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Background
Identifying the genetic determinants of complex traits is challenging because their con-
tributions are often diluted across many variants of small effect. Single variants of large 
effect are simpler to identify and have been well-characterized [1–3], but genome-wide 
association studies (GWAS), which test millions of variants for statistical association 
with a trait, have demonstrated that these large-effect loci are rare. Moreover, the vast 
majority of trait-associated variants are located in non-coding regions [4–7]. For the < 
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10% of GWAS hits in protein-coding regions, inferences about their evolutionary history 
and mechanisms of action are often readily available thanks to studies that have focused 
on these regions. The remaining > 90% of GWAS hits in non-coding regions are thought 
to affect traits by altering gene expression levels, but causal mechanisms are obscured 
by a combination of linkage disequilibrium (LD), a genome-wide phenomenon in which 
nearby variants tend to be inherited together leading to a correlation of their effects [8], 
and the paucity of information about non-coding relative to coding regions.

Even before the GWAS era variants with highly divergent allele frequencies between 
populations, measured by estimates of Wright’s fixation index (FST) [9], were found to 
be enriched in disease-associated genes [10]. Since then, genome-wide scans using asso-
ciations of allele frequencies with environmental variables as evidence of natural selec-
tion have shown signals of positive selection to be somewhat enriched in coding regions 
[11–15], and even more enriched in cis-regulatory elements [16]. Overall, the prepon-
derance of non-coding variants implicated in human GWAS is paralleled by a similar 
trend among human genetic variants involved in local environmental adaptation [16].

Intersecting non-coding GWAS hits with information from assays measuring regula-
tory activity, such as quantitative trait loci (QTL) for molecular-level traits (mol-QTL), 
has been effective at pinpointing causal variants and molecular mechanisms underlying 
complex trait variation [17–22]. QTL studies using gene expression as the trait (eQTL) 
test all variants within a predefined distance (usually one megabase (Mb)) of a gene for 
an association with that gene’s expression, so each eQTL is linked to a target gene [20]. 
Since transcription factor (TF) proteins bind gene regulatory elements such as enhanc-
ers in a sequence-dependent manner to regulate transcription, eQTL can act by altering 
a TF’s binding affinity (i.e., one allele has higher binding affinity than the other, termed 
a bQTL) [18]. In most cases, increased TF binding is associated with decompaction of 
chromatin, the DNA-protein complex that packages meters of linear DNA into a nucleus 
a few microns wide. This opening of the chromatin allows more TFs to bind to previously 
inaccessible stretches of DNA and to each other in a positive feedback loop of chromatin 
accessibility. Thus, chromatin accessibility can be used as a proxy for regulatory activity 
to identify enhancers and their relative activity levels, as is accomplished with Assay for 
Transpose-Accessible Chromatin (ATAC-seq) [23].

Since enhancers operate in three-dimensional space and can contact target gene pro-
moters (cis-regulation) several Mb away, ATAC-seq and high-throughput methods 
based on Chromatin Conformation Capture (HiC) [24–27] can be combined to identify 
enhancer-promoter interactions [18, 19, 22, 28]. The activity-by-contact (ABC) model 
was recently developed to predict enhancer-target gene pairs in a given cell type under 
the premise that the extent to which an element regulates a gene’s expression depends on 
its strength as an enhancer (activity level), scaled by how often it is near that gene’s pro-
moter in 3D space (contact frequency) [29]. HiChIP, which combines HiC with chroma-
tin immunoprecipitation (ChIP) on a protein of interest, is well-suited to generate input 
for this model, particularly when performed on the histone modification H3K27ac, a 
hallmark of active chromatin. Since the end product is paired-end reads from H3K27ac-
associated long-range interactions, H3K27ac HiChIP provides a simultaneous measure 
of activity level and contact frequency without the high sequencing depth and cell num-
ber required to generate the all-by-all interaction maps of HiC [25, 30]. The ABC model 
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has been shown to attain peak performance with chromatin accessibility and HiChIP 
data as input and outperforms other enhancer target gene prediction methods [29], 
making it a powerful metric for hypothesis generation about the mechanisms of non-
coding GWAS hits [31].

Additional support for the mechanisms and causality of these hits can come from 
intersecting molecular-level QTL with putative locally adaptive variants [16]. However, 
since selection acts on fitness, its impact may be more directly observable at the level of 
chromatin activity than at the level of DNA sequence, where it is relatively more diluted 
(Fig. 1a, left). For example, chromatin activity is a better predictor of TF binding than 
DNA sequence since we do not fully understand the cis-regulatory “code” that governs 
TF binding [32]. This can lead to cases where sequence-level changes, even those dis-
rupting TF binding sites, do not correspond to changes in regulatory function and gene 
expression when regulatory activity is buffered by the binding of multiple TFs.

Studies in primates have suggested that directional selection may have contributed to 
differences in chromatin activity that distinguish each species [33]. For example, sites 
with decreased chromatin accessibility in human relative to chimpanzee and rhesus 
macaque white adipose tissue tend to be cis-regulatory elements for lipid metabolism-
related genes, consistent with humans’ greater body fat percentage [34]. Such analysis 
of chromatin activity divergence has not been conducted on more recent evolutionary 
timescales within the human lineage, where mechanistic insights could aid understand-
ing of ancestry-dependent disease prevalence [35–37].

Here, we use ATAC-seq and H3K27ac HiChIP, a combined measure of activity and 
contact frequency [25], to generate ABC scores linking candidate cis-regulatory ele-
ments (CREs) to candidate target genes (hereinafter “target genes”) in eight populations 
of African or European ancestry. We then decompose these scores into their activity and 
contact components to identify differential CREs (diff-CREs) for each score between 
individuals of African and European ancestry (Fig. 1a). Intersecting our diff-CREs with 
bQTL reveals three transcription factors (NF-κ B, JunD, and PU.1) whose binding sites 
show signs of lineage-specific selection for differences in binding between the African 
and European ancestry populations. Our findings illustrate the utility of ABC scores 
to identify previously unappreciated population-specific activity of CREs, their target 
genes, and potential mechanisms of gene regulation.

Results
Differential CRE activity is linked to differential expression between ancestries

We previously performed ATAC-seq in lymphoblastoid cell lines (LCLs) from ten dif-
ferent global populations sequenced by the 1000 Genomes Project [19]. This was carried 
out in a pooled study design, with each population represented by a single pool of ~100 
unrelated individuals. We selected the four African (ESN, GWD, LWK, and YRI) and 
four European (CEU, FIN, IBS, and TSI) ancestry (hereinafter AFR and EUR, respec-
tively) populations for comparison to isolate the effects of any lineage-specific selection 
on gene regulatory elements that have occurred since the divergence of human popu-
lations native to these two continents. The AFR and EUR ancestries were represented 
by 418 and 413 individuals, respectively. We first identified a common set of CREs by 
(1) calling peaks on ATAC-seq data combined across the four population pools of each 
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Fig. 1 Identification of candidate enhancer-gene pairs under different selection pressures between 
ancestries. a From left to right: Chromatin accessibility, activity, and contact frequency were assayed in 
LCLs from four African populations (blue) and four European populations (orange). Enhancer-gene pairs 
were defined using ABC scores and ATAC, ChIP, and HiC score components quantified. Enhancer-gene pair 
1 exemplifies evidence of directional selection (low within- and high between-continental ancestry score 
variance). b Sequencing reads’ contributions to each ABC component score are shown for a hypothetical 
enhancer-gene pair where sample 2 has higher ATAC and ChIP scores, but an equivalent HiC score relative 
to sample 1. Dotted lines extending to the depicted region border connect to reads whose other paired-end 
aligns elsewhere in the genome but contributes to the HiChIP score (purple gradient). c Principal component 
analysis results from all enhancer-gene pairs are shown for each score type. Both replicates are shown for 
each population. CEU is an outlier (Additional file 1: Fig. S5–8) and is thus excluded in these PCAs and in 
downstream analyses. Abbreviations: ATAC-seq, assay for transpose accessible chromatin with sequencing; 
E, enhancer; G, gene; H3K27ac, histone 3 lysine 27 acetylation; LCLs, lymphoblastoid cell lines; CEU, Utah 
residents with North European ancestry; ESN, Esan; FIN, Finnish; GWD, Gambian; IBS, Iberian; LWK, Luhya; TSI, 
Tuscan; YRI, Yoruban; AFR, African; EUR, European; PC, principal component
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ancestry, then (2) resizing them to 500 bp centered on each peak summit to avoid any 
potential peak width bias, and (3) retaining the top 150,000 by read count ranking. We 
ensured equal peak contributions between ancestries (see Methods) to balance statisti-
cal power and for consistency with how the ABC model was developed [29].

To obtain the additional activity component and the contact component necessary 
for computing ABC scores, we performed H3K27ac HiChIP, which enriches first on the 
level of H3K27ac and second on HiC contact frequency of the two interacting regions 
[25], in two replicates per population of the same pooled LCLs (see the “Methods” sec-
tion). H3K27ac HiChIP was shown to perform at least as well as H3K27ac ChIP-seq 
and HiC assayed separately when used in ABC scores adapted for this data type [29]. 
We mapped reads from each replicate to a common reference. To minimize allelic map-
ping bias, we retained only reads overlapping variants that mapped to the same unique 
location after swapping out one allele for the other [38]. Subsequent filtering to reads in 
valid cis interaction pairs yielded ~540 million paired-end reads qualified for use in ABC 
score computation (see Additional file 1: Fig. S1; Additional file 2).

To calculate ABC scores for each population, we jointly estimated activity level and 
contact frequency as the product of normalized ATAC-seq reads overlapping a given 
element and normalized HiChIP reads overlapping that element and the promoter of 
a given gene at 5 Kb resolution (see the “Methods” section). We identified 50,478 CRE-
target gene (enhancer-gene) pairs with nonzero ATAC and HiChIP signal in all samples 
that passed enhancer-gene pair candidacy thresholds (see the “Methods” section) in at 
least one sample.

Since ABC scores are designed to identify enhancer-gene pairs, but not the relative 
expression levels of target genes, we reasoned that decomposing each score into three 
independent components—ATAC, H3K27ac ChIP, and HiC scores (Fig.  1a–b)—could 
allow us to search for evidence of selection on each as a distinct mechanism of differen-
tial gene expression regulation. Thus, for each enhancer-gene pair defined using ATAC-
seq data in combination with our newly generated HiChIP data, ATAC scores represent 
the chromatin accessibility at the enhancer (Fig.  1b, teal gradients). ChIP scores esti-
mate the enhancer-gene pair’s collective H3K27ac signal as the geometric mean of total 
HiChIP signal at the enhancer and gene promoter (also known as the vanilla cover-
age square root (VC-sqrt)) (Fig. 1b purple gradients). HiC scores estimate the contact 
frequency of the enhancer and promoter independent of H3K27ac levels by dividing 
the HiChIP signal from read pairs specifically connecting the enhancer and promoter 
(Fig. 1b, magenta gradient) by the VC-sqrt (see the “Methods” section).

To assess how each of these scores captures differences between populations and rep-
licates we performed principal component analysis (PCA) and hierarchical clustering 
across samples on all enhancer-gene pairs for each score type. Since both CEU repli-
cates were outliers (see Additional file 1: Supplemental text, Fig. S5–8; Additional file 3) 
[39], we removed this population, redefined enhancer-gene pairs, and computed scores 
for downstream analyses using the remaining 14 samples. Although FIN rep1 and ESN 
rep1 are also outliers for HiC scores, and thus also for ABC scores (Additional file 1: Fig. 
S9–10), this is likely driven by low coverage HiC contacts since these are the two sam-
ples with the lowest number of valid HiChIP cis interaction pairs (Additional file 1: Fig. 
S1). For ChIP scores, which quantify the total H3K27ac signal at a CRE (not only that 
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contributed by reads explicitly defining an E-G pair, as in HiC and ABC scores where the 
aforementioned low coverage effects manifest), these replicates are not outliers, so it is 
unlikely that coverage or batch effects contribute to any signal differences in this chro-
matin activity metric.

We then reanalyzed the differences between populations and replicates captured by 
our score types and quantified their ancestry-associated differential signals. PCA and 
hierarchical clustering on these scores show that ChIP scores are highly similar between 
replicates when considering either all enhancer-gene pairs (Fig.  1c) or the 5000 most 
variable pairs. Clustering by ancestry is apparent when considering the 5000 most vari-
able enhancer CREs, but not promoter CREs (see Additional file 1: Fig. S9; Additional 
files 4 and 5). To assess the ancestry-associated differential regulatory activity of each 
ABC score component, we identified differential score (diff-score) enhancer-gene pairs 
(diff-score P < 0.05, see Methods; Additional file 1: Fig. S4). We found little or no differ-
ential signal between ancestries for this score type in the diff-HiC scores (FDR = 0.87 at 
diff P < 0.05 relative to FDR = 0.093 and 0.057 for diff-ATAC and diff-ChIP, respectively; 
see Methods; Additional file 1: Fig. S11; Additional file 6), or in downstream functional 
analyses.

To determine the extent to which diff-scores are associated with differential gene 
expression (DE) between African and European ancestry individuals, we analyzed gene 
expression data from two previous studies. Lea et al. (2022) measured gene expression 
across 12 cellular conditions (11 exposures and one unexposed control) in many of the 
same LCLs from African and European populations used in our study. Randolph et al. 
[40] measured gene expression in non-infected (NI) and IAV-infected (flu) peripheral 
blood mononuclear cells (PBMCs) at single-cell resolution from a panel of donors with 
varying degrees of African versus European ancestry. Both studies identified ancestry-
associated DE (ancestry DE) genes, Lea et al. by modeling expression as a function of 
the African or European ancestry of each population, and Randolph et al. by modeling 
expression as a function of the proportion of African ancestry estimated from whole-
genome sequencing. Although the context we assayed our LCLs in to generate ABC 
scores was closest to Lea et al.’s baseline/unexposed condition, by comparing diff-scores 
in a baseline (unstimulated) context to DE in other contexts we were able to ask if CREs 
could be poised for DE regulation upon stimulation and/or in another cell type.

We then asked if chromatin accessibility, H3K27ac levels, HiC contact frequency, and/
or the combination of these components in ABC scores were associated with ancestry 
DE across these 22 combinations of cell type and stimulation conditions. We found six 
enrichments for ancestry DE in diff-ATAC and five in diff-ChIP genes among the 22 
tested contexts (hypergeometric P < 1.13 ×  10−3, Fig. 2b). For example, target genes of 
diff-ChIP CREs were overrepresented among ancestry DE genes in LCLs after four hours 
of exposure to B-cell-activating factor (BAFF, odds ratio (OR) = 1.94, P = 6.1 ×  10−8), 
a strong B cell activator and tumor necrosis factor family cytokine. As expected based 
on the lack of signal in our initial FDR analysis, no contexts were enriched for ancestry 
DE in diff-HiC genes, and only DE genes in LCLs after four hours of exposure to etha-
nol (labeled “ETOH”) were enriched in diff-ABC genes at the same Bonferroni-corrected 
P-value threshold used for diff-ATAC and ChIP (see Additional file 1: Fig. S12, S13b). 
This indicates that the inclusion of the contact frequency component in ABC scores 
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weakens the association of the activity components with DE. Overall, the strength of 
the associations of differential chromatin accessibility (diff-ATAC) and H3K27ac levels 
(diff-ChIP) with DE across several contexts suggests CREs could be poised for DE regu-
lation upon stimulation or differentiation to another cell type. Importantly, although we 
observe little-to-no differential HiC signal between ancestries, this component was criti-
cal in defining enhancer-gene pairs to test, as each pair must have at least one HiChIP 
read connecting the two elements to have a non-zero ABC score.

Although gene expression can be predicted by promoter activity [41], the con-
tribution of promoter or enhancer activity to ancestry-associated DE remains 
unknown. Thus, we asked if the associations between differential activity scores 

Fig. 2 Differential enhancer and promoter enrichments for differential expression across conditions and 
cell types. a Schematic depicting a simplified version of the enrichment analysis test results shown in b. Any 
diff-CRE was counted as a “success” overlap in the hypergeometric enrichment test for a given context if it 
had a target gene that was DE in that context. Color gradients illustrate that each element has a directionality, 
which is the subject of analysis in c and d. b Results of one-sided Fisher’s exact tests for DE gene enrichment 
in diff-CREs are shown as odds ratios plotted against significance. Vertical dotted lines mark an odds ratio of 
1 and horizontal dotted lines mark the Bonferroni-corrected P-value threshold. Points above this significance 
threshold are labeled with their context (see table inset). Score types used to define diff-CREs in each test 
are indicated by the shape and color of the points. c Schematic depicting the enrichment analysis test 
results shown in d. Each element from any overlap in a (e.g., gray gradient callout) was split into AFR- and 
EUR-biased directionality and any diff-CRE with a DE target gene in each context was counted as a “success” 
overlap if the ancestry DE direction matched the diff-score direction of the CRE (e.g., higher expression and 
higher score in AFR (blue)). For diff-CREs with multiple DE target genes, these targets were required to match 
direction to be included in each test. d Results of one-sided Fisher’s exact tests for diff-CRE matching DE 
directionality are shown as odds ratios plotted against significance. Vertical dotted lines mark an odds ratio of 
1 and horizontal dotted lines mark the Bonferroni-corrected P-value threshold. Points above this significance 
threshold are labeled with their context. For a more detailed illustration of these tests, see Additional file 1: 
Fig. S13a,c
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and differential expression were driven by genes whose top diff-CRE is a DE pro-
moter. We found some evidence of this among diff-ATAC promoters across the 
non-infected and flu PBMC cell types [40] (Additional file  1: Fig. S14b), but no 
enrichments passed correction for multiple tests. We observed similar strengths of 
enrichment across the remaining contexts and score types for top diff-CRE enhanc-
ers and promoters (Additional file  1: Fig. S14a–b); however, given only eleven sig-
nificant enrichments when testing all CREs together we were likely underpowered to 
address this question.

Since the activity levels of enhancers and promoters usually increase and 
decrease with the expression levels of their target genes, we hypothesized that true 
enhancer-gene pairs would have higher expression in the same ancestry as that of 
the populations with higher ATAC and ChIP scores (Fig. 2c) and that this matching 
directionality would hold for pairs that are poised for DE in other contexts. To test 
this, we asked if among differential genes (diff-score FDRs = 0.093 and 0.057 for 
ATAC and ChIP, respectively, with differential expression local false sign rate (LFSR) 
< 0.05) the ancestry direction of the top diff-CRE matched the DE direction of its 
target gene more often than expected by chance (see Methods). For example, is a 
gene with higher AFR ancestry expression also likely to have higher ATAC scores in 
AFR populations? We found that differential gene directionality matched more often 
than expected by chance in the same contexts in which differential activity and DE 
genes overlapped more often than expected by chance, as well as in three additional 
contexts for diff-ATAC (hypergeometric OR = 1.71–2.54, P < 3.3 ×  10−4) and five 
for diff-ChIP (OR = 2.90–3.70, P < 4.8 ×  10−4). Five PBMC contexts [40] were nomi-
nally enriched for diff-ChIP matching DE (OR = 1.63–2.12, P < 0.05), though not 
significantly after multiple test correction. This was in contrast to genes identified 
by diff-ATAC CREs, which were only nominally enriched in four PBMC contexts 
[40] at lower odds ratios (OR = 1.64–1.82, P < 0.038, Fig.  2d; see also Additional 
file 1: Fig. S13d). We found much weaker enrichment for matching DE directionality 
again among diff-ABC and HiC genes (see Additional file 1: Fig. S13d, S15).

To better ascertain the relative capacities of diff-ATAC and diff-ChIP (H3K27ac) 
to identify DE genes and their directionality, we compared the odds ratios across 
all contexts for all CREs and partitioned by promoter and enhancer top diff-CRE 
status. We found diff-ATAC to enrich better for DE (Wilcoxon P = 0.0022), whereas 
diff-ChIP enriched substantially better for matching DE direction (Wilcoxon P = 3.5 
×  10−6) (see Additional file  1: Fig. S16, left). This difference held when consider-
ing enrichments derived from genes whose most differential CRE was a promoter 
but not an enhancer (see Additional file  1: Fig. S16, right and middle). While the 
diff-ChIP score incorporates H3K27ac levels from each target gene’s promoter for 
enhancer CREs (Fig. 1b, see the “Methods” section), diff-ATAC enhancers, which do 
not explicitly incorporate promoter accessibility information, performed similarly to 
diff-ChIP enhancers at identifying DE direction (see Additional file 1: Fig. S14c–d, 
S16). These results indicate that of the two types of chromatin activity assayed in 
our study, accessibility is the better indicator of which genes are DE, while H3K27ac 
levels better identify which ancestry has higher expression of these genes across 
numerous cellular contexts.
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Differential CRE activity is associated with ancestry‑divergent variants that affect binding 

of specific TFs

Although diff-ATAC and diff-ChIP CREs are associated with DE of their target genes, 
the mechanism behind this association is unclear. To investigate this we sought to link 
potentially causal genetic variants to the activity of our CREs by intersecting them with 
QTL for the binding affinity of five transcription factors (bQTL, Fig. 3a) and H3K4me3 
levels (H3K4me3 QTL) previously mapped in the same YRI LCLs used in our study [18]. 
If differential CRE activity were driven in cis by any of these QTL types, as opposed to 
in trans by a difference in transcription factor expression level, we would expect strong 
associations between those QTL and differential activity CREs. We followed the same 
approach as in our DE analysis, first testing if our diff-CREs were enriched for any of 
these QTL relative to non-diff-CREs (Fig. 3a, see the “Methods” section). Any diff-CRE 
was counted as a “success” overlap in hypergeometric enrichment tests if it contained a 
bQTL for the TF being tested (or H3K4me3 QTL). We found several significant bQTL 
enrichments across diff-ATAC and diff-ChIP CREs (Fig. 3b). We further asked if these 
enrichments were driven by bQTL in enhancers or promoters by performing separate 
tests on these two CRE types. Interestingly, enrichments for bQTL became even stronger 
when considering diff-ATAC and diff-ChIP enhancers, while diff-promoters showed no 
enrichments for any TF across all score types (Fig. 3c). This was despite greater coverage 
at promoters than at enhancers in both ATAC and HiChIP data (Additional file 1: Fig. 
S2a–b). These results suggest that many ancestry differences in CRE activity could be 
associated with differences in binding of specific TFs in cis.

To investigate the extent to which higher TF binding affinity corresponds to an 
increase in CRE activity, we asked if the high-affinity bQTL allele was at higher fre-
quency in the ancestry with higher CRE activity (Fig. 3d, “matching direction diff-CRE 
bQTL”). We also included bQTL for CTCF [42], a protein that mediates chromosomal 
looping and chromatin, in these tests. The same TFs (JunD, NF-κ B, and PU.1) were 
enriched for bQTL matching diff-CRE directionality as were enriched in diff-CREs over-
all, with the addition of STAT1 for matching diff-ATAC direction. Interestingly, PU.1 
bQTL were enriched for matching diff-ATAC direction (Fig. 3e, left), but not diff-ChIP 
direction (Fig. 3e, right). This was in contrast with this TF’s overall bQTL enrichment 
in diff-ChIP CREs over non-diff (Fig. 3b–c), suggesting that this TF’s activity could be 
linked to context-dependent increases and decreases in H3K27ac levels, but is associ-
ated with increased chromatin accessibility in both cases.

If increased TF binding at bQTL is associated with an increase in CRE activity in cis, 
we should see an increase in correspondence between the ancestry with a higher fre-
quency of the high-affinity bQTL allele and the ancestry with higher CRE activity the 
more extreme the difference in allele frequencies between ancestries. To test this, we 
asked if enrichments for matching directionality between bQTL and diff-CREs increase 
when considering only bQTL in the top 5% of FST among variants in CREs (correspond-
ing to FST > 0.1813). Indeed, for all TFs with direction matching-enriched bQTL under 
no FST thresholding we observed an average 2.36-fold increase in odds ratios when 
applying this FST threshold (Fig. 3e). These enrichments were again driven by enhancers, 
as evidenced by the average 3.41-fold increase in odds ratios for the same comparison 
restricted to this CRE type (see Additional file 1: Fig. S17, top) and lack of directionality 



Page 10 of 23Pettie et al. Genome Biology           (2024) 25:21 

Fig. 3 Enhancer differential activity is linked to sequence-dependent differences in NF-κ B and JunD binding. 
a Schematic depicting a simplified version of the enrichment test results shown in b. The boxed gradient 
callout from the enriched overlap shows a hypothetical example of a bQTL where the “G” allele increases the 
binding affinity of the TF, which leads to elevated mRNA levels through increased transcription of the target 
gene. b TF bQTL and H3K4me3 QTL enrichments in diff-ATAC, ChIP, and HiC CREs are plotted as Fisher’s exact 
test odds ratios with error bars representing the lower bound of the 95% confidence interval. Since these are 
one-sided tests, the upper bound (infinity) is not shown. The total number of CREs used in each test is shown 
to the right of each odds ratio with asterisks indicating if the P-value passed multiple test correction (*, **, ***, 
and **** for Bonferroni-corrected P-value < 0.05, 0.005, 5×10−4, and 5×10−5, respectively). c Results of tests 
on the same CREs used in b separated by their status as enhancer or promoter CREs. d Schematic depicting 
the directionality matching enrichment test results shown in e. Top, three hypothetical variants with “A” 
and “G” alleles in two populations where the first (leftmost) has no difference in allele frequency between 
populations or FST=0, the second (middle) has the maximum possible difference in allele frequency between 
populations (“A” is fixed in population 1 and “G” is fixed in population 2) or FST=1, and the third (rightmost) has 
the “G” allele at intermediate frequency in population 2 or FST≈0.11 in this case. Middle, diff-CRE bQTL from 
overlaps in a–c (gray gradient callout) were tested for enriched matching of ancestry-associated direction. 
Bottom, schematic of a matching direction diff-CRE bQTL. The blue gradient callout shows an example of a 
matching direction diff-CRE bQTL where the high affinity “G” allele from the same hypothetical bQTL shown 
in a is at higher frequency in AFR, which is the ancestry that has the higher ATAC or ChIP scores defining the 
diff-CRE. e Diff-CRE bQTL matching direction enrichment test results for diff-CREs defined by each displayed 
score type are plotted as Fisher’s exact test odds ratios with error bars representing the lower bound of 
the 95% confidence interval. Separate tests were performed on all diff-CRE bQTL (black) and those in the 
top 5% of FST values among all variants in CREs genome-wide (purple). Since these are one-sided tests, the 
upper bound (infinity) is not shown. The total number of CREs used in each test is shown to the right of 
each odds ratio with asterisks indicating if the P-value passed multiple test correction (*, **, ***, and **** for 
Bonferroni-corrected P-value < 0.05, 0.005, 5×10−4, and 5×10−5, respectively)
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matching enrichment for any TF’s bQTL in promoters (see Additional file 1: Fig. S17, 
bottom). As expected, none of the above bQTL enrichment tests were significant for 
nominally diff-HiC CREs (Additional file 1: Fig. S18).

Having established ancestry-dependent cis differences in TF binding as a possible 
mechanism for ancestry-associated differential CRE activity, specifically in enhanc-
ers, we sought to assess the likelihood that these TF bQTL have been under directional 
selection. We found that JunD, NF-κ B, PU.1, and Oct1 bQTL have higher FST in diff-
ATAC than in non-diff-ATAC enhancers (Wilcoxon P = 2.4 ×  10−9, 5.0 × 10−4, 2.2 × 
 10−4, and 6.0 ×  10−4, respectively), consistent with differential binding of these TFs as 
drivers of differential enhancer activity, as well as the possibility that their binding spe-
cifically in differential activity CREs has been subject to selection. While none reached 
significance in diff-ChIP enhancers after multiple test correction, all of the QTL types 
except CTCF bQTL were nominally significant (Fig. 4a, top). This is likely due in part 
to power reduction in the diff-ChIP test due to the combination of lower resolution of 
HiChIP cis interaction pairs relative to ATAC-seq peaks (see the “Methods” section) 
and only counting the most significant bQTL per diff-score CRE (see Methods). Nota-
bly, there were no significant differences between bQTL in diff- versus non-diff promot-
ers after multiple test correction (Fig.  4a, bottom; see Additional file  1: Supplemental 
text, Fig. S19). To assess evidence for selection on bQTL in diff-enhancers over those 
in diff-promoters more directly we performed the same test within diff-CREs between 
enhancers and promoters. Nearly all QTL types had higher median FST in diff-enhancers 
than in diff-promoters for ATAC and ChIP although none were significant after multi-
ple test correction (Fig. 4b). Again as expected, there was no difference in FST between 
nominally diff- and non-diff-CREs or diff-CRE enhancers and promoters defined by HiC 
scores (Additional file 1: Fig. S20).

Since FST can be correlated with allele frequency (i.e., rare alleles introduced by recent 
mutation have low FST), we sought to assess whether higher FST for diff-enhancer bQTL 
was driven by differences in allele frequencies between CRE types. Performing the same 
tests in each of ten allele frequency decile bins, we find more enhancer bins than pro-
moter bins with mean FST greater in diff- versus non-diff CREs (see Additional file 1: Fig. 
S21–22). Additionally, although binning reduces the power of each test, more of these 
bins have nominally significant differences in FST between diff- and non-diff enhanc-
ers. These results suggest that greater allele frequency divergence in differential activ-
ity enhancers is not dependent on allele frequency differences between the tested CRE 
types. Overall, these higher FST values for select bQTL in diff-enhancers are consistent 
with selection on TF binding sites in our diff-ATAC and diff-ChIP CREs.

Differential CRE activity could be a result of directional selection and/or genetic drift

While these results could reflect directional selection, the underlying divergence in allele 
frequencies and corresponding ancestry-associated differential CRE activity could still 
be explained by genetic drift. More convincing evidence of directional selection could 
result from applying the sign test framework [43, 44] to ask if the high-affinity alleles 
for bQTL that match diff-CRE direction are at higher frequency in one ancestry over 
the other more often than expected by chance. The sign test leverages the expecta-
tion that under neutrality, where genetic drift is the dominant force operating on allele 
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Fig. 4 Evidence for selection on TF binding in enhancers versus promoters. a FST values of TF bQTL and 
H3K4me3 QTL are shown as boxplots for diff- and non-diff CREs of each displayed score type separated by if 
the QTL is in an enhancer (top) or promoter (bottom). P-values from the one-sided Wilcoxon test on the FST 
distributions from diff-enhancer versus diff-promoter are displayed. b FST values of TF bQTL and H3K4me3 
QTL are shown as boxplots for enhancer and promoter diff-CREs of each displayed score type. P-values from 
the one-sided Wilcoxon test on the FST distributions from diff-enhancer versus diff-promoter are displayed. 
None of the P-values pass multiple test correction, so no asterisks are displayed. For visualization, non-outlier 
FST values are only plotted over boxplots for distributions with fewer than 200 points
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frequency in populations of both ancestries, the high-affinity alleles matching diff-CRE 
direction will not be biased toward higher frequencies in either population (Additional 
file 1: Fig. S23a). Among bQTL matching diff-CRE direction, we found no more popula-
tion-specific allele frequency bias than expected relative to the background of each TF’s 
bQTL in all CREs (Additional file 1: Fig. S23b). Thus, genetic drift could be responsi-
ble for the association with increased ancestry divergence in diff-CREs matching bQTL 
directionality.

Moving from genotype toward phenotype (Fig.  1a, left), we next sought to identify 
the functional pathways most closely associated with our diff-score enhancer-gene pairs 
and their ancestry directionality. If variants in any subset of diff-CREs linked to target 
genes associated with a particular pathway have been subject to lineage-specific selec-
tion, these may not have been detected in our previous analyses. To address this pos-
sibility, we used gene set enrichment analysis with the gene ontology (GO) biological 
processes and MSigDB Hallmark gene sets on genes ranked by the difference in means 
between ancestries in ABC component scores of their top diff-CREs scaled by a meas-
ure of score variance (i.e., ranked from high EUR activity to high AFR activity, see the 
“Methods” section). Again, under neutrality, we would not expect diff-CREs with target 
genes in a particular pathway to have higher activity in one ancestry over the other. We 
did not find any significant enrichments among these gene sets after multiple test cor-
rection; however, some immune-related gene sets including interferon gamma (IFNG) 
response and TNF-α signaling via NF-κ B were among the top nominal enrichments 
for genes with top diff-ChIP and/or diff-ATAC CREs in the AFR high activity direction 
(Additional file 1: Fig. S24). These nominal enrichments are consistent with diff-ATAC 
and diff-ChIP target gene enrichments for DE genes and matching DE directionality in 
IFNG-exposed LCLs (Fig. 2b,d, left), and Randolph et al.’s [40] finding of TNF-α signal-
ing via NF-κ B enrichment among genes with higher AFR expression in monocytes both 
before and after flu infection. Thus, although we do not find strong evidence for lineage-
specific selection on diff-CREs in aggregate, the possibility that selection has more sub-
tly affected gene regulatory architecture remains.

Discussion
We have presented results from the first genome-wide comparison of chromatin activity 
and contact frequency between human populations with the goal of identifying CREs 
under recent selection. Since recent evidence points toward gene expression changes 
as the dominant force shaping recent human adaptation relative to protein sequence 
changes [16, 45], this approach has the potential advantage of directly identifying CREs 
responsible for adaptive gene expression differences.

Using ABC scores to link CREs to target genes and decomposing these scores into 
their components allowed us to identify genes whose ancestry-associated expression dif-
ferences across multiple contexts could be identified by the differential activity of their 
enhancers in the context of LCLs at baseline. This was particularly true for identify-
ing the ancestry-associated direction of DE. Although H3K27ac alone is not required 
to maintain CRE activity [46], it seems to be a more reliable indicator of expression 
direction than chromatin accessibility as measured by ATAC-seq in the context of our 
study. For example, one of many models capable of explaining this difference would be 
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the binding of a transcriptional repressor to a promoter that yields an increase in chro-
matin accessibility but not in H3K27ac levels. About 25% of ABC-predicted and vali-
dated enhancer-gene pairs were found to have repressive effects via CRISPRi-flowFISH 
[29] and any such effects within the matching DE directionality enrichments from our 
study could have contributed to the 39% of differential activity pairs that “opposed” DE 
direction. More generally, the strength of these cross-context enrichments for DE and 
its direction is consistent with the maintenance of ancestry-associated regulatory dif-
ferences in contexts beyond those where the target genes are DE. Matching differential 
CRE activity in LCLs at baseline and DE in many other contexts suggests CRE poising 
for DE regulation upon stimulation or differentiation to another cell type, or footprints 
of regulatory activity from a previous cell state remaining after the transition from that 
state.

Although our bQTL enrichment results suggest that differential activity is a result of 
cis-regulatory activity, it is possible that transcription factor differential expression in 
trans partially accounts for this. Indeed, JunD and NFKB2 (NF-κ B subunit 2 of 2) show 
AFR-biased expression in LCLs at baseline (ancestry effect β = − 0.26, LFSR = 0.0026 
and ancestry effect β = −  0.18, LFSR = 0.073, respectively); however, given the high 
odds ratios for bQTL in the top 5% of FST (Fig. 3e, Additional file 1: Fig. S17), differential 
CRE activity would likely persist even under constant trans conditions. Moreover, the 
lack of enrichments among diff-ATAC and diff-ChIP promoters for bQTL over non-diff 
(Fig. 3c), matching bQTL directionality irrespective of FST (Fig. S17, bottom), and high 
bQTL FST over non-diff (Fig. 4a), all relative to the positive enrichments found for tests 
on enhancers (including Fig. 4b) are consistent with greater evolutionary constraint on 
promoters and the distinct roles of enhancers in cell types that may be subject to dif-
ferent selection pressures [47]. Notably, while diff-ChIP enhancers and promoters both 
identified DE direction (Additional file 1: Fig. S14c), these results suggest that if JunD 
and/or NF-κ B are responsible for any of these expression differences, it is due to differ-
ences in their binding at enhancers, rather than at promoters. Moreover, we find similar 
proportions of diff-ATAC and diff-ChIP enhancers versus promoters (20% versus 18%, 
and 10% versus 9%, respectively) indicating similar levels of differential signal present 
in each across both methods. This genotype-level evidence restricted to differential 
enhancers indicates that our method of using chromatin as a spotlight on genetic varia-
tion effectively reveals otherwise hidden patterns consistent with selection (Fig 1a, left).

While our tests for greater transcription factor binding in one ancestry over the other 
did not show evidence of lineage-specific selection, the most enriched pathways among 
genes linked to higher activity CREs in AFR suggest more subtle effects of directional 
selection. For example, if the IFNG response pathway was under selection in one ances-
try and this selection acted on a fraction of differential activity CREs regulated by tran-
scription factor complexes more tissue- and/or response-specific than JunD or NF-κ B, 
this could remain undetected when aggregating over many more CREs. Importantly, 
any ancestry-associated differences that may exist in the regulation of these pathways 
as a result of selection or drift do not imply differences in underlying cellular and physi-
ological mechanisms. Independent of these considerations, our study is limited by any 
changes to genome architecture introduced by Epstein-Barr virus in transforming B 
cells into LCLs that further mask the effects of any selection that has acted on B cells or 
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even more relevant cell types and the noise introduced by combined analysis of multi-
ple datasets generated by different people and/or labs. Future studies generating ABC 
score component data from diverse donors in cellular contexts more like those in which 
lineage-specific selection could have acted may find stronger evidence of it, especially if 
bQTL are mapped for more context-specific transcription factors.

The demographic processes that shape human genetic variation (e.g., population 
history, migration, and drift) can obscure the influence of selection on variants that 
underlie adaptive phenotypes [48]. Moreover, false signals of selection can result from 
under-controlled population stratification [49, 50]. These confounders along with the 
prevalence of adaptive variants in non-coding regions with subtle effects [16] demon-
strate the need for complementary methods to identify CREs that have been subjects 
of selection. We anticipate that extending the application of the method presented here 
to more populations and cell types will elucidate the molecular underpinnings of recent 
human evolution with implications for understanding modern disease prevalence.

Conclusions
In generating the first population-level maps of candidate enhancer-target gene pairs 
in humans, we suggest cis-regulatory elements are poised for ancestry-dependent dif-
ferential expression regulation upon stimulation or differentiation to another cell type. 
Mechanistically, this poising could be maintained by variants affecting the binding of 
transcription factors NF-kB, JunD, and PU.1 that show signs of lineage-specific selec-
tion in enhancers but not promoters. The potential effects of directional selection on 
immune-related pathways identified here suggest the promise of applying our chroma-
tin-level selection test in additional cell types with roles in these pathways.

Methods
Cell culture and ATAC‑seq

For detailed methods on cell culture conditions and processing, see our previous study 
[19]. Briefly, 2×103 cells from each LCL were collected and pooled by population after 
growth to 6–8×105 cells/mL. To prevent disproportionate cell line growth within pools 
throughout the collection and pooling process, sub-pools were frozen in liquid nitrogen 
at −180 °C. After collection of all LCLs, sub-pools were combined by population, and 
cells from each of the 10 pools were purified, isolated, and split into two replicates of 
 105 cells each and pelleted according to [19] for a total of 20 samples. ATAC-seq was 
performed using the protocol from [23] in which each sample was resuspended in 100 
µl of transposition mix containing 5 µl of Tn5 Transposase and incubated in a Thermo-
Mixer for 30 min at 37 °C and 750 rpm. Transposed DNA fragments were then eluted 
and PCR-amplified with total cycles determined according to [23]. Following two PCR 
cleanup steps, purified ATAC-seq libraries were sequenced on an Illumina HiSeq 4000 
to generate 2×150 bp, paired-end reads.

HiChIP

We thawed each −180°C-stored sub-pool described above and in [19] on ice, com-
bined them by population and removed dead cells. As for ATAC-seq, to avoid dis-
proportionate cell line growth we did not passage the cells before or after combining 
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sub-pools. We then split each population pool into 2 replicates for crosslinking and 
HiChIP. For more detailed HiChIP methods, see [30]. Briefly, cells from each pool 
were pelleted and resuspended in 1% formaldehyde (Thermo Fisher) for crosslinking 
at a volume of 1 ml per million cells with incubation at room temperature for 10 min 
with rotation. Formaldehyde was then quenched with glycine at a 125-mM final con-
centration with 5 min room temperature incubation with rotation. Cells were then 
pelleted, PBS-washed, re-pelleted, and either used immediately in the HiChIP proto-
col or stored at −80 °C for HiChIP later.

HiChIP was performed as described in [25] with H3K27ac antibody (Abcam, 
ab4729) and the following modifications. We used a 2 min sonication time, 2 µg of 
antibody, 34 µl of Protein A beads (Thermo Fisher) for chromatin-antibody complex 
capture. Post-ChIP Qubit quantification was performed to determine the amount of 
Tn5 used and a number of PCR cycles performed for library generation, accounting 
for varying amounts of starting material. We performed size selection by PAGE puri-
fication (300–700 bp) to remove primer contamination and sequenced all libraries on 
an Illumina HiSeq 4000.

ATAC‑seq read mapping

For the complete mapping pipeline see https:// github. com/ kadep ettie/ popABC/ tree/ master/ 
mappi ng, which contains a nextflow implementation of the steps described in [19]. Cuta-
dapt was used to remove sequencing adapters (arguments: -e 0.20 -a CTG TCT CTT ATA 
CAC ATC T -A CTG TCT CTT ATA CAC ATC T -m 5). PCR duplicate reads generated during 
library preparation were removed using picard MarkDuplicates (v2.18.20) (http:// broad insti 
tute. github. io/ picard/) (arguments: SORTING_COLLECTION_SIZE_RATIO=.05 MAX_
FILE_HANDLES_FOR_READ_ENDS_MAP=1000 MAX_RECORDS_IN_RAM=2500000 
OPTICAL_DUPLICATE_PIXEL_DISTANCE=100 REMOVE_DUPLICATES=true DUPLI-
CATE_SCORING_STRATEGY=RANDOM). To minimize allelic mapping bias, a modified 
version (https:// github. com/ TheFr aserL ab/ WASP/ tree/ atac- seq- analy sis/ mappi ng) of the 
WASP pipeline [38] was used for read mapping. Reads were aligned to the hg19 genome using 
bowtie2 [51] (arguments: -N 1 -L 20 -X 2000 --end-to-end --np 0 --n-ceil L,0,0.15) and filtered 
to a minimum mapping quality of 5 using samtools (v1.8) [52].

HiChIP read mapping

HiChIP reads were mapped using the nf-core [53] HiC-Pro [54] mapping pipeline 
(https:// github. com/ nf- core/ hic) modified to include the same version of the WASP 
pipeline as was used for ATAC-seq to minimize allelic mapping bias (https:// github. 
com/ kadep ettie/ popABC/ tree/ master/ hicpro). In this version, however, allele-swapped 
remapping was performed separately on each read end, after which reads were re-paired, 
to accommodate the long-range nature of the paired-end reads as in the original HiC-
Pro pipeline. Filtering reads down to valid cis interaction pairs, we took the raw 5-Kb 
resolution contact maps (the “.matrix” and corresponding “.bed” file output from process 
“build_contact_maps”) as input to our differential activity-by-contact pipeline.

https://github.com/kadepettie/popABC/tree/master/mapping
https://github.com/kadepettie/popABC/tree/master/mapping
http://broadinstitute.github.io/picard/
http://broadinstitute.github.io/picard/
https://github.com/TheFraserLab/WASP/tree/atac-seq-analysis/mapping
https://github.com/nf-core/hic
https://github.com/kadepettie/popABC/tree/master/hicpro
https://github.com/kadepettie/popABC/tree/master/hicpro
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Differential activity‑by‑contact

Candidate element definition

We used the ABC model (https:// github. com/ broad insti tute/ ABC- Enhan cer- Gene- Predi 
ction) to predict enhancer-gene connections in each pooled LCL population replicate 
(sample), with modifications to facilitate comparison of AFR and EUR population sam-
ples. For the complete differential activity-by-contact (diff-ABC) pipeline see https:// 
github. com/ kadep ettie/ popABC/ tree/ master/ selec tion_ 1000G (“ABC_pipeline.nf”). We 
used Genrich (v0.5_dev, available at https:// github. com/ jsh58/ Genri ch) to call AFR and 
EUR ATAC-seq peaks jointly on the 8 samples from each with default parameters except 
for the following: -y -j -d 151. We then summed the reads in each peak across the cor-
responding 8 samples, kept the top 150,000 by read count, and resized them to 500 bp 
centered on the peak summit. To ensure equal contribution from peaks called separately 
in AFR and EUR to our candidate element input to the ABC model, we again made sepa-
rate rankings by read count for each, then interleaved the two lists evenly by ranking, 
merging any overlaps, and taking the top 150,000 elements. We next added 500 bp gene 
TSS-centered regions and removed any from the resulting list that overlapped regions 
of the genome with known signal artifacts (https:// sites. google. com/ site/ anshu lkund aje/ 
proje cts/ black lists) [55, 56]. Overlapping regions resulting from summit extensions and/
or TSS additions were merged immediately following each of these steps. We defined 
promoter elements as those within 500 bp of an annotated TSS and the rest as enhancer 
elements.

Score component normalization

To ensure comparability of ABC scores between populations and replicates, and par-
ticularly samples with differing signal-to-noise ratios, we quantile normalized ATAC-
seq reads per million sequenced reads (RPM), HiChIP valid cis interaction pair counts 
from 5 kb bins overlapping CREs, and each of these bins’ total count (for ChIP score 
computation) to the mean of their respective distributions across samples separately for 
enhancers and promoters. Since there is a lack of consensus on an appropriate library 
size normalization method for HiChIP data, due to the violation of the assumption of 
equal visibility between interacting regions often used in HiC normalization [54, 57, 58], 
we relied on the combination of quantile normalization and subsequent score normali-
zation steps to control for library size and other technical artifacts.

Quantitative HiChIP signals were computed using the quantile normalized HiChIP 
contact counts according to [29]. Briefly, for each gene TSS, all contact counts in CREs 
within 5 Mb were normalized to sum to one, then divided by the maximum of these val-
ues to normalize for comparison across genes.

Score computation

As in [29], we computed ABC scores using H3K27ac HiChIP with the fraction of regula-
tory input to gene G contributed by element E given by:

ABC scoreE,G =
AE × QE,G

all elements e within 5 Mb of G Ae × Qe,G

https://github.com/broadinstitute/ABC-Enhancer-Gene-Prediction
https://github.com/broadinstitute/ABC-Enhancer-Gene-Prediction
https://github.com/kadepettie/popABC/tree/master/selection_1000G
https://github.com/kadepettie/popABC/tree/master/selection_1000G
https://github.com/jsh58/Genrich
https://sites.google.com/site/anshulkundaje/projects/blacklists
https://sites.google.com/site/anshulkundaje/projects/blacklists
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Here, the activity component ( A ) is quantile normalized ATAC-seq RPM, as in the 
original ABC score formula, but we have replaced the HiC contact component ( C ) with 
the quantitative HiChIP signal ( Q ) described above. We computed ATAC scores as 
follows:

We computed ChIP scores as follows, using the geometric mean of the quantile nor-
malized HiChIP bin totals overlapping each element (vanilla coverage square root (VC-
sqrt)) to estimate the aggregate H3K27ac signal at both elements:

where H is the total quantile normalized valid cis interaction pair count from the 
HiChIP bin overlapping element E or the promoter of gene G . VC-sqrt normalization 
is commonly applied to HiC data for comparison of contact frequencies across samples 
since the assumption of equal visibility is reasonable when considering data generated 
from proximity-based ligation alone (i.e., without ChIP). When applied to HiChIP, the 
VC-sqrt measures the difference in visibility between interacting regions relative to one 
another within a sample that is due to the levels of H3K27ac present at each region. 
Thus, when normalized by the sum of this signal across all elements within 5 Mb of the 
target gene, the resulting ChIP score reflects the contribution of H3K27ac levels to an 
ABC score. We can then use VC-sqrt normalization to estimate the contact frequency 
between each element independent of H3K27ac levels and extend this to compute the 
HiC component of an ABC score as follows:

where C is the quantile normalized number of valid cis interaction pairs connecting the 
HiChIP bin overlapping element E and the promoter of gene G.

E‑G pair definition

To perform differential ABC score analysis across ancestries, we took predictions from 
the ABC model for each sample (population and replicate) and processed them accord-
ing to the following steps. First, we excluded pairs with ABC score < 0.015 in all samples 
to avoid testing pairs unlikely to be true regulatory connections in any population [31]. 
Second, we excluded promoter-gene pairs with ABC scores below a stringent threshold 
of 0.1 because experimental data has shown the ABC model has poorer performance for 
this class of interactions, likely due to transcriptional interference, trans effects, and/or 
promoter competition [29]. Third, we required each enhancer-gene pair to be supported 
by non-zero quantile-normalized HiChIP contacts and ATAC values at the CRE in all 
samples, to avoid testing pairs where low ABC scores could be driven by mapping biases 
or low sequencing depth. Due to the difference in sequencing depths between samples, 
this final filtering step reduced the number of enhancer-gene pairs under consideration 

ATAC scoreE,G =
AE

∑

all elements e within 5 Mb of G Ae

ChIP scoreE,G =
√
HE ×HG

∑

all elements e within 5 Mb of G

√
He ×HG

HiC scoreE,G =

CE,G√
HE×HG

∑

all elements e within 5 Mb of G
Ce,G√
He×HG
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from 580,474 to our final set of 52,454 after removing CEU from the enhancer-gene pair-
calling pipeline.

Clustering analysis

For each score type and enhancer-gene pair, values were z-score normalized across sam-
ples for comparison and visualization of enhancer-gene pairs with large differences in 
mean score. PCA was performed with “prcomp” and heatmaps were generated using the 
pheatmap package (v1.0.12) in R (v4.1.0).

Differential analysis

We called diff-CREs using unpaired, two-sample t-tests on each score type in AFR ver-
sus EUR samples.  Log2 fold change effect sizes were estimated as the  log2-ratio of the 
mean EUR score over the mean AFR score. We estimated a false discovery rate (FDR) for 
each score type at t-test P < 0.05 as the ratio of expected over observed enhancer-gene 
pairs with P < 0.05, where the null P-value distribution was derived from unpaired, two-
sample t-tests on one set of replicates from each population versus the other. Replicate 
number was randomized for each enhancer-gene pair. To estimate the null P-value dis-
tribution for tests with eight AFR and six EUR samples after CEU removal while main-
taining the eight versus six sample structure of each test, one AFR population was held 
out at random from replicate shuffling for each enhancer-gene pair and both replicates 
from this population were used in the group of eight (as opposed to the seven versus 
seven structure that would result from splitting by replicate across all populations). 
Since ChIP score signal is derived from HiChIP contact count bins at 5 Kb resolution, we 
counted diff-ChIP and HiC for CREs from the same HiChIP bin as one in each diff-score 
enrichment test described below.

DE enrichments

We used hypergeometric tests (i.e., one-sided Fisher’s exact tests) to determine enrich-
ments for DE target genes among diff-CREs and matching ancestry directionality among 
DE genes with a diff-CRE. For the former across score types, we took the most differ-
ential CRE (top diff-CRE) by the corresponding metric (i.e., ABC, ATAC, ChIP, or HiC 
score) per gene, defining diff-CREs at nominal t-test P-values < 0.05, non-diff-CREs at 
t-test P-values ≥ 0.5, and DE genes at LFSRs < 0.05 [40, 59, 60]. Then, counting each 
CRE only once, we classified diff-CRE hits as any with at least one DE target gene, diff-
CRE non-hits as any with no DE target genes, non-diff-CRE hits as any with no DE tar-
get genes, and non-diff-CRE non-hits as any with at least one DE target gene. For the 
promoter test, we took the subset of promoter CREs and additionally required diff-CRE 
hits and non-diff-CRE non-hits to be promoters for at least one of their DE target genes. 
For the enhancer test, we allowed promoter CREs to be classified as enhancers if they 
were not promoters for the relevant gene(s) (e.g., a distal promoter for another gene con-
tacting the promoter of the DE gene under consideration). That is, we required diff-CRE 
hits and non-diff-CRE non-hits not to be promoters for any of their DE target genes.

For the matching direction tests, we took the subset of top diff-CREs with DE target 
genes where all DE target genes were in the same direction (AFR- or EUR-biased) and, 
again counting each CRE only once, classified hits as diff-CREs with higher scores in the 
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same ancestry as that with higher expression in their DE target gene(s). For the promoter 
and enhancer tests, we required diff-CREs to be promoters for at least one of their DE 
target genes and none of their DE target genes, respectively. For each set of tests, we only 
report P-values in the main text that pass Bonferroni-corrected thresholds.

TF bQTL and H3K4me3 QTL enrichment analysis

We used hypergeometric tests to determine enrichments for each QTL type among diff-
CREs relative to non-diff-CREs and matching ancestry directionality among diff-CREs 
with a QTL, using the same definitions for diff- and non-diff-CREs as in our DE enrich-
ment analyses. In each test, we considered the QTL with the lowest P-value per CRE 
for CREs with multiple QTL of the given type. For the directional analyses, we defined 
bQTL directionality as AFR if the high-affinity allele was present in AFR at a greater 
frequency than in EUR and vice versa. For CREs with multiple bQTL, we additionally 
required that they all match the direction for inclusion in each test. For binomial sign 
tests (see Additional file 1: Fig. S23a-b), we performed two-sided binomial tests on the 
number of QTL matching directionality in diff-CREs in the AFR direction out of the 
total number matching direction in diff-CREs with a null probability of this proportion 
across all CREs.

GO analysis

We used the R package fgsea (v1.20.0) [61] to perform gene set enrichment analysis 
on genes ranked by the value of their most differential CRE according to the following 
T-test statistic [62]:

Where µ is the mean score, σ is the standard deviation, and n is the number of samples 
for each ancestry. fgsea was run on these ranked lists for each score type using the C5 
GO biological processes and MSigDB Hallmark gene sets with default arguments except: 
minSize = 15, maxSize = 500.

FST analysis

FST for all variants was obtained using VCFtools’ calculation of Weir and Cockerham FST 
[9] between individuals from the African (ESN, GWD, LWK, and YRI) and European 
(CEU, FIN, IBS, and TSI) populations in our ATAC-seq and HiChIP data on a per-site 
basis. Variants with NA values were removed and negative estimations were adjusted to 
zero. For diff- versus non-diff CRE FST Wilcoxon tests independent of their containing 
bQTL or H3K4me3 QTL, we took the maximum FST value per CRE.

To control for possible allele frequency differences in our diff- versus non-diff CRE 
bQTL FST Wilcoxon tests, we took the combined set of diff- and non-diff CRE bQTL in 
each test, split them by mean allele frequency across AFR and EUR populations into 10 
decile bins, and performed separate tests within each of these bins.

µEUR − µAFR
√

σ
2
EUR

nEUR
+ σ

2
AFR

nAFR
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iHS analysis

iHS for all populations were obtained from Johnson and Voight (2018) [63] and over-
lapped with bQTL in our CREs. For Wilcoxon tests analogous to those in our FST 
analysis, we used the maximum iHS observed across all populations.

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s13059- 024- 03165-2.

Additional file 1. 

Additional file 2. HiChIP read mapping statistics. Number of reads of each category at each mapping step (percent-
ages are of the total read pairs entering each mapping step).

Additional file 3. CEU scores. ABC, ATAC, ChIP, and HiC scores for both CEU replicates for all E-G pairs after filtering 
across all 16 samples.

Additional file 4. AFR scores. ABC, ATAC, ChIP, and HiC scores for all African ancestry samples for all E-G pairs after 
filtering across the 14 samples not including CEU.

Additional file 5. EUR scores. ABC, ATAC, ChIP, and HiC scores for all European ancestry samples for all E-G pairs after 
filtering across the 14 samples not including CEU.

Additional file 6. Differential score statistics. Results of tests for differential ABC, ATAC, ChIP, and HiC scores between 
AFR and EUR populations for all E-G pairs after filtering across the 14 samples not including CEU.

Additional file 7. Peer review history.

Acknowledgements
We thank members of the Fraser lab for helpful conversations, advice, and feedback on the manuscript; and Joseph 
Nasser, Kristy Mualim, and Jesse Engreitz for help with Activity-by-Contact scores.

Review history
 The review history is available as Additional file  7 .

Peer review information
Tim Sands was the primary editor of this article and managed its editorial process and peer review in collaboration with 
the rest of the editorial team.

Authors’ contributions
HBF conceived the study. KPP and HBF conceived analysis methods. HiChIP experiments were performed by MM, MK, 
and KPP and funded by HYC. KPP performed all analyses and designed all graphics. AJL and JA provided unpublished 
data. KPP wrote the manuscript with input from all authors. HBF supervised all aspects of the work. All authors read and 
approved the final manuscript.

Funding
This work was funded by NIH grant R01GM134228. KPP was supported by NIH training grant T32GM007276 and the NSF 
Graduate Research Fellowship Program. HiChIP data generation was supported by NIH grant RM1-HG007735 to HYC.

Availability of data and materials
Genotype data for all individuals from populations used in our ATAC-seq and FST analyses is from 1000 Genomes Project 
Phase 3 release [19] (ftp:// ftp. 1000g enomes. ebi. ac. uk/ vol1/ ftp/ relea se/ 20130 502/).
All HiChIP reads are available as fastq files at NCBI SRA, project ID PRJNA898623 [64].
Ancestry associated differential expression data from RNA-seq in LCLs after four-hour exposure to twelve cellular envi-
ronments is from Supplemental Table S8 of Lea et al. [59] with additional files and analysis code at https:// github. com/ 
Amand aJLea/ LCLs_ gene_ exp.
Ancestry associated differential expression data from single cell RNA-seq in PBMCs is from Randolph et al. [40], available 
at NCBI GEO, Accession no. GSE162632 [65].
bQTL and H3K4me3 QTL are from supplemental Table S1 of Tehranchi et al. [18].
CTCF QTL are from Ding et al [42].
All pipelines and code used for analyses in this paper are available on Zenodo at https://zenodo.org/records/10396417 
and on github at https://github.com/kadepettie/popABC/tree/master [66].

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

https://doi.org/10.1186/s13059-024-03165-2
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
https://github.com/AmandaJLea/LCLs_gene_exp
https://github.com/AmandaJLea/LCLs_gene_exp


Page 22 of 23Pettie et al. Genome Biology           (2024) 25:21 

Received: 11 November 2022   Accepted: 4 January 2024

References
 1. Shapiro MD, Marks ME, Peichel CL, Blackman BK, Nereng KS, Jónsson B, et al. Genetic and developmental basis 

of evolutionary pelvic reduction in threespine sticklebacks. Nature. 2004;428(6984):717–23.
 2. Tishkoff SA, Reed FA, Ranciaro A, Voight BF, Babbitt CC, Silverman JS, et al. Convergent adaptation of human 

lactase persistence in Africa and Europe. Nat Genet. 2007;39(1):31–40.
 3. Manceau M, Domingues VS, Mallarino R, Hoekstra HE. The developmental role of Agouti in color pattern evolu-

tion. Science  (80- ). 2011;331(6020):1062–5.
 4. Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, et al. Systematic localization of common 

disease-associated variation in regulatory DNA. Science (80- ). 2012;337(6099):1190–5.
 5. Schaub MA, Boyle AP, Kundaje A, Batzoglou S, Snyder M. Linking disease associations with regulatory informa-

tion in the human genome. Genome Res. 2012;22(9):1748–59.
 6. Cano-Gamez E, Trynka G. From GWAS to function: using functional genomics to identify the mechanisms under-

lying complex diseases. Front Genet. 2020;11:424 Frontiers Media S.A.
 7. Gallagher MD, Chen-Plotkin AS. The Post-GWAS Era: from association to function. Am J Hum Genet. 

2018;102(5):717–30 Cell Press.
 8. Sohail MS, Louie RHY, McKay MR, Barton JP. MPL resolves genetic linkage in fitness inference from complex 

evolutionary histories. Nat Biotechnol. 2020;2020(30):1–8.
 9. Weir BS, Cockerham CC. Estimating F-statistics for the analysis of population structure. Evolution (N Y). 1984;38(6):1358.
 10. Foll M, Gaggiotti O. A genome-scan method to identify selected loci appropriate for both dominant and 

codominant markers: a Bayesian perspective. Genetics. 2008;180(2):977–93.
 11. Coop G, Witonsky D, Di Rienzo A, Pritchard JK. Using environmental correlations to identify loci underlying local 

adaptation. Genetics. 2010;185(4):1411–23.
 12. Hancock AM, Witonsky DB, Alkorta-Aranburu G, Beall CM, Gebremedhin A, Sukernik R, et al. Adaptations to 

Climate-Mediated Selective Pressures in Humans. Nachman MW, editor. PLoS Genet. 2011;7(4):e1001375.
 13. Hancock AM, Witonsky DB, Ehler E, Alkorta-Aranburu G, Beall C, Gebremedhin A, et al. Human adaptations 

to diet, subsistence, and ecoregion are due to subtle shifts in allele frequency. Proc Natl Acad Sci U S A. 
2010;107(SUPPL. 2):8924–30.

 14. Hancock AM, Brachi B, Faure N, Horton MW, Jarymowycz LB, Sperone FG, et al. Adaptation to climate across the 
Arabidopsis thaliana genome. Science  (80- ). 2011;334(6052):83–6.

 15. Fumagalli M, Pozzoli U, Cagliani R, Comi GP, Bresolin N, Clerici M, et al. Genome-Wide Identification of Suscepti-
bility Alleles for Viral Infections through a Population Genetics Approach. Malik HS, editor. PLoS Genet. 2010 Feb 
19;6(2):e1000849.

 16. Fraser HB. Gene expression drives local adaptation in humans. Genome Res. 2013;23(7):1089–96.
 17. Kaplow IM, MacIsaac JL, Mah SM, McEwen LM, Kobor MS, Fraser HB. A pooling-based approach to mapping 

genetic variants associated with DNA methylation. Genome Res. 2015;25(6):907–17.
 18. Tehranchi AK, Myrthil M, Martin T, Hie BL, Golan D, Fraser HB. Pooled ChIP-Seq links variation in transcription 

factor binding to complex disease risk. Cell. 2016;165(3):730–41.
 19. Tehranchi A, Hie B, Dacre M, Kaplow I, Pettie K, Combs P, et al. Fine-mapping cis-regulatory variants in diverse 

human populations. Elife. 2019;16:8.
 20. GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science (80- ). 

2020;369(6509):1318–30.
 21. Greenwald WW, Li H, Benaglio P, Jakubosky D, Matsui H, Schmitt A, et al. Subtle changes in chromatin loop con-

tact propensity are associated with differential gene regulation and expression. Nat Commun. 2019;10(1):1054.
 22. Grubert F, Zaugg JB, Kasowski M, Ursu O, Spacek DV, Martin AR, et al. Genetic Control of chromatin states in 

humans involves local and distal chromosomal interactions. Cell. 2015;162(5):1051–65.
 23. Buenrostro JD, Wu B, Chang HY, Greenleaf WJ. ATAC-seq: A method for assaying chromatin accessibility genome-

wide. Curr Protoc Mol Biol. 2015;2015(1):21.29.1-21.29.9.
 24. Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, et al. Comprehensive mapping 

of long-range interactions reveals folding principles of the human genome. Science. 2009;326(5950):289–93.
 25. Mumbach MR, Rubin AJ, Flynn RA, Dai C, Khavari PA, Greenleaf WJ, et al. HiChIP: efficient and sensitive analysis of 

protein-directed genome architecture. Nat Methods. 2016;13(11):919–22.
 26. Mumbach MR, Granja JM, Flynn RA, Roake CM, Satpathy AT, Rubin AJ, et al. HiChIRP reveals RNA-associated 

chromosome conformation. Nat Methods. 2019;16(6):489–92.
 27. Mifsud B, Tavares-Cadete F, Young AN, Sugar R, Schoenfelder S, Ferreira L, et al. Mapping long-range promoter 

contacts in human cells with high-resolution capture Hi-C. Nat Genet. 2015;47(6):598–606.
 28. Waszak SM, Delaneau O, Gschwind AR, Kilpinen H, Raghav SK, Witwicki RM, et al. Population variation and 

genetic control of modular chromatin architecture in humans. Cell. 2015;162(5):1039–50.
 29. Fulco CP, Nasser J, Jones TR, Munson G, Bergman DT, Subramanian V, et al. Activity-by-contact model of enhancer–

promoter regulation from thousands of CRISPR perturbations. Nat Genet. 2019;51:1664–9 Nature Research.
 30. Mumbach MR, Satpathy AT, Boyle EA, Dai C, Gowen BG, Cho SW, et al. Enhancer connectome in primary human 

cells identifies target genes of disease-associated DNA elements. Nat Genet. 2017;49(11):1602–12.
 31. Nasser J, Bergman DT, Fulco CP, Guckelberger P, Doughty BR, Patwardhan TA, et al. Genome-wide enhancer 

maps link risk variants to disease genes. Nature. 2021;7(17):1–6.
 32. Peng PC, Khoueiry P, Girardot C, Reddington JP, Garfield DA, Furlong EEM, et al. The Role of Chromatin Acces-

sibility in cis-Regulatory Evolution. Zufall R, editor. Genome Biol Evol. 2019;11(7):1813–28.



Page 23 of 23Pettie et al. Genome Biology           (2024) 25:21  

 33. Edsall LE, Berrio A, Majoros WH, Swain-Lenz D, Morrow S, Shibata Y, et al. Evaluating Chromatin Accessibility Dif-
ferences Across Multiple Primate Species Using a Joint Modeling Approach. O’Neill R, editor. Genome Biol Evol. 
2019;11(10):3035–53.

 34. Swain-Lenz D, Berrio A, Safi A, Crawford GE, Wray GA. Comparative Analyses of Chromatin Landscape in White 
Adipose Tissue Suggest Humans May Have Less Beigeing Potential than Other Primates. Lerat E, editor. Genome 
Biol Evol. 2019;11(7):1997–2008.

 35. Reddy SI, Burakoff R. Inflammatory Bowel Disease in African Americans. Inflamm Bowel Dis. 2003;9(6):380–5.
 36. Krishnan E, Hubert HB. Ethnicity and mortality from systemic lupus erythematosus in the US. Ann Rheum Dis. 

2006;65(11):1500.
 37. Ogdie A, Matthias W, Thielen RJ, Chin D, Saffore CD. Racial differences in prevalence and treatment for psoriatic 

arthritis and ankylosing spondylitis by insurance coverage in the USA. Rheumatol Ther. 2021;8(4):1725.
 38. van de Geijn B, McVicker G, Gilad Y, Pritchard JK. WASP: allele-specific software for robust molecular quantitative 

trait locus discovery. Nat Methods. 2015;12(11):1061–3.
 39. Yuan Y, Tian L, Lu D, Xu S. Analysis of genome-Wide RNA-sequencing data suggests age of the CEPH/Utah (CEU) 

Lymphoblastoid Cell Lines Systematically Biases Gene Expression Profiles. Sci Rep. 2015;5(1):1–5.
 40. Randolph HE, Fiege JK, Thielen BK, Mickelson CK, Shiratori M, Barroso-Batista J, et al. Genetic ancestry effects on 

the response to viral infection are pervasive but cell type specific. Science. 2021;374(6571):1127–33.
 41. Karlić R, Chung HR, Lasserre J, Vlahoviček K, Vingron M. Histone modification levels are predictive for gene 

expression. Proc Natl Acad Sci U S A. 2010;107(7):2926–31.
 42. Ding Z, Ni Y, Timmer SW, Lee BK, Battenhouse A, Louzada S, et al. Quantitative Genetics of CTCF Binding Reveal Local 

Sequence Effects and Different Modes of X-Chromosome Association. Gibson G, editor. PLoS Genet. 2014;10(11):e1004798.
 43. Fraser HB, Moses AM, Schadt EE. Evidence for widespread adaptive evolution of gene expression in budding 

yeast. Proc Natl Acad Sci U S A. 2010;107(7):2977–82.
 44. Fraser HB. Genome-wide approaches to the study of adaptive gene expression evolution. BioEssays. 2011;33(6):469–77.
 45. Enard D, Messer PW, Petrov DA. Genome-wide signals of positive selection in human evolution. Genome Res. 

2014;24(6):885–95.
 46. Zhang T, Zhang Z, Dong Q, Xiong J, Zhu B. Histone H3K27 acetylation is dispensable for enhancer activity in 

mouse embryonic stem cells. Genome Biol. 2020;21(1):1–7.
 47. Heinz S, Romanoski CE, Benner C, Glass CK. The selection and function of cell type-specific enhancers. Nat Rev 

Mol Cell Biol. 2015;16(3):144–54.
 48. Coop G, Pickrell JK, Novembre J, Kudaravalli S, Li J, Absher D, et al. The Role of Geography in Human Adaptation. 

Schierup MH, editor. PLoS Genet. 2009;5(6):e1000500.
 49. Sohail M, Maier RM, Ganna A, Bloemendal A, Martin AR, Turchin MC, et al. Polygenic adaptation on height is 

overestimated due to uncorrected stratification in genome-wide association studies. Elife. 2019;1:8.
 50. Berg JJ, Harpak A, Sinnott-Armstrong N, Joergensen AM, Mostafavi H, Field Y, et al. Reduced signal for polygenic 

adaptation of height in UK biobank. Elife. 2019;1:8.
 51. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357–9.
 52. Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, et al. Twelve years of SAMtools and BCFtools. 

Gigascience. 2021;10(2):1–4.
 53. Ewels PA, Peltzer A, Fillinger S, Patel H, Alneberg J, Wilm A, et al. The nf-core framework for community-curated 

bioinformatics pipelines. Nat Biotechnol. 2020;38(3):276–8.
 54. Servant N, Varoquaux N, Lajoie BR, Viara E, Chen CJ, Vert JP, et al. HiC-Pro: an optimized and flexible pipeline for 

Hi-C data processing. Genome Biol. 2015;16(1):259.
 55. Amemiya HM, Kundaje A, Boyle AP. The ENCODE blacklist: identification of problematic regions of the genome. 

Sci Rep. 2019;9(1):1–5.
 56. Consortium TEP. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489(7414):57–74.
 57. Denker A, de Laat W. The second decade of 3C technologies: detailed insights into nuclear organization. Genes 

Dev. 2016;30(12):1357–82.
 58. Juric I, Yu M, Abnousi A, Raviram R, Fang R, Zhao Y, et al. MAPS: Model-based analysis of long-range chromatin 

interactions from PLAC-seq and HiChIP experiments. PLOS Comput Biol. 2019;15(4):e1006982.
 59. Lea AJ, Peng J, Ayroles JF. Diverse environmental perturbations reveal the evolution and context-dependency of 

genetic effects on gene expression levels. Genome Res. 2022;32(10):1826–39.
 60. Urbut SM, Wang G, Carbonetto P, Stephens M. Flexible statistical methods for estimating and testing effects in 

genomic studies with multiple conditions. Nat Genet. 2018;26:1.
 61. Korotkevich G, Sukhov V, Budin N, Shpak B, Artyomov MN, Sergushichev A. Fast gene set enrichment analysis 

bioRxiv. 2021;1:060012.
 62. Zyla J, Marczyk M, Weiner J, Polanska J. Ranking metrics in gene set enrichment analysis: do they matter? BMC 

Bioinformatics. 2017;18(1):256.
 63. Johnson KE, Voight BF. Patterns of shared signatures of recent positive selection across human populations. Nat 

Ecol Evol. 2018;2(4):713–20.
 64. HiChIP on pooled LCLs from 1000 Genomes Project. PRJNA898623. BioProject. https:// www. ncbi. nlm. nih. gov/ 

biopr oject/? term= PRJNA 898623. (2022).
 65. Randolph HE, Fiege JK, Thielen BK, Mickelson CK, Shiratori M, Barroso-Batista J, et al. Single-cell RNA-sequencing 

reveals pervasive but highly cell type-specific genetic ancestry effects on the response to viral infection. GSE162632. 
Gene Expression Omnibus. https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE16 2632. 2021.

 66. Pettie K.kadepettie, popABC: source code for Pettie, et al 2023 Zenodo 10.5281/zenodo.10396417

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA898623
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA898623
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE162632

	Chromatin activity identifies differential gene regulation across human ancestries
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Results
	Differential CRE activity is linked to differential expression between ancestries
	Differential CRE activity is associated with ancestry-divergent variants that affect binding of specific TFs
	Differential CRE activity could be a result of directional selection andor genetic drift

	Discussion
	Conclusions
	Methods
	Cell culture and ATAC-seq
	HiChIP
	ATAC-seq read mapping
	HiChIP read mapping
	Differential activity-by-contact
	Candidate element definition
	Score component normalization
	Score computation

	E-G pair definition
	Clustering analysis
	Differential analysis
	DE enrichments
	TF bQTL and H3K4me3 QTL enrichment analysis
	GO analysis
	FST analysis
	iHS analysis

	Acknowledgements
	References


