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Introduction
A typical eukaryotic genome contains large regions of non-coding DNA. These are not 
translated into proteins but contain regulatory elements which control gene expression 
in response to environmental cues. Finding these regulatory elements and elucidating 
how their combinations and arrangements determine gene expression is a major goal of 
genomics research and is of great utility for synthetic biology and personalized medicine.

In the last decade, significant progress has been made towards understanding the reg-
ulation of model species, particularly humans and mice, by leveraging the work of large 
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Background: The rise of large-scale multi-species genome sequencing projects prom-
ises to shed new light on how genomes encode gene regulatory instructions. To this 
end, new algorithms are needed that can leverage conservation to capture regulatory 
elements while accounting for their evolution.

Results: Here, we introduce species-aware DNA language models, which we trained 
on more than 800 species spanning over 500 million years of evolution. Investigating 
their ability to predict masked nucleotides from context, we show that DNA language 
models distinguish transcription factor and RNA-binding protein motifs from back-
ground non-coding sequence. Owing to their flexibility, DNA language models 
capture conserved regulatory elements over much further evolutionary distances 
than sequence alignment would allow. Remarkably, DNA language models reconstruct 
motif instances bound in vivo better than unbound ones and account for the evolu-
tion of motif sequences and their positional constraints, showing that these models 
capture functional high-order sequence and evolutionary context. We further show 
that species-aware training yields improved sequence representations for endogenous 
and MPRA-based gene expression prediction, as well as motif discovery.

Conclusions: Collectively, these results demonstrate that species-aware DNA lan-
guage models are a powerful, flexible, and scalable tool to integrate information 
from large compendia of highly diverged genomes.
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consortia such as ENCODE [1] or FANTOM5 [2]. These groups have invested consider-
able resources to compile massive compendia of experiments which probe many steps of 
transcription control at high resolution and depth.

Nonetheless, estimates indicate that there are millions of eukaryotic species [3]. Many 
of these have agricultural, medical, or biotechnological relevance and even those lack-
ing direct economic importance may still hold key insights about regulatory evolution. 
Accordingly, it would certainly be valuable if existing approaches were extended beyond 
model organisms. Nevertheless, generating an ENCODE for every species is not feasible 
at the current level of technology. What is more in reach, however, is to sequence the 
genomes of all species—and this is increasingly being done [4–8].

As the genomes of all organisms are evolutionarily related, it is possible to study reg-
ulatory elements through sequence comparison, without requiring additional experi-
mental annotations [9]. Specifically, we expect that regulatory sequences and functional 
arrangements thereof are selected and thus generally more conserved than expected for 
neutral mutations [10]. The main method to determine whether particular nucleotides 
are conserved makes use of sequence alignment. Unfortunately, alignment is difficult 
for non-coding sequences, presumably because regulatory sequences evolve faster than 
coding sequences and because of a certain tolerance to the exact order, orientation, and 
spacing of regulatory elements in regulatory sequences [11, 12]. Thus, while alignments 
will certainly remain valuable, their ability to integrate information across large compen-
dia of highly diverged species is limited.

Inferring regulatory elements from genomic sequences only, without requiring further 
gene expression-related experimental data, i.e., labels, is reminiscent of a typical chal-
lenge in another domain, natural language processing, where vast quantities of mostly 
unlabelled text are available. There, masked language modeling, a type of self-supervised 
representation learning, presents another way to generate insights from unlabelled data 
[13]. To train masked language models (LMs), parts of an input sequence are hidden 
(masked), and the model is tasked to reconstruct them. To do so, LMs learn an internal 
numerical representation of words and their context, capturing the syntax and semantics 
of natural language. In turn, these representations can be used as features for efficiently 
training supervised models for many downstream tasks. This approach has alleviated 
the scarcity of labeled data in many natural language processing predictive tasks such as 
translation or question answering.

In genomics, previous work has adopted masked language modeling as a method to 
build sequence representations for DNA [14], although initially this was focused on sin-
gle species. Only recently, multi-species datasets have been used to train large genomic 
language models [15–17]. These models foremost serve as a basis to build predictors 
of molecular phenotypes. In principle, LMs should benefit from multi-species train-
ing through the ability to leverage evolution. While first results in this direction have 
been very encouraging [16], a recent analysis found that a model trained only on human 
sequences achieves better predictions for fruit fly enhancers compared to a multispecies 
model that includes the fruit fly genome [17]—an observation which is difficult to rec-
oncile with the 700 million years of divergence between these species [18]. Performance 
on downstream tasks after fine-tuning, i.e., using the pre-trained model as initialization 
to then train the full model in a supervised fashion, is an indirect measure of the features 



Page 3 of 21Karollus et al. Genome Biology           (2024) 25:83  

learned by multispecies pretraining since the exact features needed to succeed at the 
given tasks are unknown, potentially learned during fine tuning and not investigated in 
these works.

Due to their focus on downstream tasks, previous works considered the actual task 
the language model is trained to perform—reconstructing masked nucleotides—as a 
means to an end and do not study it. The sole exception to this trend is a recent contri-
bution [19], which showed that poorly reconstructed nucleotides were enriched for vari-
ants with low frequency in the Arabidopsis thaliana population—although the strongest 
variants driving this signal appear to be coding rather than regulatory. Moreover, while 
their model was trained on eight genomes, all evaluations were done on the Arabidopsis 
thaliana genome only, which the model was also trained on. Thus, while the authors 
suggest that the prediction of their language model can be considered a generalized con-
servation score, it is unclear whether their language model leverages between-species, 
rather than within-species, conservation of regulatory rules, and, more importantly, if 
their model accounts for changes in the code between species.

In this study, we aim to address these limitations by training masked LMs on a large 
number of highly evolutionarily diverged eukaryotes. Compared to previous approaches, 
we provide species information to our models to avoid the model having to infer the spe-
cies context to account for the evolution of the regulatory code. We focus on non-coding 
regions and explicitly evaluate whether the models have learned meaningful species-
specific and shared regulatory features during training across evolution and can transfer 
them to unseen species. Finally, we evaluate whether sequence representations provided 
by the models are predictive of important molecular phenotypes, such as RNA half-life 
or gene expression, and encode biologically meaningful motifs.

Results
Using language models as an alignment‑free method to capture the conservation 

and evolution of regulatory elements

Sequence alignment is a well-known and highly effective method to study the evolu-
tion of biological sequences. It can be used to detect homologies, find conserved subse-
quences, and pinpoint sequence motifs. We first assessed whether sequence alignments 
could be a viable starting point to capture conserved regulatory sequence elements in 
3′ regions across large evolutionary distances. To this end, we aligned annotated 3′ 
untranslated regions (UTRs) and, as control, coding sequences of Saccharomyces cer-
evisiae to the genomes of a variety of fungal species (Fig. 1A). Coding sequences could 
be successfully aligned even between highly diverged species. In contrast, the ability to 
align 3′ regions almost completely disappears beyond the Saccharomyces genus.

Nevertheless, many regulatory sequence elements of 3′ UTRs are conserved far 
beyond the genus boundary. The 3′ region of the cytochrome B assembly factor CBP3 
illustrates this. Experiments have shown that the RNA-binding protein Puf3 binds 3′ 
UTR of this gene in S. cerevisiae and the far diverged (about 500 Mya [20]) Neurospora 
crassa [21]. Moreover, we found that the Puf3 consensus binding motif can be found 
3′ to the stop of the CBP3 homolog in almost all yeasts. However, we observed that 
the motif appears to be highly mobile, complicating alignment (Fig. 1B). This example 
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illustrates the need and potential for alignment-free approaches to leverage conservation 
across large evolutionary distances.

In principle, masked language modeling should be able to leverage evolutionary infor-
mation without requiring alignment because their representation of sequence is more 
flexible and expressive, alleviating the rigid order constraint that sequence alignments 
subsume. Specifically, we expect that nucleotides with regulatory function should be 
more conserved, within and particularly across species, and therefore easier to recon-
struct when masked than remaining background non-coding sequences.

Prior to applications of masked language models in genomics, methods addressed the 
issue of lack of alignments of non-coding sequences. Generally, these methods either 
make use of motif representations learned from experimental data in model organisms 
to investigate genomes of other species [22, 23] or are based on k-mer enrichments 
[24–28]. The language modeling approach is similar to the latter, as learning to predict 
masked nucleotides from context requires capturing subtle patterns of co-occurrence. 
However, in contrast to these approaches, language models implicitly model such pat-
terns using flexible, nonlinear functions which enables them to learn informative 

Fig. 1 Masked language modeling can serve as an alternative for alignments, which struggle to capture 
the conservation of regulatory elements over large evolutionary distances. A BLAST hits of S. cerevisiae CDS 
and 3′ UTRs in other fungal species. B Regions 3′ to the stop codon of CBP3 orthologues in different fungal 
species. Instances of Puf3-like motifs (TGTA*ATA) are indicated in red, and a star indicates experimental 
evidence of Puf3 binding. It appears that Puf3 binding is conserved whereas the location of the motif is not. 
C Masked language models are neural networks trained to reconstruct masked nucleotides from context. 
We illustrate this with the example of a Puf3 motif (TGT AAA TA), where the second to last T has been hidden. 
Since this motif is highly conserved, the model may learn that, given this context, a T is most likely. For each 
masked nucleotide, the model returns a probability distribution over the letters A, C, G, and T. We can extract 
sequence representations from the model by pooling the hidden representations of the last four layers of 
the model. The architecture of the LM corresponds to DNABERT [14], with the modification that we make the 
model species-aware, by providing a token denoting the species where the sequence is originally from. D 
We train language models on hundreds of highly diverged fungi. In each genome, we locate the annotated 
coding sequences and we extract the non-coding sequences immediately before the start codon (5′ region) 
and immediately after the stop codon (3′ region). We train separate models for each region. Each model is 
trained on more than 10 million sequences
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representations of their input. Moreover, the attention mechanism guides the model 
towards the parts of the input relevant for a particular prediction. This, in theory, allows 
capturing high-order dependencies between nucleotides or motifs without requiring a 
tabulation of all possible dependencies or explicit assumptions regarding their shape and 
nature.

To explicitly test this, we trained masked LMs (Fig. 1C) on non-coding regions adja-
cent to genes extracted from a vast multispecies dataset, comprising 806 fungal species 
separated by more than 500 million of years of evolution. We trained distinct models 
for the 1000 nucleotides 5′ of the start codon (5′ region) and the 300 nucleotides 3′ of 
the stop codon (3′ region) of all annotated coding sequences (Fig. 1D). The 5′ region 
typically contains the 5′ UTR and the promoter of the gene [29]. The 3′ region typically 
contains the 3′ UTR [30]. Hence, we expect these regions to be enriched for non-coding 
sequences and to capture both transcriptional regulatory elements as well as post-tran-
scriptional regulatory elements involved in mRNA stability and translation. Importantly, 
no annotation of UTR, promoters, nor transcription start site or polyA site was provided 
to the model. Models were trained with (species LM) and without species tokens in the 
input (agnostic LM). However, we provided no information about the phylogeny of the 
species, nor did we indicate to the models which sequences flank orthologous genes. The 
models were trained on all extracted sequences jointly. We focused on fungi, since many 
fungal genomes are available, they evolve quickly and their transcriptional control gener-
ally makes less use of extreme long-range interactions which are difficult to model with 
current approaches. We held out the entire Saccharomyces genus to test the generaliza-
tion performance of our model in the well-studied species Saccharomyces cerevisiae.

Language models reconstruct known binding motifs in an unseen species

Binding motifs, which represent the sequence specificities of DNA and RNA-binding 
proteins (RBP), are considered to be the “atomic units of gene expression” [31]. Accord-
ingly, to verify that LMs can capture aspects of the regulatory code in an alignment-free 
manner, we first needed to verify that they capture important known motifs.

To test this, we analyzed to what extent our 3′ and 5′ LMs could reconstruct nucle-
otides in the held-out species S. cerevisiae. We compared the reconstruction obtained 
by our LMs with a number of baselines, including approaches based on k-mer frequen-
cies and alignment of species beyond the genus. We also computed the reconstruc-
tion achieved by aligning S. cerevisiae with other Saccharomyces species, which can be 
regarded as an estimate of the upper range of achievable reconstruction.

We found that all approaches—except the alignment of close species—perform simi-
larly when we compute the reconstruction accuracy over all nucleotides (Fig.  2A and 
Additional file 1: Fig S1). This changes drastically when considering the reconstruction 
of known motifs. Instances matching the Puf3 consensus motif, for example, are recon-
structed almost as well by the species-aware 3′ model as they are by the alignment of 
close species (Fig. 2A), strongly outperforming the alignment with far species and other 
baselines. We observe similar results for other RBP motifs, as well as the consensus 
motifs of a number of transcription factors (TF) in the 5′ region (Additional file 1: Fig 
S1). Remarkably, by applying Modisco clustering [32] on all nucleotides weighted by 
their information content as computed by our LMs, we were able to recover some of 
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these motifs de novo (Fig. 2B, Additional file 1: Fig S2). This approach seems to recover a 
similar number of known motifs as STREME [33], a dedicated motif-finding tool (Addi-
tional file 1: Motif Discovery), although developing a general-purpose motif-finder based 
on the LM was out of the scope of this paper.

For many motifs we tested, the species-aware language models reconstructed slightly 
better than their already strong agnostic counterparts. In sum, our analysis clearly 
demonstrates that language models trained on a large compendium of highly diverged 
genomes are (1) able to learn conserved regulatory elements and (2) able to transfer this 
knowledge to unseen species.

Context‑sensitive reconstruction of motifs is predictive of in vivo binding

It has been shown for many genomes that only a fraction of the instances of a particu-
lar motif is functional, i.e., binds the respective protein in vivo [35–37]. This is because, 

Fig. 2 Language models reconstruct likely regulatory sequences in a held-out species and recover known 
binding motifs. A Reconstruction accuracy for nucleotides within instances of RNA-binding protein 
consensus motifs and across all nucleotides in S. cerevisiae 3′ UTR sequences (those longer than 300 bp 
have been truncated). We compare the agnostic and species 3′ LM to a variety of baselines. The dashed 
line represents the accuracy achieved by the intra-genus alignment. Star indicates that the species LM 
significantly (P < 0.05, binomial test) outperforms the best baseline. For Puf3 and Whi3, Modisco clustering 
on the species LM reconstructions recovers the motif (depicted above the respective plots). B A sample 
of known transcription factor motifs recovered by applying Modisco clustering to the 5′ species LM 
reconstructions, (manually) matched to the respective high-confidence PWM from the YeTFaSCo [34] 
database



Page 7 of 21Karollus et al. Genome Biology           (2024) 25:83  

among other reasons, binding also depends on the context of the motif. Therefore, we 
next sought to evaluate whether our models can recognize these relationships.

An important piece of context for many motifs is their position with respect to certain 
genomic landmarks. One example of this is that RBP motifs can only be functional if 
they are located in a transcribed region. Another example is that in yeast TF binding 
sites tend to be located relatively close to the transcription start site (TSS) [38]. As a first 
test of whether our LMs are capable of locating these genomic landmarks—despite their 
location not having been indicated during training—we computed the actual and pre-
dicted nucleotide biases as a function of the distance to the TSS (imputed using CAGE 
data [39]) and the distance to the end of the 3′ UTR [30]. In both cases, we observed that 
the LMs track local changes in nucleotide biases (Fig. 3A, Additional file 1: Fig S3).

To explicitly test whether the 3′ LM locates and accounts for genomic landmarks when 
reconstructing motifs, we compared the reconstruction of instances of the Puf3 consen-
sus motif located within annotated 3′ UTR regions to those that are located beyond the 
3′ UTR yet still within 300 bp of the stop codon. We find that motif instances within the 
annotated 3′ UTR are reconstructed significantly better (Fig. 3B–C), consistent with the 
function of RBPs. In contrast, the phastCons [40] score, an alignment-based measure of 
conservation, appeared to be a poor predictor of whether a Puf3 site is within a 3′ UTR 
or not. We repeated this analysis for the other 3′ UTR motifs, finding similar results 
(Additional file 1: Fig S4A, B). For a TF, we expected this relationship to be reversed, and 
indeed the E-box motif was reconstructed better when found outside of 3′ UTR regions 
(Additional file 1: Fig S4C).

Having shown that the models did not simply learn a mere lexicon of over-represented 
motifs, but instead seemed to account for the context in which motif instances occur, we 
next asked whether the reconstruction fidelity could predict whether a motif is bound 
in vivo. To this end, we compared the reconstruction of Puf3 motif instances located in 
3′ of genes that have been experimentally verified to bind Puf3p [41] to those without 
verified binding. Strikingly, we found that the reconstruction fidelity serves as a predic-
tor of whether a gene containing a Puf3 consensus motif is bound by Puf3p—despite our 
models never having been exposed to binding data (Additional file 1: Fig S5).

We repeated a similar analysis for Tbf1 (Fig. 3D) and a variety of other transcription 
factors (Additional file  1: Fig S6, S7). Specifically, we evaluated the reconstruction of 
the consensus binding motifs of these TFs as a function of their distance to the closest 
upstream TSS. We observed that reconstruction improved when the motifs were located 
at a biologically plausible distance [38] from the TSS. Moreover, the reconstruction fidel-
ity is highly predictive of in vivo binding to motif instances as measured by Chip-Exo 
[42], outperforming the phastCons score and, in some cases, expert-curated PWMs con-
structed using binding data (Fig. 3E, Additional file 1: Fig S6, S7) [34].

Distinct motifs have been established to exhibit associations with specific groups 
of co-regulated genes. An example in S. cerevisiae is the Rap1 motif, which is found 
primarily in the promoters of ribosomal protein genes [43, 44]. Accordingly, we find 
that instances of the Rap1 consensus motifs tend to be better reconstructed if they are 
found within 1 kb 5′ of a ribosomal protein gene (Additional file 1: Fig S8A). In other 
words, the reconstruction of the Rap1 motif serves as an indirect predictor of whether 
a gene belongs to the ribosomal protein module. We performed a similar analysis for 
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the RRPE motif, which is primarily found near genes involved in ribosome biogenesis, 
and obtained similar results (Additional file 1: Fig S8B).

Overall, this analysis demonstrates that LMs do not just learn a lexicon of conserved 
motifs, but additionally pick up on correlations between the motifs and their context 

Fig. 3 Reconstruction of motifs depends on the context and predicts whether a motif instance will be 
bound in vivo. A Actual and predicted (by the 5′ species LM) nucleotide biases as a function of the distance 
to the TSS (imputed using CAGE data). The model keeps track of local variations in nucleotide biases. B 
Reconstruction fidelity (log-likelihood of the individual observed nucleotides, averaged per motif instance, 
according to the 3′ species LM) of instances of the Puf3 motif (TGT AAA TA), as a function of the distance to 
the end of the annotated 3′ UTR. The predictions of the model for masked nucleotides are indicated for 
two instances of the motif (blue circles). Reconstruction fidelity is notably degraded beyond the 3′ UTR 
end (P = 2.2 ×  10−15, Mann–Whitney U). C ROC curve evaluating to what extent the reconstruction fidelity 
of our 3′ LMs, as well as the phastCons conservation score, can serve as a predictor of whether a Puf3 motif 
instance is within or beyond the 3′ UTR boundary. The LMs greatly outperform the conservation score. 
D Reconstruction fidelity (log-likelihood of the observed nucleotides according to the 5′ species LM) of 
instances of the Tbf1 consensus motif (ARC CCT A), as a function of the distance to the closest 3′ TSS (imputed 
using CAGE data). Blue indicates that the motif instance was bound in vivo according to Chip-exo data. Motif 
instances that are around − 100 to − 250 nt to the TSS are better reconstructed than those further away or 
in the 5′ UTR (P = 1.2 ×  10−11, Mann–Whitney U). E ROC curve evaluating to what extent the reconstruction 
fidelity of our 5′ LMs, as well as the phastCons conservation score and an expert-curated PWM, can serve as a 
predictor of whether a Tbf1 motif instance is bound in vivo. The LMs again greatly outperform the alternative 
methods
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which are predictive of whether motif instances are bound in  vivo. Notably, this is 
achieved purely from genomic sequences without requiring any additional experi-
mental data during training. This suggests that the attention mechanism provides an 
effective way to integrate motif interactions, although determining which exact inter-
actions are learned is difficult to disentangle. Finally, the ability to outperform the 
phastCons conservation score shows the advantages of an alignment-free approach.

Language models account for changes in the regulatory code between species

Our previous analyses have focused on the held-out species S. cerevisiae. However, one 
of the main use cases we envision for genomic LMs is to serve as a method to explore 
understudied species. We thus analyzed how the LMs perform when evaluated across 
fungal species.

In Fig. 1B, we showed that the Puf3 motif, but not its location, is conserved in the 3′ 
regions of CBP3 homologs. We applied our 3′ model to these sequences and found that, 
in most species, the Puf3 motif tends to be well reconstructed compared to the back-
ground (Fig. 4A). We next applied Modisco clustering to the predictions of the model on 
the 3′ regions of all CBP3 homologs in our dataset. We recovered the Puf3 motif, as well 
as two versions of the Puf4 motif (Additional file 1: Fig S9A) [45]. This indicates that our 
method allows motif discovery not just across genes in one organism, but also for indi-
vidual genes across organisms.

Over evolutionary timescales, certain motifs may either change drastically or fully 
disappear, particularly if the binding protein evolves or is lost. As an example, we con-
sidered Rap1p, a conserved protein known to control telomere length [46]. However, as 
noted previously, Rap1p additionally acts as a regulator of ribosomal protein expression 
in certain parts of the yeast lineage, a change that is associated with the acquisition of 
a transactivation domain by Rap1p [44]. To determine whether our models can reflect 
such changes, we analyzed the reconstruction of the S. cerevisiae Rap1 motif in 60 fun-
gal species. Specifically, we computed for each species the difference in reconstruction 
of instances of the consensus motif and instances that correspond to shuffled versions 
thereof. This procedure controls for GC content and general differences in reconstruc-
tion fidelity between species. We found that in species close to S. cerevisiae, the motif 
instances are reconstructed significantly better than the shuffled instances (Fig. 4B). By 
contrast, in species where we cannot find a significant BLAST match to S. cerevisiae 
Rap1p we observed no such enrichment. An example of this is Y. lipolytica, a species 
known to not have a Rap1p homolog [47]. We performed a similar analysis for two other 
motifs, finding consistent results (Additional file 1: Fig S9B–C).

In addition to motif evolution, the proper context of motifs can change as well. A 
famous example is the positional constraint of the TATA box. In most eukaryotes includ-
ing the Schizosaccharomyces yeasts, the TATA box is preferentially located about 30 bp 
5′ from the TSS [29]. Budding yeasts, however, use a scanning mechanism to initiate 
transcription and therefore the position of the TATA box in these species is more flex-
ible, but usually located between 50 and 120 bp 5′ from the TSS [29]. To verify whether 
our model correctly recapitulates these constraints, we located all instances of TAT AWA 
WR in the respective species. We then assessed how well the model reconstructs these 
nucleotides as a function of the distance to the closest upstream TSS [39]. We found 
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that in S. pombe, reconstruction fidelity of the TATA box notably peaks around 30 bp 
5′ to the TSS, whereas instances located further or beyond the TSS are generally recon-
structed poorly (Fig. 4C). In S. cerevisiae, on the other hand, TATA boxes were gener-
ally well reconstructed (likely also reflecting the AT-bias of the budding yeasts), but we 
observed a peak in the region 120 to 50 bp 5′ of the TSS. Thus, the model applies spe-
cific constraints when reconstructing motifs in a way that reflects the evolution of the 
initiation code.

One feature of the species LM is that it learns a representation for each species in the 
training dataset. To explore what information is contained in this representation, we first 
performed PCA analysis on the species representations of the 5′ species LM. We found 

Fig. 4 LMs can trace the movement and disappearance of motifs across species and they account for the 
evolution of the transcription initiation mechanism. A We applied the 3′ species LM to the 3′ region of CBP3 
homologs in a number of fungal species (compare Fig. 1A). Darker color indicates that the model assigns 
a higher probability to the correct nucleotide at that position. In most species, the Puf3 motif instance 
(delineated with black bars) is notably reconstructed better than the remaining nucleotides. Star indicates 
that this difference in reconstruction is significant (P < 0.05, Mann–Whitney U). Species with gray background 
were held out during LM training. B We computed the reconstruction fidelity (log-likelihood) achieved by 
the species 5′ LM for the S. cerevisiae consensus Rap1 motif (CAY CCR TACAY) instances and for instances 
matching shuffled versions of this motif in 60 fungal species. The difference in reconstruction between the 
true and shuffled motif instances, expressed as  log2 fold change, is plotted against the −  log10 P-value of this 
difference, computed using a Mann–Whitney U test. We observe that in species that have no BLAST match 
to S. cerevisiae Rap1p, the reconstruction fidelity of the S. cerevisiae Rap1 motif is generally not much better 
than that of shuffled versions thereof, indicating that the model correctly accounts for species context when 
reconstructing motifs. C Reconstruction fidelity (log-likelihood of the observed nucleotides according to 
the 5′ Species LM) of instances of the TATA-box (TAT AWA WR), as a function of the distance to the closest 3′ 
TSS (imputed using CAGE data). Positive values indicate that the TATA-box instance is located in the 5′ UTR. 
We observe that in S. pombe, the TATA-box is best reconstructed when located ca. − 30 bp to the TSS. In S. 
cerevisiae, which uses a scanning mechanism to initiate transcription and therefore allows more flexible 
positioning of the TATA, the model reconstructs TATA well overall, but somewhat better when located 50 to 
120 bp 5′ from the TSS
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that the first principal component, which explains about 10% of variance, is highly cor-
related with GC content of the respective species (r =  − 0.86, Additional file 1: Fig S10). 
Next, we found that species of the same taxonomic class tend to be closer together than 
those of different classes (Additional file 1: Fig S11, S12). This suggests that the represen-
tations encode features that at least partially correspond to the fungal taxonomy.

Next, we investigated whether changes in motif preferences are also captured by the 
species representation. To this end, we considered the previously characterized differ-
ential preferences of TF motifs in nucleosome-depleted regions between S. cerevisiae 
and C. albicans [48, 49]. Specifically, S. cerevisiae nucleosome depletion was associated 
with the Reb1 motif, whereas in C. albicans it was associated with the k-mer aCAC GAC 
c (“Tsankov” motif here and elsewhere)—which to our knowledge is not known to have 
any role in S. cerevisiae. We compared how the reconstruction accuracy achieved by 
the 5′ species LM for these motifs is affected by swapping the species token. We find 
that with our S. cerevisiae proxy token (K. africana), the species LM reconstructed Reb1 
instances better, both in S. cerevisiae and C. albicans 5′ regions (Additional file 1: Fig 
S13). Conversely, with the C. albicans token, the C. albicans-specific Tsankov motif is 
reconstructed better in both species.

In conclusion, we find considerable evidence that LMs can account for changes in the 
regulatory code and learn meaningful motif-context relationships in a species-specific 
manner.

Species‑aware language model representations encode biologically meaningful features 

and are directly predictive of many molecular phenotypes

While our previous analyses demonstrated that the reconstructions of any LM are 
already very informative and could potentially be used to explore regulation in under-
studied species, we can also extract the learned sequence representations and leverage 
them to predict gene-expression-related traits in a supervised fashion. We note that this 
makes most sense for tasks that are data-constrained, such as gene-level measures of 
expression or half-life where there can only be as many data points as there are unique 
genes/transcripts. Accordingly, to test the predictive power of the representations them-
selves, we selected several gene-level omics assays, including RNA half-life measure-
ments in S. cerevisiae and S. pombe, RNA-seq-based gene expression in S. cerevisiae and 
microarray measures of condition-specific gene expression for a number of yeast species 
[50–54]. We additionally included three reporter assays testing 3′ sequences [55, 56] and 
promoter sequences in isolation [57].

We then used our masked language models to generate sequence representations for 
the different sequences assayed in the respective experiments (Methods). We trained 
linear models in cross-validation using LM representations as input for different tasks. 
We used linear models specifically to ensure that the predictive power derives mostly 
from the LM and not from a fine-tuning procedure or a heavily engineered nonlinear 
fitting with many tunable hyperparameters. As a baseline for what can be achieved using 
“naive” sequence representations, we also trained linear models on k-mer counts. Fur-
thermore, if available, we compared against state of the art.

We found that LM sequence representations outperform simple sequence representa-
tions based on k-mer counts across all tasks, a finding consistent with previous work 
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[16]. Remarkably, the species LM performed best on all tasks (Fig. 5A, Additional file 1: 
Table S1). On a task where most of the signal comes from the coding sequence, it per-
formed on par (better, but not significantly) with expert hand-crafted features (Cheng 
et al. [50]) to predict mRNA half-life. Furthermore, simple ridge regressions trained on 
species-aware representations significantly outperformed hyperparameter-optimized 
deep neural networks (Zrimec et al. [53]) on gene expression prediction from non-cod-
ing sequence. This clearly shows that species LMs learn sequence representations rich in 
information without requiring labeled data.

One of the datasets we considered, the Shalem et  al. 3′ MPRA [55], used a tiled 
mutagenesis design to measure the effect of individual subsequences of native 3′ 
sequences on expression. Here, the species LM performs extremely well, outperform-
ing the agnostic model by 20 percentage points of explained variation (Fig. 5B, C). The 
results of this controlled experiment demonstrate that supervised models trained on 
species-LM sequence representations can capture causal determinants of expression 
found in 3′ UTR sequences.

While LM representations prove advantageous on species included in the dataset (S. 
pombe), we emphasize that they generalize to unseen species (S. cerevisiae). To ensure 
that LM performance is independent of dataset composition, and to ascertain that 

Fig. 5 Sequence representations of the species LM outperform other methods on a variety of downstream 
tasks. A Performance (R2) of linear models trained on embeddings from language models compared to 
state-of-the-art models and k-mer count regressions, where the best k from {3, 4, 5} is shown. Star indicates 
that the Species LM significantly (P < 0.05) outperforms the second best. B Effect of mutation of 3′ sequences 
on expression. Observed  log2 fold changes, as measured in Shalem et al. [55] are well predicted by the 
species LM representation. C Observed and predicted effects of mutation on expression as a function of 
distance to the stop codon for the YDR131C 3′ sequence. D Motifs recovered through in-silico mutagenesis 
followed by Modisco clustering on our linear model for the S. cerevisiae half-life task. Motifs with a negative 
effect on half-life are depicted upside down. We recover (2 of 4) motifs found by Cheng et al. [50]: the Puf3 
motif and the Whi3 motif. Additionally, we find two motifs not found by this previous analysis, the Puf4 motif 
and the efficiency element, both of which have known effects on RNA stability
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training on more species is beneficial, we repeated these analyses using different models 
pre-trained on different sets of species. We found that for all tasks, training on more 
species in a species-aware fashion led to better predictions (Additional file 1: Table S2).

However, in genomics, models are often used not primarily for prediction but rather 
as a method to discover motifs or mechanisms in large datasets. To verify that super-
vised learning models trained on LM sequence representations are suitable for motif 
discovery, we applied a standard model interpretation workflow (in-silico mutagenesis, 
followed by Modisco clustering, Methods) to the S. cerevisiae mRNA half-life data. In 
this way, we recovered two out of the four motifs originally found by Cheng et al. [50]: 
the Puf3 and the Whi3 motif—both of which our model correctly predicts as being 
destabilizing (Fig. 5D). We additionally found one more destabilizing element, namely 
the Puf4 motif [58] and one stabilizing element, the efficiency motif, which was shown to 
have large positive effects on expression in the Shalem mutagenesis reporter assay [55]—
where we also recovered this motif using the same technique. In sum, applying stand-
ard interpretation techniques with minimal manual tuning to our embedding-based 
approach yielded biologically meaningful sequence features.

Discussion
In this study, we trained language models on the genomes of hundreds of fungal species, 
spanning more than 500 million years of evolution. We specifically directed our atten-
tion to non-coding regions, examining the  ability of the models to acquire meaningful 
species-specific and shared regulatory attributes when trained on the genomes of many 
species. To our knowledge, we are the first to show that LMs are able to transfer these 
attributes to unseen species.

Through analysis of the masked nucleotide reconstructions provided by the models, 
we have demonstrated that they not only can preferentially reconstruct motifs, but they 
do so in a way that is sensitive to context. As a result, the reconstruction fidelity can 
serve as a predictor of whether a particular instance of a consensus motif will be bound 
in vivo. This suggests that these models could be used to discover candidate high-affinity 
regulatory elements in species where no binding data is available.

We have further illustrated that the models better reconstruct RBP binding sites if they 
are located within annotated 3′ UTRs and exhibit improved reconstruction of TATA-
box instances if they are placed at a distance to the TSS that is appropriate for the given 
species. This is remarkable, as we indicated neither the TSS site nor the polyadenyla-
tion site during training. This suggests that the models can infer the location of these 
genomic landmarks. Consequently, LMs may prove useful for accurate genome annota-
tion of understudied species.

Altogether, these analyses further indicate that the reconstruction of masked nucle-
otides, rather than just a means to an end, can be very informative by itself. We have 
focused on verifying that the models capture known features of the regulatory code, but 
similar techniques could potentially reveal novel associations between regulatory ele-
ments and their context.

Additionally, we have shown that providing species information to DNA LMs greatly 
improves their internal numerical representations of regulatory sequences. Strik-
ingly, these representations, when used as input for simple linear models, achieve 
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state-of-the-art predictive accuracy on a wide variety of tasks such as prediction of RNA 
abundance, condition-specific RNA expression, or mRNA half-life. We note that this 
approach requires neither retraining the whole model nor engineering a complex non-
linear downstream predictor. Despite its simplicity, we show that this procedure never-
theless recovers biologically meaningful motifs. Thus, LMs do not only learn predictive 
sequence representations but can also serve as a tool for biological discovery. As spe-
cies awareness provides significant improvements at practically no cost (one additional 
token), we think that integrating a species representation will be useful for almost all 
DNA LMs. Perhaps, a similar strategy could be used to make the model aware of gene 
families or functions, by providing a token that indicates orthologues or contains some 
other representation of the gene. This could help the model to learn conserved gene-
specific or pathway-specific motifs. However, requiring a gene token would hinder 
applications on synthetic assays, reporter genes, or genes with few homologs (e.g., many 
lncRNAs in humans).

This notwithstanding, the language modeling approach does have two important 
drawbacks. Firstly, it is computationally costly, particularly for longer sequence contexts. 
We initially experimented with state space models [59, 60], which scaled better to longer 
sequences. However, we ultimately adopted the standard DNABERT transformer archi-
tecture for simplicity, as our main goal was to explore the suitability of language models 
for multi-species modeling rather than a comprehensive evaluation of model architec-
tures. Scaling language models to mammals with long-range regulatory interactions 
while maintaining single nucleotide resolution will require architectural improvements 
[61].

While we showed that LMs generalize across highly diverged species, our analysis 
focused on a single kingdom. Therfore, it falls short of demonstrating that training on 
the entire eukaryotic tree of life—from protists to blue whales—could further improve 
language models. It is conceivable that at a certain point regulatory mechanisms diverge 
so fundamentally that proper generalization is no longer possible. Additionally, massive 
differences in genome size may require careful dataset curation. On the other hand, we 
did not evaluate whether LMs would benefit from large collections of very similar spe-
cies, such as the recently released 233 primate genomes [6]. Lastly, we also must note 
that most existing genome collections do not represent a random sample of the true 
phylogeny but tend to oversample species with medical or biotechnological relevance 
while undersampling non-western species and those that are hard to isolate [62]. Sys-
tematically studying how dataset composition influences what the model learns and how 
well it performs in different target species is an important avenue for future work.

Materials and methods
Genome data

We obtained 1,500 fungal genomes, comprising 806 different species, from the Ensembl 
fungi 53 database [63]. For each annotated protein-coding gene in each genome, 
we extracted 300 base pairs 3′ to the stop codon of genes and 1,000 bases 5′ to the 
start codon. While the actual transcribed 3′ untranslated regions (3′ UTR) vary in 
length, we expect that in most cases 300  bp will be sufficient to include the entire 3′ 
UTR [30]. Equally, in most species, 1 kb should be sufficient to cover the 5′ UTR and 
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promoter—and scaling beyond this length becomes computationally infeasible for the 
modeling approach taken here. Overall our train set included in the order of 13 million 
sequences, meaning that the 3′ models are trained on 3.9 billion nucleotides, whereas 
the 5′ models were trained on 13 billion nucleotides.

As a test set, we used the widely studied species Saccharomyces cerevisiae. To prevent 
data leakage from closely related species, the train set excludes the entire Saccharomyces 
genus.

Sequence alignment

Sequence alignment of annotated Saccharomyces cerevisiae CDS and 3′ UTR sequences 
was performed using discontiguous megablast, which was specifically designed for 
cross-species alignment, version 2.13 with default parameters [64]. Sequence alignment 
for S. cerevisiae proteins was performed using tBlastn, with default parameters.

Masked language modeling

We performed masked language modeling on the fungi 3′ and 5′ regions. Specifically, 
we randomly masked nucleotides in each sequence and trained DNABERT models [14] 
to reconstruct these from context, so as to minimize cross-entropy.

For DNABERT, nucleotides were tokenized into overlapping six-mers before being 
passed to the model. In this context, we mask spans of overlapping 6-mers so that 80% of 
the nucleotides selected for masking were masked, 10% percent were randomly mutated, 
and the remaining 10% were left unchanged. This choice of masking strategy is based 
on the empirical investigations performed in the original BERT paper for natural lan-
guage [13]. The model consists of 12 transformer encoder blocks and has around 90 M 
parameters. We employed Flash-attention [65] as a fast exact attention implementation. 
Models were trained for 200,000 steps using a batch size of 2048 using the Adam opti-
mizer [66]. The learning rate was warmed up to  4x10-4 during the first 10,000 steps and 
then linearly decayed to 0 until training terminates. We increased the masking ratio after 
100,000 steps from 15 to 20%. Note that these hyperparameters are the same as those 
used in the DNABERT paper.

To make the model species aware, the species label corresponding to each region was 
provided as an additional input token and prepended to the sequence. At the beginning 
of training the species token embedding was randomly initialized and learned during 
training. For purposes of comparison, we also trained a species-agnostic version of the 
model, which does not receive the species label.

As the test species was held out from the training set, the species LM could not be 
provided with the matching species token. To allow it to predict anyway, we provided 
the model with a proxy species token of a closely related species. For the 3′ species LM, 
we used C. glabrata, for the 5′ species LM we used K. africana for all analyses. An expla-
nation of why these proxies were selected and a detailed investigation of the impact of 
the choice of proxy can be found in Supplementary Material—Species Token Choice.

We trained ablations of the 3′ models where we varied the dataset composition. The 
substantial computational cost of training the model prevented us from exploring more 
5′ models.
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Nucleotide reconstruction

We computed reconstruction predictions for each position in the 3′ and 5′ sequences of 
the test species S. cerevisiae using the respective species and agnostic LMs. For this, we 
masked each nucleotide individually by masking the span of six overlapping 6-mers that 
contains this nucleotide. We then averaged the prediction for this nucleotide over the 
overlapping 6-mers, to obtain one probability distribution per position.

To fit the k-mer-models, we tabulated the frequencies of nucleotides conditional on 
the identity of the (k-1)/2 flanking nucleotides, where k is an odd number in  {7,…,13} 
across our training dataset. To reconstruct masked nucleotides, we extracted the (k-1)/2 
flanking nucleotides on either side of this masked position and then calculated the prob-
ability of each nucleotide accordingly.

To reconstruct using alignment, we first downloaded the seven yeast alignment [40] 
and found the aligned position in the other species for each position in S. cerevisiae. We 
then computed the frequency over the nucleotides in the aligned positions to obtain a 
distribution. For the far-alignment we used the species N. castellii and L. kluyveri. For 
the intra-genus alignment, we used the Saccharomyces species.

To evaluate reconstruction for a particular motif, we used regex search to find posi-
tions in the 3′ or 5′ sequences matching the motif consensus. We allowed overlapping 
matches. When 5′ sequences overlap (which can occur, as they are 1 kb long), we do 
not double count matches, but instead keep only the match in the sequence where it is 
located closest to the upstream gene.

Many consensus motifs we used in our analyses have degenerate positions. When we 
computed metrics such as reconstruction accuracy or log-likelihood on these motifs, 
we only take into account the non-degenerate positions, as otherwise the metrics are 
inflated.

For all analyses where we use reconstruction fidelity to predict some kind of out-
come, including whether the motif is in the 3′ UTR, whether it is bound and whether 
it is reconstructed better than a shuffled version, we always use the reconstruction log-
likelihood (this is the log-likelihood of each nucleotide, averaged over nucleotides in the 
motif ) as the metric. This is mainly because accuracy, while easier to interpret, is also 
more likely to produce ties.

3′ UTR and TSS annotations

We extracted 3′ UTR annotations for S. cerevisiae from Cheng et al. [50], who derived 
them from Pelechano et al. [30], and matched them to the 3′ sequences. Note that these 
annotations were only available for 4,388 genes.

To get TSS annotations, we gathered the consensus CAGE clusters for S. cerevisiae in 
YPD from YeastTSS [39]. We matched the locations of these consensus TSS sites with 
the 5′ sequences. We then matched motif instances to their closest 3′ TSS (or to the 
closest 5′ TSS site, if there was no 3′ TSS site between the motif and the start codon of 
the gene).

Binding data

To test whether the reconstruction fidelity is predictive of Puf3 binding, we collected all 
instances of the Puf3 consensus motifs 3′ (i.e., within 300 bp 3′ of the stop codon) of S. 
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cerevisiae genes. We considered as a positive set all instances of the Puf3 motif in genes 
with experimental evidence of Puf3p binding their 3′ UTR [41]. We resorted to this as 
the data does not indicate the exact binding site, just that the 3′ UTR was bound. The 
negative set comprised the remaining instances. We then computed the reconstruction 
log-likelihood for all motifs of interest. PhastCons conservation scores [40] for S. cerevi-
siae were downloaded from UCSC and extracted for regions of interest.

For transcription factors, we matched instances of the consensus motif with Chip-exo 
peaks [42]. Specifically, the data indicates the center of Chip-exo peaks. We extend this 
by 10 bp to either side and consider that an instance of the motif was bound if it over-
lapped the extended peak.

Downstream tasks

To evaluate the predictiveness of LM sequence representations, we considered the fol-
lowing tasks. Sun et  al. [51] measured half-life for 4,388 S. cerevisiae mRNAs using 
nonperturbing metabolic RNA labeling. Cheng et al. [50] used this data to build a quan-
titative model to predict mRNA half-life from sequence, using handcrafted features from 
the coding sequence, 5′ and 3′ UTR—which to our knowledge is the state-of-the-art 
model of mRNA stability in yeast. Eser et al. [52] measured mRNA half-life in S. pombe. 
In the Shalem et al. [55] MPRA, the expression of a fixed reporter gene was measured 
when combined with different 3′ sequences. These include genomic 3′ sequences as well 
as mutated versions of these sequences where mutations were performed in such a way 
as to tile the sequence. Zrimec et al. [53] aggregated over 20,000 RNA-Seq experiments 
and built a convolutional neural network to predict the variation in mRNA abundance 
between genes from sequence. To our knowledge, this represents the state-of-the-art 
model for predicting endogenous gene expression in S. cerevisiae. Zrimec et al. also con-
sider two additional tasks to evaluate the generalization of their model, which we adopt. 
Firstly, Keren et al. [57] measured, using a fluorescence reporter assay, the expression of 
a fixed reporter gene when combined with different endogenous S. cerevisiae promoter 
sequences. Yamanishi et al. [56] also used a fluorescence reporter assay to measure the 
impact of different S. cerevisiae terminator sequences. Finally, to have data from non-
model species, we obtain microarray data measuring condition-specific gene expression 
in different stages of growth for a number of yeast species [54].

Generating sequence representations and downstream predictions using linear models

To generate LM sequence representations, we pass each sequence to the language mod-
els and extract the sequence representation of the last 4 layers for all tokens, which are 
then mean pooled to obtain a single embedding per sequence as in Devlin et al. [13] As 
our models expect fixed length sequences, we truncated longer input sequences. We did 
this in the following way: for the 3′ sequences, we truncate from the end, and for the 5′ 
sequences, we truncate from the start. If sequences were shorter than the input, for the 
3′ model, we feed them as is. For the 5′ model, we pad them from the left using a fixed 
sequence. We do this because the 5′ model expects the 1000th sequence position to be 
immediately 5′ of the start codon.

For predicting half-life, we provided 5′ UTR and coding sequence (CDS) fea-
tures, as described in Cheng et  al. [50] for S. cerevisiae and Eser et  al. [52] for S. 
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pombe, in addition to our (or competing methods’) sequence representations of the 
3′ sequence to a ridge regression with the regularization parameter set by nested 
cross-validation. We performed 10-fold cross-validation to estimate generalization 
performance.

We proceeded similarly for predicting reporter expression in the experiment of 
Shalem et al. [55] but did not include any features besides the 3′ sequence represen-
tation. However, as the reporter contains many almost-duplicate sequences that rep-
resent mutations of the same endogenous sequence, we performed grouped 10-fold 
cross-validation, where the groups consisted of said endogenous sequences. This 
prevented trivial overfitting.

Zrimec et al. [53] trained different convolutional neural networks using different 
parts of the regulatory sequence as input. To mimic this, we trained separate lin-
ear models for 3′ and 5′ as well as the combination thereof to predict gene expres-
sion. Here, we do not perform cross-validation but use the same train test split as in 
Zrimec et  al. To predict expression driven by terminator and promoter sequences, 
Zrimec et al. do not train new models but instead directly apply their convolutional 
neural network trained on endogenous gene expression. To be comparable, we 
equally transfer linear model weights to these tasks.

For the microarray, we embed 3′ and 5′ sequences for each species and train sep-
arate ridge regressions for each species and condition combination. We again use 
10-fold cross-validation to evaluate performance.

To assess statistical significance, we computed the residuals and for each task 
performed a paired Wilcoxon test to determine if the residuals of the species LM 
were significantly smaller than those of the next best-performing method. The only 
exception to this is the Zrimec et al. endogenous gene expression task. Here, we only 
had access to the aggregate performance measures (R2) of their models. Thus, we 
used bootstrapping to compute 95% confidence intervals for the performance of the 
Species LM and determined its performance to be significantly better than Zrimec 
et al. if the confidence interval did not overlap their result.

Modisco clustering

For de novo motif discovery based on reconstruction probability only, we normal-
ized the reconstruction probability p at each position: pnormalized = p · log(p/pmean) . 
We then passed this to tfmodisco-lite (https:// github. com/ jmsch rei/ tfmod isco- lite) 
to obtain motifs.

To perform motif discovery on downstream tasks, we calculated embeddings and 
predictions for all possible single nucleotide polymorphisms of the original input 
sequences (in silico mutagenesis). Since ridge models were trained using cross-val-
idation, we always selected the model which had the non-mutagenized sequence in 
its test fold to predict mutation effects for this sequence. Having collected all vari-
ant effects, we removed their mean at each position (to also associate an attribution 
score to the reference nucleotide) and passed this to Modisco.

For every Modisco analysis, we set the sliding window size to 8, the flank size to 3, 
the target seqlet FDR to 0.05, and the number of Leiden runs to 3.

https://github.com/jmschrei/tfmodisco-lite
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STREME

To discover motifs in S. cerevisiae 3′ and 5′ regions with STREME, we used the 
webinterface: https:// meme- suite. org/ meme/ tools/ streme. For 5′ regions, we used 
default parameters. For the 3′ regions, as here we mostly expect stranded RBP motifs, 
we used the RNA mode which uses only one strand. Moreover, we set the minimum 
width to five nucleotides, to allow STREME to discover motifs such as Whi3.
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