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Abstract 

Background: Various laboratory-developed metabolomic methods lead to big chal-
lenges in inter-laboratory comparability and effective integration of diverse datasets.

Results: As part of the Quartet Project, we establish a publicly available suite of four 
metabolite reference materials derived from B lymphoblastoid cell lines from a fam-
ily of parents and monozygotic twin daughters. We generate comprehensive LC–
MS-based metabolomic data from the Quartet reference materials using targeted 
and untargeted strategies in different laboratories. The Quartet multi-sample-based 
signal-to-noise ratio enables objective assessment of the reliability of intra-batch 
and cross-batch metabolomics profiling in detecting intrinsic biological differences 
among the four groups of samples. Significant variations in the reliability of the metab-
olomics profiling are identified across laboratories. Importantly, ratio-based metabo-
lomics profiling, by scaling the absolute values of a study sample relative to those 
of a common reference sample, enables cross-laboratory quantitative data integration. 
Thus, we construct the ratio-based high-confidence reference datasets between two 
reference samples, providing “ground truth” for inter-laboratory accuracy assessment, 
which enables objective evaluation of quantitative metabolomics profiling using vari-
ous instruments and protocols.

Conclusions: Our study provides the community with rich resources and best 
practices for inter-laboratory proficiency tests and data integration, ensuring reliability 
of large-scale and longitudinal metabolomic studies.
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Background
Metabolomics is a powerful tool for discovering biomarkers that discriminate biological 
differences in metabolite abundances associated with disease diagnosis, prognosis, and 
treatment effects [1, 2]. However, reliably detecting such subtle biological differences is 
challenging due to technical variations introduced by various instruments and labora-
tory-developed protocols [3–7]. Moreover, in large metabolomics cohort studies, batch 
effects are inevitable when integrating datasets from multiple batches across laboratories 
and over long-term measurements [5, 8–10]. Thus, it is crucial to assure the reliability of 
each batch of metabolomic measurement as well as the integration of multiple batches 
of data in long-term or cross-laboratory studies so that the real signals (biological differ-
ences) can be distinguished from technical noises (unwanted variations) [11–14].

Publicly available reference materials (RMs) are indispensable for performance assess-
ment in current practices [15–21]. At present, metabolite RMs are primarily developed 
and distributed by the U.S. National Institute of Standards and Technology (NIST), cov-
ering many biospecimen types such as plasma, serum, urine, and liver [22–24]. These 
various types of RMs and corresponding reference datasets enable the assessment of 
metabolomics profiling performance in different senarios [25, 26]. However, there is a 
lack of renewable metabolite reference materials from cultured cell lines, a crucial sam-
ple type in metabolomics studies.

Quality control (QC) metrics for objective performance evaluation are critically 
important. Reproducibility is one of the most widely used QC metrics, as exemplified 
by correlations or coefficients of variation [27, 28]. It helps assess the level of unwanted 
variations introduced by the sample processing and detection procedures through 
repeated measurements of a common reference sample [29]. However, high reproduc-
ibility from repeated measurements of the same sample does not guarantee high reso-
lution in identifying inherent biological differences (i.e., signals) among various sample 
groups. Identification of differentially expressed metabolites and development of pre-
dictive models to classify different sample groups are the two major goals of quantita-
tive metabolomics profiling. Therefore, QC metrics pertinent to such research purposes 
are crucial to assessing the performance of metabolomics profiling [30, 31]. Accuracy is 
another important QC metric, which is assessed through comparison of the measured 
metabolite concentrations with the “ground truth” in the reference datasets [25]. How-
ever, to the best of our knowledge, it is unachievable to define untargeted metabolomic 
reference datasets, wherein the quantitatively measured values are usually calculated as 
the relative output of instrumental response, which is notoriously incomparable between 
batches, protocols, instruments, or laboratories. To ensure the accurate identification of 
biological differences in discovering clinical biomarkers, accuracy assessment of untar-
geted metabolomics quantification is essential. Therefore, the development of quality 
metrics and best practices for proficiency testing of a wide range of metabolomic tech-
nologies is urgently needed [32].

Reliable integration of large-scale metabolomic data is a prerequisite for robust bio-
marker discovery and validation. Even if the intra-batch data is of high quality, batch 
effects are everywhere in large-scale metabolomics studies. In-house QC samples are 
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widely used for long-term measurement within a single laboratory. Profiling QC samples 
along with study samples helps to assess the stability of measurement in each batch and 
to ensure efficient integration of multiple batches by removing batch effects introduced 
by unwanted variations over a time span [27, 33–38]. A pooled QC sample in the form 
of a mixture of the study samples has been widely used in this scenario, but it failed to 
ensure reliable data integration, mainly because the “pooled QC sample” is not identi-
cal across studies or across laboratories [35, 39, 40]. As a result, the lack of reliable data 
integration solutions hampers long-term, cross-laboratory, and cross-study exploration 
of new biological insights [32].

As part of the Quartet Project (chinese-quartet.org) for the quality control and data 
integration of multiomics profiling, we established the publicly available Quartet metab-
olite RMs and reference datasets. The Quartet metabolite RMs enabled the research 
purpose related QC metric, i.e., the multi-sample-based signal-to-noise ratio (SNR), for 
assessing the ability to discriminate the inherent biological differences among sample 
groups. In addition, we also demonstrated that ratio-based metabolomics profiling using 
common reference materials can enable long-term and cross-laboratory data integration 
in large-scale and multi-center metabolomic studies.

Results
Overview of the study design

In this study, we aim to provide the community with a suite of metabolite reference 
materials (RMs) and reference datasets for the inter-laboratory proficiency test  and 
integration. The Quartet metabolite RMs were prepared as part of the Quartet Project, 
in which matched reference materials of DNA, RNA, proteins, and metabolites were 
simultaneously manufactured from the same batch of cultured cells. Four immortalized 
B lymphoblastoid cell lines were derived from a Chinese quartet family, including the 
father (F7), mother (M8), and their monozygotic twin daughters (D5 and D6) (Fig. 1a). 
In order to make the reference materials homogeneous and stable for long-term usage, 
a large batch of cell pellets  (109 cells per cell line) were extracted simultaneously using 
a methanol to water (6:1) solution (Additional file 1: Fig. S1). Eleven external controls 
were then added to the cellular extracts at known amounts (Additional file 2: Table S1). 
The cellular extracts were aliquoted into 1000 vials per cell line and then vacuum frozen 
and dried. Each vial of the Quartet metabolite RM contains dried cellular metabolites 
extracted from approximately  106 cells, which are suitable for most liquid chromatogra-
phy  and mass spectrometry (LC–MS)-based metabolomics profiling. Additionally, the 
metabolite RMs were formulated as dried cellular extracts, so they are not suitable for 
assessing the pre-analytical steps such as cell extraction, but they are intended to evalu-
ate the performances of chromatography separation, mass spectrometry detection, and 
data processing steps.

For the inter-laboratory proficiency test of metabolomics profiling, we generated 
multi-laboratory datasets using untargeted and targeted strategies (Fig.  1b). Three 
replicates of each Quartet sample were measured within a batch in each laboratory. 
Each metabolomic profile has been developed independently using different LC-MS 
experimental methods as well as different data processing strategies (Additional file 2: 
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Table S2). Quantification for the targeted metabolomics was mostly carried out by rela-
tive metabolite abundance detected by multiple reaction monitoring (MRM), while 
one laboratory (T-L4) used an approach to calculate the metabolite concentration with 
standard calibration curves. Quantification for the untargeted metabolomic techniques 
was carried out using the relative metabolite abundances measured by precursor ions. 
For long-term stability monitoring of the Quartet metabolite RMs, three replicates of 
each Quartet sample were measured  every 1-3 months in T-L4 for 2 years.

High variabilities in the intra‑laboratory performance of metabolomics profiling

We first evaluated the qualitative and quantitative performance of each metabolomic 
profile using different instruments and protocols. The number of metabolites detected 
by each laboratory varied from 79 to 462 (Fig. 2a). Untargeted metabolomic strategies 
are usually regarded as a tool for profiling all metabolites present in a sample. However, 
there was no obvious advantage in the number of detected metabolites using untargeted 
strategies. For example, only 204 metabolites were detected in untargeted metabolomics 
profiling in U-L1, whereas 463 metabolites were detected in targeted metabolomics in 
T-L5. We also compared the number of detected metabolites using different filtering cri-
teria. The coefficient of variance (CV) was used to evaluate the reproducibility of tech-
nical replicates of the same sample, whereas the intraclass correlation coefficient (ICC) 
was a widely used reliability index in test–retest  scenarios. After filtration with com-
bined criteria of CV < 30% and ICC > 0.4, the percentages of detected metabolites ranged 
from 36 to 90%. A total of 402 metabolites were detected in U-L2 using an untargeted 

Fig. 1 Study overview. a Preparation of the Quartet metabolite reference materials. Four B lymphoblastoid 
cell lines (LCLs) of a family quartet including the father (F7), mother (M8), and monozygotic twin daughters 
(D5 and D6) were used for extracting metabolites. Eleven spike-ins were added to the cell extract 
and aliquoted into 1000 tubes per sample. b Data generation. Targeted (T) and untargeted (U)-based 
metabolomic datasets were generated in different laboratories for inter-laboratory proficiency tests. 
Long-term monitoring was conducted using a targeted strategy within a laboratory (T-L4) for 2 years
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strategy, but only 36% of them were retained after filtration (Fig. 2a). On the other side, 
304 metabolites were detected in U-L3, and 59% of them were retained after filtration 
(Fig. 2a).

The reproducibility of quantitative profiles was evaluated by the Pearson correlation 
coefficient (PCC) of pairs of technical replicates, while the similarity was evaluated by 
the PCC of pairs of different Quartet metabolite RMs. As shown in Fig. 2b, the PCC of 
technical replicates of D5 was high in all seven datasets, ranging from 0.989 to 0.999. 
However, the PCC between D5 and D6 was also high, ranging from 0.945 to 0.989 
(Fig. 2c). For example, the PCC of technical replicates of D5 in T-L4 was 0.999, while 
the PCC between D5 and D6 in the same laboratory was 0.989. It implicated that high 
reproducibility of technical replicates and high similarity between different sample 
groups were usually concurrent in the same measurement (Fig. 2d). In addition, there 

Fig. 2 High variabilities in the performance of metabolomics profiling among laboratories. a Numbers 
of detected metabolites in each metabolomic measurement using different filtering criteria, including no 
filtering (all detected metabolites in any of the samples), no missing (metabolites detected in all 12 samples); 
CV (coefficient of variance) < 30%; ICC (intraclass correlation coefficient) > 0.04; CV < 30% and ICC > 0.04. b 
Reprehensive scatter plots of technical replicates (D5-1 and D5-2). c Reprehensive scatter plots of different 
samples (D5-1 and D6-1). Number in parentheses represent corresponding Pearson correlation coefficient 
(PCC). d PCC of pairs of technical replicates and of different Quartet samples in each measurement. e 
Negative correlation between reproducibility (PCC of technical replicates) and discriminability (1-PCC of 
different samples). f Differentially abundant metabolites (DAMs) analysis for three sample pairs. Volcano 
plots were used to display the magnitude of the fold change versus the statistical significance level for each 
measurement. g Numbers of upregulated or downregulated DAMs identified for three sample pairs in each 
measurement
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was a negative correlation between the PCC of technical replicates and the 1-PCC of 
different sample groups (Fig. 2e). These results demonstrated that high reproducibil-
ity of technical replicates does not guarantee high resolution in identifying inherent 
biological differences (discriminability) between different sample groups.

One of the main objectives of metabolomic studies utilizing various protocols is the 
identification of differentially abundant metabolites (DAMs) for potential biomarker 
discovery. However, when comparing the DAMs between the same sample pairs, we 
observed large differences in both the fold changes and statistical significance levels 
(Fig.  2f ). The number of DAMs ranged from 12 to 125 in D5/D6, F7/D6, and M8/D6 
comparisons (Fig. 2g). Two of the laboratories (T-L5 and U-L3) identified higher num-
bers of DAMs, though the differential abundance patterns varied. Most of the metabo-
lites were more abundant in D6 than in D5, F7, and M8 at T-L5, but the pattern was 
reversed at U-L3. These results revealed that high variabilities were observed in DAMs 
among different laboratories; hence, it cannot be determined which profiling method is 
of better quality.

Quartet‑based signal‑to‑noise ratio enables intra‑laboratory reliability assessment

Based on the Quartet multi-sample design, we designed a signal-to-noise ratio (SNR) 
metric to measure the ability of metabolomics profiling to discriminate biological dif-
ferences among different sample groups. SNR is calculated as the ratio of the averaged 
distance between different Quartet samples (“signal”) to the averaged distances between 
technical replicates for each sample (“noise”) on a 2D-PCA scatter plot (Fig. 3c) [41, 42], 
where a higher SNR indicates better quality. As expected, for a measurement to be con-
sidered reliable, the sample-to-sample differences should be larger than the variation of 
technical replicates.

We computed the SNR for each batch of metabolomics profiling (4 samples × 3 rep-
licates) using metabolites detected in all 12 samples within the batch. As shown in the 
PCA, the first two principal components demonstrated clear separation among the four 
reference samples in good-quality metabolomics profiling data but not in poor-quality 
data (Fig.  3a). Astonishingly, high variabilities in data quality were observed in these 
metabolomic datasets (range of 4.6–27.1). After filtering (CV < 30% and ICC > 0.4) to 
retain the reliably detectable metabolites, the SNRs were slightly improved, but the rela-
tive quality ranking of batches did not change (Fig. 3b). Figure 3d illustrates the SNRs 
calculated with metabolites filtered with different criteria, indicating the robustness of 
SNRs in evaluating laboratory-specific reliability with or without filtration.

We also ranked the quality of the metabolomics profiling datasets generated in differ-
ent laboratories using various QC metrics, including the percentages of retained metab-
olites using different filtering criteria (CV < 30%; ICC > 0.4; CV < 30% and ICC > 0.4), PCC 
of technical replicates, and SNR calculated with or without filtering. As shown in Fig. 3e, 
the inter-laboratory data quality rankings were not entirely concordant using different 
QC metrics. T-L4 performed well by PCC of technical replicates but did not perform 
well by SNR. The overall concordances among these QC results were also evaluated 
in Fig. 3f. These results suggested that the correlation of replicates from one reference 
material did not have enough resolution power to identify the multi-sample differences. 
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The Quartet multi-sample-based SNR provided an objective QC metric for inter-labora-
tory reliability assessment for a wide range of metabolomic technologies.

Ratio‑based metabolomics profiling enables quantitative data integration 

across laboratories

To evaluate the reliability of metabolomic data integration, we examined the qualitative 
and quantitative performance of the integrated data generated in different laboratories. 

Fig. 3 Quartet-based signal-to-noise ratio enables intra-laboratory reliability assessment. a, b Reliability 
assessment using signal-to-noise ratio (SNR) in different laboratories with (a) or without (b) filtration. The 
results were visualized by PCA plots. The number of features used and the calculated SNR were shown 
above each plot. c Schematic diagram of SNR calculated as the ratio of the averaged distance between 
different Quartet samples (“signal”) to the averaged distances between technical replicates for each 
sample (“noise”) on a 2D-PCA scatter plot. d SNRs calculated with metabolites filtered with different 
criteria across all laboratories. e The inter-laboratory data quality was ranked using different QC metrics, 
including the percentages of retained metabolites using different filtering criteria (CV < 30%; ICC > 0.4; 
CV < 30% and ICC > 0.4), PCC of technical replicates, and SNR calculated with or without filtering. f The 
concordances (Spearman Rho) of data quality ranking using different QC metrics



Page 8 of 21Zhang et al. Genome Biology           (2024) 25:34 

We first evaluated the qualitative concordance of detected metabolites among these 
datasets. Only six metabolites were reported in each of the seven metabolomic data-
sets, and the majority of detected metabolites were reported by just one laboratory 
(Fig.  4a). The intersection size of detected metabolites among different laboratories is 
shown in Additional file 1: Fig. S2, and there were only 58 metabolites detected by all 
three global untargeted metabolomics profiling. Selectivity bias of detected metabolites 
was expected because the laboratory-developed metabolomics profiling approaches use 

Fig. 4 Ratio-based metabolomics profiling enables quantitative data integration across laboratories. a 
Qualitative concordance of metabolite identification. The numbers of metabolites detected in different 
batches of metabolomic datasets were shown. b, c Pearson correlation coefficients (PCCs) of pairs of 
technical replicates (b) and of different Quartet samples (c) were compared using quantitative profiles at 
absolute abundance level or ratio to D6 level. d, e Cross-lab data integration was visualized by hierarchical 
cluster analysis (HCA) at the absolute abundance level (d) and ratio to D6 level (e). f, g Cross-lab data 
integration assessment using signal-to-noise ratio (SNR) by principal component analysis (PCA) at absolute 
abundance level (f) and ratio to D6 level (g)
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different chromatography separation, mass spectrometry detection, data processing, and 
metabolite identification methods. However, our results objectively revealed the poor 
concordance of metabolite detections across different laboratories using common refer-
ence materials.

To further evaluate the quantitative reliability of integrating six batches of metabo-
lomic datasets at the absolute abundance level, we first compared the differences 
between PCCs of technical replicates and those between different sample groups. How-
ever, the differences between the two types of PCCs were not significant (Fig. 4b). Hier-
archical cluster analysis (HCA) and principal component analysis (PCA) were also used 
to visualize the magnitude of technical variation in data integration at the absolute abun-
dance level. The integrated metabolomic data were first clustered by laboratory but not 
by different sample groups (Fig. 4d). Similar results were demonstrated in PCA (Fig. 4f ), 
where the first principal component (PC1) clearly showed the dramatic differences 
between the six batches of data but not between the distinct Quartet samples.

Importantly, significant differences between PCCs of technical replicates and those 
of different samples were discovered after converting the absolute abundance data to 
a ratio scale relative to the same reference material (Here, D6) in each batch (Fig. 4c). 
HCA and PCA plots showed similar results (Fig. 4e, g). After the ratio-based scaling, the 
metabolomics profiling relative to D6 first clustered by the four different Quartet sample 
groups. PCA plots showed clear separation of the four groups of reference samples (D5, 
D6, F7, and M8), and the drastic batch effects at the absolute abundance level largely 
disappeared. Our results showed that batch effects were prevalent in cross-laboratory 
metabolomic data integration at the absolute abundance level, presenting a real chal-
lenge for large-scale integrative analyses of multi-center data. Fortunately, converting 
the absolute abundance to a ratio-based metabolomics profiling using common refer-
ence materials enables reliable data integration.

Ratio‑based metabolomics profiling improves quantitative data integration in long‑term 

measurement

In order to evaluate the long-term stability of metabolomics profiling, we generated a 
total of 15 batches of Quartet metabolomic data in T-L4 over a period of 2 years. T-L4 
metabolomics profiling uses a standard calibration curve to quantify the concentra-
tions of each metabolite, which is regarded as one of the more reliable quantification 
approaches. We first evaluated the qualitative concordance of detected metabolites in 
long-term measurements. We found that only 100 out of 148 metabolites (67.6%) were 
detected in all 15 batches of datasets (Fig. 5a). Thus, the stability of metabolite identifica-
tion and reporting was still not ideal, even for the absolute quantification metabolomics 
strategy.

To further evaluate the quantitative stability of long-term metabolomic measurement 
at the absolute concentration level, we first compared the differences between PCCs of 
technical replicates and those between different reference sample groups. There were 
significant differences between the two types of PCCs (Fig. 5b). HCA and PCA were also 
used to visualize the magnitude of technical variation in data integration at the absolute 
concentration level. Most of the samples in the integrated long-term metabolomic data-
set were clustered into different sample groups, but several M8 samples misclustered 
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into the F7 sample group (Fig. 5d, f ). In addition, the Quartet signal-to-noise ratio was 
calculated to be 13.3 for the integrated dataset, indicating a good separation among dif-
ferent Quartet samples.

After converting the absolute concentration values to a ratio scale relative to those of 
the same reference material (D6) on a metabolite-by-metabolite basis per batch, the dif-
ference between PCCs of technical replicates and PCCs of different samples increased 
dramatically from 0.009 (Fig.  5b) to 0.532 (Fig.  5c). Similar results were observed by 
HCA and PCA plots (Fig. 5e and g). After the ratio-based scaling, all the samples clus-
tered correctly into known Quartet sample groups (Fig. 5e). The Quartet signal-to-noise 

Fig. 5 Ratio-based metabolomics profiling improves quantitative data integration in long-term monitoring. a 
Qualitative concordance of metabolite identification. The numbers of metabolites detected in each batch of 
metabolomic datasets were shown. b, c Pearson correlation coefficients (PCCs) of pairs of technical replicates 
and of different Quartet samples were compared using quantitative profiles at the absolute abundance level 
(b) or ratio to D6 level (c). d, e Cross-batch data integration was visualized by hierarchical cluster analysis 
(HCA) at absolute abundance level (d) and ratio to D6 level (e). e, f Cross-batch data integration assessment 
using signal-to-noise ratio (SNR) by principal component analysis (PCA) at absolute abundance level (f) and 
ratio to D6 level (g)
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ratio was improved slightly from 13.3 to 13.5 (Fig. 5g). Using the Levey-Jennings plot, 
we continuously monitored each metabolite measurement across runs (Additional file 1: 
Fig. S3). There were 57, 14, and 10 metabolites that deviated from the mean beyond ± 3 
SD for 3 RMs (D5, F7, and M8), demonstrating evidence of systematic errors (Additional 
file 1: Fig. S3, up). After ratio-based scaling to D6 sample, the number of systematically 
deviated metabolites decreased to 8, 11, and 15 for the three sample pairs (D5/D6, F7/
D6, and M8/D6), respectively (Additional file  1: Fig. S3, down). These results showed 
that the reliability of long-term metabolomic measurement can also be improved by 
converting the absolute concentration values to a ratio scale using common reference 
materials.

Construction of ratio‑based Quartet metabolite reference datasets for accuracy assessment

In order to provide “ground truth” reference datasets for evaluating the accuracy of 
metabolomic quantification, we constructed ratio-based metabolomic reference data-
sets for three sample pairs (D5/D6, F7/D6, and M8/D6). The consensus integration pro-
cess using seven metabolomic datasets from various laboratories is shown in Fig.  6a. 
The metabolites detected in all three replicates in each dataset were defined as detected 
metabolites. Next, the union of the detected metabolites in all the seven datasets was 
939, 944, 948, and 948 for the four reference materials (D5, D6, F7, and M8, respec-
tively). Secondly, 210 reproducibly detectable metabolites were retained in all four refer-
ence samples in more than one dataset. Thirdly, ratio-based values for each sample pair 

Fig. 6 Construction of ratio-based Quartet metabolite reference datasets. a The workflow of integration 
of ratio-based metabolite reference datasets. b The number of metabolites in high-confidence reference 
datasets annotated into 10 classes according to the HMDB database. c The distribution histogram of fold 
changes of the high-confidence reference metabolites for three sample pairs
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(D5/D6, F7/D6, or M8/D6) were determined using DAMs with p < 0.05 in more than one 
dataset. Finally, the geometric mean of fold changes estimated from each replicate of 
more than one dataset was defined as the high-confidence ratio-based reference value 
for each metabolite. Each sample pair (D5/D6, F7/D6, and M8/D6) had 47, 44, and 51 
high-confidence metabolites in the first release of the Quartet ratio-based metabolomic 
datasets (v.1.0) after these steps (Additional file 2: Tables S3-S5), respectively.

According to the HMDB database (https:// hmdb. ca), the union of high-confidence 
reference metabolites (92) for the three sample pairs was categorized into 10 classes 
(Fig.  6b). With 36 metabolites (39.1%) included in the reference datasets, carboxylic 
acids and derivatives were the most abundant class. The ratio-based reference values for 
the high-confidence metabolites for each sample pair were summarized in Fig. 6c, cov-
ering a wide range of log2 fold-changes from − 4.4 to 5.1. With the advance in metabo-
lomic technologies and the generation of additional datasets, the Quartet metabolomic 
reference datasets will be updated periodically through the Quartet Data Portal [43] 
(http:// chine se- quart et. org).

Best practice for inter‑laboratory proficiency test of metabolomics profiling using Quartet 

metabolite reference materials

Inter-laboratory proficiency testing is essential to improving comparability and achiev-
ing reliable metabolomics profiling. We recommend profiling the Quartet reference 
materials for method validation. We provided two types of QC metrics for the quality 
assessment of quantitative metabolomic datasets. One is the Quartet multi-sample-
based SNR, which measures the ability to discriminate the intrinsic biological differences 
among different reference samples. The other is the quantitative concordance between 
the query datasets and the reference datasets, calculated by relative correlation (RC). 
The recall of detected DAMs was recommended to qualitatively assess the sensitivity 
against the Quartet reference datasets (Fig. 7a).

We evaluated the laboratory proficiency for each of the 22 batches of metabolomic 
datasets using targeted or untargeted strategies with SNR, RC, and recall. As shown in 
Fig.  7b, the relative quality rankings using different QC metrics were not concordant. 
The correlations among the three metric values were relatively low (Additional file 1: Fig. 
S4). Therefore, a total score would be better to rank the quality of metabolomic datasets. 
By calculating a total score based on SNR, RC, and recall, with each metric scaled from 0 
to 10, we found that the inter-laboratory proficiency is independent of the metabolomic 
strategy. The top laboratory proficiency was achieved in U-L3 using an untargeted strat-
egy. The three datasets with the worst laboratory proficiency (U-L1, T-L5, and U-L2) 
were generated in three laboratories using either untargeted or targeted strategies. 
These results supported the notion that the Quartet metabolite reference materials and 
related QC metrics were suitable for a wide range of metabolomic technologies using 
both targeted and untargeted strategies. In addition, the standardized QC workflow for 
inter-laboratory comparisons can be performed through the Quartet Data Portal [43], 
where the relative quality ranking among the cumulative metabolomic datasets can be 
obtained.

https://hmdb.ca
http://chinese-quartet.org
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Discussion
As part of the Quartet project [41], we provide the community with the first suite of 
renewable metabolite RMs with matched DNA [44], RNA [42], and protein [45] isolated 
from the same immortalized cell lines. The intended use of the Quartet metabolite RMs 
includes intra-laboratory quality control, inter-laboratory proficiency tests, and quality 
assurance of large-scale metabolomic data integration. The metabolite RMs were for-
mulated as dried cellular extracts and are suitable for evaluating the performances of 
analytical steps including chromatography separation, mass spectrometry detection, and 
data processing. However, they are not suitable for assessing the performances of pre-
analytical steps such as cell extraction.

Ratio-based reference datasets for sample pairs (D5/D6, F7/D6, and M8/D6) were 
defined for assessing the quantification accuracy of various metabolomic technologies. 
Because the instrumental output can change systematically as a result of various labora-
tory-developed methods [41, 46], ratio-based quantification provides definite advantages 
in reducing systematic technical variations and improving data comparability. Therefore, 
the Quartet ratio-based reference datasets are suitable for proficiency testing of a wide 
range of targeted and non-targeted metabolomics profiling approaches. Although v1.0 
of the metabolite reference datasets covers only 92 metabolites, the reference datasets 
will be updated periodically through community participation in and contributions to 
the Quartet Data Portal (http:// chine se- quart et. org/) [43]. Our study suggested a para-
digm shift from “absolute” to “ratio”-based reference datasets of “ground truth” for cali-
brating and validating metabolomics profiling.

Another important aspect of the Quartet reference material suite is the intrinsic 
reference-free QC metrics for objective quality assessment, which is particularly 

Fig. 7 Best practice for inter-laboratory proficiency test of metabolomics profiling using Quartet metabolite 
reference materials. a Flowchart of an inter-laboratory proficiency test using the Quartet metabolite reference 
materials. b Inter-laboratory proficiency for each of the 22 batches of metabolomic datasets using targeted or 
untargeted strategies with SNR, RC, and recall. The overall performance was classified into four levels (Great, 
Good, Fair, and Bad)

http://chinese-quartet.org/)
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important for various laboratory-developed metabolomic measurements. The Quar-
tet multi-sample-based SNR is defined as the ability to identify inherent differences 
(biological signals) among the four individual sample groups (D5-D6-F7-M8). Com-
pared to the metrics previously widely used for one-sample-based technical repro-
ducibility in quantitative profiling, the unique Quartet SNR offers higher resolution 
in identifying serious quality issues. Any QC metrics based on the reference dataset 
have a clear disadvantage because their assessment is restricted to the limited num-
ber of metabolites that are easy to be detected by multiple laboratories. On the other 
hand, the Quartet-based SNR can be used to evaluate the reliability of global metab-
olomics profiling without any reference datasets, making it a complementary QC 
metric for proficiency tests. Using the Quartet metabolite RMs and QC metrics, sig-
nificant variations across laboratories in the reliability of the metabolomics profiling 
were observed. We found that the best and worst performing metabolomic datasets 
were all generated using untargeted metabolomics strategies. This result suggested 
that intrinsic laboratory proficiency, not instruments or protocols, was most impor-
tant for reliable metabolomics profiling, consistent with a previous report [47].

More importantly, the Quartet-based SNR can also be used for quality assessment 
of data integration. To achieve reliable data integration from long-term and cross-
laboratory large-scale metabolomics profiling, we recommend using common refer-
ence materials per-batch along with study samples. As long as the integrated datasets 
maintain the ability to differentiate the different Quartet samples, the reliability of 
the metabolomic data from the study samples for further exploratory metabolomic 
biomarker discovery is assured. Our study also demonstrated that ratio-based pro-
filing, by scaling the absolute abundance of study samples (such as D5, F7, and M8) 
relative to those of a concurrently measured common reference sample (such as D6) 
on a metabolite-by-metabolite basis, will empower large-scale data integration. The 
ratio-based metabolomics profiling was suitable for internal quality control in lon-
gitudinal measurement within a laboratory, and it can also be used to calibrate the 
metabolomics profiling in multiple centers. Even if the metabolomic methods were 
developed using different wet-lab operation procedures on different LC–MS instru-
ments, the ratio-based metabolomic data integration was reliable enough for differ-
entiating the various Quartet reference materials. The intrinsic batch-effect resistant 
characteristics of ratio-based profiling are also demonstrated by other quantitative 
omics profiling technologies, such as methylomics, transcriptomics, and proteomics 
[41, 42, 46].

There are some limitations beyond the scope of this study. First, the Quartet metab-
olite reference materials were extracted cellular metabolites in the form of lyophilized 
power and could not be applied to the QC of the sample preparation procedures. 
Moreover, the metabolites extracted from cells could not fully cover metabolites from 
other sources of biospecimen, such as plasma, serum, and tumor tissues, which may 
hinder the wider application of the Quartet reference materials, especially when the 
matrix of the study samples is largely different from cellular extracts.
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Conclusion
In summary, the present study provides the community with metabolomic reference 
materials, reference datasets, and the corresponding quality metrics for proficiency test-
ing of a wide range of metabolomic technologies. Additionally, ratio-based metabolomics 
profiling using common reference materials will improve cross-laboratory comparability 
and long-term data stability, ensuring large-scale metabolomic data integration. Over-
all, our study provides a new paradigm for developing metabolomic reference material 
suites for proficiency tests, ensuring the reliability of large-scale metabolomic studies.

Methods
Cell culture

Quartet immortalized B lymphoblastoid cell lines were established through infection with 
Epstein-Barr virus (EBV) [48] and culturing using the protocols described in the Quartet 
main paper [41]. Lymphoblastoid cell lines were cultured in RPMI 1640 supplemented 
with 15% non-inactivated FBS and 1% penicillin–streptomycin. Flasks were incubated in a 
horizontal position at 37 °C under 5%  CO2. Cell cultures were split every 3 days for main-
tenance, as described in the literature [49]. Cells growing in suspension were centrifuged 
at 300 g for 5 min to obtain cell pellets, washed twice with cold PBS, and store at – 80 °C. 
About  109 cells per cell line were collected for preparing Quartet metabolite reference 
materials. The cell lines have been authenticated by STR profile, karyotype, PCR myco-
plasma, and sterility testing. There was no mycoplasma contamination found.

Preparation of Quartet metabolite reference materials

Metabolites were extracted from EBV immortalized lymphoblastoid cell lines at the 
Human Metabolomics Institute, Inc. (Guangdong, China). First, we thawed cells (11 
tubes per sample,  108 cells per tube) slowly on an ice bath to minimize potential sam-
ple degradation, and then added 2.4 mL of ice-cold methanol solution (methanol to 
water = 6:1) to each tube of samples. Then, the ice water bath was under ultrasonic 
treatment for 3 times, each time for 3 s, with an interval of 2 min. After the cell mass 
at the bottom of the tube was completely broken, the cell extracts were centrifuged at 
4500 g for 20 min (Allegra X-15R, Beckman Coulter, Inc., Indianapolis, IN, USA), and 
then the supernatant was transferred to a new centrifuge tube. Eleven external con-
trols were spiked into the supernatant at known concentrations as internal standards 
(Additional file 2: Table S1).

For each Quartet sample, the supernatant containing metabolites extracted from 
 109 cells was aliquoted into 1000 vials using an automated liquid handler (Biomek 
4000, Beckman Coulter, Inc., Brea, California, USA). After centrifugation at 4  °C 
under vacuum (Labconco, Kansas City, Missouri, USA) for 50  min, the Quartet 
metabolite reference materials were obtained in the form of lyophilized power. We 
stored the Quartet metabolite reference materials at – 80 °C for long-term use.

Data generation

We distributed 12 vials (triplicates for each Quartet sample) of the Quartet metabo-
lite reference materials as a batch to each laboratory for data generation. Each batch 
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of samples was run in the same order across all laboratories (D5-1, D6-1, F7-1, M8-1, 
D5-2, D6-2, F7-2, M8-2, D5-3, D6-3, F7-3, and M8-3).

Metabolomic data were generated in each laboratory using different HPLC/UPLC or 
MS/MS platforms and experimental protocols (details in Additional file 2: Table S2).

T‑L1/U‑L1

Reference materials were first centrifuged before adding 200 μL acetonitrile–water 
(1:1, v/v) to reconstitute the samples. The solution was then centrifuged at 14,000 rcf 
for 15 min at 4 °C to obtain the supernatant for LC–MS analysis.

U‑L2

One hundred microliters of 50% acetonitrile was added to reconstitute (containing 
an isotope-labeled internal standard mixture) the reference materials. The solution 
was vortexed for 30 s and sonicated in an ice-water bath for 10 min. After centrifuga-
tion at 13,000 rpm for 15 min at 4 °C, the supernatant was used for LC–MS analysis.

U‑L3

Five hundred microliters of an ice-cold 80% methanol solution was added to dissolve the 
reference materials. Then, the solution was divided into five fractions for LC–MS analy-
sis using four different methods, including two separate reverse phases (RP) UPLC-MS/
MS with positive ion mode electrospray ionization (ESI), a RP UPLC-MS/MS with nega-
tive ion mode ESI, and a HILIC UPLC-MS/MS with negative ion mode ESI. Samples 
were placed briefly on a TurboVap® (Zymark) to remove the organic solvent and stored 
overnight under nitrogen before analysis.

T‑L4

Three hundred fifty microliters of an ice-cold 50% methanol solution was added to 
resolve the reference materials. The samples were then stored at 20  °C for 20 min and 
then centrifuged at 4000  g for 30  min at 4  °C. One hundred thirty-five microliters of 
supernatant was transferred to a 96-well plate, which contained 15 μL of internal stand-
ard per well. Serial dilutions of standard samples were added to the same plate. The plate 
was sealed for LC–MS analysis.

T‑L5

Five hundred microliters of a 10% methanol solution was added to dissolve the reference 
materials and then injected into LC–MS for analysis.

T‑L6

One hundred microliters of reconstituted solution (acetonitrile to water = 1:1) was 
added to resolve the dried metabolites. After vortexing for 1 min, the solution was cen-
trifuged at 15,000 rpm for 10 min at 4  °C. About 60 μL of the supernatant was trans-
ferred for LC–MS analysis.
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Data processing

Raw data acquired using LC–MS were pre-processed by each participating laboratory 
to provide structured data in.xls format for subsequent statistical analysis. Chromatog-
raphy-MS data for a single sample are a matrix of m/z versus retention time (or index) 
versus ion current or intensity.

T‑L1

MRM raw data were extracted by MRMAnalyzer (R), and the peak area of each 
metabolite was obtained. More detailed descriptions can be found in reference [50].

U‑L1

The raw data was converted into mzXML format by ProteoWizard. The researchers 
used the XCMS program for peak alignment, retention time correction, and peak 
area extraction. For structure identification of metabolites, accurate mass matching 
(< 25 ppm) and secondary spectrum matching were used to search the laboratory’s in-
house annotation database.

U‑L2

ProteoWizard software was used to convert the original mass spectrum into mzXML 
format and XCMS for retention time correction, peak identification, peak extraction, 
peak integration, and peak alignment. An in-house annotation database was used in 
parallel to identify the metabolites.

U‑L3

ThermoFisher Scientific software Xcalibur QuanBrowser was used for peak detection 
and integration. A detailed description of data processing, including chromatographic 
alignment, QC practices, and compound identification, can be found in reference [51].

T‑L4

The raw data files generated by UPLC-MS/MS were processed using the QuanMET 
software (v2.0, Metabo-Profile, Shanghai, China) to perform peak integration, cali-
bration, and quantitation for each metabolite.

T‑L5

The detection of samples using MRM (Multiple Reaction Monitoring) was based on 
the T-L5 in-house annotation database. The Q1, Q3, RT (retention time), DP (declus-
tering potential), and CE (collision energy) were used for metabolite identification. 
The data files generated by HPLC–MS/MS were processed using SCIEX OS Version 
1.4 to integrate and correct the peak. The area of each peak represents the relative 
content of the corresponding metabolite.
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T‑L6

The MRM raw data were extracted by OS-MQ software (AB SCIEX), and the peak 
area value of each metabolite was obtained.

Data integration

We collected 264 metabolomic profiles at the quantification level, with HMDB 
(Human Metabolome Database, https:// hmdb. ca) IDs for the metabolites provided by 
each laboratory.

We integrated these metabolomic profiles first by HMDB IDs and then by metabolite 
names. Metabolites were annotated into different classes according to HMDB (https:// 
hmdb. ca/ system/ downl oads/ curre nt/ hmdb_ metab olites. zip, released on 2021–11-17).

Performance metrics

Based on Quartet metabolite RMs, we constructed three types of performance metrics to 
comprehensively evaluate the performance of metabolomics profiling in each laboratory.

Signal‑to‑noise ratio (SNR)

We measured SNR by comparing the average Euclidean distances between different 
Quartet samples (“signals”) to those between different technical replicates of the same 
Quartet sample (“noises”) computed based on the first two principal components of 
PCA. SNR was defined as the following equation:

Here, m is the number of different groups of samples and n is the number of techni-
cal replicates of the same sample group. The variances explained by the pth principal 
component ( PCp ) were noted as Wp.PCp,i,x,PCp,j,x , and PCp,j,y represent the value of ith 
and jth replicates of sample x or sample y on pth principal component, respectively.

Recall

We computed recall for the assessment of qualitative agreement with the reference 
datasets. Here, recall is the number of measured DAMs (p < 0.05, t test) divided by the 
number of DAMs that should be identified in reference datasets.

Relative correlation (RC)

We measured RC to assess quantitative consistency with the reference datasets. 
First, we calculated the average log2 abundance of each metabolite in each Quartet 
sample. Based on the average log2 abundance, we computed the relative abundance 
values of metabolites in each sample pair (log2 ratios to D6) that overlapped with the 
reference datasets in each laboratory. Finally, the Pearson correlation was computed 
between the measured relative abundance values and the reference datasets.
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Statistical analysis

We used R version 4.0.5 and associated packages to perform all statistical analyses. 
All statistical tests described in this work were two-sided. Tests involving compari-
sons of distributions were done using “wilcox.test” unless otherwise specified. The 
intraclass correlation coefficient (ICC) was computed based on package irr (v0.84.1), 
using a two-way model and estimated by the agreement between raters to compute 
differences in judges’ mean ratings. We plotted all results based on the R packages 
ggplot2 (v3.3.6), cowplot (v1.1.1), ComplexUpset (v1.3.3), ggpubr (v0.4.0), ggsci (v2.9), 
and GGally (v2.1.2).
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