viral_fragments_wtp_output.txt).

Computational resources used for each tool

This study was performed on a shared high performance computing cluster. We bench-
marked the computational resources used for each tool on the smallest dataset from the 
seawater biome (188,159 contigs, 164 MB) in a high-performance cluster of 48 Gold-
6240R CPUs and 503.5 GB RAM or 48 Gold-6240R CPUs and 1510.5 GB RAM. We cap-
tured the CPU usage, physical memory usage and execution time in Additional file 2: 
Table  S16. DeepVirFinder and VirFinder had the largest and smallest computational 
footprints, respectively. Two tools with the best performance, PPR-Meta and VirSorter2, 
used intermediate computational resources. PPR-Meta is fast but relatively memory- 
and CPU-intensive, while VirSorter2 is relatively slow but requires less memory.

Fig. 6 Genomic maps of the longest contigs that were exclusively identified by individual tools in the 
seawater virome dataset. For similar plots based on the soil and gut datasets, see Additional file 1: Figs. S7 and 
S8, respectively
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Discussion
Prior benchmarking studies

Several studies have compared the performance of bioinformatic virus identification 
tools. All studies benchmarked different sets of tools with some of them having over-
laps on tested tools. One of them evaluated tools only by describing the methods of the 
workflows without quantification analysis [48]. Another one benchmarked tools that 
specialize in identifying viruses from clinical samples [51]. Four benchmarking works 
[49, 50, 52, 53] mainly used simulated viral and non-viral testing datasets that were sam-
pled from publicly available complete viral and microbial genomes (e.g., NCBI RefSeq). 
A summary of the tested tools and testing datasets of each study can be found in Addi-
tional file 2: Table S2.

All these studies gave insights about tool performance and which tools to choose for 
virus identification. Ho et  al. 2021 found that machine learning-based tools outper-
formed homology-only tools on the simulated dataset, which was consistent with our 
benchmarking results [53]. Besides a simulated dataset, they benchmarked tools on a 
mock community dataset consisting of five phage strains. Most tools performed signif-
icantly worse on the mock community dataset than on the simulated dataset derived 
from reference genomes, illustrating how simulated data sampled from RefSeq could 
overestimate tools’ performance. Pratama et al. 2021 found that viral identification effi-
ciency increases with fragment length, and almost all tools can correctly identify viral 
contigs of 10 kb or longer [50]. “Gene content based” tools (VirSorter) can maximize 
the true positive rate and minimize the false positive rate at length > 3 kb. K-mer-based 
tools (DeepVirFinder) and BLAST-based tools (MetaPhinder) were good at identifying 
viruses from short (< 3 kb) viral genome fragments. Complementary to their results, we 
found that the viral identification sensitivity increases with the quality of contigs (Fig. 4). 
High-quality contigs were better identified by machine learning tools than by homol-
ogy-only tools. CNN tools were better at identifying low-quality contigs than other 
machine learning tools. The most recent benchmarking work by Schackart et al. 2023 
used simulated datasets as well as a real-world gut metagenome dataset [52]. Their main 
findings agreed with us—that homology tools (VirSorter, VIBRANT, and VirSorter2) 
demonstrate low false positive rates and robustness to eukaryotic contamination, while 
machine learning tools (VirFinder and DeepVirFinder) have high sensitivity, allowing 
them to identify phages that are distinct from those in the reference databases.

For benchmarking studies that simulated testing datasets, while an effort was made to 
benchmark the tools on data that was not part of the reference/training dataset, there 
still might be instances of overlap. For example, Glickman et al. 2021 used VirSorter to 
perform prophage identification during testing dataset preparation, which might provide 
VirSorter with an advantage over other tools in prophage identification in this bench-
marking work [49]. And indeed, VirSorter performed the best on identifying phages 
based on F1 score in this study.

The advantages and limitations of using real‑world metagenomic data

The usage of newly generated metagenomic data as testing datasets in our bench-
mark, including a marine Antarctic dataset from an understudied region, allowed us 
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to avoid overlap between testing and training/reference datasets. Besides, the usage of 
real-world metagenomic testing datasets gives our study the perspective of metagen-
omic virus discovery. The main limitation of our benchmarking study is that we are 
not completely certain about the purity of our ground truth viral (< 0.22 μm) and 
microbial (> 0.22 μm) datasets.

To address this, we carefully selected metagenomic data from the studies with 
appropriate standard operation procedures to separate viruses from microbes. Both 
our dataset [64] and the publicly available datasets [65, 66] used in this benchmark 
performed a DNase treatment in the viral fraction before DNA extraction from viri-
ons, minimizing free microbial DNA contamination [62, 67]. The DNase treatment 
effectively removes free microbial DNA in the viral fraction and is commonly used 
in virome studies [68–73]. We also assessed the contamination of microbial DNA in 
the viral size fraction by using ViromeQC (Additional file 2: Table S5). The microbial 
size fraction could contain viral sequences, including integrated prophages or viruses 
that are attached to cells or large debris or particles. This was illustrated by the viral 
signals found by CAT and hmmsearch in the microbial datasets (Fig.  5, Additional 
file  1: Fig. S5 and S6). However, more viral signals were found in the viral fraction 
than in the microbial fraction, confirming the enrichment of viruses in the viral frac-
tion and the depletion of viruses in the microbial fraction. We recognize that inte-
grated prophages that are not active as free virions might still be identified as viruses 
in the microbial fraction (spurious false positives).

Besides viruses, mobile genetic elements (MGEs) such as plasmids, insertion 
sequence elements, integrative and conjugative elements, and integrons are also 
prevalent in the environment, but it can be difficult to distinguish these MGEs, even 
when using specialized bioinformatic tools [74]. This does not necessarily mean that 
the tools perform poorly but also suggests that recombination between MGEs is ram-
pant. While our benchmarking work did not target other MGEs such as plasmids or 
prophages specifically, we minimized their influence by identifying and removing 
any homologous contigs shared between the viral and microbial fractions (Fig.  1). 
We attempted to taxonomically classify some of the identified viral contigs using 
PhaGCN2 [75], but most of them remained unclassified.

While other benchmarking studies that used simulated data had more purified data, 
this was at the expense of vastly reduced viral/microbial community complexity, since 
sequences were only sampled from a fixed set of genomes. Strain-level microdiver-
sity, which is an important parameter in viral ecology [76], is not represented in such 
simulated data. In summary, our benchmarking is complementary to the benchmark-
ing work done by others. The usage of real-world metagenomic data from different 
biomes ensured the high complexity and reality of the testing datasets and avoided 
the problems of overlap between training and testing datasets, albeit with the com-
promise of not knowing the exact compositions of the testing datasets.

We benchmarked tools on three distinct biomes, seawater, soil, and human gut. 
We chose these three biomes because they differed greatly on microbial community 
compositions and diversity and represent very different microbial compositions when 
viewed in the context of global microbiome datasets [56]. While arguably, samples 
from three individual studies cannot be assumed to represent all microbiomes, the 



Page 16 of 23Wu et al. Genome Biology           (2024) 25:97 

different tools have similar performance in the different biomes, indicating that our 
results are generalizable.

Conclusions
This study benchmarks the performance of nine state-of-the-art bioinformatic virus 
identification tools using real-world metagenomic data. To evaluate how the tools per-
form on datasets from different biomes, we used datasets from three distinct biomes, 
i.e., seawater, soil, and gut. As CNN tools outperformed homology-only tools, especially 
on contigs of low quality, this seems to be a very promising avenue for virus mining, and 
more advances are expected as this field matures. PPR-Meta, DeepVirFinder, VirSorter2, 
and VIBRANT performed the best among all benchmarked tools with relatively high 
true positive rates and relatively low false positive rates. No tool is perfect; every tool 
has its own strengths and weaknesses. However, it is not recommended to use union 
of all tools as some of the tools identified many false positives. The selection of a tool/
tools may depend upon the desired application as well. PPR-Meta and DeepVirFinder 
were found to be sensitive but not as precise as some other tools. Thus, they can be used 
when detection of novel viruses is important and false positives are perhaps less of an 
issue. VirSorter2 and VIBRANT were more precise (fewer false positives) but also less 
sensitive compared to PPR-Meta and DeepVirFinder. Thus, they can be applied to stud-
ies when precision is more important than sensitivity. The adjustment of the cutoff virus 
scores also plays a role in the distinguishing ability of tools. If possible, in the experi-
mental setup, we suggest using a small dataset of pairs of viral and microbial datasets for 
at least some samples to explore the optimal thresholds of virus detection tools using a  
setup as we followed in our study. For this, we have made our full Snakemake pipeline 
[77, 78] available. Besides, the experimental flow of obtaining viromes and the quality of 
assembled contigs would influence the discovery performance of virus identification tools.

Our comprehensive analysis of viral identification tools to assess their performance in 
a variety of biomes provides valuable insights to viromics researchers looking to mine 
viral elements from novel metagenomic data across biomes. We hope that the results of 
this benchmarking work will provide researchers with a guide to selecting the appropriate 
tool and adjusting parameters for their own viral identification research.

Methods
Construction of testing datasets from real‑world metagenomic data across biomes

To investigate how the tools perform on datasets from different biomes, we selected 
datasets from Antarctic seawater (this study) [54], tomato soil [31], and human gut [55] 
(Additional file 2: Table S3). We collected a total of 48 metagenome datasets, including 
eight paired viral and microbial datasets from each biome (Additional file 2: Table S4).  
The viral datasets were obtained by size fractionation through a 0.22 μm membrane fol-
lowed by DNase treatment to remove free DNA, reducing the likelihood of contaminating  
the viruses with sequences derived from cellular organisms. To further reduce biases  
in the detected viruses, we selected datasets where the DNA was not amplified prior to 
library preparation and sequencing [79, 80]. In all studies, total DNA for the microbial 
fraction was extracted with the PowerSoil kit. Paired-end sequencing was performed on 
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the Illumina platform [31, 54, 55]. As these microbial samples might still contain some 
viral sequences and the viral samples might contain some microbial sequences, any 
overlapping sequences between viral and microbial datasets will be removed below. The 
quality of each viral dataset was assessed by ViromeQC (v1.0.1) [81], which quantifies 
viral enrichment in viral samples by calculating three enrichment scores based on reads 
mapping to the small and large subunit rRNA, and single-copy bacterial markers. Raw 
reads were assessed and quality-controlled using fastp (v0.22.0) [55, 82] and MultiQC 
(v1.11) [83] and assembled using metaSPAdes (v3.15.3) [84] with k-mer sizes of 21, 33, 
55, 77, 99, and 127. Contigs < 1500 bp were removed before downstream analysis using 
seqtk (v1.3) [85]. Raw sequencing reads were mapped back to assembled contigs with 
lengths of at least 1500 bp using bwa mem (v0.7.17) [86], and the mapping statistics were 
summarized using samtools stats (v1.14) [87].

Overlapping sequences between viral and microbial fractions were identified by map-
ping the viral to the microbial contigs using Minimap2 (v2.22) [88] with arguments -x 
ava-ont for contigs. Minimap2 does not have a specific identity cutoff but is designed for 
mapping long reads with 5–15% mismatches. Contigs with Minimap2 hits covering at 
least 80% of the microbial contig length were removed from either size fraction.

We used unique contigs with lengths of at least 1500 bp from the viral and micro-
bial size fractions as ground truth positives and negatives, respectively. Viral contigs that 
were identified as viral and non-viral by the tools were regarded as true positives and 
false negatives, respectively. Microbial contigs that were identified as viral and non-viral 
were regarded as false positives and true negatives, respectively (Fig. 1).

Construction of the simulated testing datasets from the RefSeq database

To investigate how the tools perform on mock data with known composition, we down-
loaded 6495 viral and 52,046 bacterial reference genomes deposited in the RefSeq 
database after 12 January 2020, when the last tool training database, VirSorter2, down-
loaded their training dataset (latest date: 13 November 2023). We removed plasmids and 
genomes shorter than 1500 bp, resulting in 6155 viral and 22,552 bacterial genomes. To 
assess the similarity of the viruses deposited after 12 January 2020 to the ones depos-
ited before that date, we performed an mmseqs2 easy search with the translated type (–
search-type 2). Based on this search, we grouped the viruses into three categories, with 
low (< = 20% similarity, n = 41,970), medium (> 20% and <  = 40% similarity, n = 15,580), 
and high (> 40% and <  = 100% similarity, n = 4,000) identity to older RefSeq viruses. We 
cut 52,406 fragments (mock contigs) with lengths according to a normal distribution 
with mean 2000 bp, standard deviation 500 bp, and minimum 1500 bp from both the 
viral and bacterial datasets.

Benchmarked tools

We predicted viral contigs using the What-the-Phage pipeline (v1.0.2) [89], which is a 
wrapper of ten virus identification tools. VirNet was not run successfully. The nine 
remaining tools included CNN tools—DeepVirFinder v1.0 [41] and PPR-Meta v1.1 [42], 
other machine learning tools—Seeker with no release version [90], VIBRANT v1.2.1 
(with and without virome mode) [43], VirFinder v1.1 [40], andVirSorter2 v2.0 [44], and 
homology-only tools—MetaPhinder [38] with no release version (with and without own 
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database), Sourmash v2.0.1 [39], and VirSorter v1.0.6 (with and without virome mode) 
[37] (Additional file 2: Table S1). The predicted classes were binarized with 0 and 1 cor-
responding to predicted microbial and viral origin, respectively. Our benchmarking 
work used contigs with lengths of at least 1500 bp because this is the minimum length of 
the input sequence that can be handled by all tools. Some tools had additional require-
ments. For example, VIBRANT requires input sequences of at least four open reading 
frames. Thus, not all contigs were given a prediction result. Contigs that were not given 
any prediction were assigned to NAs.

Tool performance analysis

NAs of the identification results by each tool were replaced by zero (i.e., not predicted 
as viral) before calculating performance measures. Performance measures, including 
true positive rate (TPR, also known as sensitivity, Eq. 1), false positive rate (FPR, Eq. 2), 
true negative rate (TNR, also known as specificity, Eq. 3), precision (Eq. 4), and F1 score 
(Eq. 5) were calculated and plotted in box plots. Receiver operation curves and UpSet 
plots were created using the summarized statistics.

In addition, we assessed to what extent the contigs from the viral fraction represented 
(in-)complete genomes using CheckV (v1.0.1) [91] and plotted the detected viral ratio in 
each quality rank in box plots.

Additional contigs validation

We taxonomically classified the contigs in all testing datasets using CAT (v5.2.3) [92] 
with Diamond (v2.0.9) [93] and the CAT_database.2021–04-30 database. CAT add_
names with the –only_official argument and CAT summarize were used to process the 
output. Only classifications at the superkingdom rank were used, including “Bacteria,” 
“Archaea,” “Eukaryota,” “Viruses,” “no support,” and “NA.” “No support” in CAT means 
that the ORFs in the contigs had no hit in the database. Since viruses are relatively 
unexplored, these contigs might be derived from novel viruses [29]. “NA” means that 
the ORFs had hits in the database, but these have conflicting taxonomic annotations, 
for example if different ORFs on a given contig map to viruses and bacteria, potentially 

(1)TPR or sensitivity =
TP

TP+ FN

(2)FPR =
FP

FP+ TN

(3)TNR or specificity =
TN

TN+ FP

(4)precision =
TP

TP+ FP

(5)F1 score =
2 ∗ precision ∗ sensitivity

precision+ sensitivity
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reflecting prophages on microbial contigs. We interpreted the contigs with CAT classifi-
cations “Viruses” as potentially viral, “Bacteria,” “Archaea,” and “Eukaryota,” as microbial, 
and “no support” and “NA” as unknown. The distributions of viral and microbial contigs 
identified by CAT in each dataset collection of contigs exclusively identified by tools or 
tool combinations were shown by bar plots.

To further validate the contigs in the testing datasets, we queried them for viral and 
microbial signals using 8773 viral and 7185 microbial HMMs from CheckV (v1.4) [91]. 
We translated the nucleotide contigs into amino acid sequences in six frames using 
transeq from EMBOSS (v6.6.0) [94] and searched the sequences for the 15,958 marker 
HMMs using hmmsearch (v3.2.1) [46, 95]. To quantify the overall viral/microbial signal 
in each subset of contigs, we calculated the fraction of the contig lengths that was cov-
ered by the HMM hits, converted the fraction to log ratios, and visualized the results in 
heatmap.

To further investigate specific sequences that were exclusively predicted by different 
tools, we taxonomically classified them using PhaGCN2.0 (v2.0) [75]. Gene annotation 
plots were created by a custom python script, after searching the translated amino acid 
sequences against the PHROG (v4) [96] HMM profile database using hhsearch from the 
HH-suite (v.3.3.0) [97].

All statistics were calculated and plotted using custom python and R (v4.1.0) scripts 
and using R packages dplyr (v1.0.8), tidyverse (v1.3.1), scales (v0.6.0), ggplot2 (v3.3.5), 
ggbeeswarm (v1.1.1), ROCR (v1.0.11) [98], UpSetR (v1.4.0) [99], ComplexHeatmap 
(v2.8.0) [100], and ggpattern (v0.4.2).
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