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Abstract 

Background: Tumors are able to acquire new capabilities, including traits such as drug 
resistance and metastasis that are associated with unfavorable clinical outcomes. 
Single‑cell technologies have made it possible to study both mutational and tran‑
scriptomic profiles, but as most studies have been conducted on model systems, little 
is known about cancer evolution in human patients. Hence, a better understanding 
of cancer evolution could have important implications for treatment strategies.

Results: Here, we analyze cancer evolution and clonal selection by jointly consider‑
ing mutational and transcriptomic profiles of single cells acquired from tumor biopsies 
from 49 lung cancer samples and 51 samples with chronic myeloid leukemia. Compar‑
ing the two profiles, we find that each clone is associated with a preferred transcrip‑
tional state. For metastasis and drug resistance, we find that the number of mutations 
affecting related genes increases as the clone evolves, while changes in gene expres‑
sion profiles are limited. Surprisingly, we find that mutations affecting ligand‑receptor 
interactions with the tumor microenvironment frequently emerge as clones acquire 
drug resistance.

Conclusions: Our results show that lung cancer and chronic myeloid leukemia 
maintain a high clonal and transcriptional diversity, and we find little evidence in favor 
of clonal sweeps. This suggests that for these cancers selection based solely on growth 
rate is unlikely to be the dominating driving force during cancer evolution.

Keywords: Cancer evolution, Clonal selection, Genetic‑transcription perturbation, 
Metastasis, Drug resistance, Metabolism, Tumor microenvironment

*Correspondence:   
mhemberg@bwh.harvard.edu

1 The Gene Lay Institute 
of Immunology 
and Inflammation, Brigham 
and Women’s Hospital 
and Harvard Medical School, 
Boston, MA, USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-024-03201-1&domain=pdf
http://orcid.org/0000-0001-8895-5239


Page 2 of 23Cho et al. Genome Biology           (2024) 25:65 

Background
Cancer is characterized by the accumulation of somatic mutations, resulting in distinct 
clones. The clonal composition of a tumor changes over time, and this evolution is one 
of the mechanisms by which new characteristics can be acquired during cancer progres-
sion [1–3]. Although evolution is gradual over short time scales, over longer times, more 
dramatic alterations may occur. New clones may induce clinically significant phenotypical 
changes or even physiological changes such as metastasis or drug resistance. These altera-
tions are driven not only by mutations in protein coding regions that can change gene func-
tion but also by mutations in regulatory regions which can impact expression levels, thereby 
changing the range of phenotypes that a clone can attain [1–3]. However, our understand-
ing of how the mutational and the transcriptional landscapes interact remains incomplete.

Single-cell technologies have enabled profiling both the genome and the transcriptome, 
providing important insights regarding tumor heterogeneity [4–7]. Even though scR-
NAseq does not profile DNA, one can infer both mutations and copy number changes 
from this data, making it possible to characterize both the mutational and the transcrip-
tional landscapes. These technologies have been widely applied, including pancreatic can-
cer [8], acute myeloid leukemia [9], uveal melanoma [10], glioblastoma [11], and multiple 
cell lines [12], where they have provided insights regarding the interaction of mutational 
and transcriptional states. Another approach has been to combine single cell readouts 
with CRISPR technologies, allowing lineage tracing [13, 14]. In addition, associations of 
structural variation in the genome with cancer evolution have been reported [15, 16].

Even though the studies presented to date have provided important insights into cancer 
evolution, they face important shortcomings. Most studies use the 10X Genomics platform 
which only profiles one end of each gene, and it is thus only possible to characterize copy 
number variation [10, 17–21]. Some authors have incorporated genetic-transcriptomic 
perturbations to study cancer evolution, but only as low-throughput mutation profile [9] 
or using non-single-cell resolution [8, 22]. The limited resolution of these studies restricts 
our ability to investigate how mutations affect the transcriptional state at the single-cell 
level. Another shortcoming is that previous studies were either done in a mouse model 
[14], xenograft model [13], or cell line model [12], and consequently, they cannot fully 
account for the human tumor microenvironment (TME) which is known to play a key role. 
Also, those evolutionary studies are mainly focused on how primary cancer evolves rather 
than comparing between different contexts, such as metastasis or drug resistance, and the 
focus has been on histological classification rather than key phenotypical changes.

Here, we present Canvolution (https:// github. com/ jaewon- cho/ canvo lution/ tree/ 
master), a computational framework for analyzing cancer evolution and clonal selec-
tion from full-length scRNAseq data. Following mutation calling, the clonal hierarchy 
is inferred and along with the transcriptional profile this allows us to characterize the 
evolutionary paths. By focusing on gene signatures and pathways rather than individ-
ual genes, we identify broad trends across patients and cancer types [23]. In addition, 
we analyzed mutations affecting ligand-receptor interactions with the TME to infer 
its role in the evolution. By combining these analytical tools, we can compare the evo-
lutionary trajectories of both the mutational and transcriptional landscapes between 
different contexts or perturbations in human cancer patients to characterize the sets 
of genes that are associated with changes between contexts.

https://github.com/jaewon-cho/canvolution/tree/master
https://github.com/jaewon-cho/canvolution/tree/master
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Results
Canvolution compares mutation and transcriptome profiles from full‑length scRNAseq

Canvolution is a computational framework for joint characterization of the mutational 
and transcriptional landscapes; it consists of five steps (Fig. 1A): (i) preprocessing; (ii) 
identification of cancer clones and inference of evolutionary tree; (iii) characterization 
of clonal enrichment for each path through the tree; (iv) identification of transcrip-
tional states through unsupervised clustering; (v) calculation of gene signature scores for 
mutation, transcription, mutated-gene expression, mutated ligand-receptor (LR) pairs in 
each clone-cluster combination. By default, single-nucleotide variants (SNVs) and short 
indels are identified using CTAT [24] in combination with a method based on the STAR 
aligner and GATK-best practice variant calling pipeline for inferring SNVs from full-
length scRNAseq protocols [25]. This approach was chosen based on a wide review of 
the literature, including benchmarks to ensure robust performance [25]. Based on the 
mutations, clones are inferred using the DENDRO algorithm [7], and an evolutionary 
tree is generated by RobustClone [5]. Clustering of cancer cells by gene expression is 
done by standard Louvain clustering using the Seurat package [26].

To characterize clusters and clones, we use cancer hallmark gene sets from CancerSEA 
[27], cancer driver genes, oncogenes, and tumor-suppressor genes from CancerMine 
[28], as well as cancer fitness genes identified by a CRISPR-Cas9 screen across several 
cancer cell lines [29]. The latter collection includes core-fitness genes which were essen-
tial across 30 cell lines as well as cancer type-specific fitness genes. We also consider 
cancer testis genes (CTGs) [30], which are usually not expressed in normal tissue, but 
only in testis or tumor. Metabolic pathways are obtained from KEGG (hsa01100) [31], 
and cell–cell interactions are inferred using the CellChat package [32]. However, the 
framework is flexible, and instead of using the default settings, a user can input custom 
gene signatures or their own algorithms.

One of the main challenges when studying cancer evolution using patient data is that 
we typically only have access to a single snapshot of the tumor. Hence, we can only 
observe clones that have survived, and several assumptions are required to model the 
unobserved evolutionary paths. By comparing mutations, we can reconstruct the clonal 
tree and infer how clones are related, but we cannot determine if a clone is expanding or 
contracting. A key assumption is that samples were collected at a stage where all of the 
observed clones are expanding. By identifying features that are increasing or decreasing 
as a function of tree height, we can infer what features are associated with disease pro-
gression. In particular, we consider the mutations acquired along each path by defining 
a gene signature score, Ms, as the intersection between a set of pre-defined genes (e.g., 
ones associated with angiogenesis) with the mutated genes in a clone. Note that Ms is 
independent of changes in expression levels. We then calculate how Ms is related to the 
tree depth to determine if it is changing as the clone evolves, and we refer to the correla-
tion coefficient between Ms and the tree depth as the evolutionary path score (Fig. 1A). 
Similarly, we can correlate the gene signature scores with the size of each clone, and this 
allows us to identify mutated gene sets that are associated with increasing clone sizes. 
We refer to the correlation between Ms and clone size as clonal selection score. To 
ensure that this approach is able to distinguish a true signal from noise, we first applied 
it to synthetic data (Methods, Additional file  1: Fig. S1). In addition, we can compare 
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both evolutionary path scores and clonal selection scores between different conditions, 
e.g., primary vs metastasis, to identify statistically significant differences, i.e., mutated 
gene sets that are expanding over time in one condition but not the other. Similarly, we 

Fig. 1 Overview and basic statistics of the data. A Schematic overview of Canvolution workflow. For the 
preprocessing part, mutation profiles and gene expression from single‑cell RNAseq data are used as input. 
After generation of the evolutionary tree and calculation of the abundance of each clone, mutational 
signature scores and transcriptional signature scores are obtained by evaluating multiple cancer‑associated 
signatures and metabolic pathways. With cell–cell interaction information, Canvolution can also generate a 
ligand receptor (LR) mutation score for each clone. The evolutionary path analysis measures the correlation 
between the signature score and the tree depth for each path. Similarly, the clonal abundance measures 
the correlation between the signature score and the size of the clone. B Schematic workflow of the research 
presented here. Tumor tissue from lung (LC) and chronic myeloid leukemia (CML) patients were used. C 
Boxplots showing the number of mutations (left panel), the fraction of mutated genes (middle panel), and 
the ratio of mutation that are assigned as COSMIC (right panel) per clone
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can carry out evolutionary path analysis and clonal selection analysis with transcrip-
tional signature score, Ts, which is defined by AddModuleScore in the Seurat package 
to observe transcriptional states associated with either clonal age or size. A special case 
of the transcriptional signature score is the mutated gene expression score, which is 
obtained by evaluating the transcriptional signature score by average expression level of 
mutated genes.

To evaluate changes in the interaction with the TME, we first infer interactions 
between the different malignant transcriptional clusters and the non-malignant cells. We 
then separate each of the malignant clusters based on their clonal identity, and we refer 
to this as a cluster/clone. For each cluster/clone, we calculate a mutated ligand-receptor 
(LR) score, Mi, as the overlap between the mutated genes and the genes included in each 
interaction between other cell types. As before, Mi is calculated along each path of the 
clonal tree and correlated to either the depth or the size of the clone.

Human cancers have degenerated mutational and transcriptional states

We analyzed two publicly available cancer datasets with two or more conditions (Fig. 1B, 
Additional file  2: Table  S1), one solid cancer type (lung cancer, LC [17]) and one liq-
uid cancer (chronic myeloid leukemia, CML [33]). The LC dataset includes primary and 
metastatic cancer as well as response to drug-treatment which is reported as progres-
sive disease (PD), stable disease [34], partial response (PR), and complete response (CR). 
There were nine PD, two SD, 27 PR, and two CR; 28 of the samples were metastatic, and 
fourteen were from primary cancers. The LC dataset contained a total of 22,901 cells 
from 49 samples, with an average of ~ 3000 genes detected per cell. For CML, response 
before drug-treatment was given as poor or good. The CML dataset contained a total of 
2224 cells from 51 samples, with an average of ~ 5500 genes detected per cell (Additional 
file 2: Table S1). Fifteen of the donors were good responders and fourteen had a poor 
response. For both LC and CML, information about the treatment response was not 
available for all samples, and some of the patients contributed more than one sample. 
Both datasets were generated by SMART-seq2, and following clonotyping, we character-
ized the mutational profile in each clone.

We first characterized the mutational landscape of the clones, and we found that the 
distribution of the number or mutations per clone showed large variability (coefficient 
of variation; LC: 1.478, CML: 1.051). As expected, most mutations were found in genic 
regions since the mutation calling was based on the expressed transcripts (Fig. 1C). The 
mutation burden, defined as the total number of mutations per clone, was higher in 
metastatic samples [35], but there was no difference based on the drug response status 
(Additional file 1: Fig. S2). On average, there were 16.9 mutations in driver genes, 76.1 in 
oncogenes, and 40 in tumor suppressor genes for the LC samples. The mutation profiles 
highlighted several well-known driver genes as 32% of samples had an EGFR mutation, 
18% had a MET mutation, and 7% had a NF1 mutation [17, 36]. For CML, there were 2.4 
oncogene mutations, 0.3 driver gene mutations, and 1.69 tumor suppressor mutations 
per sample, with 53% of sample containing a RUNX1 mutation and 38% a TP53 muta-
tion [37] (Additional file 3: Table S2). Interestingly, among the mutated genes only ~ 50% 
were annotated in the COSMIC database [38], indicating a substantial number of muta-
tions of unknown significance (Fig.  1C). The mean number of clones per patient was 
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9.66 for LC and 9.86 for CML (Fig. 2A), figures that are consistent with previous stud-
ies. For example, two separate studies using barcodes for lineage tracing, which can be 
considered the gold standard, report an average of 0.44 and 0.43 clones per cell [13, 39]. 
This is higher than what we found by a factor of 2.26 for LC and 2.88 for CML, but the 
discrepancy is not surprising as we are more likely to miss clones since we call mutations 
from the transcriptome.

We also considered the transcriptional landscape for each donor, and we found 
an average of 2.43 clusters for LC and 5.69 for CML (Fig. 2A). The smaller number of 

Fig. 2 Preferable differentiation and degeneracy in the transcriptional state. A Boxplots showing the number 
of clones and clusters in each dataset. B Boxplots showing the entropy for the distribution of clusters in each 
clone (left) and the distribution of clones in each cluster (right). C One example of cluster heterogeneity in 
each clone from sample “LT_S34” in lung. The color of the outline of the circle indicates different clones. The 
diameter of the circle indicates the cell count of each clone. The colors of the pie slices indicate different 
clusters. The clonal heterogeneity in each cluster from the same sample is shown in the right panel. The color 
of the outline of the circle indicates different clusters. The diameter of the circle indicates the cell count of 
each cluster. The color of the pie indicates different clones. D One examples of an evolution tree from sample 
“LT_S71” in lung cancer. The color of outline of the circle indicates clone. The diameter indicates the cell 
count of each clone. The color of the pie slice indicates cluster. E Boxplots showing diversity for cancer clones 
between different contexts in each dataset. “*” indicates p value < 0.05 during the Wilcoxon‑rank sum test 
(two‑sided). F Boxplots showing diversity of cancer transcriptional clusters between the different contexts 
in each dataset. E, F “PD” indicates progressive disease samples, and “not PD” indicates samples without 
progressive disease (drug responders)
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transcriptional clusters indicates a degeneracy with each transcriptional state consist-
ing of multiple clones. We further confirmed the degeneracy by calculating the normal-
ized entropy of transcriptional states (Fig. 2B, C), and this shows that observed entropies 
are lower than expected compared to a null model where mutational and transcriptional 
states are independent (Additional file 1: Fig. S3). This result reflects the fact that cells 
from the same transcriptional cluster are more likely to belong to the same clone, as 
indicated by the positive mutual information between the clone and cluster distribu-
tions (Additional file 1: Fig. S4). That is, there is a preferred transcriptional state for each 
clone, and conversely each clone has a preferable transcriptional state (Fig. 2B, C, and 
Additional file 1: Fig. S5).

Evolutionary path analysis reveals gene sets associated with disease progression

Next, we considered the inferred tree structure for each donor, and a representative 
example of a clonal tree from a primary LC tumor from the partial response group is 
shown in Fig.  2D. We hypothesized that cancers with a more diverse clonal state are 
better at adapting to external perturbations since they are more likely to have a clone 
that has a high fitness in the new environment. Consistent with this hypothesis, we 
observe a significantly (p-value < 0.05, Wilcoxon test) higher diversity as defined by the 
Simpson index, for the CML samples from donors with a poor response to drug treat-
ment (Fig. 2E). However, for LC, there was no significant increase of clonal diversity in 
metastasis or in patients with poor treatment response. Next, we asked if the diversity 
of transcriptional states is also associated with the ability to adapt to different condi-
tions (Fig. 2F). There were no significant differences in transcriptional diversity between 
the different conditions, arguing against the hypothesis that higher fitness of a tumor is 
associated with a more diverse mix of transcriptional states. The transcriptional diversity 
is a global measure, and it carries little information regarding specific gene programs. 
Indeed, our analysis shows that in the LC dataset, genes related to metastasis (e.g., MET, 
RAC1, CD24) and epithelial to mesenchymal transition (e.g., FBLN2, SDC1, CTSB) were 
differentially expressed in metastasis samples. Similarly, in the CML data, we found that 
genes related to DNA damage (e.g., RBL2) were highly expressed in poor responders.

As there is evidence in favor of clonal diversity being associated with higher cancer 
fitness, we investigated what features are selected for during cancer evolution. We com-
pared the evolutionary path scores between different contexts to identify mutated gene 
signatures that are overrepresented in clones found at lower depths of the inferred trees. 
Reassuringly, the comparison between primary and metastatic tumors reveals that the 
most highly enriched category is metastasis (Fig. 3, Additional file 1: Fig. S6, Additional 
file  4: Table  S3). This is consistent with previous reports of mutations in lung cancer 
fitness [40], and it reflects the higher incidence of mutations such as KEAP1, NFE2L2, 
EGFR, and MYC. In addition, we find an enrichment of mutations in driver genes, e.g., 
EGFR [41], KRAS [42], BRAF, and PIK3CA [43], from PD patients in LC. Similarly, we 
identify mutations in both tumor-suppressor genes, e.g., ABL1, JAK2, MAP2K1, and 
KIT [38], from poor responders in CML, suggesting that these are two of the key mech-
anisms by which tumor cells evolve to acquire drug resistance. We also compared the 
clonal abundance scores, and we find a similar set of gene signatures. To investigate if 
more advanced clones tend to be larger, we calculated the Spearman correlation between 
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the clonal abundance and the height in the clonal tree, and this showed moderate rela-
tion (LC: 0.5, CML: 0.32). Hence, there is only modest evidence to support the hypoth-
esis that more advanced clones have strong growth advantage over their predecessors.

Transcriptional evolution analysis reveals preferable gene sets for each context

Next, we explored transcriptomic perturbation during cancer evolution, and similar 
to the mutational analysis, we found that specific gene signatures were altered when 
comparing the different contexts (Fig. 4A, Additional file 1: Fig. S7, Additional file 4: 
Table S3). To validate these results, we carried out a literature search which revealed 

Fig. 3 Mutational analysis during cancer evolution. Horizontal bar plots of evolution path analysis (left) and 
clonal selection analysis (right) with mutation features. “metastasis” versus “primary” (LC: Metastasis panel) and 
“progression disease (PD),” “partial response (PR),” and “stable disease” (SD) in lung cancer (LC: drug response 
panel). “good response” and “poor response” in CML sampled at diagnosis (CML: drug response panel). 
Only the top 10 terms with q value <  = 0.1 were shown. The bar indicates the mean Spearman correlation 
coefficient from each group. The standard error is shown as an error bar
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that the majority of the transcriptional changes that emerge in the metastatic or 
drug-resistant contexts have ample support (Fig. 4B, Additional file 5: Table S4, Addi-
tional file 6: Table S5). For example, in metastatic LC, we found enrichment for EMT 
[44], metastasis [27], differentiation [27], and several metabolic processes including 

Fig. 4 Transcriptomic analysis during cancer evolution. A The horizontal bar plots of evolution path analysis 
(left) and clonal selection analysis (right) with mutation features. “metastasis” versus “primary” (LC: Metastasis 
panel) and “progression disease (PD),” “partial response (PR),” and “stable disease” (SD) in lung cancer (LC: drug 
response panel). “good response” and “poor response” in CML sampled at diagnosis (CML: drug response 
panel). Only the top 5 cancer signatures and top 5 metabolisms for “metastasis,” “PD,” and “poor response” 
with q value <  = 0.1 were shown. All the results are shown in Fig. S6. The bar indicates the mean Spearman 
correlation coefficient from each group. The standard error is shown as an error bar. Terms in red are cancer 
related and terms in black are metabolism related. B Fraction of significant features from “metastasis,” “PD,” or 
“poor response” that were verified by literature search
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pyruvate-lactate, amino acid (glutamine, serine, alanine, proline, asparagine), and 
lipids (fatty acid, acetate, acetyl-CoA) [45]. We also found known drug resistance fea-
tures from LC (EMT [46], metastasis [47], quiescence [48], invasion [49], and angio-
genesis [50]) and CML (DNA_repair [51], proliferation [27], stemness [52], hypoxia 
[53], and differentiation [54]), as well as metabolic processes involving pyruvate-
lactate [55], amino-acid (glutamine, proline, serine, alanine, asparagine) [45, 56–58], 
lipids (fatty acid, acetate, acetyl-CoA) [59], and drug metabolism. Interestingly, our 
analysis highlights vitamin C (ascorbate) metabolism as enriched in metastasis or 
drug-resistant contexts. This essential nutrient was previously reported as an anti-
metastatic or an anti-cancer agent [60, 61], and since vitamin C cannot be synthe-
sized in human, we conjecture that this reflects catabolism to reduce its anti-tumor 
effect. Compared to the mutation analysis, the changes in transcriptional state for 
both evolutionary paths and clonal selection are more diverse with many more pro-
cesses enriched across conditions (Figs. 3 and 4A, Additional file 1: Fig. S6 and S7).

Mutational and transcriptional profiles are interlinked

After exploring the evolution of the mutational and transcriptional landscapes sepa-
rately, we analyzed them jointly. First, we asked if genes that are mutated also are more 
likely to have changes in their expression levels. When considering genes that are both 
mutated and have their expression levels perturbed, we found several gene signatures 
that were statistically significant in different contexts (Fig. 5A, B, and Additional file 1: 
Fig. S8). To validate these gene signatures, we carried out a literature search to deter-
mine if the expression of those signatures is associated with each context. Again, we 
found that the majority had been reported in the literature (Fig. 5C). Next, we tried to 
understand the coherence of the changes in the mutational and transcriptional profiles. 
When we compared the signatures that exhibited both mutations and altered expression 
levels, it was smaller than expected by chance for all three comparisons between evolu-
tionary contexts (Fig. 5D). For example, even though patients from the LC cohort with 

(See figure on next page.)
Fig. 5 Integrated mutational and transcriptomic analysis reveals clonal selection and degenerate state in 
cancer evolution. A, B The horizontal bar plots of evolution path analysis (A) and clonal selection analysis 
(B) with mutated gene expression. “metastasis” versus “primary” (LC: Metastasis panel) and “progression 
disease (PD),” “partial response (PR),” and “stable disease” (SD) in lung cancer (LC: drug‑response panel). “good 
response” and “poor response” in CML sampled at diagnosis (CML: drug‑response panel). Only the top 5 
cancer signatures and top 5 metabolisms for “metastasis,” “PD,” and “poor response” with q value <  = 0.1 
were shown. The bar indicates the mean Spearman correlation coefficient for each group. The standard 
error is shown as an error bar. Terms in red are cancer related and black metabolism related. C Fraction of 
significant features from “metastasis,” “PD,” or “poor response” that was verified by literature search. D The 
overlap between significant features (q value <  = 0.1) in mutational analysis and transcriptional analysis in the 
evolutionary path and clonal selection analyses. E The overlap between significant features (q value <  = 0.1) 
in transcriptional analysis from the “metastasis” or “PD” group and mutated gene expression analysis in 
the evolutionary path and clonal selection analyses. D, E For the chemotherapy response analysis in lung 
cancer, we merged PR and SD. We considered the overlap if the feature is enriched in the same group. F 
Number of significant features of “metastasis,” “PD,” or “poor response” from Figure S6A and B for mutational 
analysis (upper panel) and Figure S7A and B for transcriptional analysis (lower panel). G Significant features 
overlap with the same enrichment group (mutational signature, transcriptional signature, and mutated gene 
expression; q value <  = 0.1) between the evolution path analysis and clonal selection analysis. D, E, G The bar 
plots indicate the observed overlap/expected overlap (Obs/Exp). Please see the detailed procedure in the 
“Methods” section
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PD showed an increased number of mutations in driver genes or angiogenesis muta-
tions for both the evolutionary path and clonal selection analysis, these genes did not 
show increased expression levels. This result suggests that genes that are mutated do 
not also have changes in gene expression. By contrast, the metastasis or drug-resistant 
groups were more likely to express a mutated gene if those features were enriched in the 
transcriptional evolution analysis (Fig. 5E). This implies that for more advanced cancer, 
many of those pathways are expressing the mutated form, and if the mutation resulted in 
a gain or loss of function then the function may differ from the annotated one.

Fig. 5 (See legend on previous page.)
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To understand the relative importance of changes in the mutational and transcrip-
tional landscapes, we compared the number of significant features from the two land-
scapes. For both the path analysis and the clonal selection, we identified all mutational 
and transcriptional features that were enriched in each context. Comparing the two con-
texts, we found that the majority of the mutated gene sets were enriched in the more 
advanced stage, i.e., metastasis or drug resistance, compared to the less advanced stage. 
This finding is consistent with the notion that clones with many mutations in these genes 
have higher fitness and are better at adapting (Fig. 5F). By contrast, there was no such 
enrichment for the transcriptional states. We also compared the evolutionary path and 
the clonal selection analyses to identify shared trends between clones. Surprisingly, there 
was a high discordance between evolutionary path analysis and clonal selection with less 
overlap than expected by chance (Fig.  5G). Reassuringly, these conclusions are robust 
with regard to the choice of statistical threshold (Additional file 1: Fig. S9), and taken 
together, this suggests that maximizing growth rate is not the main force determining 
cancer evolution.

Mutated ligand receptor shows how cancer evolution is influenced by the TME

So far, our analyses have focused on cell intrinsic factors of cancer evolution. However, 
interactions between cancer cells and the TME are important [62, 63], and therefore, 
we investigated how cell–cell interactions between cancer cells and the TME are altered 
during cancer evolution in LC (Fig. 6A, B). The analysis is similar to before as we asked 
if either ligands (source) or receptors (target) relevant to the interactions with other cells 
in the TME showed enrichment of mutations. Considering both features that increase 
with lower depth (evolutionary path analysis) and features related to increased clonal 
abundance (clonal selection analysis), we identified mutational enrichment of ligands 
or receptors for cancer cells in different contexts, confirming that cancer evolution also 
impacts cell–cell interactions.

The clonal selection analysis revealed that only receptors on malignant cells were 
enriched. By contrast, four out of six trends with significant enrichment of mutations in 
ligands produced by cancer cells were found in drug-resistant tumors, suggesting that 
there is a benefit to malignant cells that alter the signaling molecules communicating 
with the TME. Interestingly, one of the top hits was ligands for interactions with cancer-
associated fibroblasts (CAFs) (Fig. 6A). This result is consistent with the notion that can-
cer cells can interact with CAFs to reshape the TME to support their survival, and it is 
why CAFs are sometimes referred to as tumor promoting cells [62, 64].

The mutations in ligands and receptors suggest a role for cell-extrinsic effects dur-
ing cancer evolution. Consequently, we hypothesized that the mutated ligands from 
cancer cells will impact CAFs to make them produce cancer-promoting ligands in 
the PD group, but not in patients where the disease is stable or reduced. Indeed, 
the ligands produced by CAFs in the PD group were enriched for the gene signa-
ture “cancer proliferation” (p-val: 1.67e − 3; Fisher’s exact test), while ligands specific 
to the non-PD group were not (p-val: 6.87e − 2). For example, both WNT5A [65] 
and FGF1 [66] were found in PD donors, but not in non-PD groups. In addition, 
we found an enrichment of mutations in receptors on cancer cells that reduce the 
impact of T cells and B cells (Fig. 6B). We also found mutations in receptors against 
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macrophage/monocyte interactions, and cancer cells may strengthen this interac-
tion since anti-inflammatory macrophages are known to promote cancer survival 
[17, 63, 67].

This result implies that patients with mutations in immune relevant receptors will 
have a worse outcome. To test this prediction, we analyzed receptors for interac-
tions with T cells, B cells, macrophage, and monocytes in non-small cell lung can-
cer patients from The Cancer Genome Atlas. Splitting the cohort into patients with 
either a high or low number of mutations overlapping the receptors of interest, we 
found a significant difference in survival time (Fig. 6C, Additional file 7: Table S6). 
This finding yields clinically relevant information as it highlights genes associated 
with cancer progression. Many of these genes are well known, e.g., TNFRSF1A 
(TNFR1) or TGFBR2 which can be used against T cells to block apoptosis signaling 
[68, 69] or tumor suppressor signaling [70].

Fig. 6 Perturbation of ligand/receptor reveals cooperative behavior during cancer evolution. A Results from 
evolutionary path analysis of mutated ligand‑receptor interaction. Only the q value <  = 0.1 was shown. B 
Result from clonal selection analysis of mutated ligand‑receptor interaction. “metastasis” versus “primary” (left 
panel) and “progression disease (PD),” “partial response (PR),” and “stable disease (SD)” in lung cancer (right 
panel). Only the q value <  = 0.1 was shown. A, B The bar indicates the mean spearman correlation coefficient 
from each group. The standard error is shown as an error bar. C Kaplan–Meier curve of non‑small‑cell lung 
cancer patients in TCGA data with each category. Jaccard index of mutation was obtained between mutation 
profiles in each sample with mutated receptors interacting with a given cell type
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Discussion
Both genetic and transcriptomic aspects are important for understanding cancer evolu-
tion. Together, they reveal the characteristics of cancer progression and how the disease 
adapts to external perturbations. However, most of the data from functional experiments 
comes from cell lines or from animal models. Here, we jointly explore the mutational 
and transcriptional landscapes at single cell resolution in human cancer patients. Under-
standing the evolution pressure in cancer started to get attention recently using line-
age tracing technologies [13, 14]. Another method that we are aware of is the ASCETIC 
framework [71], which can use bulk and single-cell DNAseq data to infer a clonal tree 
and associated evolutionary signatures. However, ASCETIC is much more limited than 
Canvolution, as it can only infer mutation patterns that are related to patient survival. 
Thus, none of these methods can be applied to scRNAseq data from human cancer 
patients.

Our analysis showed a degeneracy in the transcriptional states, with more than one 
clone in each transcriptional cluster. Surprisingly, there was no strong evidence suggest-
ing that more diverse tumors are associated with higher fitness, neither based on muta-
tions nor transcriptome (Fig.  2E, F). Interestingly, CML samples show a higher clonal 
diversity for poor responders, while LC samples do not. We speculate that the difference 
could be due to CML being a liquid cancer while LC is a solid cancer. The two types of 
malignancies differ in terms of their interaction with the TME, and this may be reflected 
by the treatment response. Instead, we found that particular gene signatures were signif-
icantly enriched when comparing the evolution under the metastatic and drug-resistant 
conditions with the primary and drug responsive ones (Figs. 3 and 4A).

We find little evidence of clonal sweeps as all samples maintain a relatively high diver-
sity of clones. This is unexpected since for a large enough population of tumor cells, 
newly evolved clones need to have increased fitness to explain the fact that they are able 
to survive among the existing ones [72]. We found additional evidence suggesting that 
viewing cells in isolation is insufficient. By contrast, we found that mutations frequently 
affect ligands or receptors, resulting in a change of interactions in the TME. Based on 
these findings, we conjecture that clones are not always competing against each other for 
survival. Instead, we found evidence suggesting that the tumor benefits from a diverse 
ensemble of clones in the drug-resistant model. This finding is consistent with previ-
ous reports about cooperation of cancer clones, but none of these studies considered 
the evolutionary implications or the association between the TME and cancer [73–75]. 
To test our prediction, additional experiments are required, e.g., we predict that tumor 
growth could be reduced by targeting the receptors of CAFs that are predicted to inter-
act with the most abundant clones. This finding is not just of theoretical interest; it has 
important implications for treatment as it suggests that multiple clones may synergize in 
the TME and that more than one clone may need to be targeted.

One shortcoming of our study is that the number of cancer types, patients, and cells 
profiled is relatively small and that mutations are inferred from the transcriptome rather 
than the genome. Thus, it is likely that the observed clonal diversity is an underestimate 
since non-coding mutations are poorly represented. We also found a substantial number of 
unknown mutations from the COSMIC database in each cancer clone (Fig. 1C), indicating 
that there may be additional functional aspects that have been affected. The fact that we 
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were only able to study two types of cancer with a limited number of patients and condi-
tions means that one must be cautious about generalizing our findings. One reason for the 
narrow scope of our study is the scarcity of full-length scRNA-seq currently available in 
the public domain. The vast majority of scRNA-seq datasets were generated by 3′ end or 
5′ end sequencing using the 10X Genomics platform. Unfortunately, SNV calling is much 
more challenging with this technology, and consequently it is hard to perform co-evolution 
analysis of genomic and transcriptomic with Canvolution. However, long-read sequencing 
technologies from PacBio [76] and Oxford Nanopore have recently been combined with 
single-cell DNA/RNA [77, 78], and we anticipate that it will be straightforward to apply 
Canvolution to this type of data.

Moreover, our data only offers a snapshot of the tumor, and this makes it difficult to 
ascertain saturation of clonal selection. Although there have been seminal studies employ-
ing CRISPR based lineage tracing with cancer cells [13, 14], it is much more challenging to 
apply these techniques to human cancers since they require genetic modifications. Natu-
rally occurring mutations in the mitochondrial genome have been demonstrated to offer 
a powerful means for lineage tracing without genetic modifications, but they do not offer 
information about the mutations in the nuclear genome. A third issue is that we have only 
considered point mutations and short indels, ignoring large copy number variants which 
often are thought to have a bigger impact on the phenotype since they can change the gene 
dosage. However, several recent studies have focused only on small mutations and shown 
that they can have substantial impact on the TME [79], response to immunotherapy [80], 
and epithelial to mesenchymal transition [14]. These studies indicate that there are sig-
nificant effects of point mutations and short indels, not only for the corresponding gene 
expression but also for the fitness of each clone. Fourth, an important finding from our 
study is that mutated proteins frequently have altered expression levels. This implies that 
one must take care in predicting the impact of changes in expression in a cancer cell as the 
function of the corresponding protein may differ from a healthy cell. In principle, mutations 
resulting in the loss or gain of function could also affect what gene signatures are enriched. 
However, given the difficulties of predicting the impact of a mutation on gene function, we 
have not taken this into consideration in our analyses.

Conclusions
Despite these limitations, we believe that the overall trends are robust. Both metastasis and 
drug responsiveness were assessed by histology, and the drug resistant samples in LC were 
collected after a median of eight months. Thus, we believe that the classification of sam-
ples into different contexts is reliable, along with the scRNAseq profiling. In conclusion, our 
study of cancer evolution in human patients has revealed insights regarding the interactions 
of the mutational and transcriptional landscapes. These findings could be of clinical rel-
evance as they suggest that one needs to target multiple clones that are cooperating in the 
TME to avoid the emergence of drug resistance.

Methods
Dataset

The dataset for lung cancer was obtained from Maynard, A. et al. [17], and chronic mye-
loid leukemia (CML) was obtained from Giustacchini, A. et al. [33]. We used normalized 
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matrix, cell-type annotation, and metadata provided by the authors. We excluded 
“unknown” cells.

Variant calling

We used Trinity Cancer Transcriptome Analysis Toolkit (CTAT) (v2.0.1) for the variant 
calling of cancer cells in scRNA-seq data [24]. It is based on the GATK Best Practices 
pipeline [81]. We matched “single-end” and “paired-end” for each dataset using default 
parameters without any boosting method (–boosting_method = none). We further fil-
tered out non-COSMIC SNPs found in dbSNP and RNA-editing sites provided by CTAT 
with filtered.vcf files. During the process, 45/3754 LC cells and 36/1992 CML cells were 
excluded due to no confident SNV hits.

Clonotyping

We merged the vcf files from the same patient by the “merge” function in bcftools (v1.11) 
with “—no-index, –missing-to-ref” options with default parameters [82]. After merg-
ing, we used DENDRO (v0.2.2) [7] to infer the clonotype for each cancer cell. The input 
mutation matrix derived from vcf files for DENDRO were obtained from our custom-
ized code based on the DENDRO package. The genetic divergence matrix was obtained 
by the negative-loglikelihood model using “DENDRO.dist” function with default param-
eters. Further kernel-based clustering was performed for grouping cells by clonotype 
using DENDRO.cluster with default parameters. During the mutational clustering pro-
file, we modified the original code not to generate triple mutations from a single allele 
locus since ploidy was set to 2 (0: no mutation, 1: heterozygosity, 2: homozygosity). 
“optK” was defined for optimal “elbow point” using “DENDRO.icd” and “cutree” func-
tions with default parameters for each patient to optimize the clustering. Finally, re-esti-
mated mutation profile was obtained by adjusting “optK” from above using “DENDRO.
recalculate” with default parameters.

Subclonal evolution tree generation

We generated a subclonal evolution tree from the genotype information of each clono-
type generated by DENDRO with RobustClone (no version) [5]. This approach orders 
clonotypes by a minimum-spanning tree algorithm. We obtained clonal tree by running 
“plot_MST” function using the mutational profile for each clone obtained from DEN-
DRO with default parameters.

Cancer cell clustering

We clustered cancer cells in each dataset using the Seurat package (v4.1.0) pipeline [26] 
with default parameters. We used the functions FindVariableFeatures, ScaleData, Run-
PCA, FindNeighbors (pc:1 ~ 30), and FindClusters (resolution: 1).

Clonotype and cluster abundance analysis

For each sample, we used the proportion of each clonotype or cluster for abundance 
measurement. We measured the entropy of each clonotype or cluster of cancer cells 
by evaluating normalized Shannon entropy from Chazarra-Gil, R. et  al. (no version) 
[83]. We calculated the fraction of clusters found in each clonotype, and we used these 
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probabilities to obtain the Shannon entropy. To allow comparison across samples, we 
normalize by the theoretical maximum entropy for the given number of clusters in each 
sample. If a given clonotype has one cluster, we assign entropy as 0. We followed the 
same strategy for the clusters. Normalized mutual information between cancer clone 
and cluster was measured by “NMI” function in “aricode; v.1.0.2” package using “vari-
ant” parameter for “sqrt.”

Signature gene set

We obtained fitness genes from Behan et al. including lung cancer and core fitness gene 
set [29] and cancer hallmark gene sets from CancerSEA [27]. We obtained the driver 
gene, oncogene, and tumor suppressor gene for lung cancer and CML from Cancer-
Mine [28]. All subtypes were merged for the corresponding tumor type. We obtained 
the cancer-testis gene from Wang et al. for lung cancer [30]. For metabolic pathways, we 
obtained human metabolic pathways from KEGG (hsa01100) [31].

Mutation signature score

We measured the Jaccard index (intersection/union) between the mutation profile of a 
given clonotype and the signature gene set for signature scoring. We only considered the 
consensus CDS (CCDS) for protein-coding genes with “public availability” [84].

Transcription signature score

We used the “AddModuleScore” function in the Seurat package (v4.1.0) with default 
parameter settings [26]. For the metabolic pathway in KEGG, we excluded a pathway if 
fewer than three genes were shared.

Mutated gene expression signature score

Firstly, we defined mutation profiles from each feature from the “Signature gene set” sec-
tion. Then, we average the gene expression level only for the mutated genes in a given 
signature gene set. For the metabolic pathway in KEGG, we excluded a pathway if fewer 
than three of the genes were expressed.

CellChat

We inferred cell–cell interaction using the CellChat package (v1.6.1) [32] with only lung 
cancer data. Firstly, we inferred cell–cell interaction with different clusters of cancer 
cells (by gene expression) by default pipeline of CellChat except “min.cells = 0” for the 
“filterCommunication.” Next, we dissected each cluster into the different origins of clo-
notype (hereafter: cluster_clones). We measured the Jaccard index between each muta-
tion profile of cluster_clones and all the genes included in the interactions (distinguished 
by target or source of cancer clusters) between certain cell types. During this process, we 
only considered CCDS genes [84]. For the interaction between tumor cells, we merged 
all samples.

Mutated‑LR score

The LR-signature score was evaluated for each clone using
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i: clone_cluster (cluster within a given clone), n: number of the cell, nclone : number of 
the cell in a given clone

Evolutionary path analysis

This analysis was conducted for each sample. For the evolution path in each sample, 
we excluded clones with fewer than ten cells. From each evolution path, we evaluated 
Spearman correlation coefficients of mutation signature score, transcription signature 
score, mutated gene expression signature score, or cell–cell interaction score compared 
to the tree depth.

Clonal selection analysis

This process was conducted in the same way same as the evolutionary path analysis, 
except we used relative clonal abundance instead of the tree depth for the correlation 
analysis.

Simulation method

To simulate the data, we adopted from oncoNEM [85] (v.1.0). We first generate a set of 
genotypes by randomly assigning mutations. Next, a clonal tree is constructed from the 
synthetic genotypes. Then, simulated cells are created from the clonal tree with user-
specified noise levels. In our simulations, we used the default settings for “oncoNEM” 
function (FPR: 0.2, FNR: 0.1, missing ratio: 0.2). To test our “evolutionary path analysis,” 
we generated a perfect signature correlated with the ground truth clonal tree (i.e., each 
level assigned the value 1, 2, 3, etc.) and a random signature (i.e., each level assigned a 
random number). We then calculated the Spearman correlation coefficient of the perfect 
signature and the random signature by our method (evolutionary path analysis) using 
the noisy clonal trees.

For “clonal selection analysis,” we used a similar strategy whereby we generated a sig-
nature which is perfectly correlated with the abundance of clones from the ground truth 
tree and a random signature. We also obtained noisy abundance estimates using the 
same simulation as above. Then, we obtained the Spearman correlation coefficient of the 
perfect and random signatures by our method (clonal selection analysis).

For the simulation scheme, we altered the number of cells, number of clones, and 
number of mutation sites with 100 iterations for each combination of parameters.

oncoNEM function usage

1) simulateData (generates the goldstandard clonal tree and simulates a genotype 
matrix with a noise level)

– Parameters

Cell: N.clones = 5, N.sites = 100, N.unobs =0, FPR = 0.2, FNR = 0.2, 
p.missing = 0.2

i

ni ∗ jaccard_indexi/nclone
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Clone: N.cells = 20, N.sites = 100, N.unobs =0, FPR = 0.2, FNR = 0.2, 
p.missing = 0.2
Mutation site: N.cells = 20, N.clones = 5, N.unobs =0, FPR = 0.2, FNR = 
0.2, p.missing = 0.2

2) oncoNEM, search, clusterOncoNEM (generates a clonal tree from the simulated 
genotype).

– Parameters

delta = 50, epsilon = 10 (default parameter setting)
We compared the Spearman correlation coefficient of the perfect and random signa-

ture by a Wilcoxon rank sum test (two-sided).

Statistical analysis

We performed the Wilcoxon-rank sum test or the Kruskal–Wallis test between different 
groups of interest in each dataset with given features by either “evolutionary path analy-
sis” or “clonal selection analysis.” We used the Benjamini–Hochberg procedure for the 
multiple-hypothesis correction.

Differentially expressed gene analysis

We used the FindMarkers function implemented in the Seurat package (v4.1.0) with 
"logfc.threshold = 0.25” and “min.pct = 0.25″ and default values for the remaining 
parameters. We used p_val_adj < 0.01 for a significant gene.

Significant feature overlapping analysis

To measure the overlap between significant features from mutation evolution analy-
sis and transcription evolution analysis as quantified by the evolutionary path analysis 
and the clonal selection analysis, the observed overlap probability and expected overlap 
probability were calculated as follows:

observed overlap probability: overlapping significant features/total significant fea-
tures
expected probability: (significant features from set1/total significant features) * (sig-
nificant features from set2/total significant features)

Each feature with different enrichment of group (e.g., metastasis or primary) was 
counted separately. If there is no significant result from one of the comparison sets, 
the value is assigned 0. For drug response in lung cancer data, we collapsed all non-PD 
groups.

To measure the overlap between significant features for metastasis (LC), disease 
progression (LC), or poor response (CML) from transcription evolution analysis and 
mutated-gene expression analysis, observed overlap probability and expected overlap 
probability were calculated as follows:

observed overlap probability: overlapping significant features/significant features in 
transcription evolution analysis
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expected probability: overlapping significant features from any of the group/signifi-
cant features from any of the groups in transcription evolution analysis

Literature search

We searched each feature for the corresponding condition (e.g., metastasis, drug resist-
ance) if any cancer type shows a relevant relationship in the literature using PubMed. 
If we were unable to find relevant work, we counted it as a false positive (FP). We also 
counted it as FP if the enrichment of the pathway or metabolism is the opposite direc-
tion of the literature consensus. We also counted “true” if the feature is relevant by tau-
tology (e.g., metastasis signature for metastatic cancer).

TCGA data analysis

We collected RSEM normalized expression data, clinical data, and mutation_packager_
oncotated_call data of lung adenocarcinoma (LUAD) and lung squamous cell carcinoma 
(LUSC) from The Cancer Genome Atlas (TCGA (https:// gdac. broad insti tute. org/). 
We only collected patients who had chemotherapy clinical data. For inferring mutated 
ligand-receptor analysis, we merged all the ligands or receptors of cancer cells from Cell-
Chat results for each target cell. Then, we measured the Jaccard index between those 
results and mutations in each sample. Patient samples were then split into a high and a 
low group based on the median of the Jaccard index. We used progression-free interval 
(PFI) survival information from elsewhere [73]. We used Kaplan–Meier curves for sur-
vival analysis with a given feature divided by the “high” or “low” group by its mean value.
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