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Abstract 

Background: Aneuploidy, an abnormal number of chromosomes within a cell, 
is a hallmark of cancer. Patterns of aneuploidy differ across cancers, yet are similar 
in cancers affecting closely related tissues. The selection pressures underlying ane‑
uploidy patterns are not fully understood, hindering our understanding of cancer 
development and progression.

Results: Here, we apply interpretable machine learning methods to study tissue‑selec‑
tive aneuploidy patterns. We define 20 types of features corresponding to genomic 
attributes of chromosome‑arms, normal tissues, primary tumors, and cancer cell lines 
(CCLs), and use them to model gains and losses of chromosome arms in 24 cancer 
types. To reveal the factors that shape the tissue‑specific cancer aneuploidy landscapes, 
we interpret the machine learning models by estimating the relative contribution 
of each feature to the models. While confirming known drivers of positive selection, 
our quantitative analysis highlights the importance of negative selection for shaping 
aneuploidy landscapes. This is exemplified by tumor suppressor gene density being 
a better predictor of gain patterns than oncogene density, and vice versa for loss pat‑
terns. We also identify the importance of tissue‑selective features and demonstrate 
them experimentally, revealing KLF5 as an important driver for chr13q gain in colon 
cancer. Further supporting an important role for negative selection in shaping the ane‑
uploidy landscapes, we find compensation by paralogs to be among the top predictors 
of chromosome arm loss prevalence and demonstrate this relationship for one paralog 
interaction. Similar factors shape aneuploidy patterns in human CCLs, demonstrating 
their relevance for aneuploidy research.

Conclusions: Our quantitative, interpretable machine learning models improve 
the understanding of the genomic properties that shape cancer aneuploidy 
landscapes.
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Introduction
Aneuploidy, defined as an abnormal number of chromosomes or chromosome-arms 
within a cell, is a characteristic trait of human cancer [1]. Aneuploidy is associated 
with patient prognosis and with response to anticancer therapies [2, 3], indicating 
that it can play a driving role in tumorigenesis. It is well established that the fitness 
advantage conferred by specific aneuploidies depends on the genomic, environmen-
tal, and developmental contexts [1]. One important cellular context is the cancer tis-
sue of origin; aneuploidy patterns are cancer type-specific, and cancers that originate 
from related tissues tend to exhibit similar aneuploidy patterns [2, 4, 5]. Nonetheless, 
the selection pressures that shape the aneuploidy landscapes of human tumors are 
not fully understood, and it is not clear why some chromosome-arm gains and losses 
would recur in some tumor types but not in others.

Several non-mutually exclusive explanations have been previously provided in an 
attempt to explain the tissue selectivity of aneuploidy patterns. First, the densities of 
oncogenes (OGs) and tumor suppressor genes (TSGs) are enriched in chromosome-
arms that tend to be gained or lost, respectively, potentially due to the cumulative 
effect of altering multiple such genes at the same time [6]. As cell proliferation is con-
trolled in a tissue-dependent manner, the relative importance of OGs and TSGs var-
ies across tissues, so that the density of tissue-specific driver genes can help predict 
aneuploidy patterns [7]. Second, some recurrent aneuploidies reflect the chromosome 
arm-wide gene expression patterns that characterize their normal tissue of origin, 
suggesting that chromosome-arm gains and losses may ‘hardwire’ pre-existing gene 
expression patterns [8]. Third, several strong cancer driver genes have been shown 
to underlie the recurrent aneuploidy of the chromosome-arms on which these genes 
reside; prominent examples are the tumor suppressors TP53 and PTEN, which have 
been shown to drive the recurrent loss of chromosome-arm 17p in leukemia and 
that of 10q in glioma, respectively [9–11]. Fourth, it has been recently proposed that 
somatic amplifications, including chromosome-arm gains, are positively selected in 
cancer evolution in order to buffer gene inactivation of haploinsufficient genes in 
mutation-prone regions [12].

Notably, each previous study focused on a separate aspect of tissue specificity; there-
fore, the relative contribution of each factor to shaping the overall aneuploidy landscape 
of human tumors is currently unknown. Furthermore, whether any additional tissue-
specific traits could also play a major role in driving aneuploidy patterns remains an 
open question. Importantly, previous studies focused on the role of positive selection in 
driving the gain or the loss of specific chromosome-arms in specific tumor types. How-
ever, unlike point mutations in specific genes, aneuploidies come with a strong fitness 
cost [1, 13]. Therefore, whereas positive selection greatly outweighs negative selection 
in shaping the landscape of point mutations in cancer, as evaluated by a refined ver-
sion of the normalized ratio of non-synonymous to synonymous mutations [14], both 
positive selection and negative selection may be important for shaping the landscape of 
aneuploidy. Indeed, a recent study showed that negative selection could determine the 
boundaries of recurrent cancer copy number alterations [15]. It is therefore necessary to 
consider the balance between positive and negative selection in shaping the aneuploidy 
landscapes of human cancer.
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Machine learning (ML) methods have been applied to study a variety of biological and 
medical questions where heterogeneous large-scale data are available [16]. In the context 
of cancer, supervised ML methods were applied to predict cancer driver genes [17, 18], 
to distinguish between cancer types [19, 20], and to predict gene dependency in tumors 
[21]. However, ML has not been applied to investigate the observed patterns of aneu-
ploidy in human cancer. Whereas ML has been frequently used for prediction and often 
regarded as a black box, recent advancements have allowed more insight into the factors 
that underlie prediction. For example, Shapley Additive exPlanations algorithm (SHAP) 
[22, 23] estimates the importance and relative contribution of each of the features uti-
lized by the model to the model’s decisions.

Here, we present a novel ML approach to elucidate the factors that underlie the can-
cer type-specific patterns of aneuploidy. For this, we constructed separate ML models 
for chromosome-arm gain and loss, whereby each of 39 chromosome-arms within 24 
cancer types was associated with 20 types of features corresponding to various genomic 
attributes of chromosome-arms, normal tissues, primary tumors, and cancer cell lines 
(CCLs). Our approach is focused on interpretation rather than prediction of aneuploidy 
recurrence patterns. Interpretation of the gain and loss models for aneuploidy in pri-
mary tumors captured known genomic features that had been previously reported to 
shape aneuploidy landscapes, supporting the models’ validity. Furthermore, these analy-
ses suggested that negative selection played a greater role than positive selection in this 
process and revealed paralog compensation as an important contributor to cancer type-
specific aneuploidy patterns, in both primary tumors and CCLs. Lastly, we experimen-
tally validated a specific aneuploidy driver using genetically engineered isogenic human 
cells.

Results
Constructing machine learning models to classify cancer aneuploidy patterns

To create a supervised classification ML model that predicts the recurrence pattern of 
aneuploidy across cancer types, we built a large‐scale dataset consisting of labels and 
features per instance of chromosome-arm and cancer type. For each instance, the label 
indicated whether the chromosome-arm was recurrently gained, lost, or remained neu-
tral in that cancer. Labels were determined according to Genomic Identification of Sig-
nificant Targets in Cancer (GISTIC2.0) [24]. We focused on 24 cancer types for which 
transcriptomic data of normal tissues of origin was available from the Genotype-Tissue 
Expression Consortium (GTEx) ([25] (Methods). In total, 199 instances of chromosome-
arm and cancer type were labeled as gained, 307 were labeled as lost, and 430 were 
labeled as neutral (Fig. 1A).

Next, we defined three categories of features (Fig.  1B; Methods). The first category, 
denoted ‘chromosome-arms’, contained features of chromosome-arms that are inde-
pendent of cancer type. Chromosome-arm features included the density of OGs, the 
density of TSGs [6], and the density of essential genes [26] per chromosome-arm. The 
second category, denoted ‘cancer tissues’, contained features pertaining to chromosome-
arms in primary tumors and CCLs. It included features pertaining to expression of 
genes in primary tumors and essentiality of genes in CCLs. Expression levels of genes 
in each chromosome-arm per cancer type were obtained from The Cancer Genome 
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Fig. 1 A machine learning (ML) approach for predicting aneuploidy in cancer. A Schematic view of the 
ML model construction. Labels represent aneuploidy status of each chromosome arm in 24 cancer types 
(abbreviation of cancer types detailed in Additional file 2: Table S1), classified as gained (red, n = 199), 
lost (blue, n = 307), or neutral (white, n = 430). Features consist of 20 types of features pertaining to 
chromosome‑arms, normal tissues and cancer tissues (see B). Two separate ML models were constructed 
to predict gained and lost chromosome‑arms (gain model and loss model). Each model was analyzed to 
estimate the contribution of the features to the predicted outcome. B The features analyzed by the ML 
model. The inner layer shows feature categories: chromosome arms (purple), cancer tissues (primary tumors 
and CCLs, blue), and normal tissues (green). The middle layer shows the sub‑categories of the features. 
Chromosome‑arm features include essentiality and driver genes features. Cancer‑tissue features include 
transcriptomics and essentiality features. Normal‑tissue features include protein–protein interactions (PPIs), 
transcriptomics, paralogs, eQTL, tissue‑specific (TS) genes, development, and GO processes features. The 
outer layer represents all 20 feature types that were analyzed by the model. Numbers in parentheses indicate 
the number of tissues, organs, or cell lines from which cancer and normal tissue features were derived, or 
the number of chromosome‑arms from which chromosome‑arm features were derived. C The performance 
of the ML models as evaluated by the area under the receiver‑operating characteristic curve (auROC, left) 
and the precision recall curve (auPRC, right) using tenfold cross‑validation. Gain model (gradient boosting): 
auROC = 74% and auPRC = 63% (expected 32%). Loss model (XGBoost): auROC = 70% and auPRC = 63% 
(expected 42%)
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Atlas (TCGA, https:// www. cancer. gov/ tcga). Gene essentiality scores were obtained 
from the Cancer Dependency Map (DepMap) [27]. In total, this category included 103 
omics-based readouts (Methods). The third category, denoted ‘normal tissues’, contained 
features pertaining to chromosome-arms in normal tissues from which cancer types 
originated (e.g., colon tissue was matched with colon adenocarcinoma, Additional file 2: 
Table S1). Features of normal tissues included expression levels of genes located on each 
chromosome-arm in the respective normal tissue, their tissue protein–protein interac-
tions (PPIs) [28, 29], and their tissue-specific biological process activities [30]. It also 
included tissue-specific dosage relationships between paralogous genes, denoted ‘par-
alog compensation’ [31, 32]. In total, this category included 447 tissue-based properties 
(Methods). To enhance our understanding of cancer and tissue selectivity, feature values 
of cancer and normal tissues were transformed from absolute to relative; for example, 
instead of indicating the absolute expression level of a gene in a given normal tissue, the 
expression feature was set to the expression level of the gene in the given tissue relative 
to its expression levels in all tissues (Additional file 1: Fig. S1). Each chromosome-arm 
was then assigned with a feature value that was inferred from the values of its genes 
(Methods, Additional file 1: Fig. S2).

To fit the features dataset and the labels dataset, we further transformed the features 
dataset, such that each instance of chromosome-arm and cancer type was associated 
with features corresponding to the chromosome-arm, cancer type, and matching normal 
tissue (Methods). In total, the dataset included 20 types of features per chromosome-
arm and cancer type: 3 in the chromosome-arm category, 4 in the cancer tissues cate-
gory, and 13 in the normal tissues category (Fig. 1B). We assessed the similarity between 
every pair of features using Spearman correlation (Additional file 1: Fig. S3A). Most fea-
tures did not correlate with each other (Additional file 1: Fig. S3B). Among the correlated 
feature pairs were PPI-related features and expression in normal adult and developing 
tissues features (Additional file 1: Fig. S3A). Lastly, we assessed the similarity between 
instances of chromosome-arm and cancer type by their feature values using principal 
component analysis (PCA) (Additional file 1: Fig. S3C). Instances did not cluster by their 
aneuploidy pattern (gain/loss/neutral), suggesting that a more complex model is needed 
to classify the different patterns.

With these labels and features of each chromosome-arm and cancer type, we set out 
to construct two separate ML models to predict chromosome-arm gain and loss pat-
terns across cancer types (denoted as the ‘gain model’ and the ‘loss model’, respectively; 
Fig. 1A). Each model was trained and tested on data of gained (or lost) chromosome-
arms versus neutral chromosome-arms. We employed five different ML methods (Meth-
ods) and assessed the performance of each method by using tenfold cross-validation and 
calculating average area under the receiver operating characteristic (auROC) and aver-
age area under the precision-recall curve (auPRC) (Additional file 1: Fig. S4A,B). Logis-
tic regression showed similar results to a random prediction, with auROC of 54% for 
each model (Additional file 1: Fig. S4), indicating that the relationships between features 
and labels are non-linear. Decision tree methods that can capture such relationships [33, 
34], including gradient boosting, XGBoost, and random forest, performed better than 
logistic regression and similarly to each other (Additional file  1: Fig. S4). Best perfor-
mance in the gain model was achieved by gradient boosting method, with auROC of 74% 

https://www.cancer.gov/tcga
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and auPRC of 63% (expected: 32%) (Fig. 1C). Best performance in the loss model was 
achieved by XGBoost, with auROC of 70% and auPRC of 63% (expected: 42%) (Fig. 1C).

Revealing the top contributors to cancer aneuploidy patterns

The main purpose of our models was to identify the features that contribute the most to 
the recurrence patterns of aneuploidy observed in human cancer, which could illuminate 
the factors at play. To this aim, we used the SHAP (Shapley Additive exPlanations) algo-
rithm [22, 23], which estimates the importance and relative contribution of each feature 
to the model’s decision and ranks them accordingly. We applied SHAP separately to the 
gain model and to the loss model (Methods).

In the gain model, the topmost features were TSG density and OG density (Fig. 2A,B). 
As expected, these features showed opposite directions: TSG density was low in gained 
chromosome-arms, whereas OG density was high, in line with previous observations [6, 
7] (Fig. 2B). Importantly, this analysis revealed that the impact of TSGs on the gain mod-
el’s decision was twice larger than that of OGs (Fig. 2A), highlighting the importance of 
negative selection for shaping cancer aneuploidy patterns. The third most important fea-
ture was TCGA expression, which quantified the expression of arm-residing genes in the 
given cancer type relative to their expression in other cancers. Notably, expression levels 
were obtained only from samples where the chromosome-arm was not gained or lost 
(Methods). This analysis revealed that, across cancer types, chromosome-arms that tend 
to be gained exhibit higher expression of genes even in neutral cases, consistent with a 
previous recent study [8]. This confirms that the genes on gained chromosome-arms are 
preferentially important for the specific cancer types in which these gains are recurrent. 
Congruently, PPIs and normal tissue expression—features of normal tissues—were also 
among the ten top-contributing features (Fig. 2A). The estimated importance of all fea-
tures in the gain model is shown in Additional file 1: Fig. S5A.

The loss model shared the same top three features, yet with opposite directions and 
different ranks (Fig. 2C,D). OG density ranked first, was low in lost chromosome-arms, 
whereas TSG density ranked third, was high (Fig. 2D), in line with previous observations 
[6, 7]. In contrast to the gain model, in the loss model, the impact of OG density on the 
model’s decision was larger than that of TSG density, again in line with negative selec-
tion as an important force in cancer aneuploidy evolution. TCGA expression (computed 
from samples where the chromosome-arm was not lost or gained, see Methods) ranked 
second: chromosome-arms with highly-expressed genes tended not to be recurrently 
lost, in line with negative selection. Another top feature that showed opposite directions 
between the gain and loss model was essential gene density [26]. As expected, essential 
gene density was low in lost chromosome-arms, in line with negative selection against 
losing copies of essential genes [26, 27, 35]. The estimated importance of all features in 
the loss model is shown in Additional file 1: Fig. S5B.

To examine the direct relationships between high-ranking features and aneuploidy 
recurrence patterns, we assessed the correlations between these features and aneuploidy 
prevalence (Methods). In accordance with the SHAP analysis, the negative correla-
tion between TSG density and chromosome-arm gain (ρ = − 0.52, adjusted p = 0.0006, 
Spearman correlation; Fig. 2E) was much stronger and more significant than the posi-
tive correlation between OG density and chromosome-arm gain (ρ = 0.25, adjusted 
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Fig. 2 Quantitative views into the ten topmost contributing features of the gain and loss models. Features 
are ordered from bottom to top by their increased average absolute contribution to the model, as calculated 
by SHAP. A The average absolute contribution of each feature to the gain model. The directionality of the 
feature (i.e., whether high feature values correspond to gain or neutral) is represented by an arrow. B A 
detailed view of the contribution of each feature to the gain model. Per feature, each dot represents the 
contribution per instance of a chromosome‑arm and cancer type pair. The dots are spread based on whether 
they were classified as neutral (left) or gain (right) by the model. Instances are colored by the feature value 
(green‑to‑orange scale denotes low‑to‑high value). The order (height) of each feature is the same as in A. C 
Same as panel A for the loss model. D Same as panel B for the loss model. E The correlations between top 
contributing features and the frequencies of chromosome‑arm gains and losses, as measured by Spearman 
correlation. P‑values were adjusted for multiple hypothesis testing using Benjamini–Hochberg procedure. 
Negative correlation between TSG density and gain frequency (ρ = − 0.52, adjusted p = 0.006). Positive 
correlation between TSG density and loss frequency (ρ = 0.3, adjusted p = 0.17). Positive correlation between 
OG density and gain frequency (ρ = 0.25, adjusted p = 0.18). Negative correlation between OG density 
and loss frequency (ρ = − 0.47, adjusted p = 0.01). Positive correlation between TCGA expression and gain 
frequency (ρ = 0.29, adjusted p = 0.14). Negative correlation between TCGA expression and loss frequency 
(ρ = − 0.33, adjusted p = 0.12). Positive correlation between essential gene density and gain frequency 
(ρ = 0.16, adjusted p = 0.37). Negative correlation between essential gene density and loss frequency 
(ρ = − 0.1, adjusted p = 0.5)
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p = 0.12, Spearman correlation; Fig. 2E). Similarly, the negative correlation between OG 
density and chromosome-arm loss (ρ = − 0.47, adjusted p = 0.003, Spearman correlation; 
Fig. 2E) was much stronger and more significant than the positive correlation between 
TSG density and chromosome-arm loss (ρ = 0.3, adjusted p = 0.067, Spearman correla-
tion; Fig. 2E). TCGA expression and essential gene density were correlated with chromo-
some-arm gain, and anticorrelated with chromosome-arm loss, albeit to a lesser extent 
(Fig.  2E, Additional file  1: Fig. S6). Also showing positive correlations with gains and 
negative correlations with losses were features derived from expression levels in normal 
adult and developing tissues, certain PPI-related features, and additional essentiality fea-
tures (Additional file 1: Fig. S6). However, these correlations were weaker than the cor-
relations described above. Altogether, correlation analyses supported the relationships 
between top features of each model and aneuploidy patterns.

The robust impact of top contributors to cancer aneuploidy patterns

Next, we asked if the above results were sensitive to our model construction schemes. 
We first tested the robustness of the models to internal parameters used to generate the 
features (Methods). We therefore recreated features upon modifying internal parame-
ters and repeated model construction and interpretation (Methods). We found that fea-
ture importance was robust to these changes (Additional file 1: Fig. S7, Additional file 3: 
Table S2). Second, we tested the robustness of the results upon tuning the hyperparam-
eters of each model (Methods, Additional file 1: Fig. S8). The top contributing features of 
each model were retained following hyperparameter tuning, supporting their reliability 
(Additional file 1: Fig. S8C). We also checked whether the same top features would be 
recognized upon modeling one type of chromosome-arm event versus all other events. 
Applying the same approaches, we constructed two additional ML models. One model 
classified chromosome-arm gain versus no-gain (i.e., chromosome-arm loss or neutral-
ity). Another model classified chromosome-arm loss versus no-loss (i.e., chromosome-
arm gain or neutral). These additional models performed similarly to their respective 
models (Additional file 1: Fig. S9). SHAP analysis of the two additional models revealed 
that feature importance was very similar between these models and the original models, 
which compared gained and lost chromosome-arms only to neutral chromosome-arms 
(Additional file 1: Fig. S9).

We next tested whether the results were driven by a small subset of chromosome-
arm and cancer type instances. For that, per model, we identified chromosome-arm and 
cancer type instances with the top contributions to the five topmost important features 
(Methods, Additional file 4: Table S3A,B, Additional file 5: Table S4A,B). Most instances 
contributed to at least one of these features, and none of the instances contributed to all 
five (Additional file  5: Table  S4C). Next, we focused on chromosome-arm and cancer 
type instances that were top contributors to at least three of the five features (4.3% and 
1.9% of the pairs in the gain and loss models, respectively). We tested their impact on 
the model by excluding them from the dataset and repeating the construction and inter-
pretation of each model without them. The revised gain model retained its five topmost 
important features, though their ranking slightly changed (the third and fifth features 
switched). The revised loss model retained its four topmost important features (the fifth 
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and seventh features switched) (Additional file 1: Fig. S10). This suggests that the general 
effect of the features was not driven by a small subset of instances.

Lastly, we expanded our analyses to address whole-chromosome gains and losses. 
For this, we updated the features dataset to refer to whole-chromosome and cancer 
type instances (Methods). For example, the feature TSG density was updated to refer 
to the entire chromosome. Likewise, we updated the aneuploidy status of whole-chro-
mosome and cancer type instances using data from GISTIC (Methods). This resulted 
in a dataset of 78 whole-chromosome gains, 151 whole-chromosome loss, and 299 neu-
tral cases. Next, we used these data to train a whole-chromosome gain (trisomy) model 
and a whole-chromosome loss (monosomy) model. Model training and assessment were 
similar to the chromosome-arm gain and loss models. Specifically, we employed five dif-
ferent ML methods and assessed their performance using fivefold cross-validation. Best 
performance for the trisomy model was achieved by random forest, with auROC of 69% 
and auPRC of 47% (expected 21%; Additional file 1: Fig. S11A). Best performance for the 
monosomy model was achieved by XGBoost, with auROC of 71% and auPRC of 59% 
(expected 34%; Additional file 1: Fig. S11D). Performances were somewhat weaker than 
the chromosome-arm models, in accordance with the training data being almost two-
fold smaller. Lastly, we interpreted each model using SHAP. In the trisomy model, the 
topmost feature was TSG density and its impact was over twofold larger than the impact 
of other features, similarly to the chromosome-arm gain model (Additional file 1: Fig. 
S11B,C). Other strong features of the chromosome-arm gain model, TCGA expression 
and OG density, ranked fifth and sixth, yet preserved their directionality. In the mono-
somy model, top features included OG density, TCGA expression, and paralogs com-
pensation, fitting with the chromosome-arm loss model (Additional file 1: Fig. S11E,F). 
The feature TSG density was ranked eight, yet preserved its directionality, similarly to 
the remaining features. Altogether, these results suggest that negative selection is an 
important factor in shaping both chromosome-arm and whole-chromosome aneuploidy 
patterns.

Similar features shape aneuploidy patterns in human cancer cell lines and in human 

tumors

Next, we aimed to test whether similar features also shape aneuploidy patterns in CCLs. 
We collected data of aneuploidy patterns of all chromosome-arms in CCLs [36] and 
analyzed 10 cancer types with matched normal tissue data from GTEx [25] (Methods). 
Similar to the analysis of cancer tissues, we labeled each instance of chromosome-arm 
and CCL as recurrently gained (59 instances), recurrently lost (45 instances), or neutral 
(286 instances) and updated the features associated with cancer types according to the 
CCL data (Methods). We then applied the gain and loss ML models, which were trained 
on primary tumor data, to identify determinants of aneuploidy patterns of CCLs (Meth-
ods). The performance of the models was at least as good as for primary tumors (gain 
model: auROC = 83% and auPRC = 49% (expected 15%); loss model: auROC = 76% and 
auPRC = 45% (expected 11%), Fig. 3A). These results indicate that similar factors affect 
aneuploidy in cancers and in CCLs, consistent with the highly similar aneuploidy pat-
terns observed in tumors and in CCLs [36, 37].
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We next used SHAP to assess the contribution of each feature to each of the mod-
els. TSG density and OG density remained the top contributing features for the gain 
model. Consistent with our results in primary tumors, the contribution of TSG density 
was much stronger than that of OG density, confirming the role of negative selection 
(Fig. 3B,C). In the loss model, the ranking of top features was slightly different than in 
primary tumors (Fig. 3D). Expression in CCL was the top feature, such that recurrently 
lost chromosome-arms were associated with lower gene expression in neutral cases. OG 
density was one of the strongest contributing features for the loss model whereas TSG 
density had weaker contribution, again in line with negative selection playing an impor-
tant role in shaping cancer aneuploidy landscapes (Fig. 3D,E). Certain features of normal 
tissues were also highly ranked. The contribution of essential gene density was also con-
sistent with its impact in primary tumors (Fig. 3B,C).

As with the primary tumors, correlation analyses supported the contributions of the 
different features. CCL expression was highly correlated with chromosome-arm gain 
and anticorrelated with chromosome-arm loss (ρ = 0.54, adjusted p = 0.02, and ρ = − 0.6, 
adjusted p = 0.0006, respectively; Fig.  3F). Negative correlations were also observed 
between TSG density and gain frequency (ρ = − 0.37, adjusted p = 0.04, Spearman corre-
lation; Fig. 3F) and between OG density and loss frequency (ρ = − 0.28, adjusted p = 0.1, 
Spearman correlation; Fig. 3F). Altogether, these results indicate that despite the contin-
uous evolution of aneuploidy throughout CCL culture propagation [38], similar features 
drive aneuploidy recurrence patterns in primary tumors and in CCLs.

Chromosome 13q aneuploidy patterns are tissue‑specific, and KLF5 is a driver of 13q gain 

in colorectal cancer

In human cancer, a chromosome-arm is either recurrently gained across cancer types or 
it is recurrently lost across cancer types, but rarely is a chromosome-arm both gained 
in some cancer types and lost in others [4, 5]. An intriguing exception is chr13q. Of all 
chromosome-arms, chr13q is the chromosome-arm with the highest density of tumor 

(See figure on next page.)
Fig. 3 Aneuploidy patterns in CCLs and primary tumors are shaped by similar features. A The ML scheme 
for analysis of aneuploidy patterns in CCLs. The gain and loss models that were trained on aneuploidy 
patterns in primary tumors were applied to aneuploidy patterns in CCLs. Performance was measured using 
tenfold cross‑validation. Gain model (gradient boosting): auROC = 83%, auPRC = 49% (expected 15%). Loss 
model (XGBoost): auROC = 76%, auPRC = 45% (expected 11%). B The average absolute contribution of the 
ten topmost features to the gain model (see legend of Fig. 2A). The order and directionality of the features 
generally agree with the gain model in primary tumors. C A detailed view of the contribution of the ten 
topmost features to the gain model (see legend of Fig. 2B). D Same as B for the loss model. The order and 
directionality of the features generally agree with the loss model in primary tumors. E Same as panel C for the 
loss model. F The correlations between top contributing features and the frequencies of chromosome‑arm 
gains and losses, as measured by Spearman correlation. p‑values were adjusted for multiple hypothesis 
testing using Benjamini–Hochberg procedure. Negative correlation between TSG density and gain frequency 
(ρ = − 0.37, adjusted p = 0.04). Positive correlation between TSG density and loss frequency (ρ = 0.17, 
adjusted p = 0.32). Positive correlation between OG density and gain frequency (ρ = 0.44, adjusted p = 0.012). 
Negative correlation between OG density and loss frequency (ρ = − 0.28, adjusted p = 0.13). Positive 
correlation between CCL expression and gain frequency (ρ = 0.53, adjusted p = 0.002). Negative correlation 
between CCL expression and loss frequency (ρ = − 0.6, adjusted p = 0.0006). Positive correlation between 
essential gene density and gain frequency (ρ = 0.18, adjusted p = 0.33). Negative correlation between 
essential gene density and loss frequency (ρ = − 0.17, adjusted p = 0.32)
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suppressor genes (Fig. 2E). It is therefore not surprising that chr13q is recurrently lost 
across multiple cancer types (with a median of 30% of the tumors losing one copy of 13q 
across cancer types) [4, 5]. Interestingly, however, chr13q is recurrently gained in human 
colorectal cancer (in 58% of the samples), suggesting that it can confer a selection advan-
tage to colorectal cells in a tissue-specific manner. Indeed, when comparing colorectal 
tumors and colorectal cancer cell lines against all other cancer types, chr13q was the top 

Fig. 3 (See legend on previous page.)
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differentially affected chromosome-arm (Fig.  4A,B). We therefore set out to study the 
basis for this unique tissue-specific aneuploidy pattern.

We performed a genome-wide comparison of differentially essential genes between 
colorectal cell lines and all other cell lines. The two top genes, which are much more 
essential in colorectal cancer cells than in other cancer types, were CTNNB1 and KLF5 

Fig. 4 KLF5 is a potential driver of chromosome 13q gain in human colorectal cancer. A Comparison of 
the prevalence of chromosome‑arm aneuploidies in colorectal tumors against all other tumors (left) and 
colorectal cancer cell lines against all other cancer cell lines (right). On the right side are the aneuploidies 
that are more common in colorectal cancer, and on the left side are the ones that are less common in 
colorectal cancer. Chromosome‑arm 13q (in red) is the top differential aneuploidy in colorectal cancer. B 
Comparison of the prevalence of 13q aneuploidy between colorectal tumors and all other tumors (left) 
and between colorectal cancer cell lines and all other cancer cell lines (right). ****, p < 0.0001 and ****, 
p < 0.0001; Chi‑square test. C Genome‑wide comparison of differentially essential genes between colorectal 
cancer cell lines (n = 85) and all other cancer cell lines (n = 1407). On the right side are the genes that are 
more essential in other cancer cell lines, and on the left side are those that are more essential in colorectal 
cancer, based on a genome‑wide CRISPR/Cas9 knockout screens [39]. The x‑axis presents the effect size 
(i.e., the differential response between colorectal cell lines and other cell lines), and the y‑axis presents the 
significance of the difference (‑log10(p‑value)). KLF5 (in red) is the second most differentially essential gene 
in colorectal cancer cell lines. D Comparison of the sensitivity to CRISPR knockout of KLF5 between colorectal 
cancer cell lines (n = 59) and all other cancer cell lines (n = 1041). ****, p < 0.0001; two‑tailed Mann–Whitney 
test. E Genome‑wide comparison of differentially expressed genes between colorectal tumors (n = 434) 
and all other tumors (on the left, n = 11,060) and between colorectal cancer cell lines (n = 85) and all other 
cancer cell lines (on the right, n = 1407). On the right side are the genes that are over‑expressed in colorectal 
cancer and on the left side are those that are over‑expressed in other cell lines. KLF5 (in red) significantly 
over‑expressed in colorectal cancer. F Comparison of KLF5 mRNA levels between colorectal tumors (n = 434) 
and all other tumors on the left (n = 11,060) and between colorectal cancer cell lines (n = 85) and all other 
cancer cell lines (on the right, n = 1407). ****, p < 0.0001; two‑tailed Mann–Whitney test. G Correlation 
between KLF5 mRNA expression and the sensitivity to KLF5 knockdown, showing that higher KLF5 expression 
is associated with increased sensitivity to its RNAi‑mediated knockdown. ρ = − 0.39, p = 0.01; Spearman 
correlation. H Comparison of KLF5 mRNA levels between DLD1‑WT (without trisomy of chromosome 13) 
and DLD1‑Ts13 (with trisomy of chromosome 13) colorectal cancer cells. **, p = 0.0025; one‑sample t‑test. 
I Representative images of DLD1‑WT and DLD1‑Ts13 cells treated with siRNA against KLF5. DLD1‑Ts13 cells 
proliferated more slowly, as previously reported, but were more sensitive to the knockdown after accounting 
for their basal proliferation rate. Cell masking (shown in yellow) was performed using live cell imaging 
(IncuCyte) following 72 h of treatment. Scale bar 400µm. J Quantification of the relative response to KLF5 
knockdown between DLD1‑WT and DLD1‑Ts13, as evaluated by quantifying cell viability in cells treated with 
siRNA against KLF5 versus a control siRNA for 72 h. n = 3 independent experiments. *, p = 0.0346; one‑sided 
paired t‑test
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(Fig. 4C). Of particular interest is KLF5, which is located on chr13q and colorectal can-
cer cell lines are significantly more sensitive to its knockout (Fig. 4D). KLF5 was reported 
to be tumor-suppressive in the context of several cancer types, such as breast and pros-
tate [40, 41]. In colon cancer, however, not only is KLF5 important for tissue identity 
[42], but it was also reported to be haploinsufficient [43], potentially explaining why loss 
of chr13q is so rare in colorectal cancer. In line with a potential driving role in the recur-
rence of chr13q gain in colorectal cancer, KLF5 was among the most significantly over-
expressed genes in colorectal tumors and in colorectal cell lines versus all other cancer 
types (Fig. 4E,F). Furthermore, KLF5 expression levels correlated with the cells’ sensi-
tivity to its knockdown (Fig. 4G). To confirm the association between chr13q gain and 
KLF5 expression and dependency, we next turned to an isogenic system of human colon 
cancer cells (DLD1) into which trisomy 13 had been introduced (DLD1-Ts13) [44]. Using 
this unique experimental system, we confirmed that trisomy 13 results in overexpres-
sion of KLF5 (Fig.  4H) and increased sensitivity to its siRNA-mediated genetic deple-
tion (Fig. 4I,J and Additional file 1: Fig. S12, Additional file 1: Fig. S13). This differential 
response was specific to KLF5, as the trisomy did not affect the sensitivity of the cells to 
a control siRNA (Additional file 1: Fig. S14), to knockdown of an unrelated gene residing 
on chr13q (NEK3; Additional file 1: Fig. S15), or to knockdown of another transcription 
factor that plays a role in colon development and is located on another chromosome 
(TTC7A, located on chr2p; Additional file 1: Fig. S16). We, therefore, propose that KLF5 
contributes to the uniquely variable pattern of chr13q aneuploidy across cancer types.

Paralog compensation is an important feature shaping tissue‑specific aneuploidy patterns

One of the topmost contributing features to the chromosome-arm loss model in pri-
mary tumors and in CCLs, as well as to the whole-chromosome loss model, was par-
alog compensation. It was previously shown that while loss of genes with paralogs was 
less detrimental than loss of singleton genes [45], the impact of gene loss in a specific 
condition depends on the expression level of its paralog [46]. The paralog compensation 
feature was therefore designed to quantify the expression ratio between two paralogs. 
Specifically, higher values of this feature for a given gene correspond to a higher expres-
sion of the paralog relative to the gene (Methods). Previous studies of hereditary disease 
genes showed that lower paralog compensation in a tissue was associated with disease 
manifestation  in that tissue [31, 32]. Paralog compensation was also shown in cancer 
tissues: In CCLs, essentiality of a gene was decreased with an increased expression of its 
paralog [27, 46, 47]. In primary tumors, paralog compensation was shown to be associ-
ated with increased prevalence of non-synonymous mutations [48] and to correlate with 
the prevalence of homozygous gene deletion [49]. However, the contribution of paralog 
compensation to aneuploidy has not been studied to date.

Paralog compensation ranked fourth and sixth in the loss models of primary tumors 
and CCLs, respectively (Fig.  2C, Fig.  3D). In both, chromosome-arm loss was associ-
ated with higher paralog compensation, suggesting that loss is facilitated by higher rela-
tive expression of paralogs (Fig. 2D, Fig. 3E). We also analyzed the correlations between 
the frequency of chromosome-arm loss and paralog compensation (Methods, Fig. 5A). 
Indeed, the frequency of chromosome-arm loss was positively correlated with paralog 
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Fig. 5 Paralog compensation is an important feature shaping tissue‑specific aneuploidy patterns. A The 
correlation between paralog compensation values and loss frequency of chromosome arms in primary 
tumors (left, ρ = 0.26, adjusted p = 0.18, Spearman correlation) and in CCLs (right, ρ = 0.46, adjusted 
p = 0.01, Spearman correlation). B A view into the aneuploidy patterns of paralogs of recurrently lost genes. 
Recurrently lost genes were divided into essential, intermediate, and non‑essential groups. Paralogs of 
essential genes were more frequently gained, whereas paralogs of non‑essential genes were more frequently 
lost. C Genome‑wide comparison of differentially essential genes in colorectal cell lines with chr13q gain 
(n = 39) versus chr13q‑WT colorectal cell lines (n = 25). On the right side are the genes that are more 
essential in chr13q‑WT cells, and on the left side those that are more essential in chr13q‑gain cells, based on 
a genome‑wide CRISPR/Cas9 knockout screens [39]. The x‑axis presents the effect size (i.e., the differential 
response between chr1q‑WT and chr13q‑gain colorectal cell lines) and the y‑axis presents the significance 
of the difference (‑log10(p‑value)). UCHL1 (in red) is one of the top genes identified to be more essential in 
chr13q‑WT cells. D Comparison of the sensitivity to CRISPR knockout of UCHL1 between colorectal cell lines 
with (n = 28) and without chr13q gain (n = 16). ***, p = 0.0003; two‑tailed Mann–Whitney test. E Comparison 
of UCHL3 mRNA expression between colorectal cell lines with (n = 34) and without chr13q gain (n = 23). ****, 
p < 0.0001; two‑tailed Mann–Whitney test. F Correlation between UCHL3 mRNA expression and the sensitivity 
to UCHL1 knockout, showing that higher UCHL3 mRNA levels are associated with reduced sensitivity to 
UCHL1 knockout. ρ = 0.28, p = 0.041; Spearman correlation. G Comparison of the prevalence of chr4p loss 
between human primary colorectal tumors with and without chr13q gain. ****, p < 0.0001, Chi‑square test. 
H Comparison of the prevalence of chr4p loss between human colorectal cancer cell lines with and without 
chr13q gain. ****, p < 0.0001, Chi‑square test



Page 15 of 29Jubran et al. Genome Biology           (2024) 25:95  

compensation in both primary tumors and in CCLs (ρ = 0.26 and ρ = 0.46, respectively, 
Spearman correlation; Fig. 5A).

Next, we tested whether paralog compensation, namely gain or overexpression of par-
alogs, could indeed  facilitate chromosome-arm loss. We started by grouping genes in 
recurrently lost chromosome-arms into essential, intermediate, or non-essential, accord-
ing to their essentiality in CCLs [27] (Methods). We then associated each gene with the 
aneuploidy status of the chromosome-arm of its paralog, namely whether the chro-
mosome-arm of the paralog was gained, lost, or remained neutral in the correspond-
ing CCL (Methods, Additional file 1: Fig. S17A). The fraction of genes with paralogs on 
neutral chromosome-arms was similar in all essentiality groups (Fig. 5B). In contrast, the 
fraction of gained paralogs was highest in the group of essential genes and lowest in the 
group of non-essential genes. This suggests that the loss of essential genes is more likely 
accompanied by the gain of their paralogs. Likewise, the fraction of lost paralogs was 
lowest in the group of essential genes and highest in the group of non-essential genes 
(p = 2.38e − 24, Chi-square test; Fig.  5B). This suggests that the loss of essential genes 
is less likely to be accompanied by the loss of their paralog. The same trend was shown 
upon comparing the distribution of essentiality scores between genes with gained para-
logs versus genes with lost paralogs (p = 9.2e − 16, KS test; Additional file 1: Fig. S17B). 
Hence, paralog compensation can facilitate chromosome-arm loss.

Next, we decided to identify a specific example. In human colon cancer, the long 
arm of chromosome 13 (chr13q) is commonly gained, as described above, whereas the 
short arm of chromosome 4 (chr4p) is commonly lost [5, 37]. We analyzed the asso-
ciation between chr13q-residing genes and the essentiality of their paralogs, revealing 
UCHL3 (chr13q)-UCHL1 (chr 4p) as the most significant correlation (Additional file 6: 
Table S5 and Fig. 5C). Human colon cancer cell lines with chr13q gain were less sensitive 
to CRISPR/Cas9-mediated knockout of UCHL1 (Fig. 5D). Consistently, chr13q-gained 
cell lines had significantly higher mRNA levels of UCHL3 (Fig. 5E), and the expression 
of UCHL3 was significantly correlated with the essentiality of UCHL1 (Fig.  5F). We 
hypothesized that the relationship between these paralogs may affect the co-occurrence 
patterns of the chromosome-arms on which they reside. Indeed, both in primary human 
colon cancer and in colon cancer cell lines, loss of chr4p was significantly more preva-
lent when chr13q was gained (Fig. 5G,H). Together, these results demonstrate that par-
alog compensation can be affected by—and contribute to the shaping of—aneuploidy 
patterns.

Discussion
Recurrent aneuploidy patterns are an intriguing phenomenon that is only partly under-
stood. Several previous studies characterized the unique patterns of aneuploidy in can-
cer [4, 5, 50] or attempted to identify the driving role of a specific aberration in a specific 
cancer context [9, 51–54]. Attempts to explain copy number patterns in cancer focused 
on specific pre-defined aspects, such as the specific boundaries of the alterations [15], 
the densities of OGs and TSGs on the aberrant chromosomes [6, 7] or the gene expres-
sion changes that they induce [8], and these aspects were interrogated using statistical 
methods and correlation analyses. Here, in contrast, we studied this phenomenon using 
an unbiased ML-based approach. As with other ML applications, it allowed us to study 
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multiple aspects simultaneously. Yet, unlike classical ML-based studies that mainly aim 
to improve prediction, for example by using deep learning to predict gene dependency in 
tumors [21], our focus was on interpretability. In fact, we built chromosome-arm gains 
and loss models only to then identify factors that shape aneuploidy patterns. Interpret-
able ML was recently applied to reveal genetic attributes that contribute to the manifes-
tation of Mendelian diseases [55]. In this study, we applied interpretable ML for the first 
time in the context of aneuploidy and at chromosome-arm resolution.

The capability of ML to concurrently assess multiple features opened the door for 
assessing the relevance of features that have not been rigorously studied to date, such as 
paralog compensation. Yet, ML has its limitations. Mainly, the number of features that 
could be analyzed depends on the size of the labeled dataset [56], which, in aneuploidy, 
was restricted by the number of chromosome-arms and cancer types. We therefore 
analyzed 20 types of features and tested linear regression and tree-based ML methods, 
which, unlike deep learning, are suitable for this size of data. Following prediction, our 
main goal was to assess the relative contribution of each feature to the model’s deci-
sion and its directionality using SHAP. Nevertheless, SHAP results should be interpreted 
with caution. First, SHAP assumes feature independence, although features could be 
correlated with each other or confounded. Importantly, we found that only a small sub-
set of features correlated with each other, and they did not include the topmost contrib-
uting features (Additional file 1: Fig. S3A). Second, the top contributing factors could be 
correlated with prediction strength, rather than being causal. Lastly, due to the hierar-
chical nature of decision trees, features that are located low in the decision tree explain 
only a small fraction of the cases. To estimate feature  contribution  and directionality 
more broadly, we explicitly correlated feature values with chromosome-arm gain and 
loss frequency, finding support for their broad relevance (Fig. 2E, Additional file 1: Fig. 
S6). We also conducted multiple analyses that tested the robustness of the results to the 
models’ construction schemes (Additional file 1: Fig. S7, S8), the modeled events (one 
event versus rest, Additional file  1: Fig. S9; whole-chromosome, Additional file  1: Fig. 
S11), or to a subset of the chromosome-arm and cancer type instances (Additional file 1: 
Fig. S10). The different analyses repeatedly revealed the same factors at play, supporting 
the reliability of our results.

The features that we studied included known and previously underexplored attributes 
of chromosome-arms, healthy tissues and cancer cells (Fig. 1A,B). OG and TSG densi-
ties, which have previously been observed to be enriched on gained and lost chromo-
some-arms, respectively [6, 7], were top contributing features in both models, thereby 
supporting the validity of our approach (Fig.  2A,C). In the gain model in particular, 
their contribution was over 2.6 and 5 times stronger, respectively, than any other feature 
(Fig. 2A). As our TSG and OG features were cancer-independent, their importance may 
explain the observation that certain chromosome-arms tend to be either gained or lost 
across multiple cancer types [4, 5]. Their relative contribution, however, was surprising. 
In both models, negative associations were much stronger than positive associations: 
OG density contributed to chromosome-arm loss more than TSG density, implying that 
it was more important to maintain OGs than to lose TSG (Fig.  2B,D). The reciprocal 
relationship was true for chromosome-arm gain, as it was more important to main-
tain TSGs than to gain OGs (Fig. 2A,C). These results were validated using correlation 
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analyses (Fig. 2E) and were recapitulated in CCLs (Fig. 3) and in the analysis of whole-
chromosome gains and losses (Additional file 1: Fig. S11). Together, they highlight the 
importance of negative selection for shaping cancer aneuploidy landscapes [1, 15].

A known factor that contributed to both models was gene expression in primary 
tumors (TCGA expression, Fig. 2) and in CCLs (CCL expression, Fig. 3). This result sug-
gests that cancers tend to gain chromosome-arms that are enriched for highly-expressed 
genes and tend to lose chromosome-arms that are enriched for lowly expressed genes. 
A Similar trend was shown recently for gene expression in normal tissues [8]. Our 
approach was capable of comparing the relative contributions of both features. We 
found that the contribution of gene expression in normal tissue was lower than that in 
cancer tissues, as also evident by its lower correlation with the frequencies of chromo-
some-arm gains and losses (Additional file 1: Fig. S6). Nevertheless, other features that 
were derived from gene expression in normal tissues ranked highly, such as the num-
ber of PPIs in the gain model and paralog compensation in the loss model, and hence 
expression in normal tissues is also important (Fig. 2).

A previously under-explored feature that we considered was paralog compensation. 
Paralog compensation was shown to play a role in the manifestation of Mendelian and 
complex diseases [31, 32] and in the dispensability of genes in tumors [48, 49] and CCLs 
[27, 46, 47], but was not studied in the context of aneuploidy. Here, paralog compensa-
tion was among the top contributors to the loss model (Fig. 2C, Fig. 3D). The direction-
ality of this feature and correlation analyses showed that, relative to genes located on 
neutral chromosome-arms, genes located on lost chromosome-arms tend to have higher 
compensation by paralogs (Fig. 5A). This suggests that chromosome-arm loss is facili-
tated, or better tolerated, through paralogs’ expression. We also showed that the more 
essential recurrently lost genes are, the more likely they are to be associated with gains 
of paralog-bearing chromosome-arms (Fig. 5B). We further demonstrated this for a spe-
cific example (the UCHL3-UCHL1 paralog pair; Fig. 5). Overall, our analysis reveals that 
compensation between paralogs through expression or chromosome-arm gain plays an 
important role in shaping the landscape of chromosome-arm loss.

Combining the different results, our models reveal a previously under-appreciated role 
for negative selection in driving human cancer aneuploidy. This was evident by the ten-
dency not to lose chromosome arms with high OG density, high frequency of essential 
genes, or low compensation by paralogs, and not to gain chromosome arms with high 
TSG density (Fig. 6). Previous studies have shown that positive selection outweighs neg-
ative selection in shaping the point mutation landscape of human tumors [14]. However, 
the strong fitness cost associated with aneuploidy suggests that the aneuploidy land-
scape of tumors might be strongly affected by negative selection as well (reviewed in 
[1]). Interestingly, evidence for the involvement of negative selection in shaping the copy 
number alteration (CNA) landscapes of tumors has been proposed in a recent study that 
analyzed CNA length distributions across human tumors [15]. Our study thus lends fur-
ther independent support to the importance of negative selection in shaping the land-
scape of aneuploidy across human cancers (Fig. 6).

Our genome-wide analysis could be expanded in future studies in several ways: (1) 
While we focused on the top-contributing features, other features, such as PPIs that 
contributed to both gain and loss models, are also relevant and remain to be studied in 



Page 18 of 29Jubran et al. Genome Biology           (2024) 25:95 

depth. (2) It will be interesting to consider additional types of aneuploidy, such as tetra-
somies, and explore how whole-genome doubling affects the importance of the features 
in shaping the aneuploidy landscapes of tumors. (3) Tumors often exhibit heterogeneous 
(mosaic) aneuploidy patterns [57–60]. Our analyses were entirely based on bulk-pop-
ulation data, and our results therefore describe the selection pressures that shape the 
landscape of clonal aneuploidies. As more single-cell omics data becomes available, it 
will be interesting to also study the selection pressures that shape subclonal aneuploidy 
patterns. (4) Aneuploidies do not always arise independently, so that chromosome-arm 
events can co-occur or be mutually exclusive [37]. We show that only a small fraction 
of chromosome-arm events co-occur (Additional file 7: Table S6), suggesting that their 
effect on our models would likely be small. Nonetheless, considering co-occurrence pat-
terns could further refine the models.

Lastly, we explored one example of a unique aneuploidy pattern (chr13q) that is 
recurrently altered in opposite directions in different cancer types. In line with tumor 
suppressors and oncogenes being a major feature explaining aneuploidy patterns, we 
identified KLF5 as a colorectal-specific dependency gene. Using an isogenic system of 
colorectal cancer cells with/without gain of chr13, we experimentally demonstrated 
that this aneuploidy is associated with increased expression and increased essentiality 
of KLF5. The finding that colorectal cells with trisomy 13 are more sensitive to KLF5 
depletion suggests positive selection for its gain, on top of a potential negative selection 
against a deleterious loss. We therefore propose that KLF5 might explain why chr13q 

Fig. 6 A schematic presentation of the results of the study. Cancer evolution is shaped by negative and 
positive selection leading to enrichment or depletion of cells with distinct aneuploidy patterns. In the gain 
model (left), main contributors to positive selection of gained chromosome arms are: (1) high oncogene 
density, (2) high expression of genes in the cancer tissue, and (3) high essential gene density. A major 
contributor to negative selection is high tumor suppressor gene density. Importantly, the density of TSGs is 
more important than the density of OGs for predicting chromosome‑arm gains. In the loss model (right), a 
main contributor to positive selection of lost chromosome arms is high tumor suppressor gene density. Major 
contributors to negative selection are high oncogene density, high expression of genes in the cancer tissue, 
low compensation by paralogs, and high density of essential genes. In both models, the features associated 
with negative selection have higher overall contribution than features associated with positive selection. The 
thickness of the borders of the boxes reflects the relative contribution of the features to the model
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is commonly gained and rarely lost in colorectal cancer, unlike its recurrent loss across 
multiple other cancer types.

Overall, our study provides novel insights into the forces that shape the tissue-spe-
cific patterns of aneuploidy observed in human cancer and demonstrates the value of 
applying ML approaches to dissect this complicated question. Our results suggest that 
aneuploidy patterns are shaped by a combination of tissue-specific and non-tissue-spe-
cific factors. Negative selection in general and paralog compensation in particular play 
a major role in shaping the aneuploidy landscapes of human cancer and should there-
fore be computationally modeled and experimentally studied in the research of cancer 
aneuploidy.

Methods
Chromosome‑arm aneuploidy patterns per cancer

Chromosome-arm events per cancer were defined according to GISTIC2.0 [24] for all 
(39) chromosome-arms in 24 cancer types for which data of the normal tissue of origin 
was available from GTEx [25]. GISTIC2.0 computed the probability of chromosome-
arm events by comparing the observed frequency to the expected rate, while considering 
chromosome-arm length and other parameters [61]. A chromosome-arm was consid-
ered as gained or lost in a specific cancer if the q-value of its amplification or deletion, 
respectively, was lower than 0.05. Otherwise, the chromosome-arm was considered as 
neutral. In case the q-value of both amplification and deletion was lower than 0.05, deci-
sion was made based on the lower q-value. In case of a tie, the more frequent event was 
selected. GISTIC2.0 data, including q-values and frequencies, were downloaded from 
ref. [62]. Lastly, we analyzed co-incidence probabilities of chromosome-arm events per 
cancer. Co-incidence probabilities for chromosome-arms and cancers in our dataset 
were obtained from [37].The median fraction of chromosome-arm pairs with significant 
co-incidence per cancer was 2.05% (Additional file 7: Table S6). Hence, the impact of co-
incidence on the models is expected to be small.

We also carried separate analyses of gain and loss of whole-chromosomes. A whole-
chromosome was considered as gained if the q-value of the amplification of its two 
arms was lower than 0.05. Likewise, a whole-chromosome was considered as lost if the 
q-value of the deletion of its two arms was lower than 0.05.

Construction of a features dataset of instances of chromosome‑arm and cancer type pairs

For each chromosome-arm and cancer, we created features that were inferred from 
data of chromosome-arms, genes, cancer tissues and CCLs, and normal tissues (Fig. 1B, 
Additional file 2: Table S1). A schematic pipeline of the dataset construction appears in 
Additional file 1: Fig. S1. The different types of features are described below.

Features of chromosome‑arms

Each chromosome-arm was associated with three types of features, including oncogene 
density, tumor suppressor gene density, and essential gene density. Oncogene density 
and tumor suppressor gene density per chromosome-arm were obtained from Davoli 
et  al. [6]. Data of essential genes was obtained from Nichols et  al. [26], where a gene 
was considered essential if its essentiality probability was > 0.8. The density of essential 
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genes per chromosome-arm was calculated as the fraction of essential genes out of the 
protein-coding genes on that chromosome-arm. Next, we associated each instance of 
chromosome-arm and cancer type with features of that chromosome-arm.

Features of cancer tissues

Each instance of chromosome-arm and cancer type was associated with four types of 
cancer-related features, including transcriptomics, essentiality by CRISPR or RNAi in 
CCLs, and cancer-specific density of essential genes. Transcriptomics was based on 
transcriptomic profiles of 33 cancer types from TCGA [63] that were obtained from 
GDC Xena Hub v18.0 (updated 2019–08-28). Per cancer, we associated each gene with 
its median expression level in samples of that cancer. To avoid expression bias due to 
chromosome-arm gain or loss, the median expression of each gene was computed from 
samples where the chromosome-arm harboring the gene was neutral according to Tay-
lor et  al. [5]. Essentiality by CRISPR was based on CRISPR screens of 24 CCLs from 
the DepMap portal version 21Q1. Essentiality by RNAi was based on RNAi data of 20 
CCLs from DepMap [27]. In each of these datasets, the score of each gene indicated 
the change, relative to control, in the growth rate of the cell line upon gene inactiva-
tion via CRISPR or RNAi. Accordingly, genes with negative scores were essential for the 
growth of the respective cell line. We associated each gene with its median essentiality 
score based on either CRISPR or RNAi per cell line. To reflect gene essentiality more 
intuitively, we reversed the direction of the scores (multiplied them by − 1), so that more 
essential genes had higher scores. To avoid bias due to chromosome-arm gain or loss, 
the median essentially of each gene was computed from samples where the chromo-
some-arm harboring the gene was neutral [5]. Cancer-specific density of essential genes 
was calculated as the fraction of essential genes (CRISPR-based essentiality score > 0.5) 
in a given CCL out of the protein-coding genes residing on that chromosome-arm.

Features of normal tissues

Each instance of chromosome-arm and cancer type was associated with 13 types of fea-
tures that were derived from [55]. We associated each cancer type with the normal tissue 
in which it originates (Additional file 2: Table S1).

Transcriptomics

Data of normal tissues included transcriptomic profiles of 54 adult human tissues meas-
ured via RNA-sequencing from GTEx v8 [25]. Each gene was associated with its median 
expression in each adult human tissue. Genes with median TPM > 1 in a tissue were con-
sidered as expressed in that tissue.

Tissue‑specific genes

Per gene, we measured its expression in a given tissue relative to other tissues using 
z-score calculation. Genes with z-score > 2 were considered tissue-specific. Lastly, we 
associated each chromosome-arm and tissue with the density of tissue-specific genes.
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PPI features

Each gene was associated with the set of its PPI partners. We included only partners 
with experimentally detected interactions that were obtained from MyProteinNet web-
tool [64]. Per each tissue, we associated each gene with four PPI-related features: 

 (i) “Number PPIs” was set to the number of PPI partners that were expressed in that 
tissue.

 (ii) “Number elevated PPIs” relied on preferential expression scores computed accord-
ing to [28] and was set to the number of PPI partners that were preferentially 
expressed in that tissue (preferential expression > 2, [65]. 

 (iii) “Number tissue-specific PPIs” was set to the number of PPI partners that were 
expressed in that tissue and in at most 20% of the tissues. 

 (iv) “Differential PPIs” relied on differential PPI scores per tissue from The Differential-
Net Database [28] and was set to gene’s median differential PPI score per tissue. If 
the gene was not expressed in a given tissue, its feature values in that tissue were 
set to 0.

Differential process activity features

Differential process activity scores per gene and tissue were obtained from [30]. The 
score of a gene in a given tissue was set to the median differential activity of the Gene 
Ontology (GO) processes involving that gene. The differential activity was relative to the 
activity of the same processes in other tissues.

eQTL features

eQTLs per gene and tissue were obtained from GTEx [25]. Each gene was associated 
with the p-value its eGene in that tissue.

Paralog compensation features

Each gene was associated with its best matching paralog according to Ensembl-BioMart. 
Per tissue, the gene score was set to the median expression ratio of the gene and its par-
alog, as described in [31, 32]. Accordingly, high values mark genes with low paralog 
compensation.

Development features

Transcriptomic data of seven human organs measured at several time points during 
development were obtained from [66]. We united time points into time periods includ-
ing fetal (4–20 weeks post-conception), childhood (newborn, infant, and toddler), and 
young (school, teenager and young adult). Per organ, we associated each gene with its 
median expression level per period. Next, we created an additional feature that reflected 
the expression variability of each gene across periods.

Transforming gene features into chromosome‑arm features

Some of the features described above referred to genes. To create chromosome-arm-
based features, we grouped together genes that were located on the same chromosome-
arm [67]. Next, to highlight differences between tissues, for each feature, we associated 
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a gene with its value in that tissue relative to other tissues. Features that were already 
tissue-relative, including “Differential PPIs” and “Differential process activity,” were 
maintained. Other features were converted into tissue-relative values via a z-score cal-
culation (see Eq. 1). Lastly, per feature, we ranked genes by their tissue-relative score and 
associated each chromosome-arm with the median score of the genes ranking at the top 
10% (Additional file  1: Fig. S2). Transcriptomic features in the testis and whole blood 
were highly distinct from other tissues; we normalized all transcriptomic features per 
tissue. To reflect paralog compensation more intuitively, we reversed the direction of the 
resulting features (multiplied them by − 1), so that genes with higher compensation had 
higher scores.

T denotes the set of tissues, G denotes the set of genes, v denotes the value of the fea-
ture, and σ denotes the standard deviation.

Construction of the final dataset

The features described above referred to chromosome-arms in cancers, CCLs, and nor-
mal tissues. To create chromosome-arm features per cancer, we associated each cancer 
with the chromosome-arm features of its tissue of origin and CCL (Additional file  2: 
Table S1). For features of normal tissues where multiple sub-regions were sampled (e.g., 
skin sun-exposed and not sun-exposed, or brain sub-regions), we set the chromosome-
arm values to their median across sub-regions. The final dataset contained features for 
all 936 instances of 39 chromosome-arms and 24 cancers for which the cancer’s normal 
tissue of origin was available in GTEx [25] (Additional file 2: Table S1). We assessed the 
similarity between every pair of features using Spearman correlation (Additional file 1: 
Fig. S3A). We assessed whether chromosome-arm and cancer type instances had similar 
feature values using PCA (Additional file 1: Fig. S3C).

ML application to model chromosome‑arm and cancer aneuploidy

Below we describe the ML method used for aneuploidy classification and the SHAP 
(SHapley Additive exPlanations) analysis of feature importance that was used to inter-
pret the resulting models.

Aneuploidy ML classification models

We constructed two ML models: a gain model that compared between gained and 
unchanged (neutral) chromosome-arms and a loss model that compared between lost 
and unchanged (neutral) chromosome-arm.

ML comparison and implementation

Per model, we tested several ML methods, including logistic regression, XGBoost, gra-
dient boosting, random forest, and bagging. All ML methods were implemented using 
the Scikit-learn python package [68], except for XGB, which was implemented using the 
Scikit-learn API of the XGBoost package [69]. To assess the performance of each model, 

(1)∀t ∈ T , ∀g ∈ G : zscoretg =
[vtg −mean(v∀t

′
∈T

g )]
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we used tenfold cross-validation. Then, we calculated the au-ROC and the au-PRC. 
Each point on the curve corresponded to a particular cutoff that represented a trade-off 
between sensitivity and specificity and between precision and recall, respectively.

SHAP analysis of feature importance

To measure the contribution and importance of the different features, we used SHAP 
algorithm [70]. SHAP is a game-theoretic approach to explain the output of ML models: 
for each feature, SHAP assigns a contribution value to each instance of chromosome-
arm and cancer type. It then estimates the contribution of that feature to the model by 
the average absolute SHAP values of all instances. Per model, we created the SHAP plots 
corresponding to feature contribution and directionality. In both, features were ordered 
by their importance to the model (top meaning most contributing). We also visualized 
the directionality of each feature using arrows in the SHAP bar plot. The direction of the 
arrow showed whether the highest values of that feature (top 50%) corresponded to a 
chromosome-arm event (gain or loss, right) or to neutrality (left).

Robustness analyses

We analyzed the robustness of the models and their interpretation with respect to inter-
nal parameters used to generate the features and the hyperparameters of the ML mod-
els. For feature generation, we used top 10% of genes with highest values to calculate 
each gene-based chromosome-arm feature. We therefore reconstructed features by also 
using the top 1%, 5%, 15%, and 20% of the genes. We then assessed the performance of 
each method using tenfold cross-validation. In all cases, method performance was simi-
lar (Additional file 3: Table S2). SHAP analysis of the best performing method per case 
showed similar results with respect to the topmost contributing features and their direc-
tionality (Additional file 1: Fig. S7). For robustness to parameter choices, we tuned the 
hyperparameters per ML method separately for the gain model and for the loss model, 
and repeated model construction and interpretation. Tuning was optimized for preci-
sion and performed using the “RandomizedSearch” function of sklearn python package, 
with number of sampled parameters (iterations, n_iter) set to 200 and tenfold cross-val-
idation. Best parameters per method and model and their performance appear in Addi-
tional file 1: Fig. S8A,B. Performance was only slightly improved, and interpretation of 
the best performing models revealed similar results (Additional file 1: Fig. S8C).

Lastly, we tested if the most important features per model were driven by a small sub-
set of chromosome-arm and cancer type instances. For that, per model, we focused on 
the five most important features and identified instances with the top contributions to 
these features. An instance was considered a top contributor if its SHAP value for that 
feature that was among the 10% positive SHAP values (i.e., was a potential driver of the 
gain or loss) or the 10% negative SHAP values (i.e., was a potential driver of neutrality). 
The SHAP value for each instance and feature appears in Additional file 4: Table S3. The 
list of instances and the features that they contributed to appears in Additional file 5: 
Table S4. We then associated each instance with the number of features in which it was 
a top contributor. Next, we tested the impact of the strongest potential driver instances 
on the five most important features of the model. This was done by excluding from the 
dataset chromosome-arm and cancer type instances that were top contributors to at 
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least three of the five features and repeating the construction and interpretation of each 
model using the revised dataset.

Correlation analysis

We correlated between feature values and the frequency of chromosome-arm gain or 
loss. The frequency of chromosome-arm gain/loss in cancers was obtained from GIS-
TIC2.0 [24]. The frequency of chromosome-arm gain/loss in CCLs were obtained from 
[37]. Per chromosome-arm, its gain (loss) frequency was set to the median gain (loss) 
across cancers or CCLs. The feature value was set to median across cancers or CCLs. 
We used Spearman correlation, and p-values were adjusted using Benjamini–Hochberg 
procedure [71].

Paralog compensation analysis

For each cancer type and chromosome-arm, we considered all paralog pairs in which 
one of the genes resides on that chromosome-arm. We focused on recurrently lost 
genes per cancer type as defined by GISTIC2.0 [24]. We divided those genes by their 
minimal CRISPR essentiality score in CCLs that match the same cancer type (Additional 
file 2: Table S1). Genes with a score ≤ − 0.5 were considered essential, and genes with a 
score ≥ − 0.3 were considered non-essential. Other genes were considered intermediate. 
Per gene, we checked whether its paralog was recurrently gained, lost, or neutral, in the 
same cancer, as detailed in Additional file 1: Fig. S17A.

Chromosome‑arm aneuploidy patterns in CCLs

Aneuploidy patterns were available for all (39) chromosome-arms in 14 CCLs from 
[37]. A chromosome-arm was considered as gained or lost in a CCL if the q-value of its 
amplification or deletion, respectively, was smaller than 0.15 (in case of ties, decision 
was made based on the lower q-value). In case of equal significant q-values, a chromo-
some-arm was considered as gained or lost based on their frequencies. Otherwise, the 
chromosome-arm was considered as neutral.

Construction of a feature dataset of instances of chromosome‑arm and CCL pairs

The features dataset was similar to the dataset created for cancers, with the following 
exceptions. In features of cancer tissues, we replaced the transcriptomic features of can-
cers with transcriptomic features of CCLs. We obtained transcriptomic data of 25 CCLs 
from DepMap [27] and constructed the feature values per chromosome-arm and CCL as 
described above per chromosome-arm and cancer. Development features were removed 
since only a small number of CCLs had a matching organ. The final dataset contained 
features for all instances of 39 chromosome-arms and 10 CCLs for which the cancer’s 
normal tissue of origin was available in GTEx.

Cell culture

DLD1-WT cells and DLD1-Ts13 cells were cultured in RPMI-1640 (Life Technologies) 
with 10% fetal bovine serum (Sigma-Aldrich) and 1% penicillin–streptomycin-glu-
tamine (Life Technologies). Cells were incubated at 37 °C with 5% CO2 and passaged 
twice a week using Trypsin–EDTA (0.25%) (Life Technologies). Cells were tested for 



Page 25 of 29Jubran et al. Genome Biology           (2024) 25:95  

mycoplasma contamination using the MycoAlert Mycoplasma Detection Kit (Lonza), 
according to the manufacturer’s instructions.

qRT‑PCR

Cells were harvested using Bio-TRI® (Bio-Lab) and RNA was extracted following manu-
facturer’s protocol. cDNA was amplified using GoScript™ Reverse Transcription System 
(Promega) following manufacturer’s protocol. qRT-PCR was performed using Sybr® 
green, and quantification was performed using the ΔCT method. The following primer 
sequences were used: human KLF5, forward, 5’ ACA CCA GAC CGC AGC TCC A 3’ and 
reverse 5’  TCC ATT GCT GCT GTC TGA TTT GTA G 3’, human NEK3, forward, 5’ TAC 
CCA AAT GTG CCT TGG AG 3’, reverse 5’ ATC GGA TTG GAG AGA AGA CG 3’, human 
TTC7A, forward 5’ CTC GTG ACC TGC AGA CAA G 3’, reverse 5’ GGC TCC TAA AGT 
CTC CCA GC 3’.

siRNA transfection

For siRNA experiments, cells were plated in 96-well plates at 6000 cells per well and 
treated with compounds 24 h later. The cells were transfected with 15 nM siRNA against 
KLF5 (ONTARGETplus SMART-POOL®, Dharmacon) or with a control siRNA at the 
respective concentration (ONTARGETplus SMART-POOL®, Dharmacon) using Lipo-
fectamine® RNAiMAX (Invitrogen) following the manufacturer’s protocol. Alternatively, 
for siRNA experiments against NEK3 and TTC7A, and for additional KLF5 experiments, 
cells were plated in 6-well plates at 400,000 cells per well and treated with compounds 24 
h later. The cells were transfected with 30 nM against NEK3 and TTC7A or with 5 nM 
and 10 nM against KLF5; 48 h post seeding, the cells were split and plated in 96-wells at 
10,000 cells per well. The effect of the knockdown against KLF5, NEK3, or TTC7A on 
cell viability/proliferation was measured by live cell imaging using Incucyte® (Satorius) 
or by the MTT assay (Sigma M2128) at 72 h (or at the indicated time point) post-trans-
fection; 500 µg/mL MTT salt was diluted in complete medium and incubated at 37°C for 
2 h. Formazan crystals were extracted using 10% Triton X-100 and 0.1 N HCl in isopro-
panol, and color absorption was quantified at 570 nm and 630 nm (Alliance Q9, Uvitec).

Cancer cell line and tumor data analysis

mRNA gene expression values, arm-level CNAs, CRISPR, and RNAi dependency scores 
(Chronos and DEMETER2 scores, respectively) were obtained from DepMap 22Q4 
release (www. depmap. org). Effect size, p-values, and q-values (Fig. 4A,C,E, Fig. 5C) were 
taken directly from DepMap and were calculated as described in Tsherniak et al. TCGA 
mRNA gene expression values were obtained using the Xena browser [63]. Tumor arm-
level alterations were retrieved from Taylor et al. 2018, Cancer Cell. Effect size, Spear-
man’s R and p-values in Fig.  4G and Fig.  5F were calculated using R functions. All 
colorectal cancer cell lines (n = 85) and colorectal tumors (n = 434) were included in the 
analyses.

The analyses that led to our choice of the paralog pair UCHL3-UCHL1 are sum-
marized in Additional file 6: Table S5. In the left column are the paralogs that reside 
on chr-13q, which is frequently gained; in the adjacent column are the respective par-
alogs that reside on commonly lost chromosomes. The following columns describe 

http://www.depmap.org
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the Spearman correlation between each paralog pair and the respective p-value. 
The right-hand columns describe the effect size of chr-13q paralogs’ gene expres-
sion between CRC cell lines with and without chr13q gain. Our criteria for finding 
appropriate paralog pairs for further analysis were as follows: firstly, to have a high 
expression of the chr-13q paralogs in CRC cell lines. Secondly, we aimed to reach a 
significant correlation between chr13q-residing genes and the essentiality of their 
paralogs.

Statistical analyses

Statistical analysis was performed using GraphPad PRISM® 9.1 software. Details 
of the statistical tests were reported in figure legends. Error bars represent SD. All 
experiments were performed in at least three biological replicates.
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