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Background
De novo metagenome sequencing promises unbiased and comprehensive snapshot of 
microbial communities of interest, independent of isolation and cultivation [1–3]. Ide-
ally we would like to reconstruct circular genomes for each species and strains. The real-
ity is not as encouraging.
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compared to those state-of-the-art binners in terms of total number of near-complete 
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Past metagenome sequencing projects focused on short read sequencing. They 
could not reconstruct circular genomes automatically due to repeat contents or 
strain similarity. Instead, these projects produced short contigs of tens of kilobases 
(kb) in length, ∼100 times shorter than a typical bacterial genome. To obtain a more 
complete representation of an individual species, we typically apply binning algo-
rithms to group short contigs into metagenome-assembled genomes (MAGs). The 
completeness of a MAG is often measured with CheckM  [4] and analysis often 
focus on near-complete MAGs [5] in downstream analysis. A MAG from short-read 
assembly, even if near-complete, is fragmented and could be composed of segments 
from multiple related strains. It is not equivalent to a whole genome.

The advent of long-read sequencing technologies combined with specialized long-
read metagenome assemblers [6–8] has dramatically improved the completeness of 
individual MAGs, with MAG yield per unit library size similar to that of short read 
sequencing projects (Additional file 7: Figs. S1 and S2). It is now possible to assem-
ble tens to hundreds of circular genomes from one deeply sequenced metagenome 
sample. Nonetheless, even with long reads, many species are still unresolved and 
binning is still necessary. While binners initially developed for short reads work for 
long-read metagenome contigs, they have not considered the capability of long-read 
assemblers to separate closely related strains and sometimes group circular con-
tigs together, which results in highly contaminated bins [7]. They do not work well 
straight out of box. In addition, as we will explain later, current binners, including 
graph-based binners [9, 10], are unable to capture the circular topologies in accurate 
long-read assembly graphs. There is still room for improvement.

When we could routinely obtain continuous, complete bacterial genomes in 
metagenome samples, we may start to ask how well these MAGs represent a given 
sample as a whole. A comprehensive answer to this question poses its own chal-
lenges. We could map reads back to the assembly and check how many reads are 
unmapped. This unfortunately does not tell us the characteristics of under-repre-
sented species and thus does not inform how to improve our assemblies. It may be 
tempting to think abundant species could be well reconstructed [11–13], but this is 
often not the case for practical samples [14, 15]. Horizontal gene transfer (HGT) or 
large duplication events may be even more difficult to resolve. We lack the necessary 
tools to evaluate the representation completeness of a metagenome assembly.

In this article, we proposed two methods to investigate the representation of bac-
terial contents in long-read metagenome assemblies. The first method is inspired by 
KAT [16] and Merqury [17]. It evaluates the completeness at different k-mer occur-
rence thresholds. The second method leverages the observation that long reads are 
longer than 16S RNA. It checks if 16S RNAs are captured by assemblies. Both meth-
ods confirm that abundant species may not always be assembled. To improve the 
representation completeness, we additionally developed a new binning algorithm 
that finds circular paths in the assembly graph. The algorithm itself is comparable 
to other binning algorithms in accuracy and can be used together with other algo-
rithms for higher binning quality.
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Results
Overview of the hifiasm‑meta binning algorithm

In the hifiasm-meta assembly graph (Fig. 1A), we noticed circular unresolved subgraphs 
which are likely due to high strain diversity or shared homology around HGT. Check-
ing the CheckM1 report, we found these circles often corresponded to real bacterial 
genomes. The observation inspired us to develop an algorithm to enumerate circular 
paths in the assembly graph. More exactly, we perform a series of depth-first search 
(DFS) traversals on the assembly graph in attempt to find circular paths of roughly 500 
kb or longer. Some circular paths found this way may come from one subgraph and may 
be redundant. We apply the Mash MinHash-based algorithm [18] to estimate the pair-
wise distances between circular paths and remove a circular path if it is ≥95% similar to 
another circular path. This procedure gives us a list of non-redundant circular paths.

Circle rescue cannot group disconnected contigs and thus does not replace classical 
binning. To provide a smoother user experience, we also implemented a native binning 
algorithm tightly integrated in hifiasm-meta. At this step, we ignore circular contigs or 
linear contigs that are on non-redundant circular paths. For each remaining contig, we 

Fig. 1 Showcases of when the circle rescue works well and not well. A The top row shows visualization of 
three subgraphs from hifiasm-meta primary assemblies, with contigs colored randomly [19]. The bottom row 
shows the circles (i.e., putative MAGs) rescued by the heuristics, with contigs of each circle colored the same. 
Contigs that do not belong to any rescued circle are colored gray. These circles were near-complete MAGs 
based on CheckM1. B The heuristics does not work well in subgraphs or regions like this one. In this particular 
example, the contigs had very low coverages
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compute the read coverage in the logarithm scale, count the occurrences of canonical 
5-mers and then create a feature matrix of size N × (512+ 1) , where N is the number 
of considered contigs, 512 is the number of canonical 5-mers, and the last dimension 
is for read coverage. We normalize each column in the matrix by Z-score, embed it to 
a 2-dimensional space with t-SNE, and extract contig bins in the embedded space using 
a small radius as follows. We seed a cluster from the longest non-circular contigs to the 
shortest. For each seed, we try to find a circle with diameter D on the t-SNE plane such 
that it contains the seed and all other contigs that are ≤ D away from the seed. These 
contigs are called neighbors. If found, the seed and neighbors are put into a bin and 
marked as used; otherwise, we test whether the circle centered at the seed with diameter 
1.6× D contains all neighbors and create a bin on success. When both attempts fail, we 
record the seed as a single-contig bin if it is longer than 500 Kb; otherwise, we do noth-
ing. Finally, we merge the resultant bins with circular contigs and non-redundant circu-
lar paths to generate the final results.

We call the algorithm above as hmBin in this article. Similar to vamb, hmBin only 
uses information from the metagenome reads without using marker genes or relying on 
known reference bacterial genomes. Nonetheless, hmBin still has a few hyperparame-
ters such as the minimum length of circular paths, the Mash similarity, and the radius 
used for defining t-SNE clusters. During the development of hmBin, we explored differ-
ent thresholds and found the binning results are generally insensitive to these thresholds 
on our datasets (“Methods”). We also tried to use UMAP for clustering. The result was 
slightly worse than the t-SNE clustering.

The circle rescue heuristic also works with mdBG  [20] assembly graphs and can 
recover a third to a fourth of near-complete MAGs found by hifiasm-meta in tested 
samples. However, mdBG does not correct insertion/deletion sequencing errors in 
homopolymers which often interrupt open reading frames and lead to low CheckM1 
completeness. We thus did not evaluate mdBG results. MetaFlye does not produce 
an assembly graph for contigs. It instead generates a repeat graph which, unlike string 
graphs used by hifiasm-meta, may reuse a unitig in multiple contigs. Our circle finding 
algorithm only traverses each unitig or contig once and does not work with metaFlye 
assembly graphs. In theory, it is possible to adapt our algorithm for repeat graphs. How-
ever, metaFlye assembly graphs more often look like the one in Fig. 1B. We would not be 
able to get good results anyway.

Understanding the behavior of the hifiasm‑meta binning algorithm

We collected 19 HiFi datasets (Additional files 1 and 2: Tables S1 and S2) and evaluated 
the quality of MAGs with CheckM1 [4]. Following previous work  [21–23], we use the 
following criteria to evaluate MAGs. “Near-complete” means ≥ 90% completeness and 
< 5% contamination. “High-quality” means ≥ 70% completeness, < 10% contamination 
but does not qualify for near-complete. “Medium-quality” means ≥ 50% completeness, 
≥ 50 quality score but does not qualify for the above two where the quality score of a 
MAG is defined as “ completeness− 5× contamination .” All other MAGs are referred 
to as failed-quality. The categories never refer to the original MiMAG definition, with 
or without being suffixed by “MAG,” e.g., “HQ” means the high-quality category or the 
high-quality MAGs under our definition.
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Figure  2 shows the flow of data when we assembled the sheep-gut-1b dataset with 
hifiasm-meta and evaluated the results with CheckM1. Notably, a small fraction of cir-
cular contigs are not considered near-complete. They may come from underrepresented 
clades in the CheckM1 data as we found earlier [7]. On sheep-gut-1b, hmBin recovered 
tens of circular contigs that are considered near-complete by CheckM1 (Fig. 3).

Optimizing other binning algorithms for hifiasm‑meta assembly

We additionally applied four other binning algorithms to our datasets, including 
Vamb [24], MetaBAT2 [25], GraphMB [10], and SemiBin1 [26]. They use different infor-
mation and distinct algorithms. Vamb only considers coverage and tetranucleotide 
profiles for binning. MetaBAT2, possibly the most widely used binning algorithm, addi-
tionally trains hyperparameters on existing bacterial genomes. GraphMB takes graph 
topology into account with a Graph Neural Network. SemiBin1 is special in that it uses 
single-copy marker genes to guide binning, the same information CheckM1 uses to eval-
uate MAGs. It may be biased to known species and will be unfairly favored by CheckM1. 
GraphMB can optionally use single-copy marker genes as well. We did not evaluate that 
mode. We also note that some binners, such as vamb, are optimized for jointly binning 
multiple samples and may underperform given a single sample.

As hifiasm-meta may assemble strains of the same species into separate contigs, Vamb, 
MetaBAT2, and GraphMB may group these contigs and result in complete but highly 
contaminated bins. To address this issue, we post-process the bins from these binners 
by putting ≥ 1 Mb circular contigs into separate single-contig bins. Figure 4A shows the 
effect of putting circular contigs into separate bins. This post-processing step greatly 
increases the number of near-complete MAGs for the three binners. The improvement 
is especially notable for the two sheep gut datasets. This step does not help SemiBin1, 
probably because SemiBin1 can use single-copy marker genes to identify this problem 
while binning.

Meanwhile, as the hifiasm-meta circle rescue heuristic and traditional binners use dif-
ferent information for binning, the circular paths hifiasm-meta identifies may not always 
be captured by post-processed bins. We thus additionally merge the circular paths with 
post-processed bins as follows. For a bin found by a traditional binner of 0.5–10 Mb in 
size, we discard it as a redundancy if the bin has > 1 Mb sequences or > 10 contigs shared 

Fig. 2 Sankey plot showing flow of reads and contigs of sheep-gut-1b. Left: reads to contigs, categorized by 
contig length. Middle: contigs to binning categories (from top to bottom, “C” for ≥ 1 Mb circular contigs; “PF” 
for circular path rescue; “scBin: single contig bin; “mcBin” for multi-contig bin; dismissed: unused by binning). 
Right: MAGs quality categories. Group heights are normalized by counts, except the left-most side which is 
normalized by base pairs. For the visualization purpose, the height of “dismissed” and the height of “failed” are 
not proprotional to the counts
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Fig. 3 Clustering near-complete MAGs of sheep-gut-1b. The middle-left dense darker square represents 
Archaea. Mash distance more than 30% are shown as 30%

Fig. 4 Effect of post-processing and circle rescue on binning quality. A Number of additional near-complete 
MAGs recovered by putting ≥ 1 Mb circular contigs to separate bins. B Number of additional near-complete 
MAGs recovered by the hifiasm-meta circle rescue heuristic
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with a rescued circular path. We then combine circular contigs, rescued circles and the 
remaining bins to produce the final binning results.

Across all the tested datasets, 74 near-complete MetaBAT2 bins were discarded by the 
procedure above. Sixty-four of them have < 1% mash distance to rescued circles (52 of 
them < 0.1%). In 61 out of the 64 cases, rescued circles were better than the rejected 
MetaBAT2 bins in terms of equal or better CheckM1 completeness and contamina-
tion. In the remaining three cases, the CheckM1 report on the rescued circles are all 
close to the report on the MetaBAT2 MAGs (100.0/0.0%, 99.33/1.34% and 90.7/0.94% 
for MetaBAT2 MAGs, and 98.8/0.48%, 97.32/1.34% and 99.06/2.96% for rescued circles, 
respectively).

Conversely, 79 out of the 193 near-complete rescued circles were not within 5% mash 
distance from any near-complete MetaBAT2 bins. Our circle rescue strategy found addi-
tional near-complete MAGs on top of MetaBAT2. It also improved Vamb, GraphMB, 
and SemiBin1 (Fig. 4B), suggesting our strategy captures additional information missed 
by other binners.

On the binning performance, the integrated hifiasm-meta binning algorithm, hmBin, 
finds more near-complete MAGs than the raw output of MetaBAT2, Vamb, and 
GraphMB (Table 1; Additional files 3 and 6: Tables S3 and S6). It is broadly comparable 
to optimized Vamb and GraphMB and rivals MetaBAT2 only with the post-processing 
step. The optimized MetaBAT2 with rescued circles performs better than hmBin espe-
cially on the two sheep gut datasets. SemiBin1 gives the most number of near-complete 
MAGs overall, potentially because it uses the same information as CheckM1 during 
binning.

Evaluating the representation completeness with k‑mer spectra

Inspired by KAT [16] and mercury [17], we use k-mers to evaluate the completeness and 
redundancy of a metagenome assembly. Let M(c)

x  be the count of k-mers that occur x 
times in reads and c times in the assembly. KAT plots M(0)

x  , M(1)
x  , M(2)

x  , etc. Because in a 
metagenome assembly, k-mer counts are affected by the abundance of genomes and are 
highly variable, the KAT plot is hard to read. To address this issue, we plot the fraction 
of k-mers instead. More exactly, let N (c)

x =
∞

y=x M
(c)
y  be the number of k-mers occur-

ring ≥ x times in reads and exactly c times in the assembly, and let Nx =
∑

c N
(c)
x  be the 

number of k-mers occurring ≥ x times in reads. We stack N (c)
x /Nx of different c and plot 

them together.
In such a plot (Fig. 5; Additional file 7: Figs. S3, S4 and S5), each number c occupies 

a band, which we call as the “ c× band.” The blue area, for example, corresponds to 
the 0× band, which represents unassembled read k-mers. We expect to see a high 0× 
band at x = 1 due to sequencing errors in reads. For a complete assembly, the blue 0× 
band should be close to 0 at x > 15 , a typical read depth at which assemblers start to 
produce contiguous contigs. Given a metagenome sample composed of genomes with 
distinct sequences, a complete non-redundant assembly representing the sample will 
ideally have the 1× band spanning the entire plot up to the read depth of the most 
abundant genome. Sample “chicken-gut-1” is such an example. On real data, hifiasm-
meta may be able to resolve similar strains into separate contigs. k-mers from these 



Page 8 of 18Feng and Li  Genome Biology           (2024) 25:92 

Ta
bl

e 
1 

C
he

ck
M

1 
ev

al
ua

tio
n 

of
 b

in
ni

ng
 a

lg
or

ith
m

s. 
Th

e 
se

co
nd

 c
ol

um
n 

sh
ow

s 
th

e 
N
d
 d

iv
er

si
tie

s 
es

tim
at

ed
 b

y 
N

on
pa

re
il 

[2
7]

, w
hi

ch
 is

 e
m

pi
ric

al
ly

 c
or

re
la

te
d 

w
ith

 a
lp

ha
 d

iv
er

si
ty

. 
Th

e 
th

ird
 c

ol
um

n 
sh

ow
s 

th
e 

nu
m

be
r 

of
 c

irc
ul

ar
 n

ea
r-

co
m

pl
et

e 
co

nt
ig

s, 
ne

ar
-c

om
pl

et
e 

co
nt

ig
s 

( ≥
9
0
%

 c
om

pl
et

en
es

s 
an

d 
<

5
%

 c
on

ta
m

in
at

io
n)

, a
nd

 h
ig

h-
qu

al
ity

 c
on

tig
s 

( ≥
7
0
%

 
co

m
pl

et
en

es
s 

an
d 
<

1
0
%

 c
on

ta
m

in
at

io
n)

 b
ef

or
e 

bi
nn

in
g.

 T
he

 t
hr

ee
 n

um
be

rs
 in

 e
ac

h 
fo

llo
w

in
g 

ce
ll 

gi
ve

 t
he

 n
um

be
r 

of
 n

ea
r-

co
m

pl
et

e 
M

A
G

s, 
hi

gh
-q

ua
lit

y 
M

A
G

s, 
an

d 
m

ed
iu

m
-

qu
al

ity
 M

A
G

s, 
re

sp
ec

tiv
el

y.
 In

 t
he

 t
ab

le
, “

ra
w

“ 
st

an
ds

 fo
r 

ra
w

 o
ut

pu
t 

by
 t

he
 b

in
ni

ng
 a

lg
or

ith
m

; “
+

po
st

” f
or

 p
os

t-
pr

oc
es

si
ng

 b
y 

pu
tt

in
g 
≥

1  M
b 

ci
rc

ul
ar

 c
on

tig
s 

in
to

 s
ep

ar
at

e 
bi

ns
; 

“+
re

sc
ue

” f
or

 m
er

gi
ng

 w
ith

 c
irc

ul
ar

 p
at

hs
 re

sc
ue

d 
ba

se
d 

on
 t

he
 g

ra
ph

 to
po

lo
gy

. C
ol

um
n 

“A
ll”

 s
ho

w
s 

th
e 

co
un

t 
of

 n
ea

r-
co

m
pl

et
e 

M
A

G
s 

in
 a

 u
ni

on
 o

f a
ll 

bi
nn

er
s 

(d
ed

up
lic

at
ed

 a
t 

1%
 m

as
h 

di
st

an
ce

), 
an

d 
co

lu
m

n 
“h

m
Bi

n 
un

iq
ue

” s
ho

w
s 

th
e 

co
un

t o
f n

ea
r-

co
m

pl
et

e 
M

A
G

s 
Se

m
iB

in
1 

w
as

 ru
n 

in
 th

e 
lo

ng
-r

ea
d 

m
od

e 
an

d 
G

ra
ph

M
B 

w
as

 ru
n 

w
ith

ou
t k

no
w

le
dg

e 
of

 
si

ng
le

-c
op

y 
m

ar
ke

r g
en

es

D
at

as
et

N
d

Ci
rc

ul
ar

 c
om

pl
et

e 
co

nt
ig

s,
hm

Bi
n

M
et

aB
AT

2
M

et
aB

AT
2

M
et

aB
AT

2
Va

m
b

G
ra

ph
M

B
Se

m
iB

in
1

A
ll

hm
Bi

n

di
ve

rs
it

y
co

m
pl

et
e 

co
nt

ig
s,

(r
aw

)
(r

aw
)

(+
po

st
)

(+
po

st
)

(+
po

st
)

(+
po

st
)

(r
aw

)
(+

po
st

)
un

iq
ue

hi
gh

‑q
ua

lit
y 

co
nt

ig
s

(+
re

sc
ue

)
(+

re
sc

ue
)

(+
re

sc
ue

)
(+

re
sc

ue
)

(+
re

sc
ue

)

ch
ic

ke
n-

gu
t-

1
18

.2
9

74
|7

8|
17

93
|2

1|
18

81
|2

7|
16

90
|3

2|
16

92
|3

0|
16

88
|2

4|
16

81
|1

5|
14

95
|4

0|
27

99
1

en
v-

di
ge

st
er

-1
18

.9
8

20
|2

2|
14

33
|2

0|
19

23
|1

6|
16

27
|1

9|
15

35
|2

1|
18

32
|2

1|
17

34
|2

4|
19

35
|3

4|
25

38
8

en
v-

di
ge

st
er

-2
18

.5
9

29
|3

8|
27

55
|2

3|
24

34
|3

0|
28

44
|3

1|
29

58
|3

5|
31

50
|4

0|
27

52
|3

8|
29

58
|6

2|
47

62
14

en
v-

di
ge

st
er

-3
18

.3
1

39
|4

7|
21

67
|3

8|
32

48
|4

0|
31

53
|4

2|
33

71
|4

4|
35

70
|4

6|
36

69
|4

3|
38

76
|7

2|
52

76
17

en
v-

di
ge

st
er

-4
18

.5
7

44
|5

8|
25

85
|2

9|
29

58
|3

8|
29

68
|3

7|
31

87
|3

4|
33

79
|3

3|
22

81
|2

8|
28

95
|5

8|
43

10
0

17

en
v-

ho
ts

pr
in

g-
1

18
.4

5
16

|1
9|

11
33

|1
4|

14
18

|2
2|

13
24

|2
1|

14
34

|2
1|

14
33

|1
9|

18
33

|1
6|

15
35

|2
8|

21
37

10

hu
m

an
-g

ut
-1

19
.2

0
51

|6
8|

30
80

|2
9|

18
64

|3
5|

25
83

|4
1|

28
87

|4
1|

29
79

|3
6|

20
79

|3
7|

19
93

|6
1|

64
10

4
4

hu
m

an
-g

ut
-1

0
18

.4
4

25
|3

4|
14

39
|1

8|
16

40
|2

3|
22

44
|2

4|
22

44
|2

4|
24

40
|1

7|
20

38
|1

7|
18

42
|3

1|
32

50
2

hu
m

an
-g

ut
-2

19
.1

7
59

|7
3|

34
84

|3
4|

24
66

|4
1|

30
85

|4
7|

32
93

|4
8|

32
84

|4
4|

42
84

|4
1|

41
94

|6
9|

73
10

3
5

hu
m

an
-g

ut
-3

17
.3

1
42

|4
9|

1
52

|4
|9

45
|1

0|
12

51
|1

0|
12

51
|1

0|
12

53
|9

|7
51

|9
|6

53
|1

2|
13

56
0

hu
m

an
-g

ut
-4

19
.0

0
19

|2
5|

9
33

|1
8|

13
38

|2
9|

33
38

|3
1|

33
38

|3
0|

31
34

|2
7|

26
38

|2
2|

25
42

|3
9|

36
48

0

hu
m

an
-g

ut
-5

18
.5

3
7|

10
|1

2
19

|8
|7

18
|9

|1
0

19
|1

1|
11

22
|1

0|
11

19
|1

6|
9

15
|1

3|
12

23
|1

7|
19

24
2

hu
m

an
-g

ut
-6

16
.9

9
7|

11
|4

14
|7

|7
15

|1
4|

9
15

|1
4|

9
15

|1
3|

9
13

|7
|6

13
|8

|6
17

|1
2|

10
18

0

hu
m

an
-g

ut
-7

18
.5

1
17

|2
2|

14
24

|1
5|

13
25

|2
1|

20
26

|2
2|

21
27

|2
2|

21
22

|1
9|

14
24

|1
7|

15
26

|3
0|

22
28

0

hu
m

an
-g

ut
-8

17
.7

5
3|

6|
3

11
|8

|3
19

|1
3|

15
19

|1
3|

15
18

|1
3|

15
7|

8|
10

8|
5|

10
15

|1
5|

19
22

0

hu
m

an
-g

ut
-9

17
.8

7
12

|1
5|

7
25

|5
|5

22
|1

3|
20

23
|1

3|
21

24
|1

3|
21

24
|1

2|
15

22
|9

|1
9

29
|1

0|
14

30
0

sh
ee

p-
gu

t-
1a

19
.4

4
14

4|
18

6|
40

18
9|

53
|2

8
14

7|
52

|3
0

19
3|

62
|3

2
20

4|
60

|3
0

18
8|

56
|3

1
18

9|
50

|3
2

21
2|

80
|5

7
21

7
9

sh
ee

p-
gu

t-
1b

19
.5

3
31

7|
42

3|
10

0
41

7|
13

1|
82

34
5|

11
6|

94
45

0|
13

4|
10

0
46

6|
13

6|
96

41
4|

13
0|

75
40

3|
10

9|
56

49
0|

21
1|

16
7

50
9

7

un
k-

un
k-

1
19

.1
7

25
|2

8|
12

34
|2

1|
11

25
|2

0|
16

30
|2

0|
17

36
|2

3|
18

37
|2

4|
16

37
|2

5|
17

40
|3

6|
21

41
7



Page 9 of 18Feng and Li  Genome Biology           (2024) 25:92  

contigs would occur twice or more in contigs and would not be shown in the 1× band 
(e.g., “human-gut-2” in Fig. 5).

From the k-mer spectrum plots, we found that long circular contigs alone do not 
provide a complete view of the corresponding libraries in most samples (Fig. 5, left 
column). Binning helped to improve the k-mer coverage, although the magnitude 
of the improvement varied between libraries (Fig.  5, right column). In three librar-
ies (chicken-gut-1, sheep-gut-1a and sheep-gut-1b), merged MAG were close to the 
near-ideal situation demonstrated in Fig. S5 (Additional file 7).

To understand the content of k-mers in the 0× band, we extracted these k-mers and 
aligned them to MAGs with bwa aln [28] to see if they can be found by allowing a few 
mismatches or indels. This only had minor effect on the plot. To check the k-mers 
content in the 2× or higher bands, we extracted human-gut-10 k-mers in these bands 
that occurred > 800 times in reads, manually examined a few k-mers with their flank-
ing regions, and found them to harbor ubiquitous genes (e.g., tRNAs) or horizontally 
transferable sequences (see the “Methods” section).

Evaluating the representation completeness with 16S rRNAs

As most HiFi reads are a few times longer than 16S rRNA genes, we can estimate the 
composition of 16S rRNA directly from reads without assembly. Predicting the rRNA 
genes is well-studied  [29, 30]. 16S-based taxonomy annotation has been similarly 
extensively explored [29, 31, 32], though the annotation accuracy may vary with the 
existing reference data. For example, out of 1.8 million reads from human-gut-9, 1.4% 
were identified to contain 16S rRNA and 90% of 16S reads were assigned to the genus 
level confidently. In contrast, out of 1.0 million reads from env-digester-1, 1.3% were 
identified to contain 16S but only 21% of 16S reads were assigned to the genus level. 
Non-human gut samples were something in-between: in sheep-gut-1b, 1.2% of reads 
contained 16S, with 47.3% of them having confident genus-level annotation. Due to 
this large differences between datasets, we do not trust the the species- or genus-level 
annotation of 16S from existing tools [33, 34].

To evaluate if MAGs could recover most 16S RNAs, we identify 16S RNAs from 
reads and greedily cluster them into OTUs such that 16S in an OTU is > 99% in 
identity [33] (“Methods”). No assembly could recover all abundant OTUs, but those 

Fig. 5 K-mer spectra of all samples. Given input reads and a set of contigs assembled from the reads, 
let N(c)

x  be the number of k-mers occurring ≥ x times in reads and exactly c times in contigs (thus 
“right-accumulated”). Then, Nx =

∑
c
N
(c)
x  is the number of k-mers occurring ≥ x times in reads. Plots on the 

left column show the k-mer spectra of ≥ 1 Mb circular contigs. The height (i.e., the length on the Y-axis) of 
the blue area intersecting at x equals N(0)

x /Nx . It is the fraction of read k-mers occuring ≥ x times in reads but 
absent from the assembly. The height of the orange area at x equals N(1)

x /Nx . The white dashed line shows 
Nx and each plot is truncated at xt where Nxt < 10

6 . Intuitively speaking, a large blue region in the right part 
of a plot suggests an incomplete assembly that misses many high-abundance k-mers in reads. Plots on the 
right column show the k-mer spectra of hmBin MAGs. The light orange area with forward hatches indicates 
the contribution of rescued circles and the brown area with backward hatches indicates the contribution 
of MAGs found by non-topology based binning. The blue area is generally smaller due to the inclusion of 
non-circular MAGs

(See figure on next page.)
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Fig. 5 (See legend on previous page.)
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evaluated to be better in k-mer spectrum approach missed less (Fig. 6; Fig. S6 (Addi-
tional file 7) provides plots of all samples as well as two additional OTU boundaries).

Discovery of species unseen in catalogs

Despite the limited number of human gut samples used in this study, we still found 
MAGs that were absent from the existing human gut catalogs at species level (under 
mash distance ≤5%). Of our near-complete MAGs reconstructed from eight individuals 
and two 4-pooled libraries, 92/381 (24%) were not found among near-complete MAGs 
from Almeida et  al., and 29/381 (8%) were not found in RefSeq. We did not find sig-
nificant coverage difference between novel MAGs and known MAGs. We also compared 
the near-complete MAGs from chicken-gut-1 to the ICRGGC catalog [35] which con-
sists of 12339 MAGs derived from 799 samples and found nearly all of hifiasm-meta 
MAGs have matches (85/93 at the species level and additional 7/93 at the strain-level). 
PRJNA657473 gives a catalog of ruminant gut community which consists of 10371 
MAGs derived from 370 specimen sampled from seven species across ten gastrointes-
tinal tract regions. The sheep samples in our study are very different. Out of the 490 
near-complete MAGs in sheep-gut-1b, only one MAG matches a known MAG from 
PRJNA657473 at the species level. Overall, while the catalog and collections of reference 
assemblies have accumulated a large amount of samples, de novo assembly of HiFi reads 
is valuable, especially for some non-human samples.

Discussions
We have improved the assembly quality of hifiasm-meta since its publication  [7]. On 
top of these changes, we have implemented a binning algorithm tightly integrated into 
hifiasm-meta. This binning algorithm, hmBin, has two components: one to identify and 
rescue circular paths in the assembly graph and the other to cluster disconnected con-
tigs using t-SNE embedding. The first component can also be combined with other bin-
ning algorithms. We showed that our algorithm led to more complete representation of 

Fig. 6 OTU recovery of merged bins, showing sheep-gut-1b and env-digester-1, which evaluated good and 
poorly in k-mer spectrum plot, respectively
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bacterial populations in metagenome samples instead of fragmented contigs as shown in 
Fig. 1A.

Because the circle rescue heuristic only looks for circular paths, it will naturally miss 
linear chromosomes in small Eukaryotic genomes or some bacterial genomes. The 
heuristic is not intended for viral genomes or plasmids, either. In addition, similar to 
binning, circle rescue may produce false circles (Fig. 2) and need to be evaluated with 
CheckM1.

We also described two reference-free approaches, k-mer spectrum and species-
level OTUs based on full length 16S rRNAs, to evaluate how well prevalent species in 
a metagenome sample are represented by a metagenome assembly. Unlike CheckM1, 
our methods do not depend on known genomes or single-copy core genes and thus 
are not biased towards existing reference genomes. Applying the methods to real data, 
we showed that de novo HiFi assembly plus binning can sometimes assemble the great 
majority of prevalent species into near-complete MAGs with many of them not seen in 
the existing metagenome catalogs produced from short reads.

Conclusions
Our work emphasizes the importance of metagenome completeness, which has often 
been overlooked, by proposing two evaluation methods and examining HiFi metagen-
ome assemblies. We also proposed and implemented a binning method that takes advan-
tage of genome assembly graph of hifiasm-meta, and showed the algorithm could rescue 
MAGs failed by traditional binners. Nonetheless, we anticipate high-quality metagen-
ome assemblies and further method improvements could transform previously inacces-
sible approaches, such as analyzing horizontal gene transfers, de novo variant calling in 
unusual samples, and direct comparison between microbial communities.

Methods
Assembly and basic MAG evaluation

We generated HiFi assemblies using hifiasm-meta r73 with default settings for assembly 
and added “--write-binning” to output fasta files of genome bins. By default, hifiasm-
meta writes a tab-delimited table to describe binning result. See Table  S2 (Additional 
file 2) for accession IDs of HiFi datasets  [6, 36–43] and Table S4 (Additional file 4) for 
versions of tools used. Short read assemblies were downloaded from their correspond-
ing studies. Contig coverage for MetaBAT2 and Vamb was estimated with minimap2 
alignment and MetaBAT2’s jgi module: we ran minimap2 [44] with “minimap2 -t48 
-ak19 -w10 -I10G -g5k -r2k --lj-min-ratio 0.5 -A2 -B5 -O5,56 

-E4,1 -z400,50 --sam-hit-only contigs.fa reads.fa.” BAM file han-
dling used SAMtools  [45]. Coverage was estimated by “jgi_summa_rsize_bam_
contig_depths --outputDepth depth.txt input.bam.” For binning, we 
ran MetaBAT2 with “metab3t2 --seed 1 -i contigs.fa -a depth.txt.” 
We ran Vamb with “vamb -p 48 --outdir ./ --fasta contigs.fa --jgi 
jgi_depth --minfasta 200000.” Vamb needs to process inputs in batch, the 
size of which needs to be lower than the number of input contigs (after length filtering). 
We use the larger one of either 256 (default) or the round up of length-filtered contig 
count to the next exponential of two as the batch size. MetaBAT2 or hmBin’s random 
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seed has little influence. For MetaBAT2, Vamb and GraphMb, we separate circular con-
tigs of ≥ 1 Mb into a separate MAG if it is binned together with other contigs, since 
such tweak helps their performance. We ran GraphMB with “graphmb –assembly 
prefix –numcores 48 –num–markers "" .” We ran SemiBin1 with “SemiBin 
single_easy_bin -i asm.fa -b readaln.bam –environment env –

sequencing-type long_read ,”  where “ env” is “human_gut” for libraries pre-
fixed with human-gut, “chicken_caecum” for chicken-gut-1, and “global” for the rest.

We used CheckM1 module “lineage_wf” to evaluate MAG quality. Its outputs were 
formatted by “checkm qa -o 2” before parsing. We did not try DAS tools’s evalua-
tion in this work, but it should give consistent but more generous results.

We ran rust-mdBG with “-k 21 -l 14 –density 0.003 -p asm” then 
“magic_simplify_meta asm” to generate the final assembly graph and the 
sequences per developer’s recommendation. A freestanding implementation of the cir-
cle-finding heuristics was used, and we used mash distance at cutoff 90% to compare 
between the reported circular paths to merged MAGs of hifiasm-meta’s (an earlier ver-
sion r63, assembly and circle rescue were similar to r73). In env-digester-1, human-
gut-3, and sheep-gut-1b, this reported 22, 22, and 120 rescued circles, respectively. We 
did not try to do MetaBAT2 and bin merging because CheckM1 was sensitive to indels.

The proposed binning heuristics

Our binning algorithm, hmBin, requires the contig graph and the estimated contig cov-
erage as input. It outputs a FASTA file from the circle finding heuristic and a plain text 
file describing the binning result.

We apply a depth-first search (DFS) to identify circular paths in the assembly graph. 
DFS starts with the longest unvisited contig and discovers one circular path at a time. 
We keep a circular path if it contains ≥ 2 contigs and the path length is ≥ 500 kb. Note 
a contig may be used in many circular paths that spell similar sequences. To avoid enu-
merating all these similar paths, at a fork in the graph we prioritize on the contig that 
has been used less often in previously found circular paths (ties are arbitrarily broken); 
we also reject a circular path if contigs in the path have been included for ≥ 100 times, 
in total, in previously found paths. With this threshold, we reduce paths that share many 
contigs but there may still be redundant circular paths.

We then deduplicate the circles using pairwise Mash distance  [18] as follows. If the 
two circles being compared differ in length for more than 1 Mb, we keep both of them 
regardless of the Mash distance between them. We only keep the longer circle if the 
Mash distance between the two circles in comparison is over 95%, a commonly used 
threshold to determine if two bacterial genomes come from the same species [46, 47]. 
A threshold of 97% yields similar results when evaluated with CheckM1. Note that the 
comparison is applied only to circular paths found by the circle-finding heuristic, exclud-
ing normally assembled circular contigs. A circle that has low mash distance compared 
to a long circular contig would not be discarded.

Next, we collect any contig that meets the following criteria as candidate: (1) least 100 
kb long, (2) not used in the circle finding heuristics above, and not (3) longer than 1 
Mb and circular. We collect two features for each contig, the coverage (read depth) and 
a canonical 5-mer profile (5-mer frequencies). The coverage is calculated by counting 
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bases of reads that belong to the contig in question, and all reads that were contained in 
them. The basepair count is divided by contig length to obtain the coverage. This esti-
mation produced similar results to those from methods based on read alignment (such 
as “jgi_summarize_bam_contig_depths” of MetaBAT2) in contigs of hundreds of kilo-
bases or longer. The canonical 5-mer profile is simply from k-mer counting and normal-
ized by total count. We take the logarithm (base 10) of the coverages then combine the 
two features to generate a feature matrix of shape (n_samples, 513). The matrix 
is z-score normalized before being embedded to two-dimensional space via Barnes-Hut 
t-SNE. Hifiasm-meta borrowed Laurens van der Maaten’s implementation [48] and the 
C interface from https:// github. com/ lh3/ bhtsne  [49]. To generate bins, we initialize an 
empty set “block.” We examine “seed” contigs starting from the longest candidate, in the 
embedded space. For each seed, if any other contig that is not already in the “block” is 
present within a certain radius r1, collect the seed and these neighbors to form a bin. 
Otherwise, either the seed contig form a bin on its own or at least one circle with radius 
r1*0.8 exists such that the seed lies on the boundary of the circle and all not-blocked 
neighbors no farther from the seed than r1*1.6 are covered by the circle. Contigs of a 
new bin are pushed to “block.”

The value of r1 (0.05-0.3) and perplexity of t-SNE (15-50) are insensitive to the results. 
Using bounding boxes instead of circles produced similar results. 5-mer profile and 
4-mer profile (TNF, tetranucleotide frequencies) produced similar results. Partitioning 
bins t-SNE based on the assembler’s knowledge of pairwise contig phasing status made 
little difference, although this was condition by how hifiasm(-meta) process read over-
laps, and we did not try general alignment methods here. Vamb and related works used 
a version of TNF that accounts for correlations between 4-mers, but our approach was 
insensitive to this treatment. UMAP produced worse results due to grouping data points 
into its characteristic trace-like shapes, which resulted in more contaminated bins. We 
also tried t-SNE as implemented in the python library “sklearn” and R-ct-SNE (Revised 
Conditional t-SNE)  [50] as implemented by its authors which, for our framing of the 
problem, discourages known non-pairs to be considered neighbors in the embedding of 
the high dimension space. Read-level phasing information from hifiasm-meta was used 
as input for R-ct-SNE. R-ct-SNE performed slightly worse in samples with low sequenc-
ing coverage, and slightly better in the others, but overall they were similar to each other 
and the final implementation in hifiasm-meta.

Examining high read‑ and assembly‑multiplicity k‑mers

We use human-gut-10 as an example. We identified k-mers with at least 2x and up to 
15x assembly multiplicity and at least 800x read multiplicity, i.e., the right-most part 
of k-mer spectrum plot above 1x band. Their location on the contigs were collected. 
We merged overlapping intervals and dumped the sequences. There were 5469 unique 
sequences (max length 18.6 kb, N50 2.0 kb). We randomly select 20 from these (“seqtk 
subseq in.fa 20”) and did BLAST (blastn web cgi, defaults) against nr/nt. All que-
ries had full length BLAST hits with low sequence divergence and frequently overlap 
with genes encoding DNA-related enzymes, transposase, and tRNA or rRNA (Addi-
tional file 5: Table S5).

https://github.com/lh3/bhtsne
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16S rRNA methods

We identified and annotated 16S rRNA genes from HiFi libraries with the following 
steps. First, HiFi reads that could align to SILVA reference (specifically, “SILVA_138.1_
SSURef_tax_silva_trunc.fasta”) were extracted, with base qualities stripped: “seqtk 
subseq hifi.fq<(minimap2 SILVA.fa hifi.fq | cut -f1 | uniq) | 

seqtk seq -A> SSUreads.fa.” We ran barrnap to identify rRNA genes: “bar-
rnap --kingdom bac --outseq rRNA.fa SSUreads.fa.” INFERNAL 
cmsearch might identify a few more rRNAs than barrnap. We believe this would not 
have major influence on the conclusion based on previous observations. We then anno-
tated rRNA genes with RDP classifier: “java -Xmx16g -jar RDPTools/clas-
sifier.jar classify -o RDP.tsv -h RDP.hier rRNA.fa.” We accept 
annotations of 16S rRNAs with genus scores of at least 0.9.

To define OTUs from HiFi reads, we first selected 16S genes not marked with “partial” 
from the barrnap. We used greedy incremental clustering: we initialize an empty collec-
tion S to collect seed sequences. For each 16S gene q, if it could align to any sequence s 
in S with alignment block longer than 1000 bp and at least 99% mismatch identity, it is 
assigned the same OTU label as s (if multiple seeds are available, the one with the high-
est identity will be chosen; if a tie, the seed is arbitrarily chosen from the bests). Other-
wise, q is added to S and assigned a new OTU label. Alignment is done with minimap2’s 
python binding, mappy, with “preset=map-hifi.” Alignment block length is given 
by “mappy.Alignment.blen.” Mismatch identity is calculated as “mappy.Align-
ment.mlen/mappy.Alignment.blen.” Assigning OTU label for an unseen 16S 
copy is done similarly. If a sequence can not align to any seed sequences, its OTU label is 
undefined.

There are two ways to assign OTU labels to MAGs: (1) collected reads belonging to 
contigs of a MAG and their OTU labels or (2) identify 16S copies from contigs then 
assign labels. We did both and found them to be mostly consistent. We only considered 
near-complete MAGs.

When evaluating MAGs as in Fig. 5 and Fig. S6 (Additional file 7), we drop OTUs with 
less than 10 16S copies to rule out artifacts from sequencing errors and to ignore species 
with very low coverage. This was done after the OTU label assignment. A MAG could 
have more than one OTU assignment. It was difficult to distinguish wrong cases (i.e., 
suboptimal clustering result) from true cases, i.e., a genome having multiple distinct 16S 
copies; therefore, we simply accept all OTU labels of a MAG. For example, if the read set 
yields 3 OTUs (a, b, and c), the assembly has a single MAG from which we identify three 
16S copies that are labeled a, a, b. Then, in the plot, both a and b would be colored as 
“seen in MAG.”
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