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Abstract 

The problem of missing heritability requires the consideration of genetic interactions 
among different loci, called epistasis. Current GWAS statistical models require years 
to assess the entire combinatorial epistatic space for a single phenotype. We propose 
Next‑Gen GWAS (NGG) that evaluates over 60 billion single nucleotide polymorphism 
combinatorial first‑order interactions within hours. We apply NGG to Arabidopsis 
thaliana providing two‑dimensional epistatic maps at gene resolution. We demon‑
strate on several phenotypes that a large proportion of the missing heritability can be 
retrieved, that it indeed lies in epistatic interactions, and that it can be used to improve 
phenotype prediction.

Background
During the past decade, genome-wide association studies (GWAS), an approach used in 
genetics to find genetic associations with observable traits, have allowed the discovery of 
many genetic variants associated with human [1–3], plant [4], and animal [5] phenotypic 
traits. GWAS success is thus a reality and many discoveries made with this technique 
led to disruptive insights in biology, impacting basic knowledge as well as translational 
approaches to agronomy and medicine [6]. However, when we observe on the one hand 
the striking resemblance of human twins, and on the other hand the amount of variation 
explained by GWAS signals, we are inclined to admit that “mono-dimensional GWAS,” 
which studies genetic variation effect taken one at a time, is somehow limited. The miss-
ing heritability [7, 8], defined as the unexplained variance of a trait, is probably at least in 
part attributable to interactions among variants, ie: epistasis.

Epistasis refers to how genes interact to affect a particular trait [9]. In simple terms, 
it can be seen as when the effect of one gene is influenced, or masked, by one or more 
other genes. This interplay can considerably add complexity to our comprehension of 
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how the combined influence of genes shapes traits. Addressing epistasis is a difficult 
problem given that current mathematical models linking genetic variations to pheno-
types exhibit high sensitivity to False Discovery Rate corrections and to up-scaling, in 
particular to the number of individuals in the study [10].

Performing such combinatorial studies is challenging because the number of tested 
interactions grows to the square of the marker number (for  1st order of interaction). The 
most recent developments to approach epistasis consist of genetic variable pre-selection 
[11–14] or algorithmic acceleration [12, 15]. However, to our knowledge an attempt to 
solve large epistatic maps, without variable selection, is still lacking.

The recent development of signal processing has traditionally focused on the recon-
struction of signals from a sub-sampling action. A key milestone in the field is the for-
mulation of the Nyquist–Shannon sampling theorem, which proposes that a signal can 
be perfectly reconstructed if its highest frequency is inferior to half the sampling rate. 
This theorem underscored the importance of prior knowledge about the signal’s fre-
quency constraints in reducing the needed sample count for signal reconstruction. A 
significant advancement in this domain was achieved in 2006 [16]. In this work, Candes 
et al. demonstrated that by understanding the signal’s sparsity, the signal can be recon-
structed with a sample count lower than that stipulated by the sampling theorem. This 
principle constitutes the foundation of compressed sensing (CS).

CS represents a paradigm shift in signal processing for the efficient acquisition and 
reconstruction of signals via solutions to underdetermined linear systems. This meth-
odology is predicated on the premise that optimization can exploit the inherent sparsity 
of a signal, facilitating its reconstruction from a quantitatively lesser number of samples 
than those necessitated by the Nyquist–Shannon sampling theorem. The operational 
efficacy of compressed sensing is contingent upon two conditions: the sparsity of the 
signal, necessitating that the signal is predominantly constituted of zero elements in a 
given domain, and incoherence, which involves the application of the isometric property 
essential for sparse signals.

Through our analysis, we hypothesized that genetic data exhibit such properties ena-
bling strong compression of the epistatic problem leading to an important acceleration 
of the process.

In this work, we apply CS to GWAS analysis, using machine learning approaches, 
reaching an acceleration that makes it possible to provide, for the first time, the full 
epistatic maps (with > 60 billion combinations) with a gene resolution in Arabidopsis 
thaliana. This analysis retrieves part of the missing heritability and largely improves 
phenotypic predictions.

Results
The NGG model and its fast resolution

To attempt to make full epistatic maps a reality, we decided to use a different mathe-
matical formalism combined with solving systems meant to take advantage of Graphic 
Processing Units (GPUs) being increasingly popular thanks to the rise of gaming and 
deep learning [17]. Our solution, named NGG for Next-Generation GWAS, is based 
on the massive use of modern acceleration architecture (GPU, see Fig.  1 and Addi-
tional file  1: Text 1, Material for details) enabled by the use of recent mathematics 
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techniques (Compressed Sensing) for regularized least square estimation in a sparse 
linear model paradigm, that we rewrote in a new way, called “model compression”. 
This achieves linear scaling with the number of SNP and interactions, instead of 
an exponential complexity (Fig.  1). The outcome is a sparse estimate collecting the 
effects of each variant and each SNP interaction, instead of retrieving p-values as reg-
ular GWAS. As such, the NGG algorithm can be seen as a sparse signal detection 
analysis and does not use multiple statistical testing which precludes the use of FDR 
correction. This classical correction is replaced here by a drastic procedure for vari-
able selection and extensive simulation and testing.

Fig. 1 Scheme depicting the role of compressed sensing in NGG and computational complexity with big 
O notation. In both cases, we compare our method to EMMA with Kinship matrix computation, but we take 
into account only the matrix inversion part in terms of computational complexity. A is the classic 1D GWAS 
with at the top the EMMA path, with a final complexity of at least O(p^3), and at the bottom, our 2D GWAS 
solution, with a final complexity of O(p log(p) n). B is the case of interactions modeling using the proposed 
model, the computational complexity is shown in terms of the basic p size of input, before the interactions. In 
this case, the naïve standard approach becomes O(p^6) in computational complexity, whereas our method is 
now O(p^2 log(p) n), and presents a clear gain in terms of computational time. It is noticeable that, because 
the compression is in log(p^q), for q whatever the number of interactive SNPs we are interested in, our 
method will result in a O(p^q log(p) n) algorithm, hence the fact that we say we linearize the computational 
complexity in term of q 
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Hereby, we established the NGG model that first states and defines heritability in this 
framework as done before by Zuk et al. [18] and others: We define X the matrix with n 
rows and p columns containing the genetic information (Fig. 1). Each column displays 
the coded genetic variants (here SNP) for the n individuals. We also define Y  a vector 
containing the phenotype. The broad-sense heritability H may be defined via the fol-
lowing nonparametric “random signal plus noise” model: Y = f (X)+ ε (NP: stands for 
non-parametric.) where the function f  is unknown and general and ε is a random noise, 
independent from X that collects all other effects (other than genetic) on the pheno-
type Y  , such as environmental effects for instance. Thus, the broad-sense heritability is 
expressed as H = var(f (X))/var(Y ) . The narrow-sense heritability h also sometimes 
called additive heritability accounts for part of the variance explained by genetics in the 
linear model Y = Xθ + ε (L: stands for linear). The definition is h = var(Xθ)/var(Y ) . 
We note that, of course, model(L) ⊂ model(NP) . Notice for further use that since the 
slope parameter θ is unknown, the narrow sense heritability cannot be computed but 
only estimated (for example, via a plug-in estimator h = var(Xθ)/var(Y )) . At last when 
the estimation method is Ordinary Least Squares (OLS) or some of its (regularized/
penalized) variants, the definition above matches the classical R2 and adjusted R2 . Below 
the adjusted R2 is preferred for reasons related to both the dimensionality of the data 
(usually p is much larger than n) and the well-known inflation of R2.

We further consider two models:

Model 1:Y = Xθ1 + ε

Model 2:Y = Xθ1 + Zθ2 + ε

Where Z = X ⋆ X is the partial face-splitting (or transposed Khatri Rao product) of 
matrices [19]. For self-containedness notice that when:

Matrix Z contains all the pairwise Kronecker products of columns of X , excluding 
the products of a column with itself. This matrix Z will be referred to as the matrix of 
interactions or shortly 2D matrix as performed before by others [20]. When X has p 
columns, Z has p(p-1)/2 columns. The matrix Z captures all interactions between the 
SNP’s. Although Model 2 remains linear, it is not additive anymore and bridges between 
Model L (or Model 1) and Model NP.

Algorithmic validation of NGG on simulated data

Now that the model has been established, we need to evaluate its performance in 
retrieving epistatic signals. For this, we first worked on simulated data (see methods and 
repository for details). The first simulation has been performed in two steps.

First, we simulated X and Y  (Fig. 2A and C); second, we simulated Y  for real X (SNP 
matrix) retrieved from the Arabidopsis related 1001 genome project [21] (Fig.  2B and 
D; Additional file 1: Fig. S1). These simulations are built to control narrow sense herit-
ability (h2) of the trait (Fig. 2). Using simulations, we show that the NGG formalism is 
able to capture simulated epistatic events for a wide range of model parametric values 

X =

[
a1 a2 a3

b1 b2 b3

]
then X ∗ X =

[
a1a2 a1a3 a2a3

b1b2 b1b3 b2b3

]
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(Fig. 2E, F and Additional file 1: Fig. S1). We found that NGG is quite resilient to noise 
but sensitive to the number of individuals used for the analysis (as discussed further, 
see remarks on Very High Dimension), as it radically improves for larger numbers of 
individuals (Fig. 2E, F; Additional file 1: Fig. S1). For instance, for a 500k SNP epistatic 
landscape (1000 × 1000), for which we implemented 10 non-null epistatic signals, 50% of 

Fig. 2 Next‑Gen GWAS retrieves simulated epistatic interactions. Var1 (x‑axis) and Var2 (y‑axis) are a series 
of 100 SNPs. The triangle corresponds to SNP combinations when the diagonal contains simple SNP effects. 
Z‑axis reports NGG estimated θ̂  values of simple SNPs (diagonal) and combinations (rest of the triangle). 
Purple points correspond to simulated support of simple (diagonal) and epistatic signals (in the triangle). 
The sample size is 5000. A and B Genotype and phenotype data are simulated using specific and modulable 
parameters (see Additional file 1. Material for details on the simulation). Random noise is added. NGG 
retrieves the 5 simulated signals (purple) including the pure epistatic effects (outside of the diagonal). C and 
D Phenotype data only have been simulated while genotypes are from the Arabidopsis genome (SNPs are 
sampled from X matrix). Again epistatic interactions (purple points) are retrieved by NGG. E and F report 
heatmaps for Recall and % of recovery in an analysis of 1000 × 1000 SNP interactions (0.5 M interactions) 
where 10 non‑null signals have been simulated. Recall in E is calculated for the top 10 stronger signals. The 
percent of true signal recovery in F is calculated for the top 100 signals. We have found that NGG is quite 
resilient to noise in the data (on phenotypes Additional file 1: Fig. 1) and the power of NGG increases quickly 
with the number of individuals and for stronger heritabilities
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these are found in the top 10 NGG predicted signals (Fig. 2E) for a h2 = 0.2 when using 
10,000 individuals. This number is maintained to 27% when the number of individuals is 
reduced to only 1000.

We also measure the NGG ability to detect epistatic signals when the interacting SNPs 
are not randomly selected. Indeed, we simulated a scenario whereby a SNP can have a 
simple (1D) effect combined with interaction effects (2D). Again, NGG is able to retrieve 
the simulated epistatic interactions in an even more complex mixture of simple and 
combinatorial effects (Additional file 1: Fig. S2).

In this first pass of validation procedure on simulated data, the epistatic effects were 
computed to reflect the Arabidopsis genome structure that contains a very high homozy-
gosity (simulation code is available in the GitHub repository). However, epistatic inter-
actions, in particular in heterozygous organisms, can be of different kinds as described 
earlier by Marchini et al. (2005) [22] (Additional file 1: Fig. S3A). Thus, to analyze further 
the potential of the NGG algorithm to retrieve a certain diversity of interactions, a sec-
ond simulation was performed including now heterozygosity and three sorts of epistatic 
interactions [22] (simulation code is available in Git repository as well). We measured 
NGG capacity to detect 3 different types of epistatic interactions fully described by Mar-
chini et al. (2005) [22], namely Type 1: multiplicative within and between loci, Type 2: 
Two-locus interaction multiplicative effect, Type 3: Two-locus interaction threshold effect. 
We show that the sparsity of the signal is important (although not crucial) for NGG to 
detect epistatic signals (Additional file 1: Fig. S3). This can be explained by the math-
ematical construction of the compress sensing problem. We also demonstrate that Type 
1 and Type 2 interactions are easier to discover than Type 3 interactions and that having 
different types of interactions in the same simulation run does not affect NGG detection 
capacities (Additional file 1: Fig. S3).

Having defined the potential of NGG to discover epistatic signals on simulated data 
we then moved to compare NGG with previously benchmarked results of regular 1D 
GWAS analyses.

Estimation of NGG efficiency for 1D GWAS on real data

We further benchmark our method on state-of-the-art available datasets and mod-
eling approaches [4, 23]. For this we first compared unidimensional (i.e., 1D or classi-
cal) GWAS results using the 107 Arabidopsis phenotypes studied in the landmark paper 
Atwell et  al. [4]. We observed that major signals retrieved with the EMMA algorithm 
[4, 23] are also retrieved by NGG (Fig. 3A and Additional file 1: Fig. S5 for the 107 phe-
notypes). For instance, EMMA and NGG methods both identify a major peak for the 
phenotype 88: bacterial disease resistance (Fig.  3A). This peak directly identifies the 
resistance gene RESISTANCE TO P. SYRINGAE PV MACULICOLA 1 (RPM1) [24]. It 
is worth noting that for this particular phenotype, some signals emerge in NGG that 
are not detected by EMMA (Fig. 3) and that for certain phenotypes, NGG and EMMA 
converge towards a x2 relationship (Additional file  1: Fig. S6 S7). The opposite is also 
true although less frequent (see for the 107 phenotypes Additional file  1: Fig. S6 S7). 
Similar analyses have been realized on the 18 phenotypes from the Campos et al. paper 
[25], leading to the same conclusions (Additional file 1: Fig. S6 S7). Interestingly, NGG 
clearly identifies in the top hits the effect of FLOWERING LOCUS C (FLC), a major 
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gene in the control of flowering time [26, 27] in contrast to EMMA. Here we took this 
gene as an example of which NGG may be good at retrieving such important signals 
since it is intrinsically built to retrieve θ̂  , considering the other SNP effects (Model 1 
and Model 2). For this, we compared the capacity of NGG and EMMA to detect signals 
in the vicinity of the FLC locus (20  kb window). Interestingly, Fig.  2B shows that the 
NGG model indeed retrieves FLC as being the second strongest signal when EMMA 

Fig. 3 Next‑Gen GWAS retrieves 1D‑GWAS signal in Arabidopsis comparable to routinely used MML (EMMA 
[4, 23, 28]) and points to the FLC locus for flowering phenotypes. A Data from Atwell et al. (2010) have 
been used to compare the efficiency of our algorithm to the standards of GWAS in Arabidopsis. NGG and 
EMMA algorithms largely retrieve similar signals. B The phenotype 48 (days to flowering trait [8W]) NGG 
results are displayed. SNPS in the close vicinity of the FLC locus (a major component of flowering in plants) 
is represented by black dots. The scatter plot presents the fact that NGG better detects the FLC effect as 
compared to EMMA
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reports it as the 30th signal (Fig. 3B). Finally, for every single phenotype, we quantified 
the overlap between the increasing k-top θ̂  and the EMMA signal. For the vast majority 
of signals, we found a good congruence between signals varying between 40 and 100% 
for Atwell et al. phenotypes and between 9 and 59% for Campos et al. phenotypes (Addi-
tional file 1: Fig. 5).

It is noteworthy that the observed good correlation between EMMA and NGG results 
may indicate that NGG performs genome population structure correction comparably 
to mixed models. Population structure correction is explained in the light of the NGG 
procedure (fully described in Additional file 1: Text 1) and as follows. Equation #16, in 
Additional file 1: Text 1, solves the compressed problem by utilizing a compressed ver-
sion of the kinship matrix estimation (the  AXtXAt matrix), which automatically incor-
porates a renormalization via this estimated projected kinship matrix during resolution. 
Furthermore, the final algorithm (Additional file 1: Text 1 and provided code), which has 
a specific piecewise structure and involves averaging, enables the estimation of effects 
by breaking any connections that may exist between the coordinates. However, further 
simulations incorporating diverse genetic architectures and models of population struc-
ture would be required to fully validate this observation.

Having shown that NGG is able to retrieve GWAS signals on original datasets we 
decided to evaluate its speed in comparison to other algorithms.

Estimating acceleration towards 2D‑GWAS

We then compared the runtime of NGG with permGWAS which is the fastest GWAS 
to date [29]. PermGWAS was itself challenged on the same dataset, containing 1 mil-
lion SNPs and 1000 individuals, to GEMMA and SNPTESTv2. Their respective runtimes 
were 6, 29, and 23 min. Regarding these results then further report only the comparison 
of NGG to permGWAS only.

All runtime experiments were measured on the same server using Ubuntu 20.04.3 LTS 
with 40 CPUs, 377 GB of memory, and 4 Quadro RTX 6000 GPU, each with 24 GB of 
memory.

First we estimate the effect of the number of markers on the runtime (Additional file 1: 
Fig. S4a), we fixed the number of samples to 1000 and varied the marker between 50 K 
and 2 M SNPs. As summarized in Additional file 1: Fig. 4, both permGWAS and NGG 
are proportional to the number of SNPs with a logarithmic relationship. The NGG is 
more than two orders of magnitude faster than permGWAS. For the maximum marker 
size (2 M) NGG took approximately 5 s, while for permGWAS the runtime took more 
than 460 s (~ 7 min).

Then we estimated the effect of the number of samples on the runtime (Additional 
file 1: Fig. S4b), we fixed the number of markers to 1 M and varied the number of sam-
ples between 1 and 10 K. Additional file 1: Fig. 4 allows us to observe that NGG outper-
forms again permGWAS by at least two orders of magnitude. For the maximum number 
of samples (10 K), NGG took approximately 6 s, while for permGWAS the runtime was 
more than 985 s (~ 16 min).

In conclusion, these results demonstrate that NGG delivers similar and potentially 
more accurate results in regards to other regular GWAS techniques and is a hundred 
times faster. This speed improvement brings the calculation for ~ 60 billion SNP or 
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combination of SNPs below an hour making possible the computation of entire epistatic 
maps.

2D GWAS on real data

Being confident that NGG has the potential to point to true epistatic effects (Fig. 2) and 
having in mind that the number of individuals greatly improves the detection capacity 
of our model (Fig. 2E, F; Additional file 1: Fig. S1), we tested NGG analysis on the data-
set with the greater number of Arabidopsis ecotypes extracted from work by Campos 
et  al. 2021 [25]. In this work, Campos et  al. (2021) provide the elementary composi-
tion (18 different elements) for > 1100 different Arabidopsis ecotypes having been fully 
sequenced by the 1001 genome project [21].

Figure  4 reports results of unidimensional NGG for Phosphorus content 
(noted P31) of Arabidopsis leaves, that can be displayed at the same time as (i) 
support for themodel x |SNP effect| or as (ii) pure SNP effect ( θ ). The latter provides a 
Manhattan plot with negative values that can be interpreted as the SNP having a nega-
tive effect on the phenotype as compared to the reference genome (here Columbia-0 
ecotype) (Fig. 4). Also, the effect reported in this Manhattan plot is now expected to be 
directly proportional to the effect of the genetic variation as compared to Col-0 pheno-
type, helping to choose for the best variant or gene to study.

We further proceeded with the computation of full epistatic maps or 2D-NGG for 
phenotypes retrieved from the Campos et  al. [25] and Atwell et  al. [4] datasets. We 
focused on these datasets as they present a relatively high number of ecotypes (> 1000), 
and an important diversity of well-known phenotypes respectively. To do this, we prefil-
tered SNPs having a particular Minor Allele Frequency (MAF) because the probability 
for the combination of SNPs (that we call MIAF for Minor Interaction Allele Frequency) 
to be of interest for epistatic measurements directly depends on the MAF as Z = X ⋆ X 
(above). For this we prefiltered 346,094 SNPs, for Campos et al., and between 341,067 
and 371,956 SNPs, for Atwell et  al., having a MAF greater than 0.3. The full epistatic 
landscape is thus 59.890 billion interactions for Campos et al. [25] and between 58.163 
and 69.175 billion interactions for Atwell et al. [4].

Fig. 4 NGG provides a direct estimation of the SNP effect ( θ ) on the phenotype (Col‑0 being the reference 
genome). The upper plot presents the NGG signal combining support (effect or not) × absolute value of the 
estimated effect of the genetic variation. The lower plot reports the estimated effect of each SNP (θ). Colored 
data points (according to chromosome number) are emerging from the noise in a bootstrap procedure 
comparable to the permGWAS procedure (18)
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Nowadays, this quantity of data represents a challenge on its own to compute, store, 
and display the results as it relates to a “Very High-Dimensional” (VHD) framework 
[30]. VHD is mathematically defined in terms of the size of the genotypic matrix X (n 
rows and p columns) and in terms of sparsity of the unknown parameter to be estimated 
or tested, here the number of “active” SNPs and interactions for a given phenotype: k. In 
this framework [30], we can evaluate the effects of VHD genotypic input matrices on the 
performance of several popular methodologies (for hypothesis testing, support estima-
tion, and prediction) and show that when k log(p/k) is large with respect to n then statis-
tical estimation and testing errors inflates dramatically. We believe that this is at least in 
part the reason for which full epistatic maps (2D-GWAS) were so far out of reach.

Following this line, in our study (Fig. 5), n = 999, and p is around 60 billion. Follow-
ing a reasonable estimate for sparsity k, granting satisfactory and reliable outputs is 
estimated to be not more than 50. This is why, in our forthcoming study we mainly con-
sider and analyze in a final stage around 30 significant SNPs interactions or composite 
components.

Figure 4 displays 2D-NGG results for (i) Arabidopsis flowering times (Fig. 5A–C) [4] 
and (ii) Arabidopsis phosphorus (P31) leaf content (Fig.  5D–F) [25]. Results are dis-
played as a square heatmap triangle for which ~ 60 billion signals |θ̂ | are provided. One 
2D-NGG result dataset represents ~ 500 Go of data. To navigate through this large data-
set, a visualization tool named Luciol has been developed that can be understood as a 
“Google Earth” for full epistatic maps. Briefly, results are organized in layers as such the 
max intensity of a genomic region is reported on the higher layers. Here in Fig. 5, layer 
11 represents our maximum zoom-out condition. A zoom between layer 11 to layer 
0 (the layer for which a given pixel represents a direct SNP/SNP combination) corre-
sponds to a 4.2 million times zoom. In other words, a pixel in layer 11 reports the max 
intensity of 4.2 million SNP/SNP interactions underlying layer 0. Observation of full epi-
static maps as well as local signals informs on the genetic architecture underlying a given 
phenotype (Fig. 5).

In the case of the flowering trait (Fig.  5A), around 6 major epistatic signals emerge 
where 2 of them are close to the diagonal. The proximity of the diagonal refers to poten-
tial epistatic interactions of neighboring genes (although a few Mbp away). To display 
unambiguous epistasis we thus decided to report here the fourth stronger effect that lies 
very far from the diagonal. A zoom at the 2D-locus reveals the structure of a 2D-GWAS 
peak that appears bi-modal (i.e., supported by at least 2 distant SNP combinations, 2 
local bright spots in the epistatic map, Fig.  5B). This peak points to 2 loci predicted 
to be epistatic. The first locus is at position CHR4:6,524,710, and the second one is at 
CHR1:6,243,417. Using these coordinates, the matrix X and phenotype Y are parsed to 
plot the phenotypic distribution following the combination of SNPs (a sort of 2D-haplo-
group). This is reported by the box plot in Fig. 5C. Herein we observe that this epistatic 
effect involves 2 loci having a moderate effect individually as reported to the SNPi and 
SNPj boxplots (left and right panels). However, the combination of the simple effect can-
not predict the effect of the combination since the positive effect of SNPj, from 0 to 1 
modality, seems enhanced by the SNPi (0) modality and totally repressed by the SNPi 
(1) modality. This clearly indicates the potential presence of an epistatic effect between 
these 2 loci.
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We also report (Fig.  5D to F) the epistatic interactions in the control of plant leaf 
phosphorus content. This epistatic map reports around 8 strong epistatic signals. As an 
example, we zoomed into 2 of them being the stronger ones with respect to their pre-
dicted value ( |θ̂ | ). The first one is relatively close to the diagonal although both epistatic 
SNPs lie in chromosome 1 but eleven Mbp away (Fig. 5F top panel). The second one con-
cerns an epistatic effect predicted to involve SNPs on 2 different chromosomes namely 
CHR5 and CHR3 (Fig.  5F bottom panel). These 2 epistatic signals are built upon the 
effect of a strong combination of SNP effects as it appears impossible to predict the com-
binatorial output of these SNPs by solely analyzing the effect of the simple SNP modali-
ties (compare box plots of SNPi and SNPj to box plot of SNPi:SNPj). Here, these effects 

Fig. 5 2D‑NGG results provide an estimation of 61.2 billion SNP combination effect for A Atwell et al. 
phenotype ID:31, days to flowering time FT10 and B Phosphorus content Campos et al. [25] measured by 
ICP‑MS. The results are presented as heatmaps and histograms to observe the epistatic interactions between 
SNPs
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can totally be missed by previous studies of epistasis that, to date, necessarily implied a 
selection of genetic variables [12].

We succeed in demonstrating that the NGG algorithm allows the computation of full 
epistatic maps with a gene resolution at least for high gene density genomes such as that 
of Arabidopsis.

Missing heritability recovery and phenotype prediction

We set out to understand the “missing heritability” explained by our recovered epistatic 
interactions. To do so, we calculated the increased variance explained (as an h2 proxy) 
being retrieved from 2D-GWAS as compared to regular 1D-GWAS (Fig. 6). The differ-
ential heritability between 1 and 1D + 2D GWAS was estimated by Principal Compo-
nent Regression (PCR) [31], carried out on a set of selected SNP and SNP-interactions 
(Fig.  6A). The principle of PCR dates back to the late 50’s [31]. PCR combines Prin-
cipal Component Analysis (PCA) on the input features of a model followed by linear 
regression [31]. First, a PCA of X provides a low number of principal components and a 
dimension reduction by selecting fewer components associated with the highest eigen-
values modulus of X. Regression is then performed on this reduced set of components 
(related to the VHD problem that we described above) that play the role of new synthetic 
inputs. PCA concentrates the information of the large matrix X or Z in a smaller matrix, 
removing collinearity as well because the components are, by definition, not correlated.

Here, PCR is carried out (i) on a set of p SNPs and then (ii) on a set of the same 
SNPs as in (i) + q SNP/SNP-interactions (Fig. 6B). The plots show the retrieved “miss-
ing heritability” (difference between blue [1D signal] or red lines [1D signal plus 
2D_random], the controls, and the green line [1D signal plus 2D]) as measured by 
the adjusted R2 when the number of selected components increases (x-axis Fig. 6B). 
For the vast majority (16 of the 18 phenotypes), a good proportion of heritabil-
ity is retrieved in the 2D signals. Only, Cobalt or Selenium do not display a radical 
improvement in the explained variance. By applying this method, we observed that 
information in the epistatic landscape indeed contains a good proportion of the 
missing heritability (Fig. 6B). For the Phosphorus content of Arabidopsis leaves, for 
instance, the heritability measures in the 1D GWAS ranges around 22%. Estimated  h2 
then increases to 33% when the information in the 2D-GWAS is considered. We note 
here that we do not strictly evaluate the missing heritability recovered but rather a 
proxy of it.

Having a comprehensive view of gene resolution epistatic maps opens up possibili-
ties for at least two developments. The first is experimental validation. This process is 
extremely labor-intensive and could take a considerable amount of time to precisely dis-
sect epistatic interactions. Although these are currently under investigation, we chose to 
publish our findings primarily due to the second potential development. The second area 
of advancement is in phenotypic prediction. Essentially, NGG can be viewed as a highly 
effective variable selection process (Fig. 6A), which could significantly benefit precision 
medicine and various agronomic selection programs for plants and animals.

We thus further evaluate the role of NGG signals for phenotypic predictions through 
the use of a broad set of machine learning algorithms including Deep Neural Networks 
(DNN), Support Vector Machine (SVM), Gaussian Processes (GP), Gradient boosting 
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(GB), Random Forest (RF), Linear regression, Lasso, Elastic Net. These techniques were 
used to predict the 18 phenotypes from the Campos et al. [25] work (described above). 
We also crossed these machine learning techniques with an increasing number of 1D 
and 2D signals/SNPs (10, 100, 500, 1000, 5000, 10,000). To perform a proper control, 
we repeated this in silico experiment but instead of providing the models with proper 
2D signals, we randomly sampled epistatic signals (named 2D_random) to evaluate our 
capacity to predict plant mineral content. As classification problems are easier to solve 
and that the number of individuals is still a bit limited for regression approaches, we 
also used quantiles to rank phenotypes into 5 or 3 classes (Fig. 7A). By crossing all these 
parameters, we ended up with 1728 different models for 1D + 2D signals (y-axis of the 
plot Fig. 7B) and the same number of models for 1D + 2D_random (x-axis Fig. 7B). Our 
capacity to predict phenotype is performed on 50% of the dataset (validation set) that 
were not used to (i) perform the NGG analysis, (ii) neither to fit or train the models. 
The quality of the models is evaluated through classical precision/recall curves and F 
scores. Figure 7A presents the F1 scores of best-predicted classes (measure a precision/
recall compromise) for 1D + 2D random against 1D + 2D models. All the models lying 
above the diagonal (x = y) correspond to models for which predictive power is improved 
by epistatic signals (Fig. 7A, Additional file 1: Table 1).

Fig. 6 Estimation of retrieved missing heritability. A Analysis scheme employed to estimate retrieved 
heritability and phenotypic predictions from 1D signals (blue diagonal), and from 2D NGG signals orange 
triangle representing > 59 billion interactions. B Heritability (h2 seen as adjusted R.2) is measured for an 
increasing number of PCA components and for signal retrieved only from 1D‑GWAS or 1D‑GWAS (V data 
points) + 2D‑NGG (W data points)
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We observe that 2D epistatic signals improve phenotypic classification (Fig. 7B) as 57% 
of the models are improved. Interestingly, models having a low F1 score and models hav-
ing a high F1 score tend to beneficiate most of the epistatic signals. Furthermore, this 
improvement is even more dramatic when we consider the models having a lower num-
ber of SNP and SNP interactions (30 + 30) (Fig. 7C). In this particular case with a low 
number (60) of explanatory variables 80% of the machine learning models are improved 
by 2D signals as compared to randomly picked ones (Fig. 7C). We wish to highlight some 
particular points for which we observe an increase in our capacity to predict phenotypic 
classification and an overall good classification outcome (Fig. 7B, D, E). The arrows in 
Fig. 7B point to 2 models for which the 1D signal alone does not allow a very good clas-
sification (xD = 0.534, xE = 0.535), when the same models with an epistatic signal reach 
an F score of 0.732 (yD) and 0.728 (yE), respectively. We also observe some phenotypes 
such as Na23 (sodium leaf content) for which most models and parametric values of 
the machine learning procedures globally beneficiate the epistatic signal showing that 
retrieved 2D signals are globally bringing new information (purple circle Fig. 7B). Fig-
ure 6D and E display an example of our capacity to predict phenotype classification for 
molybdenum leaf concentrations. This level of precision and recall opens avenues for 
plant selection procedures assisted by epistatic markers.

In summary, our study successfully presents the creation of comprehensive epistatic 
2D maps with sufficient SNP density to achieve gene-level resolution. We applied our 
method to the model organism Arabidopsis thaliana, leveraging its readily available 
dataset. Importantly, our approach is universally applicable and can be readily adapted 
to other biological models, especially in the context of human genetics. As hypothesized 
before [18], we demonstrate that a substantial part of the missing heritability lies in epi-
static interactions (Fig.  6). Finally, we show that this never observed fine grained 2D 
epistatic signal brings us a bit closer to the prediction of phenotypic values by machine 
learning procedures on plants, but we hope soon, in other biological models as well.

Discussion
In this study, we introduce NGG, a method that recovers some of the missing heritabil-
ity. The signal we have uncovered appears to hold epistatic information, which is not 
fully captured by traditional variable selection methods, as the individual impact of 
SNPs is frequently not significant (Fig. 5B). This two-dimensional signal has been dem-
onstrated to enhance genetic prediction through the application of machine learning 
techniques (Fig. 7).

Limitations

One limitation of this approach has to do with the VHD problem. Indeed, it has been 
stated by Candes et al. [16] that the compression works only for sparse signals. This com-
pression allows very important acceleration but it comes at the expense of our capacity 
to retrieve the entire signal. As stated before for 60 billion interactions we can expect to 
retrieve around 50 signals given the compression that we apply. However, this conclusion 
has to be moderated as our algorithm is built to solve the problem by pieces being defined 
to fit GPU architectures. Thus, we also think that more effects can be retrieved as each 
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piece will be under the VHD constraint but that this constraint can be at least partially 
canceled out by the reconstruction. As such we think that more work is needed that may 
improve our capacity to further access epistatic signals in particular for the smaller effects.

Fig. 7 NGG retrieves genetic markers in epistatic signals improving machine learning procedures. A Analysis 
scheme employed to measure the effect of the 2D GWAS signal to improve phenotypic predictions. The 
dataset is divided into a train set (50%) and a test set (50%). The train set is used to perform 1D and 2D GWAS 
and retrieve stronger GWAS signals. The SNP (1D) and SNP combinations (2D) positions are used to predict 
phenotype classification from the test set that did not serve to identify the SNPs. Phenotype prediction is 
performed on the test set. B In this plot, each dot corresponds to a combination of (i) given machine learning 
model (among SVM, RF, DNN, Gaussian processes, LASSO, and Elastic Classifier) trying to predict (ii) a given 
phenotype (18 elemental concentrations of Arabidopsis leaves represented with different colors) combined 
with different learning data format including (iii) a different number of classes (3 or 5 classes) and (iv) 
different number of SNPs (30, 100, 500, 1000, 5000, 10,000). The x‑axis reports the max F1 score for the model 
provided with SNPs simple 1D signals and randomly picked 2D epistatic SNP combinations (our control). The 
y‑axis reports the max F1 score for the model provided with SNPs simple 1D signals and 2D epistatic SNP 
combinations. B We observe an improvement (above the y = x line) of > 57% of the models provided with 
2D epistatic signals. Arrows point to the two best models (max F1 score). C Prediction improvement is even 
more dramatic (80%) for models predicting phenotypes from 30 top 1D plus 30 top 2D signals. D, E Examples 
of the two best predictions of the Molybdenum (Mo98 phenotype) classified concentrations are provided as 
confusion matrices
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Interpretation of results as compared to standard GWAS methods

The NGG algorithm only provides effect sizes, not p-values, so the next question would 
be how to select a cut-off point for association, given that we observe that the highest 
signals are very likely to contain true signals (Fig. 2E, F). Since NGG does not multiply 
statistical tests, it does not in itself require FDR correction. So in the first instance, we 
advocate to select the stronger signals as the most important and to study 2D haplo-
grouping (Fig. 5) to determine the sort of the underlying epistatic signal. Furthermore, as 
has been done for years, we can apply an empirical analysis of the signal "shape" to select 
peaks of interest. Indeed, for 1D-GWAS, the most interesting signals usually require 
several variants supporting the same peak. The same logic can be applied to 2D-GWAS 
peaks, which appear in the epistatic map in the form of an island (Fig. 5). This island is 
made up of several combinations of variants likely to support an epistatic signal.

It is important to note that an interesting phenomenon emerges when EMMA and 
NGG are compared. For some phenotypes such as the ones described in Fig. 3, the cor-
relation between both signals is not perfect. However, for other phenotypes (Additional 
file  1: Fig.  6), we observe a perfect convergence of both algorithms on an x2 relation-
ship. We did not find any valid explanation for this phenomenon. This perfect correla-
tion does not seem to be explained by the types of phenotype (continuous or discrete) 
or the explained heritability. So more work will be needed to understand the rules of 
convergence of both techniques.

Opportunities for future work

The next challenge will then be to study higher orders (3D and more) of epistatic 
levels. However, we believe that even with NGG this is still far from reach mainly 
for 2 reasons. The first one is that the complexity of the interactions in heterozygous 
organisms will attain 27 cases to study  (33) instead of 9. This will increase the number 
of individuals to genetically characterize and reach a good enough statistical power. 
Secondly, the MAF cutoff will need to be even more increased to allow the observa-
tion of the different SNP combinations. This cutoff is stringent enough that it may 
remove rare sequence variations having a potential impact on the phenotype. A new 
route of investigation for this kind of variation will need to be opened.

Despite this situation, it is worth noting that machine learning procedures that 
we used in the present work to predict phenotypes (such as DNN for instance) may 
already exploit some higher level of non-linear interaction between explanatory vari-
ables but only between variants having 2D interactions.

Conclusion
We believe that our technique is a valuable tool for recovering some of the missing her-
itability hidden in epistatic interactions (Fig.  6). Furthermore, its adaptability to both 
existing and forthcoming datasets suggests promising avenues for genetic exploration.

Methods
Data

Arabidopsis dataset corresponds to data issued from the 1001 genome project [21] and 
kindly provided by Arthur Korte lab. It consists of a genotype matrix above mentioned 
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as a genotype or X matrix containing 9,124,892 SNPs and 1135 ecotypes. For NGG anal-
ysis MAF is controlled (0.3 < MAF) resulting in a MAFed X’ matrix containing 346,094 
SNPs for Campos et al. [25] and between 341,067 and 371,956 SNPs, for Atwell et al. [4].

The phenotype dataset corresponds to the 18 phenotype from Campos et  al. [25] 
and the 107 phenotype from Atwell et al. [4].

Simulations

The simulations (Fig.  1) are performed on R. Code can be found at (https:// github. 
com/ Carlu erJB/ GFIM). Mathematics supporting NGG and algorithmic logic are pro-
vided in the Additional file 1: Text 1.

The genetic model simulating the SNP and the phenotype is generated from a bino-
mial matrix with a 0.5 ratio. From this matrix, the interaction matrix is built. The 
resulting matrix has a simple effect, interaction effect, and pure quadratic effect. Then 
a sparse parameter is built by dispatching non-null coordinates between simple effect, 
interaction effect, and quadratic effect. The resulting theta is used to get the support 
vector, which is a boolean vector indicating where signals need to be found. Finally, 
two kinds of noise can be added: a fixed noise or a random noise. The code is available 
on the repository (https:// github. com/ Carlu erJB/ GFIM).

Algorithm

The algorithm described in the result and discussion section (fully detailed in its mathemat-
ical innovation and algorithmic processing in Additional file 1: Text 1) consists in applying 
compress sensing techniques to accelerate calculation in the form of GPU accelerated code 
(Fig. 1). A python version of the code is provided at https:// github. com/ Carlu erJB/ NGG_ 
python. NGG provides θ̂ values for each pair of variables (here SNPs). The variable selection 
procedure is made of two steps: (i) the effects collected in are ranked in decreasing order 
and (ii) only the N* first largest effects are retrieved. Here the choice of N* follows the lines 
of [22] (see, e.g., proposition 6.2: our N* stands for the k in the cited article) since we are in a 
“very high dimensional “ framework in the sense of data scientists and statisticians.

Computer power

This work has been performed on a PowerEdge T640 DELL Server, RAM 377 Go, 4 
NVIDIA Quadro RTX 6000 (24Go).
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