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Abstract 

Expansions of tandem repeats (TRs) cause approximately 60 monogenic diseases. 
We expect that the discovery of additional pathogenic repeat expansions will narrow 
the diagnostic gap in many diseases. A growing number of TR expansions are being 
identified, and interpreting them is a challenge. We present RExPRT (Repeat EXpansion 
Pathogenicity pRediction Tool), a machine learning tool for distinguishing pathogenic 
from benign TR expansions. Our results demonstrate that an ensemble approach classi‑
fies TRs with an average precision of 93% and recall of 83%. RExPRT’s high precision will 
be valuable in large‑scale discovery studies, which require prioritization of candidate 
loci for follow‑up studies.
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Background
Tandem repeats (TRs) are regions of the DNA that are composed of repeating motifs 
that vary between 2 and 6 base pairs (bp) in length [1]. There are 1.5 million TR 
loci scattered throughout the human genome [2]. Expansions of TRs can produce 
changes in the underlying genetic architecture, thus impacting molecular processes 
through the RNA or protein level [3]. Currently, only ~ 50 known disease-causing 
tandem repeat expansion loci have been identified, [3] a small minority compared to 
the 4482 genes associated with Mendelian diseases (OMIM) [4]. We speculate that 
there are many more disease-associated TR loci to be discovered, and progress has 
been hindered by the technical challenges associated with identifying long expanded 
repeats from short-read sequencing data. Specifically, correctly aligning short reads 
containing fully repetitive sequence and determining repeat lengths based on incom-
plete sequence information has posed significant complications. However, with the 
advancement of tools such as ExpansionHunter [5, 6] and GangSTR [7], as well as 
the emergence of databases characterizing tandem repeats (TRs) in control samples 
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[8], the identification of rare repeat expansions from patient genomes is now possi-
ble. Previously, we showed that genomes from healthy individuals each have an aver-
age of ~ 250 common large TRs (> 175 bp) and a median of three rare large TRs [8]. 
This indicates that rare repeat expansions can be benign and population allele fre-
quency alone cannot reliably distinguish pathogenic loci.

To assess the pathogenicity of single-nucleotide variants (SNVs) and small indels, 
detailed guidelines assist with filtering variants that go beyond consideration of allele 
frequencies [9, 10]. Tools such as ANNOVAR [11] and Ensembl’s Variant Effect Pre-
dictor (VEP) [12] annotate variants with their functional impact on the correspond-
ing protein to assist with such filtering. The commonly used pathogenicity predictor 
Combined Annotation-Dependent Depletion (CADD) scores simple variants based 
on sequence context including evolutionary constraint, epigenetics, and gene model 
annotations [13]. Numerous additional tools are available for variant annotation, pre-
diction, and prioritization in SNVs and small indels.

For structural variants (SVs), several tools have recently been developed to aid in 
variant prioritization. Specifically focusing on structural variants in exons, StrVCT-
VRE uses supervised learning to distinguish pathogenic from benign SVs, account-
ing for features such as conservation, expression, and exon structure [14]. Another 
tool, SVpath, predicts the pathogenicity of exonic SVs by incorporating features that 
are based on functional impact scores of overlapping SNVs, as well as gene level and 
transcriptomics scores [15]. Developing this approach further, DeepSVP integrates 
ranking of noncoding variants and incorporates phenotype information using a deep 
learning approach to improve the selection of patient-specific variants in a more pre-
cise manner [16].

In the field of TRs, efforts to prioritize variants have focused on an underlying 
assumption that TR constraint correlates with pathogenicity. Gymrek et  al. showed 
this to be true for select early-onset disease loci such as RUNX2 and HOXD13 [17]. 
However, according to their methodology for predicting mutational constraint, late-
onset disease loci such as ATXN7 are not highly constrained. Since many repeat 
expansion diseases manifest later in life, mutational constraint alone is an unreliable 
prioritization metric. One of the few existing tools for TR prioritization—SISTR—is 
based on a population genetics framework [18]. It calculates a selection coefficient, 
which incorporates measures of mutation, genetic drift, and negative natural selec-
tion. While alleles that are negatively selected are predicted to be more deleterious, 
these values correlate with mutational constraint and are therefore subject to the 
same limitations. Additionally, SISTR was demonstrated for use in a complex genetic 
disorder, autism, whose underlying genetic etiology differs from those of rare Mende-
lian diseases [18].

Currently, there are no prioritization models built on labelled training data containing 
examples of both pathogenic and benign TRs. The challenge lies especially in the limited 
training data, considering there are only ~ 50 known pathogenic repeat expansion loci 
discovered to date [3]. To address this gap, we present RExPRT, a supervised machine 
learning-based Repeat Expansion Pathogenicity pRediction Tool. RExPRT is the first 
tool applicable for both early- and late-onset TR-driven rare monogenic diseases that 
can score and categorize TR loci as pathogenic and benign (Fig. 1).
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Results
Pathogenic TRs are enriched in regulatory regions and in specific areas within genes

We investigated whether known pathogenic TRs are enriched in any particu-
lar regions of the genome compared with matched TRs and all reference TRs. We 
found that pathogenic TRs are enriched in topologically associated domain (TAD) 
boundaries (odds ratio (OR) = 7.55; 95% confidence interval (CI) = [2.82, 17.37]; 
p = 9.66e−05), open regulatory regions (ORegAnno) (OR = 10.21; 95% CI = [5.09, 
21.56]; p = 1.70e−12), as well as SMC3 (OR = 32.34; 95% CI = [13.54, 69.56]; 
p = 7.46e−11) and RAD21 transcription factor binding sites (OR = 37.51; 95% 

Fig. 1 Methodology of RExPRT. RExPRT was trained on 40 known pathogenic TRs and 745 benign TRs that 
are commonly expanded in the 1000 Genomes Project controls. These TRs were annotated with features, 
which are used in a supervised statistical learning approach to classify TRs as pathogenic or benign. Seven 
different models were trained and validated using the LOOCV technique. Two models were selected and 
fine‑tuned to create an optimized ensemble method for ranking repeats. Twenty one pathogenic TRs and 83 
rare, benign TRs were used for testing RExPRT’s performance

Fig. 2 Genomic regions with enrichment of pathogenic TRs. a Odds ratios from Fisher’s exact tests for 
pathogenic TRs, matched TRs, and reference TRs in their intersection with TAD boundaries, open regulatory 
regions, SMC3 and RAD21 transcription factor binding sites, and eTRs. b Odds ratios from Fisher’s exact tests 
for pathogenic TRs and reference TRs in their intersection with different genic regions. c Odds ratios from 
Fisher’s exact tests for pathogenic TRs and reference TRs in their intersection with different exonic regions
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CI = [15.71, 80.70]; p = 2.06e−11) (Fig.  2a). Furthermore, pathogenic TRs are also 
more likely to be classified as expression TRs (eTRs) (OR = 294.52, 95% CI = [99.81, 
732.38]; p = 1.94e−13), which are repeats whose length has been reported to be 
directly associated with transcript levels of the respective gene [2].

Pathogenic TRs are also enriched in 3′UTRs (OR = 7.27; 95% CI [1.43, 22.97]; 
p = 9.79e−03), promoters (OR = 24.41; 95% CI = [12.24, 47.76]; p = 4.25e−16), 5′UTRs 
(OR = 73.20; 95% CI = [31.90, 153.71]; p = 2.75e−15), and exons (OR = 86.15; 95% 
CI = [41.10, 197.73]; p < 2.2e−16) while we did not find any significant enrichment in 
introns (OR = 0.95; 95% CI = [0.47, 1.86]; p = 1) (Fig. 2b). Upon further exploration, 
we found that there is significantly more enrichment of pathogenic TRs in the first 
exon of genes (OR = 113.60; 95% CI = [57.47, 223.43]; p < 2.2e−16) compared to the 
middle and last exons (Fig. 2c).

RExPRT achieves 99% accuracy using LOOCV

RExPRT is an ensemble method combining the two best performing models based 
on the LOOCV results: SVM and XGB. It excels in its low false positive rate (0.38%) 
while still attaining an excellent recall of 90% (Fig.  3a, b). This means we have a 
good balance between precision (92.31%) and recall, resulting in an F1 score of 0.91 
(Fig. 3b). The corresponding ROC curve in Fig. 3c highlights RExPRT’s prowess as 
evidenced by a high AUROC value of 0.97. While ROC curves are a standard way 
to present machine learning results, a PRC is more informative with an imbalanced 
dataset. The PRC curve is also robust (AUPRC = 0.92) and illustrates the fine balance 
between our precision and recall rates (Fig. 3d). Since pathogenic TRs compose [5%] 
of the dataset, an AUPRC value of [0.05] represents random guessing performance. 
Therefore, RExPRT’s performance is considerably better than random guessing. Fig-
ure 3 e and f represent the results of feature or permutation importance analyses for 
each of the two models. We find that both models are extremely reliant on whether 
the TR is in an exon or 5′UTR. The SVM model utilizes pLi and LOEUF scores, 
and percentage calculations of nucleotides within the TR motifs. On the other hand, 
XGB applies the S2SNet topological indices calculations for its predictions (Fig. 3e, 
f ). The two models complement one another, as together they boost the overall per-
formance of RExPRT.

RExPRT misclassifies only four pathogenic TRs as benign: RFC1, FXN, CNBP, 
and ATXN10. Interestingly, all four of these TRs are in intronic regions within their 
respective genes. None of them overlap TAD boundaries, RAD21 binding sites, 
or open regulatory regions and are not characterized as eTRs. They are also not 
in 3′UTRs or 5′UTRs, nor in promoters except for CNBP. Their GERP scores are 
extremely close to 0 (range = 0–0.039), but the average GERP score for TRs classified 
as true positives is 0.67. The average GERP score for true negative TRs is − 0.10, and 
there is a statistically significant difference between the two groups (p = 2.80e − 09) 
(Additional file 1: Fig. S1). The motifs for each of these TRs are unique within the 
group of pathogenic TRs in the training dataset but are found in the benign group. 
All these characteristics could explain why these four pathogenic TRs are misclassi-
fied as benign.
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RExPRT maintains a low false positive rate on the testing dataset

Next, we ran RExPRT on our testing dataset to assess its performance. The unseen data 
was comprised of 21 additional pathogenic TRs and 83 rare, benign TR expansions. We 
found that RExPRT maintained a low false positive rate (1.20%), while its recall reduced 
to 76.19% (Fig. 4a, b). Since our precision (94.12%) is better than our recall here, the F1 
score drops down to 0.84. The ROC curve maintains a steep slope, but its AUC value 
drops to 0.93 (Fig. 4c). The PRC demonstrates high performance despite the imbalanced 
dataset with an AUC value of 0.88 (Fig. 4d).

There are five pathogenic TRs in the testing dataset whose motifs are a variation of CGG. 
Since there are 12 such pathogenic TRs in the training dataset, there are ample examples 
for RExPRT to learn their correct classification. Indeed, RExPRT classified all five of these 
TRs with CGG motifs as pathogenic. An additional five pathogenic TRs are all intronic 

Fig. 3 Results from ensemble of SVM and XGB with LOOCV on training dataset. a Confusion matrix outlining 
the number of true positives, false positives, false negatives, and true negatives on the training set. b 
Calculations of the accuracy, precision, recall, and F1 scores. c The ROC curve for the ensemble model and 
its AUC value. d PRC curve for the ensemble model and its AUC value. e Permutation importance, indicating 
features that allow decision‑making in the SVM model and f the XGB model
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TTTCA expansions in different genes that cause various forms of familial adult myoclonic 
epilepsy (FAME). There are only two such examples in the training dataset, SAMD12 and 
DAB1, both of which are correctly classified by RExPRT during LOOCV. In the case of the 
five FAME loci in the testing dataset, YEATS2 is the only one that is correctly classified as 
pathogenic, but the XGB score for STARD7 is extremely close to the threshold for patho-
genicity with a probability of 0.49. Importantly, these loci are intronic and follow similar 
patterns in their characteristics as the pathogenic TRs in the training dataset that failed to 
be classified correctly. Finally, FGF14 is a newly discovered locus that is also intronic. It is 
unique in that it is commonly observed at sizes above 175 bp, and therefore could resem-
ble some of the common benign TRs in the training dataset.

Further validation by random splitting of dataset

To further demonstrate the sufficiency of our data and the reliability of our results, we 
conducted additional analyses. From our full dataset, we generated five separate training 
and testing datasets by random division. Application of the ensemble model resulted in 
an average precision of 89% and average recall of 85% (Additional file 1: Table S3). The 
corresponding mean values for the initial train/test split are 93 and 83%, extremely simi-
lar to those from the random split. This highlights the maintenance of robustness and 
high performance of our models across different circumstances.

RExPRT is able to correctly classify TR loci associated with late‑onset disorders

To compare RExPRT’s performance on early-onset and late-onset disorders, we created 
a scatterplot showing the correlation between the age of onset for repeat expansion dis-
eases, and the RExPRT pathogenicity score for the associated TR locus (Additional file 1: 

Fig. 4 Performance metrics for RExPRT on the testing dataset. a The confusion matrix results from running 
RExPRT on the testing dataset of 93 TRs. b Calculations of the accuracy, precision, recall, and F1 scores. c ROC 
curve and its AUC value. d PRC curve and its AUC value
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Fig. S2). This analysis revealed a week negative correlation between these two variables, 
with Spearman’s rho value of − 0.35. Notably, we observe that many late-onset disorders 
are correctly classified as pathogenic by RExPRT.

RExPRT identifies ~ 30,000 TRs in the reference genome that may be pathogenic 

if expanded

We ran RExPRT on ~ 800,000 TRs with motif lengths between 3 and 8 bp listed in the 
hg19 reference genome. This resulted in 29,613 TRs classified as pathogenic if expanded, 
67.45% of which are exonic, and 32.53% are intronic (Fig.  5a). Of the benign category, 
only 0.58% are exonic, and 53.89% are intronic, with the remaining being intergenic 
(Fig. 5b). Fisher’s exact tests demonstrate a clear enrichment for pathogenic TRs in exons 
(OR = 53.13; 95% CI = [51.78, 54.36]; p < 2.2e−16) (Fig. 5c). Such an observation is not sur-
prising, since expansions in coding regions could alter the structure of the protein. More 
than half of the TRs predicted as pathogenic are in promoters (24.95%), 3′UTRs (27.56%), 
or 5′UTRs (13.02%), while only ~ 3% of the benign TRs fall within these regions (Fig. 5d). 
Fisher’s exact tests confirm an enrichment for pathogenic TRs in promoters (OR = 7.33; 
95% CI = [7.13, 7.54]; p < 2.2e−16), 3′UTRs (OR = 49.11; 95% CI = [47.65, 50.62]; 
p < 2.2e−16), and 5′UTRs (OR = 45.08; 95% CI = [43.56, 46.74]; p < 2.2e−16) (Fig. 5e).

We find a greater number of pathogenic TRs overlapping open regulatory regions 
(35.47%), TAD boundaries (5.22%), RAD21 transcription factor binding sites (4.59%), 
and being classified as eTRs (0.76%), compared with benign TRs (Fig. 5f ). Fisher’s exact 
tests demonstrate enrichment of pathogenic TRs in TAD boundaries (OR = 2.50; 95% 
CI = [2.34, 2.66]; p < 2.2e−16) and RAD21 binding sites (OR = 9.16; 95% CI [8.71, 9.63]; 
p < 2.2e−16), and in open regulatory regions (OR = 3.30; 95% CI = [3.22, 3.38]; p < 2.2e−16). 
Expression TRs are found in both groups, since these are a subset of the larger group of 
reference repeats (Fig. 5g).

Next, we removed all intergenic TRs from our pathogenic and benign groups and 
investigated gene expression. We found that 36.71% of pathogenic TRs are expressed in 

Fig. 5 Characterization of ~ 800,000 reference TRs analyzed by RExPRT. a TRs in the reference genome 
that are predicted pathogenic, and their distribution among exonic, intronic, and intergenic categories. b 
TRs in the reference genome that are predicted benign, and their distribution among exonic, intronic, and 
intergenic categories. c Odds ratios for pathogenic and benign TRs in their intersection with exonic, intronic, 
and intergenic regions of the genome, notably showing an enrichment of pathogenic TRs in exons. d 
Distribution of pathogenic and benign TRs in promoters, 3′UTRs, and 5′UTRs. e Odds ratios for pathogenic 
and benign TRs demonstrating an enrichment of pathogenic TRs in promoters, 3′UTRs, and 5′UTRs. f 
Distribution of pathogenic and benign TRs in open regulatory regions, TAD boundaries, RAD21 transcription 
factor binding sites, and as eTRs. g Odds ratios for pathogenic and benign TRs demonstrating an enrichment 
of pathogenic TRs in open regulatory regions, TAD boundaries, RAD21 transcription factor binding sites, and 
eTRs. h TRs in genic regions that are predicted to be pathogenic, and their tissue expression. i TRs in genic 
regions that are predicted to be benign, and their tissue expression. j Odds ratios for pathogenic and benign 
TRs in their tissue distributions demonstrating an enrichment for pathogenic TRs in nervous system tissues. 
k Distribution of pathogenic and benign TRs in OMIM disease genes, dominant disease genes, recessive 
disease genes, and ataxia genes. l Odds ratios for pathogenic and benign TRs demonstrating an enrichment 
of pathogenic TRs in OMIM disease genes, dominant genes, and ataxia genes. m Distribution of pathogenic 
and benign TRs with known repeat expansion disorder disease motifs, pure GC motifs, polyglutamine (polyQ) 
motifs, and polyalanine (polyA) motifs. n Odds ratios for pathogenic and benign TRs demonstrating an 
enrichment of pathogenic TRs with known repeat expansion disease motifs, pure GC motifs, polyQ motifs, 
and polyA motifs

(See figure on next page.)
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nervous system tissues, with 57.38% being expressed in other tissues (Fig.  5h). In the 
benign category, 28.57% are expressed in nervous system tissues, and 60.74% in other 
tissues (Fig. 5i). Fisher’s exact tests demonstrated an enrichment of pathogenic TRs in 
nervous system tissues (OR = 1.41; 95% CI = [1.34, 1.49]; p < 2.2e−16) (Fig. 5j).

Pathogenic TRs occur at similar rates compared to benign TRs in OMIM disease genes 
(21.08%), dominant disease genes (11.20%), recessive disease genes (11.84%), and ataxia 
genes (8.14%) (Fig. 5k). However, Fisher’s exact tests demonstrate a slight enrichment of 
pathogenic TRs in OMIM disease genes (OR = 1.13; 95% CI = [1.07, 1.20]; p = 3.20e−05), 
as well as in dominant genes specifically (OR = 1.26; 95% CI = [1.15, 1.37]; p = 1.10e−07) 
and ataxia genes (OR = 1.14; 95% CI = [1.04, 1.25]; p = 3.76e−03), but not in recessive 
genes (OR = 1.04; 95% CI = [0.97, 1.11]; p = 0.32) (Fig. 5l).

Fig. 5 (See legend on previous page.)
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Upon exploring the motifs for TRs in each group, we found that pathogenic TRs have 
a greater percentage of known repeat expansion disease motifs (23.37%), GC motifs 
(13.61%), polyQ motifs (12.52%), and polyA motifs (20.71%) compared to benign TRs 
(Fig. 5m). Fisher’s exact tests demonstrated that pathogenic TRs are enriched in disease 
motifs (OR = 5.45; 95% CI = [4.12, 7.522), pure GC motifs (OR = 32.56; 95% CI = [31.08, 
34.10]; p < 2.2e−16), polyQ motifs (OR = 4.35; 95% CI = [3.63, 5.24]; p < 2.2e−16), and 
polyA motifs (OR = 14.83; 95% CI = [11.73, 18.99]; p < 2.2e−16) (Fig. 5n).

RExPRT identifies several interesting candidate genes in the Undiagnosed Diseases 

Network (UDN) cohort data

We processed 2982 genomes from the UDN through the outlier pipeline described in 
“Materials and methods” that detects rare, repeat expansions in each case. This resulted 
in 449 candidate TRs, or rare, genic TRs that originate from a reference repeat locus. 
Of these, 23 genes had TRs that were predicted as pathogenic by RExPRT. Ten of these 
are already known pathogenic sites, which leaves a total of 13 novel strong candidates 
for further investigation. More specifically, only three of these are observed in multiple 
affected patients in a heterozygous state; FAM193B, FRA10AC1, and CLEC2B.

Interestingly, the FAM193B candidate was found in two affected siblings, both with 
oculopharyngodistal myopathy (OPDM). Notably, this disorder has already been 
linked to expansions in four other genes: LRP12 [19], GIPC1 [20], NOTCH2NLC [21], 
and RILPL1 [22]. All these expansions are composed of a CGG motif and occur in the 
5′UTR of their respective gene. The same pattern is observed with the TR we found in 
FAM193B, making it a strong novel candidate variant for the phenotype. The heterozy-
gous expansion was confirmed in the affected siblings using Oxford Nanopore long-read 
sequencing, but we are lacking confirmation in additional families. Further investigation 
into the pathogenicity and mechanism of disease of the expanded TR is underway.

The FRA10AC1 locus has been previously described as likely benign for a phenotype 
of intellectual disability. The authors concluded that the expansion may be pathogenic 
only in a homozygous state since methylation of the CGG repeat was observed in a sin-
gle affected patient and carrier [23]. However, it may be premature to draw this conclu-
sion since specific repeat sizes were not measured, nor were methylation levels assessed 
in a cohort of individuals.

The CLEC2B candidate TR was observed in two patients with unsteady gait. The first 
patient has been partially diagnosed with hearing loss, but this does not explain their 
symptoms of hypotonia, seizures, and unsteady gait. The second patient has muscle 
weakness and atrophy, as well as unsteady gait.

Discussion
We built RExPRT to address the lack of available tools for assessing the pathogenicity of 
repeats. Our previous data demonstrated that rare repeat expansions are often found in 
healthy controls [8], which indicates that simply selecting TR expansions by allele fre-
quency is not sufficient to determine pathogenicity. RExPRT incorporates information 
on the genetic architecture of a TR locus, such as its proximity to regulatory regions, 
TAD boundaries, and evolutionary constraints. It further includes information on gene 
expression and the DNA motif a TR is composed of. These features enable RExPRT to 
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predict TR pathogenicity with an accuracy of 96.67%. RExPRT excels at having a robust 
precision due to its low false positive rate. However, its limitations lie in its recall which 
averages at 83.10%. In the field of Mendelian discovery genetics, the optimization of pre-
cision is preferable to avoid a long list of candidates with many false positive TR expan-
sions that require costly, time-consuming, and labor-intensive experimental validation.

Nonetheless, future versions of RExPRT should focus on improving the recall of TRs 
that are intronic, require motif changes, and are recessive. A major limitation comes 
from the general paucity of pathogenic TRs to train on, particularly TRs that are reces-
sive, intronic, and require motif changes. Statistical learning approaches like the one 
employed in this study are inherently dependant on existing knowledge and identifi-
cation of patterns that align with known data. In the future, by providing the machine 
learning algorithms with a more comprehensive set of examples to learn from, its per-
formance will likely increase. Additionally, the incorporation of features that are more 
informative for these problematic TRs could be considered. Finally, since different loci 
will have different size thresholds for pathogenicity, integration of more accurate geno-
typing data from long-read sequencing technology may enable future versions of REx-
PRT to suggest minimum thresholds.

Applying RExPRT to ~ 800,000 reference TR loci, we found that ~ 30,000 were classi-
fied as pathogenic. It is important to note here that realistically, many of these TRs will 
never be observed as expanded because they are in fact stable for molecular reasons or 
affect essential genes or genomic regions that are embryonic lethal. Our results dem-
onstrate that pathogenic TRs, according to RExPRT, are enriched in exons, promoters, 
3′UTRs, 5′UTRs, TAD boundaries, RAD21 binding sites, eTRs, and genes expressed 
in the nervous system. Pathogenic TRs are also enriched in disease genes, particularly 
dominantly inherited genes, and ataxia genes. It is important to note that many repeat 
expansion disorders are multifaceted in their mechanism of action, and often involve 
both gain and loss of function effects. Considering many repeat expansion diseases pre-
sent with ataxia as a primary phenotype, the enrichment in ataxia genes is a particularly 
interesting observation. Not surprisingly, our predicted pathogenic TRs are enriched 
in known disease motifs, including polyQ and polyA. If these TRs are found to be 
expanded in patients with phenotypes similar to known diseases with the same motifs, 
they would be extremely strong candidates. FAM193B is one such example; we found 
the CGG expansion in a family with OPMD, a disease already associated with four other 
CGG expansions in different genes [19–22]. Pure GC-rich motifs seem to be particu-
larly enriched in the pathogenic group, even in the training and testing datasets. These 
regions may be associated with mechanisms that make them pathogenic upon expan-
sion. While we identified several compelling candidate repeat expansions in the UDN 
cohort, it is essential to highlight that the mean age of onset in the UDN is 11 years ± 18. 
It is therefore plausible that other cohorts specifically focused on late-onset disorders 
could uncover additional expansions associated with such conditions.

The limitations of our study are primarily attributed to our utilization of a small 
and imbalanced dataset, a common challenge encountered in the realm of biological 
research. Specifically, our set of known pathogenic expansions was limited to a total 
of 62 TRs. Moreover, we were compelled to rely on certain assumptions pertaining to 
our benign TRs datasets. These assumptions were based on the premise that frequently 
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occurring large TRs are likely benign and that rare expansions observed in individuals 
diagnosed with Mendelian disorders can also be considered benign. Furthermore, since 
these TRs were selected from short-read sequencing data, which may not accurately 
genotype large repeats, a TR was considered large or expanded if its length exceeded the 
read length (> 175 bp). To mitigate the impact of these limitations, our research meth-
odology incorporated several measures. We employed a leave-one-out cross validation 
approach and used a diverse array of performance metrics to comprehensively evalu-
ate the model’s effectiveness. Importantly, we opted against downsampling our already 
limited dataset or artificially augmenting it by generating synthetic datapoints. This 
decision was made to preserve the integrity of this foundational study and prevent the 
introduction of artificial elements.

Conclusion
RExPRT has established the possibility of using machine learning to classify repeat 
expansion variation. Our work lays the groundwork for similar tools that can be built in 
the future, mitigating some of its limitations.

Materials and methods
Identification of significant data features

To select features that may be relevant for classifying TR loci as pathogenic or benign, 
we downloaded 30 different annotation datasets from a variety of sources including 
UCSC’s Table Browser, PsychENCODE, and relevant publications (Additional file  1: 
Table S1). We converted all dataset files into BED format. First, we created a list of 40 
known pathogenic TRs which are listed as represented in the training dataset in Table 1. 
These TRs were included in initial analyses because they are well established in their 
causal link to disease [24–26]. Next, we obtained a dataset of all TRs cataloged in the ref-
erence genome from UCSC’s Table Browser (Simple Repeats table in hg19). Finally, we 
used this reference TR dataset to create a set of “matched TRs,” which included all TRs 
that have a disease motif and occur in the same genic region. For example, all TRs with a 
CAG motif that occur in exons would be part of the matched TR dataset.

The three TR datasets (pathogenic TRs, reference TRs, and matched TRs) were then 
compared individually with each of the 30 annotation files. When evaluating a feature, 
we employed bedtools fisher, which takes two sets of genomic intervals as input (e.g., 
pathogenic TRs and ORegAnno regions) and performs Fisher’s exact test, evaluating the 
amount of overlap between the two sets of intervals. This test is designed to determine 
whether there is a statistically significant nonrandom association between these two sets 
of genomic intervals. For the example provided, the presence of a significant p-value in 
Fisher’s exact test would indicate that the intervals in the pathogenic TRs are enriched 
in ORegAnno regions. It highlights that pathogenic TRs are more likely to occur in 
ORegAnno regions than expected by chance. Using bedtools fisher, we generated con-
tingency tables for all pairs of comparisons, then calculated 95% confidence intervals for 
the odds ratios using fisher.test() from the R stats package. If the 95% confidence interval 
of the odds ratio for an annotation’s intersection with pathogenic TRs was higher than 
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the 95% confidence interval for the matched TRs, the annotation feature was consid-
ered significantly enriched for pathogenic TRs. For genic annotation features (3′UTR, 
5′UTR, exon, intron, and promoter), as presented in Fig. 2b and c, the comparison was 
made between pathogenic TRs and reference TRs instead to avoid bias, since matched 
TRs already selected for certain genic regions.

Quantitative and multivalued features

We further selected additional annotations to test in our models (Additional file  1: 
Table S2). These included datasets with numerical values rather than the purely categorical 
datasets discussed above. For the features described above, TRs were given a value of 1 if 
the locus intersected with the annotation feature, and a value of 0 if there was no intersec-
tion. Quantitative datasets that we incorporated include pLI scores, LOEUF scores [27], 
and GERP scores [28]. The basis for including these is due to their significance in assessing 
pathogenicity of SNVs. We also created a feature that calculated the distance between the 
TR locus and the nearest gene, which was important for TRs that are intergenic.

Additionally, we incorporated information regarding the motif assuming a motif-phe-
notype correlation exists as proposed by Ishiura et al., where TRs with the same motifs, 
occurring in the same genic regions—albeit in different genes entirely—can produce the 
same phenotypes, suggesting TR motif may be important in its pathogenicity [29]. We 
calculated the percentages of each nucleotide in the motif and provided a GC content as 
well. For motif analysis, we also used the Sequence to Star Network (S2SNet) approach 
[30], which can transform any character-based sequence into a graph-based star-shaped 
complex network. We characterized the star network’s topological indices (Tis) with cal-
culations of different metrics, including its Shannon entropy, spectral moments, Harray 
number, Wiener index, Gutman topological index, Schultz topological index, Balaban 
distance connectivity index, Kier-Hall connectivity index, and Randic connectivity index 
[30]. S2SNet was downloaded from GitHub and run using the default parameters on the 
command line. For the input, we created a sequence of 10 repeating units of the TR motif.

Finally, we accounted for tissue expression of the genes that harbored TRs. We created 
a categorical feature reflecting the tissue where each gene had its maximum expression 
according to data from the GTEx Portal (date of accession: September 2021). The TR 
was then assigned to one of three possible categories: expressed in neurological tissue, 
expressed in another, or unknown expression.

Training and testing dataset creation and preprocessing

To train RExPRT, we used the same 40 known pathogenic loci that were assessed with 
Fisher’s exact tests above. Based on our previous work, [8] we used a set of 754 TR loci 
that were commonly expanded in the 1000 Genomes Project controls as negative train-
ing data. Specifically, we selected loci that were present at a size of > 175 bp in more than 
1% of the control samples. Since these TRs are commonly expanded, we presumed that 
they are benign. To annotate our TRs with the features discussed above, we created 
an input file containing the reference coordinates of the locus in hg19 (chromosome, 
start position, and end position), as well as the motif. After annotation with the features 
described, we used the OneHotEncoder from Scikit-Learn to preprocess the data. This 
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was used for categorical variables including GTEx, gene region (intron/exon/intergenic), 
and gene location (first/middle/last).

For the testing dataset, we used the 21 remaining pathogenic TR loci listed in Table 1. 
These were loci that were either discovered more recently, have only been found in a 
small number of affected families, or were previously missed [3]. For the negative loci in 
the test set, we used sites that can be presumed benign, but are still rare since RExPRT 
will have to distinguish between rare benign TRs and rare pathogenic TRs. We decided 
to use 83 rare TRs that were candidate TRs resulting from running the outlier pipeline 
described subsequently on our 102 positive controls. Since these genomes correspond to 
patients that were all diagnosed with a Mendelian repeat expansion disorder (caused by 
a single gene), other TR expansions in these genomes are presumed to be benign. There-
fore, we combined all the candidate TRs from these genomes and excluded all known 
pathogenic TRs to produce a list of 83 rare, benign TRs.

Model testing and assessment

We tested seven different statistical learning models: logistic regression, k-nearest neigh-
bors (KNN), support vector machine (SVM), random forest (RF), decision tree (DT), 
gradient boosted decision tree (XGB), and linear discriminant analysis (LDA). To evalu-
ate the performance of these models, we used a leave-one-out cross validation (LOOCV) 
approach. The LOOCV approach is useful here because we have a small positive training 
dataset of known pathogenic TRs. For models that are sensitive to scaling such as SVM, 
we used StandardScaler to standardize features by subtracting the mean and scaling by 
the standard deviation. To assess model performance, we obtained the confusion matrix 
and determined overall accuracy, precision, recall, and F1 metrics. We also produced 
receiver operating characteristic curve (ROC) and precision-recall curves (PRC) and 
calculated the area under the curve for each one. All coding was done in Python using 
Scikit-Learn. Formulas for calculations are listed below:

Feature selection

To further improve the accuracy of the two best performing models, we plotted a fea-
ture importance graph (XGB) and a permutation importance graph (SVM) to visual-
ize the significance of each feature to the models. We then removed features that were 
ranked low on the list, indicating that the feature was not adding significant value in the 

(1)Accuracy =
true positives (tp)+ true negatives (tn)

tp+ tn+ false positives fp + false negatives (fn)
× 100

(2)Precision =
tp

tp+ fp

(3)Recall =
tp

tp+ fn

(4)F1 =
2× Precision× Recall

Precision+ Recall
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decision-making process. We only removed features if they did not impact confusion 
matrix scores or the overall area under the ROC curve (AUROC) score.

Additionally, we created a correlation plot of all features and removed features that 
were highly correlated. In particular, correlated features that produced the highest 
AUROC value if retained were kept, ensuring that removal of features did not reduce the 
AUROC score.

Hyperparameter tuning

We used Scikit-Learn’s GridSearchCV to fine-tune the SVM and XGB models. For SVM, 
we tuned three parameters: C, gamma, and kernel. For XGB, we tuned two parameters: 
number of estimators, and max depth.

Ensemble method

To improve the overall recall of RExPRT, we devised an ensemble approach, which 
encompasses the two different models described above (SVM and XGB) [31]. The clas-
sification of the TR by the ensemble model will be pathogenic if either of the models pre-
dict likelihood of pathogenicity. The threshold is set to a standard 0.5 probability, above 
which the TR is classified as pathogenic. Furthermore, RExPRT also provides a confi-
dence score, which is the sum of the SVM and XGB scores. Figure 1 is a schematic illus-
trating the complete methodology and workflow of RExPRT, covering training, LOOCV, 
model selection, and predictions on the testing dataset.

Random splitting of data

We combined our initial training and testing datasets, then generated five separate train-
ing and testing datasets by random division (2/3 for training and 1/3 for testing). This 
was done using scikit-learn’s train_test_split() function. We then employed the ensemble 
model and generated summary metrics for these datasets.

Age of onset analysis

We calculated the midpoint of the observed age of onset ranges for each disorder. Next, 
we generated a scatter plot where each point corresponds to a disease-associated patho-
genic TR locus. The x-axis represents the midpoint of the observed range of onset ages 
for the associated disease (refer to Table 1), while the y-axis reflects the RExPRT ensem-
ble score. Subsequently, we calculated Spearman’s rank correlation coefficient (rho) for 
these two variables.

Analysis of ~ 800,000 reference repeats classified by RExPRT

We applied RExPRT to 836,545 TRs with motif lengths between 3 and 8 bp listed in the 
hg19 reference genome. We separated TRs into those classified as pathogenic by REx-
PRT and those classified as benign. We then characterized the genomic features of path-
ogenic TRs and benign TRs. For each feature, we created two plots:
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(a) Bar graph or pie chart: this represents the fraction of pathogenic or benign TRs that 
overlap a particular feature relative to the total number of TRs within the group.

(b) Odds ratio graph: this graph evaluates whether the observed percentage above is 
significantly deviated from what would be expected by random chance, considering 
the coverage of that feature within the entire genome.

Bedtools fisher was used to perform Fisher’s exact tests and calculate odds ratios for 
gene regions and regulatory regions as described above. For gene expression characteri-
zation, we excluded intergenic TRs. We then performed Fisher’s exact tests in R, first 
creating a contingency table for benign and pathogenic TRs. To do this, we calculated 
the number of genes that overlapped in the different sets of tissues with the two groups 
of classified TRs.

For analysis of Online Mendelian Inheritance in Man (OMIM) genes, we downloaded 
the list of genes from their website, and filtered for those that are Mendelian. For those 
genes that are dominant and recessive, we used this same dataset and filtered for the 
respective subtype. The ataxia gene list was obtained from GeneDx’s Ataxia Xpanded 
panel (https:// www. genedx. com/ tests/ detail/ ataxia- xpand ed- panel- 887). The odds ratios 
were obtained by calculating Fisher’s exact tests in R, as described for the gene expres-
sion data.

To analyze the disease motifs, we filtered all pathogenic and benign TRs for those 
which contained a known repeat expansion disease motif (Table 1). We included each 
window shift of the motif as well as its reverse complement. For pure GC motifs, we fil-
tered for TRs that only contained G and C in their motif. For polyglutamine (polyQ) and 
polyalanine (polyA) motifs, we began with only coding TRs in each group and filtered 
for the trinucleotides which code for these amino acids. Since we do not have the coding 
frame information, many of these will not actually code for glutamine or alanine, so this 
is an overestimation. Odds ratios were calculated in R, as described for the gene expres-
sion, and disease gene categories.

Undiagnosed Diseases Network (UDN) sample processing

Patient fastq files were aligned with Burrows–Wheeler aligner (BWA) to the GRCh38 
reference genome [32]. The resulting SAM files were converted to BAM files. Dupli-
cates were removed with Picard tools MarkDuplicates—https:// github. com/ broad insti 
tute/ picard. After sorting and reindexing, base quality score recalibration (BQSR) was 
performed using genome analysis toolkit (GATK) [33]. Next, ExpansionHunter Denovo 
(EHDn) was run on the resulting BAM files, using additional parameters “–min-unit-
len 3 –max-unit-len 8” [6]. The outputs of EHDn for each case was then aggregated 
separately to the outputs for the 2405 samples from the 1000 Genomes Project controls 
using EHDn’s helper scripts to allow depth normalization. Finally, the bed file output 
was expanded from its sparse encoding into a dense matrix format using R. This dense 
matrix of depth-normalized anchored in-repeat read (IRR) counts was used as the input 
for the outlier pipeline.

https://www.genedx.com/tests/detail/ataxia-xpanded-panel-887
https://github.com/broadinstitute/picard
https://github.com/broadinstitute/picard


Page 20 of 22Fazal et al. Genome Biology           (2024) 25:39 

Outlier pipeline

After sample processing, each case is represented by a dense matrix of TRs with 
anchored IRR counts for the case as well as all controls. Summary statistics were calcu-
lated for all TRs before filtering. For each TR, the outlier pipeline calculates a z-score, 
a kernel density estimation, and the percentage of controls with anchored IRR counts 
above that seen for the patient sample. The z-score for a case is a measure of their 
anchored IRR count in terms of the number of standard deviations above or below the 
mean anchored IRR counts observed in controls. The kernel density estimation gives 
the expected proportion of controls with anchored IRR counts above that of the patient, 
based on the density curve distribution of controls. All three measures give us an indica-
tion of the likelihood of the anchored IRR count for the patient sample being part of the 
distribution of controls. Downstream filtering selects for TRs with high z-scores, and 
low values for the other two measures. Specifically, the pipeline filters out TRs based on 
anchored IRR counts in patients (≥ 5), frequency of controls with at least 1 allele over 
175 bp (< 1%), genomic region the TR is located in (≠ intergenic), and whether the TR 
stems from a reference repeat locus or Alu element. Moreover, we also filter out a list 
of 126 false positive sites that were selected based on their presence in a heterogenous 
group of ~ 600 disease genomes and low occurrence in the 1000 Genomes controls. It is 
thought that since these variants are too common in a cohort of rare disease cases, they 
cannot be causal variants. The final output is a list of candidate TRs for each patient 
genome. Therefore, here we define candidate TRs as TRs that are rare and expanded in a 
patient, occur within or close to genes, and stem from a reference repeat locus.

Analysis of UDN genomes

We ran 2982 genomes (968 probands and affected/unaffected family members) from 
the UDN through our outlier pipeline, resulting in a list of candidate TRs that can be 
defined as rare, genic TR expansions that stem from a reference repeat locus. Since these 
TRs were called by ExpansionHunter Denovo (EHDn), they do not have precise locus 
specificity. EHDn provides coordinates of ~ 1–2000 bp surrounding the repeat. To run 
ExpansionHunter on these loci for determining repeat number and zygosity, we used 
ehdn-to-eh (https:// github. com/ franc esca- lucas/ ehdn- to- eh), which provides precise 
coordinates for the TR. These coordinates were then used to create the variant catalogs 
for running ExpansionHunter. Since the UDN genomes are aligned to hg38, we con-
verted the loci into hg19 using UCSC’s LiftOver tool [34],  and then ran RExPRT on the 
candidate TRs.

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s13059‑ 024‑ 03171‑4.

Additional file 1: Supplementary results. Further details on features, age of onset analysis, and outcome metrics 
from randomly splitting the dataset into training and testing datasets multiple times [38, 39]. Fig. S1. GERP scores for 
TRs in the training dataset. Fig. S2. Age of onset for known repeat expansion disorders and the maximum RExPRT 
pathogenicity score predicted for the associated TR locus. Table S1. Features tested for significant association with 
pathogenic TRs. Table S2. Quantitative and multivalued features tested in machine learning models. Table S3. Sum‑
mary metrics for randomly generated training and testing datasets.

Additional file 2.  Review history.

Acknowledgements
Not applicable

https://github.com/francesca-lucas/ehdn-to-eh
https://doi.org/10.1186/s13059-024-03171-4


Page 21 of 22Fazal et al. Genome Biology           (2024) 25:39  

Review history
The review history is available as Additional file 2.

Peer review information
Kevin Pang was the primary editor of this article and managed its editorial process and peer review in collaboration with 
the rest of the editorial team.

Authors’ contributions
S.F. designed and performed data processing and analyses and wrote the manuscript. M.C.D. processed data and 
provided guidance on the project. I.X. processed data and optimized scripts. S.N.K and S.S. processed UDN genomes. 
C.R., S.M., and M.W. assisted with FAM193B gene studies in UDN patients. E.D. and F.L. shared scripts for using Expansion‑
Hunter. S.W. provided guidance on machine learning methods. S.Z. and V.A.P. supervised the study and provided guid‑
ance on genetics, statistical analyses, and machine learning. All authors read and reviewed the manuscript and provided 
feedback.

Funding
This work was supported by the American Heart Association predoctoral fellowship awarded to S.F (#917392), the 
National Institute of Health in grants #2R01NS072248 and #3R01NS072248 to S.Z. and the Muscular Dystrophy 
Association.

Availability of data and materials
The data used in this paper were sourced from our previous publication in Scientific Data [8], as well as those mentioned 
in Additional file 1: Table S1. Additionally, our 120 positive controls dataset (EGAD00001003562) is available through the 
European Genome‑Phenome Archive  [35]. The Undiagnosed Diseases Network genomes are not publicly available and 
would require permissions for access. The main website of the UDN can be found at https:// undia gnosed. hms. harva rd. 
edu/ about‑ us/. Please refer to the contact details on the webpage for instructions on obtaining data access as well as 
further details on genomes.
The scripts to run RExPRT for any TR of interest, as well as the RExPRT scores for the reference TRs are available on 
Zenodo [36] as well as on GitHub at the following URL: https:// github. com/ Zuchn erLab/ RExPRT  [37] RExPRT is provided 
under the terms and conditions of the MIT open‑source license. We are also working towards implementation of RExPRT 
into GENESIS, a user‑friendly point and click analysis tool.

Declarations

Ethics approval and consent to participate
All participants consented for enrollment into the Undiagnosed Diseases Network.

Competing interests
E.D. contributed to this work while he was an employee of Illumina, Inc., a public company that develops and markets 
systems for genetic analysis. The rest of the authors declare that they have no competing interests.

Received: 3 April 2023   Accepted: 10 January 2024

References
 1. Wyner N, Barash M, McNevin D. Forensic autosomal short tandem repeats and their potential association with 

phenotype. Front Genet. 2020;11:884.
 2. Fotsing SF, et al. The impact of short tandem repeat variation on gene expression. Nat Genet. 2019;51:1652–9.
 3. Malik I, Kelley CP, Wang ET, Todd PK. Molecular mechanisms underlying nucleotide repeat expansion disorders. Nat 

Rev Mol Cell Biol. 2021;22:589–607.
 4. Online Mendelian Inheritance in Man OMIM®. McKusick‑Nathans Institute of Genetic Medicine, Johns Hopkins 

University (Baltimore MD) 2022. World Wide Web URL: https:// omim. org/.
 5. Dolzhenko E, et al. Detection of long repeat expansions from PCR‑free whole‑genome sequence data. Genome Res. 

2017;27:1895–903.
 6. Dolzhenko E, et al. ExpansionHunter Denovo: a computational method for locating known and novel repeat expan‑

sions in short‑read sequencing data. Genome Biol. 2020;21:102.
 7. Mousavi N, Shleizer‑Burko S, Yanicky R, Gymrek M. Profiling the genome‑wide landscape of tandem repeat expan‑

sions. Nucleic Acids Res. 2019;47:e90.
 8. Fazal S, et al. Large scale in silico characterization of repeat expansion variation in human genomes. Scientific Data. 

2020;7:294.
 9. Eilbeck K, Quinlan A, Yandell M. Settling the score: variant prioritization and Mendelian disease. Nat Rev Genet. 

2017;18:599–612.
 10. Dashti MJS, Gamieldien J. A practical guide to filtering and prioritizing genetic variants. Biotechniques. 

2018;62:18–30.
 11. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high‑throughput sequenc‑

ing data. Nucleic Acids Res. 2010;38: e164.
 12. McLaren W, et al. The ensembl variant effect predictor. Genome Biol. 2016;17:122.
 13. Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M. CADD: predicting the deleteriousness of variants through‑

out the human genome. Nucleic Acids Res. 2019;47:D886–94.

https://undiagnosed.hms.harvard.edu/about-us/
https://undiagnosed.hms.harvard.edu/about-us/
https://github.com/ZuchnerLab/RExPRT
https://omim.org/


Page 22 of 22Fazal et al. Genome Biology           (2024) 25:39 

 14. Sharo AG, Hu Z, Sunyaev SR, Brenner SE. StrVCTVRE: a supervised learning method to predict the pathogenicity of 
human genome structural variants. Am J Hum Genet. 2022;109:195–209.

 15. Yang Y, Wang X, Zhou D, Wei D‑Q, Peng S. SVPath: an accurate pipeline for predicting the pathogenicity of human 
exon structural variants. Brief Bioinform. 2022;23:bbac14.

 16. Althagafi A, et al. DeepSVP: integration of genotype and phenotype for structural variant prioritization using deep 
learning. Bioinformatics. 2022;38:1677–84.

 17. Gymrek M, Willems T, Reich D, Erlich Y. Interpreting short tandem repeat variations in humans using mutational 
constraint. Nat Genet. 2017;49:1495–501.

 18. Mitra I, et al. Patterns of de novo tandem repeat mutations and their role in autism. Nature. 2021;589:246–50.
 19. Ishiura H, et al. Noncoding CGG repeat expansions in neuronal intranuclear inclusion disease, oculopharyngodistal 

myopathy and an overlapping disease. Nat Genet. 2019;51:1222–32.
 20. Deng J, et al. Expansion of GGC repeat in GIPC1 is associated with oculopharyngodistal myopathy. Am J Hum 

Genet. 2020;106:793–804.
 21. Yu J, et al. The GGC repeat expansion in NOTCH2NLC is associated with oculopharyngodistal myopathy type 3. 

Brain. 2021;144:1819–32.
 22. Yu J, et al. The CGG repeat expansion in RILPL1 is associated with oculopharyngodistal myopathy type 4. Am J Hum 

Genet. 2022;109:533–41.
 23. Sarafidou T, et al. Folate‑sensitive fragile site FRA10A is due to an expansion of a CGG repeat in a novel gene, 

FRA10AC1, encoding a nuclear protein. Genomics. 2004;84:69–81.
 24. Bahlo M, et al. Recent advances in the detection of repeat expansions with short‑read next‑generation sequencing. 

F1000Research. 2018;7:736.
 25. Tang H, et al. Profiling of short‑tandem‑repeat disease alleles in 12,632 human whole genomes. Am J Hum Genet. 

2017;101:700–15.
 26. Wallace SE, Bean LJ. Resources for genetics professionals — genetic disorders caused by nucleotide repeat expan‑

sions and contractions. GeneReviews 2017.
 27. Karczewski KJ, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 

2020;581:434–43.
 28. Cooper GM, et al. Distribution and intensity of constraint in mammalian genomic sequence. Genome Res. 

2005;15:901–13.
 29. Ishiura H, Tsuji S. Advances in repeat expansion diseases and a new concept of repeat motif–phenotype correlation. 

Curr Opin Genet Dev. 2020;65:176–85.
 30. Munteanu CR, Magalhaes AL, Duardo‑Sanchez A, Pazos A. S2SNet: a tool for transforming characters and numeric 

sequences into star network topological indices in chemoinformatics, bioinformatics, biomedical, and social‑legal 
sciences. Curr Bioinform. 2013;8:429–37.

 31. Rokach L. Ensemble‑based classifiers. Artif Intell Rev. 2010;33:1–39.
 32. Li H, Durbin R. Fast and accurate short read alignment with burrows‑wheeler transform. Bioinformatics. 

2009;25:1754–60.
 33. Auwera GAV d. et al. From FastQ data to high‑confidence variant calls: the genome analysis toolkit best practices 

pipeline. Curr Protoc. 2018. https:// doi. org/ 10. 1002/ 04712 50953. bi047 12511 10s04 71250 943.
 34. Hinrichs AS, et al. The UCSC genome browser database: update 2006. Nucleic Acids Res. 2006;34:D590–8.
 35. Illumina ‑ Population and Medical Genomics Group. Whole genome sequence data from Illumina HiSeqX instru‑

ments. Dataset EGAD00001003562. Eur Genome‑Phenome Arch. 2017. https:// ega‑ archi ve. org/ datas ets/ EGAD0 
00010 03562

 36. Fazal S. ZuchnerLab/RExPRT: RExPRT‑v0.1.0. Zenodo. 2024. https:// doi. org/ 10. 5281/ zenodo. 10451 761
 37. Fazal, S. RExPRT: a machine learning tool to predict tandem repeat pathogenicity. Github https:// github. com/ Zuchn 

erLab/ RExPRT (2023).
 38. Chen Z, et al. Human‑lineage‑specific genomic elements are associated with neurodegenerative disease and APOE 

transcript usage. Nat Commun. 2021;12:2076.
 39. Sun JH, et al. Disease‑associated short tandem repeats co‑localize with chromatin domain boundaries. Cell. 

2018;175:224–38.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1002/0471250953.bi0471251110s0471250943
https://ega-archive.org/datasets/EGAD00001003562
https://ega-archive.org/datasets/EGAD00001003562
https://doi.org/10.5281/zenodo.10451761
https://github.com/ZuchnerLab/RExPRT
https://github.com/ZuchnerLab/RExPRT

	RExPRT: a machine learning tool to predict pathogenicity of tandem repeat loci
	Abstract 
	Background
	Results
	Pathogenic TRs are enriched in regulatory regions and in specific areas within genes
	RExPRT achieves 99% accuracy using LOOCV
	RExPRT maintains a low false positive rate on the testing dataset
	Further validation by random splitting of dataset
	RExPRT is able to correctly classify TR loci associated with late-onset disorders
	RExPRT identifies ~ 30,000 TRs in the reference genome that may be pathogenic if expanded
	RExPRT identifies several interesting candidate genes in the Undiagnosed Diseases Network (UDN) cohort data

	Discussion
	Conclusion
	Materials and methods
	Identification of significant data features
	Quantitative and multivalued features
	Training and testing dataset creation and preprocessing
	Model testing and assessment
	Feature selection
	Hyperparameter tuning
	Ensemble method
	Random splitting of data
	Age of onset analysis
	Analysis of ~ 800,000 reference repeats classified by RExPRT
	Undiagnosed Diseases Network (UDN) sample processing
	Outlier pipeline
	Analysis of UDN genomes

	Acknowledgements
	References


