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Abstract 

In research involving data-rich assays, exploratory data analysis is a crucial step. 
Typically, this involves jumping back and forth between visualizations that provide 
overview of the whole data and others that dive into details. For example, it might be 
helpful to have one chart showing a summary statistic for all samples, while a second 
chart provides details for points selected in the first chart. We present R/LinkedCharts, 
a framework that renders this task radically simple, requiring very few lines of code 
to obtain complex and general visualization, which later can be polished to provide 
interactive data access of publication quality.

Background
Effective data visualization has been crucial for scientific success since the first quantita-
tive experiments. Yet, the amount and complexity of the available data have continuously 
grown over the last decades, while there are certain limits to how much information one 
can learn from a static image [1]. Excessive details and multiple overlapping layers make 
it harder to grasp the crux of a plot. One solution to the problem is to come up with 
more and more creative and elaborate types of plots, the other is to add an extra dimen-
sion by employing interactivity. The first attempts of the latter started in the 1970s [2, 3], 
and by now interactivity is applied ubiquitously, not only in science but also in market-
ing, journalism, and any other field, where there is a need to communicate data-based 
knowledge to an audience.

Interactive figures are engaging. They allow users to observe data from multiple self-
chosen angles making the conveyed message more credible. They also bolster data explo-
ration sparing researchers the necessity of handpicking presumably important parts of 
data in advance. Therefore, we believe that further integration of interactive tools in a 
researcher’s routine can significantly improve the quality of research.

Numerous tools [4] now provide means of interactive inspection for many specific 
types of data. Examples from biology include metabolic maps [5], genome assemblies 
[6], scRNA-Seq or other kinds of omics data [7, 8], QTL data [9], and many more. While 
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such solutions are each tailored for one very specific type of data, there are also a num-
ber of general low-level frameworks to create interactive apps, such as D3 [10] and Vega-
Lite [11], and more high-level but still general-purpose packages, such as Vega [12], 
Shiny, BPG [13], plotly, Bokeh, and Observable Plot.

A crucial part that is used in many of the special-purpose solutions is “linking” of 
charts: the user’s click on, e.g., a data point in one overview chart (the overview chart) 
causes details to this very data item to be shown in another chart (the details chart) [14]. 
Even though such linking is often what makes interactive tools for specialized purposes 
useful, functionality for linking in general is missing from most general-purpose frame-
works. For technical reasons, such functionality is, if at all, only offered by frameworks 
for web programming in JavaScript―which is most unsatisfactory for bioinformatics, 
a field where most work is done using R and Python.

In this paper, we present R/LinkedCharts, an R package that makes it very simple to 
produce linked interactive plots by providing convinient R wrappers around a core built 
using D3. We will first review the concept of chart linking and explain why it is of so 
much value especially for bioinformatics data analysis and then demonstrate the versa-
tility of our framework and justify our design decisions. We end with a Discussion on 
what sets our approach apart from earlier work.

Results and discussion
Linking charts

As its name suggests, the central concept of LinkedCharts is linking and focusing [14]: 
one can connect two or more plots thus that interacting with one of them affects what is 
displayed in the others. We illustrate the concept of linking charts with a simple example 
based on data from Conway et al. [15].

In that study, three samples were taken from each of 17 patients with oral cancer: of 
normal, cancerous, and dysplasic tissue. mRNA from all these samples was sequenced to 
obtain gene expression values. The goal was to find genes that are differentially expressed 
between the tissue types―a standard task in bioinformatics, readily addressed using 
available software tools [16, 17]. Here, we have used the function voom from the “limma” 
package [18] to compare normal and cancerous tissues. It is common to visualize such a 
comparison with an MA plot [19], where each dot represents a gene, showing the gene’s 
average expression on the X-axis and log fold change between the two groups on the 
Y-axis (Fig. 1A). Red dots correspond to genes that are considered significantly different 
between the two conditions (adjusted p-value < 0.1).

About these genes, one may now wonder: how does the difference in expression look 
like for every single patient? Is it consistent across all the patients or only detected in 
some of them? Are there any artifacts or outliers that cause the p-value to be too small?

To investigate such questions, we can add another plot that shows expression values 
(as “counts per million”, CPM) from each individual sample (Fig. 1B). While this sec-
ond plot can show expression for only one selected gene at a time, the linking between 
the two charts overcomes this limitation: in our implementation, a mouse click on a 
point in the MA plot causes the plot to the right to switch to displaying the expression 
values for the thus selected gene. Figure 1 depicts our LinkedCharts app, while a live 
version of the app is provided in this paper’s online supplement (https:// anders- biost 

https://anders-biostat.github.io/lc-paper/
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at. github. io/ lc- paper/; also available on the Journal’s web site as Additional file  1 to 
the publication)―and we encourage the reader to pause for a moment and try it 
out there.

Of course, there are already several tools available for exploring the data from dif-
ferential-expression assays (e.g., iSee [8]), and these may or may not fit the needs of a 
specific analysis. With R/LinkedCharts, we offer the building blocks to build such an 
app with minimal effort “from scratch,” while giving the analyst the flexibility to gen-
erate arbitrary plots and arbitrary linkages.

In fact, the minimal code to set up this app takes only the few lines shown in 
Fig. 2 (the full code, i.e., including the code for loading the data and adjusting point 
colours, sizes and labels is provided in the paper supplement; code for running 
limma/voom, is given in our online tutorial at https:// anders- biost at. github. io/ linked- 
charts/ rlc/ tutor ials/ oscc/ data_ prep. html).

The two lc_scatter calls set up the two scatter charts shown in Fig.  1. In the 
left-hand chart (“A1”), each point depicts a gene, and x and y coordinate and point 
color are taken from the indicated columns of voomResult, the results table pro-
vided by the limma/voom differential-expression tool. Similarly, the right-hand chart 
(“A2”) takes its data from the sample table, and the y axis from the matrix of normal-
izxed read counts (that was also used as input to limma/voom).

The lines highlighted in blue cause the linking: In line 2, we introduce a global vari-
able, gene, which stores the index of the gene to be shown in the right-hand plot. 
This index tells the chart which line of the normCounts matrix (where the normal-
ized counts are stored) to use as y values of the expression plot (line 17). Almost every 
chart type in R/LinkedCharts has the on_click argument, which allows the user 
to define a function that is called whenever someone clicks on an element of the plot 
(point, line, cell of a heatmap, etc.) and is passed the index of the clicked element (k). 
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Fig. 1 An example for two linked charts, based on a study by Conway et al. [15] comparing cancerous and 
normal tissues from 19 patients. The MA plot (A) shows all genes with their average expression on the X-axis 
and log2-fold change between tumor and normal on the Y-axis. Red indicates genes where the difference 
was reported as significant by the “voom” method [18]. The plot to the right (B) shows, for one selected gene 
(here, LAMB4), the individual expression values (as counts per million, CPM) for each sample. This figure is 
a screenshot of a LinkedCharts app, the live version of which is provided in the supplement (as Interactive 
Supplementary Fig. 1): When the user clicks on any point in the MA plot (A), the expression plot (B) changes, 
showing the selected gene. Thus, one can rapidly gain an impression of the details hidden in a summarizing 
plot like the MA plot

https://anders-biostat.github.io/lc-paper/
https://anders-biostat.github.io/linked-charts/rlc/tutorials/oscc/data_prep.html
https://anders-biostat.github.io/linked-charts/rlc/tutorials/oscc/data_prep.html


Page 4 of 17Ovchinnikova and Anders  Genome Biology           (2024) 25:43 

Here, our callback function simply changes the value of gene to the clicked point 
index (line 10). Then, we tell R/LinkedCharts to update the second plot (line 11; “A2” 
is its ID set in line 20). Updating means that the package will reevaluate all arguments 
inside the dat() function and redraw the chart accordingly. In our case, a new value 
of gene will yield new y values for the expression plot.

This simple logic is not limited to just two plots but provides a basis to create many 
simple and complex apps. In the following, we will showcase a few more examples. The 
paper’s online supplement contains live versions for all these apps, as well as the full 
code to generate the apps and links to necessary data files, allowing the reader to imme-
diately get the app in their R session and experiment with it. For all examples, we provide 
two versions of the code: minimal with only essential parameters needed to make the 
app functional and more extended with custom colors, labels, etc. In the paper, we only 
focus on the minimal code.

Even more example can be found in our online tutorial at https:// anders- biost at. 
github. io/ linked- charts/ rlc/ tutor ials, including examples dealing with exploration of sin-
gle-cell sequencing data.

Event handling in R

In the simple example just discussed, the ability to link the two charts is what made the 
app useful and what sets R/LinkedCharts apart from other solutions for R, such as Shiny. 
A short technical detour might therefore be in order to explain why linking is non-triv-
ial. Here, we first have to clarify that virtually all interactive visualization frameworks 

Fig. 2 Code for generating Fig. 1. See text for details

https://anders-biostat.github.io/linked-charts/rlc/tutorials
https://anders-biostat.github.io/linked-charts/rlc/tutorials
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leverage the power of browser engines for HTML5 and JavaScript: the actual app is dis-
played by a browser. Therefore, a use interaction, such as a mouse click, is handled by the 
browser, and any custom event handler has to be specified using the language that the 
browser understands, i.e., JavaScript.

If the event handler should be written in R (such as our on_click function), the 
framework must provide specific functionality to connect that R code with the JavaScript 
code running in the browser in a manner that preserves all details of the user-interaction 
event. The difficulty in doing so explains why, so far, only native-JavaScript frameworks 
like D3 and Observable Plot, offer linking, while R- and Python-based frameworks 
(Shiny, Plotly, Bokeh) are (despite recent progress) still very limited with respect to offer-
ing custom event handling without having to revert to JavaScript.

The possibility to write custom event handler in JavaScript is insufficient if the user 
interaction should trigger a complex calculation that the analyst has already coded in 
their usual language of choice, here presumably in R. This is the gap that R/LinkedChart 
fills.

For details on how R/LinkedCharts makes it now possible to write event handlers in 
native R, see the “Methods” section.

Basic syntax, chart types, and HTML5 integration

We aimed to make R/LinkedCharts simple and familiar to any user with at least some 
basic knowledge of R. Every chart has a set of properties to define each of its specific 
aspects. In the previous example, we set the properties x, y and color, which received 

Fig. 3 Typical syntax of an R/LinkedCharts plot with comparison to the “ggplot2” [20] package, one of the 
most widely used plotting libraries. Lines of the code are arranged to put the same aspects of the charts next 
to each other. The “iris” dataset, one of the built-in example datasets of R, was used here. Both pieces of code 
are complete and fully functional, and their output is shown above the code
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vectors of coordinates and colors to specify the scatter plots’ data points. This principle 
will be familiar to most users from other plotting libraries. For example, Fig. 3 shows a 
comparison of the syntax in R/LinkedCharts (“rlc” package) and ggplot (from the widely 
used “ggplot2” Wickham [20]) for a simple scatter plot. Lines are arranged to match the 
same aspects of the plots; above each code block, its output is shown. One can see that 
the input data structure is identical, and there is hardly any difference between the two.

R/LinkedCharts is not limited to scatter plots. There are 15 main functions in the “rlc” 
package, each generating a specific type of plot (such as scatter plot, heatmap, bar plot, 
etc.) or a navigation element (such as sliders or text fields). Figure 4 shows them all. Each 
plot is defined by its properties: some of them are required (such as x and y for a scat-
ter plot or value for a heatmap); others are optional (palette, title, ticks etc.). 
A full list of all the properties with live examples is available at https:// anders- biost at. 
github. io/ linked- charts/ rlc/ tutor ials/ props. html and also on the R man page of each 
plotting function. For each chart type, event handlers (such as the on_click function 
already mentioned, and others) can be defined.

LinkedCharts apps are displayed as HTML pages, using a standard Web browser. This 
means that the layout, as well as decorations (such as headlines), can easily be specified 
by producing a standard HTML5 page, in which the elements where the charts are to be 
placed are marked by their id attribute. As knowledge of HTML5 is wide-spread, this 
allows practitioners to improve the appearance of the LinkedCharts app without having 
to learn anything new.

Furthermore, it facilitates integrating LinkedCharts with other web-based apps. For 
example, one can easily link a LinkedChars app with a web-browser-based genome 
browser, such as IGV.js [22], so that the user’s interaction with the LinkedCharts app 
controls what genomic region is displayed in IGV’s genome track (an example is given 
on the tutorial web page).

Fig. 4 Gallery of all available plotting functions in the “rlc” package. A scatter plot (A); a bee swarm plot 
(based on the d3-beeswarm plugin of Lebeau [21]) (B); a collection of various lines (C); a histogram and a 
density plot (D); a heatmap (E); a bar chart (F); a collection of interactive elements to gather input from the 
user (G); functions to add custom HTML code and static plots to the page (H). All these examples with code 
to create them can be found in the supplement

https://anders-biostat.github.io/linked-charts/rlc/tutorials/props.html
https://anders-biostat.github.io/linked-charts/rlc/tutorials/props.html
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Once one has developed a rough prototype of a LinkedCharts app, the app’s appear-
ance can be easily improved by using HTML5 to specify layout, decorations, and add 
further static elements. To facilitate this, the web server integrated in R/LinkedCharts 
provides basic functionality to also serve, e.g., images and CSS style sheets.

Use cases

Interactivity for EDA and for presentation

In general, the use of interactive data visualization falls into two areas, exploratory data 
analysis (EDA) and data presentation and dissemination. The latter case is becoming well 
established: more and more authors now accompany their papers with an interactive 
resource to present their data and results (for example [25–27]) and allow the reader to 
browse through them. Typically, this chiefly serves to present and communicate research 
that has already been completed, and, often, it is only after most of the work on a project 
has been finished and the paper is being written up that researchers spend a couple of 
days implementing a nice-looking interactive app to accompany their publication.

However, interactive visualization has possibly even more potential in the early stages 
of an analysis where the analyst tries to explore new data and to get a feel for it. The 
reason this is so rarely done (the “interactive visualization gap” in the words of Batch 
and Elmqvist [28]) might be that setting up interactive visualization usually seems time-
consuming and cumbersome. This is why R/LinkedCharts is designed to make it easy 
to rapidly create a simple app with only a few lines of code. The analyst might produce 
many such “quick-and-dirty” visualizations and only keep a few to later turn them into 
more polished works for presentation.

In the following, we will discuss use cases along this axis from early EDA to polished 
presentation.

Back‑tracking in analysis pipelines

Most analysis of big data comprises multiple steps of data summarization, each reducing 
the total amount of data and thus losing information.

For example, in the oral-cancer example, we first have for each gene expression values 
from 28 samples, but the differential expression data analysis summarizes this to just 3 
values: the gene’s average expression over all samples, the fold change between tumor 
and healthy, and the associated p-value. The LinkedCharts app shown in Fig. 1 allows to 
“undo” this summarization by inspecting the original values for each gene.

As an example of an analysis pipeline with multiple data-reduction steps, we use the 
drug-screening study of Ozkan-Dagliyan et al. [24]. A collection of drugs was tested 
against various pancreatic cancer cell lines at several concentrations per drug. Fig-
ure 5 illustrates a possible analysis pipeline: Panel A shows the viability read-out from 
the microtiter plates. For each combination of one cell line and one drug, the values 
for the different tested concentrations can be shown as a scatter plot, with each point 
depicting the viability value from one well (panel B). Here, we can fit dose-response 
curves, which can then be further summarized to a single number, such as the area 
under the curve, or, in the case of this study, a refined variant of that, called the drug 
sensitivity score (DSS) [29]. If two drugs show effect on the same subset of cell lines, 
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they likely have similar modes of action. Hence, to assess the similarity for each pair 
of drugs, we compare their activity over all cell lines, as shown by the scatter plots in 
panel D, where each point represents a cell line, with its x and y coordinates denot-
ing the drug sensitivity scores of that cell line for the two compared drugs. Again, we 
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Fig. 5 LinkedCharts can be used to “walk backwards” through an analysis pipeline. This is illustrated here 
using a drug screening experiment [23, 24] as an example. For an interactive version, see Interactive 
Supplementary Fig. 4. The blue arrows show the direction of a typical analysis pipeline used in drug screening 
experiments. We start with reading intensity values from plates with different cell lines cultured in the 
presence of studied drugs (A). These values are then normalized and turned into a fraction of the cells that 
remained viable. A sigmoid curve is fitted to the obtained viability values at different drug concentrations, 
and the area under the fitted curve yields a single score for each drug (B). Different drugs’ scores are 
compared to each other across all the tested cell lines (C). A drug-drug correlation heatmap is then produced 
to identify clusters of similar drugs (D). The red arrows illustrate the direction of interactive data exploration: 
We start by showing the summary heatmap plot (D). Suppose the researcher is interested in a particular drug 
combination or a cluster of drugs. In that case, he or she can examine the corresponding drug scores simply 
by clicking on the heatmap cell (D) to see the underlying correlation plots (C). Similarly, one can click in a 
point in (C) to examine the individual viability values at the tested concentrations and check the sigmoid fit 
(B). And finally, if needed, it is possible to take one more step back and to look at the raw read-outs to inspect 
them for the presence of any artifacts (A)
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summarize each such plot into a single number, the correlation coefficient, and finally, 
we depict all the correlation coefficients in a correlation-matrix heatmap (panel C).

Often, such an analysis pipeline is fully automated and no one ever looks at the inter-
mediate plots. Inspecting them is, however, crucial to note problems with data quality or 
mistakes in the design or programming of the analysis pipeline.

LinkedCharts allows to “walk” such an analysis pipeline backwards: in the supplement, 
we show an app that depicts the plots of Fig. 5 in an interactive fashion, as follows. As 
each cell of the final heatmap (panel C of Fig. 5) summarizes on a scatter plot compar-
ing two drugs (panel D), we can click on any cell in the heatmap and then see the corre-
sponding scatter plot. Each point in that scatter plot represents a pair of drug sensitivity 
scores, which are, themselves, summaries of dose-response curves. Again, clicking on a 
point in the correlation scatter plot will display these two dose-response curves. Finally, 
each value in a drug response curve stems from a well in a microtiter plate, and hovering 
over a point there hence highlights the well in a heatmap depicting the plate.

Thus, LinkedCharts allows to explore the “parentage” of any result value. If we find a 
specific drug-drug correlation value suspicious or surprising, or if we just wish to dou-
ble-check it before drawing further conclusions from it, we can check its provenance in 
arbitrary detail. Similarly, we can perform random spot checks.

Each layer in the backwards journey can inform about another type of problem: from 
the correlation scatter plots, we may find that the correlation coefficient was unduly 
influenced by a single out-lying cell line; from the dose-response plot, we may find that 
specific dose-response curves fail to have the expected sigmoid shape; and from inspect-
ing plate plots, we may trace back a surprising final result to, say, a normalization issue 
or a plate-edge effect.

Once such an analysis pipeline has been developed, all the intermediate results are 
typically available in suitable data structures, which can be readily explored with Linked-
Charts. The supplement provides code for the example just described.

Quality assurance thresholds

Typically, analysis pipelines include steps to exclude bad-quality data. Often, this is done 
by calculating quality metrics and setting thresholds. In the drug screen example, the 
goodness of fit of the dose-response curves might be quantified by the residual sum of 
squares, and if this value exceeds a threshold, the drug sensitivity score might be dis-
carded as unreliable. In the oral-cancer sample, the log fold change of some genes might 
be unduly influenced by a single outlying sample, and one might use a threshold on an 
outlier-detection score such as Cook’s distance to flag such genes.

Typically, the thresholds on such quality metrics are chosen a priori, often simply tak-
ing over values from previous work or from tutorials, even though the characteristics 
of the assay might have changed. Doing otherwise seems to cause a chicken-and-egg 
problem: one cannot run the analysis without first somehow deciding on thresholds, and 
therefore, one cannot use analysis results to guide the choice of thresholds.

The approach of “walking the pipeline backwards” with LinkedCharts opens another 
approach: typically, outliers tend to cause false positive results. Therefore, one can run 
the analysis first without excluding any outliers, then inspect the provenance of the sta-
tistically significant items found and will be so guided to specifically those places in the 
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raw data where outliers can actually cause false positives. This provides the analyst with 
a better “feel” for the data and the analysis procedure and helps build an intuition that 
will allow to more critically judge whether traditionally used standard values for quality-
assurance thresholds are appropriate for the specific data set under analysis.

Exploratory analysis

Analyzing complex data sets from many different angles and asking many different ques-
tions about them is crucial to all computational biology, not only to ensure that one 
does not overlook potential problems but also in order to not miss the chance of seren-
dipitous discoveries. The importance of such exploratory data analysis (EDA) has been 
argued since long, and it therefore forms a large part of computational biologists’ every-
day work. An important element is to pick examples and study them in detail, similarly 
to the quality-assurance applications discussed in the previous section, but now with the 
aim of getting a “feel” for the data and looking for insights.

The standard approach in inspecting examples is to pick, e.g., a gene from a result list, 
produce a plot showing the provenance of this result, then pick another gene, change the 
code for plotting to now show underlying data for this gene, etc. At that point, it is trivial 
to alter this code into a linked charts app, using the similarity between code for static 
and dynamic plots (Fig. 6).

Figure 6 illustrates this with another example based on the oral cancer dataset. A bio-
informatician had produced a correlation heatmap depicting correlations between all 
sample pairs (Fig. 6A), using, e.g., the pheatmap package [30], and now wishes to inspect 

Fig. 6 An example of an R/LinkedCharts app (C, D) for a simple exploratory analysis and the code to 
generate it in comparison with static plots (A, B) produced for the same purpose. The heatmaps (A, C) 
show Spearman correlation of gene expression for all samples from Conway et al. [15]. Here, we can see, 
inter alia, two outlier samples in the heatmap’s bottom-right corner and some more or less pronounced 
clusters of samples with similar gene expression levels. The scatter plots (B, D) show expression values for 
two samples plotted against each other. Browsing through several such plots can help the researcher get a 
feeling of the data and explore unexpected patterns like the outliers just mentioned. The code is split into 
two pieces, where the upper one is responsible for generating the plots and the lower part shows the code 
to update them to show a specific sample pair. For static plots, one has to execute the same lines of code for 
any pair of samples, while for R/LinkedCharts the provided code should be added to the list of arguments 
for the heatmap. After that, switching between pairs of samples can be done simply by clicking on the 
corresponding cell of the heatmap. The static heatmap (A) was generated with the “pheatmap” package [30]; 
scatter plot (B) was made with a base R function. The live version of the app can be found in the supplement. 
For simplicity, gene expression for all the samples is subset to 8000 randomly selected genes
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a specific correlation value (panel B) and writes to this end the short code shown in the 
figure. To inspect other sample pairs, she would simply change the sample indices in the 
code. This is routine practice for most bioinformaticians, but cumbersome. As the code 
example below the plots in Fig. 6 shows, however, it is now virtually none effort to trans-
form the code into a LinkedCharts app, by merely making a few simple substitutions.

Public apps and concurrent use

Technically, an R/LinkedCharts app is provided by a web server running inside the R ses-
sion and can hence be used from any web browser. Importantly, there is no need for that 
web browser to be running on the same computer as the R session. This allows a bioin-
formatician to easily share a LinkedCharts application with colleagues. They only have to 
direct their operating system’s firewall to open the TCP/IP port the app is listening at for 
incoming connections and tell their colleagues their computer’s IP address or DNS name 
and the port number, which they simply enter into their browser’s address line.

As now multiple users might use the app simultaneously, we have to make sure that 
each user gets their own copy of any global variable, such as the variable gene in the 
initial code example. To do so, a trivial change is required: one only has to list all such 
session variables at the beginning. In the initial code example, one would simply amend 
the first line to 

Apps with complex user interfaces

In all examples discussed so far, user input is constrained to selecting data points in 
one chart in order to affect the display in a linked chart. However, the LinkedCharts 
library also provides for more general means of data input by the user, by leveraging the 
HTML5 tag <input> and thus offering buttons, checkboxes, radio buttons, scrolls, and 
text fields via the “rlc” function lc_input (Fig.  4G). As for any other LinkedCharts 
element, lc_input can be provided a callback function that is run every time the 
user changes the state of an input element (e.g., clicks a button or enters new text). This 
allows to easily add functionality to enter, say, a gene name rather than clicking on its 
point (as in Fig. 7) but also to build up complex apps.

Figure  8 shows a screenshot of an example of a more complex LinkedCharts app, 
which was developed as part of an effort to establish LAMP-based testing for SARS-
CoV-2 at Heidelberg University campus [32]. In this project, a colorimetric assay based 
on loop-mediated DNA amplification (LAMP, [35]) was carried out on microtiter plates. 
The app allowed lab technicians to inspect the measured change in pH as function of 
incubation time, to link curves to wells and to patients, to compare replicates, and to 
check and, if needed, amend automatic result calling (see [33] for details). Such continu-
ous quality control is vital for reliable medical diagnostics and has to be offered in an 
easy-to-use manner and quick-to-grasp to avoid mistakes from repetition and fatigue.

Here, LinkedCharts turned out to be well suited to quickly develop the app, to con-
tinuously refine it while the assay was finalized, and to turn it into a production tool, well 
integrated into the testing campaign’s databases and result reporting services.
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LinkedCharts for Open Science

Analyses in computational biology are often complex and involved, making them dif-
ficult to explain and even more so to verify. It is not uncommon that neither the peer 
reviewers nor the readers of a publication are effectively able to double-check a result 
unless they would be willing to redo the whole analysis themselves. The importance of 
making all raw data and code available to do that has been often stressed [36], but even 
verifying a complex analysis is a demanding task.

Published interactive apps for data exploration are hence the next step towards open 
science. Traditionally, publications illustrate the characteristics of typical data by show-
ing “typical examples”―but whether an example can be considered typical can be 
quite controversial. A LinkedCharts app in a paper’s online supplement allows readers to 
chose their own examples rather than relying on the authors potentially “cherry-picked” 
ones. A second, less obvious, advantage is that interactivity can help clarify the details of 
a complex analysis.

While we consider the main area of application for the LinkedCharts to be a part 
of data analysis, it can be used for result presentation as well. For instance, a Linked-
Charts app was used as online supplement to the paper of Wang et al. [31], a big-data 
study aiming at elucidating to which extent evolution of expression regulation acts on 

Fig. 7 A screenshot of a paper supplement [31] made with LinkedCharts. The main chart (upper row, center) 
shows for every gene in the study its average expression and so-called �-score, which indicates whether 
evolutionary changes in the translatome compensate for changes in the transcriptome or introduces 
additional variance. The two plots below show expression values for the selected gene in all the tested 
samples. The user selects a gene by clicking on the corresponding point of the main plot or by entering 
the gene name (upper-left corner). The density plot to the right shows the distribution of �-scores, and its 
Y-axis is linked to the Y-axis of the main plot. In the upper-right and bottom-left corners, some additional 
information on the selected gene is displayed. Icons in the upper left corner allow switching between the 
three studied tissues. Detailed information on the data, study goal and the source code for the app can be 
found in the related publication. The app is written in JavaScript and, thus, can be downloaded and opened 
in any modern browser without installation requirements. Though largely customized, the app is based on 
the same principles as other examples throughout this paper. For the live version, see https:// ex2pl orer. kaess 
mannl ab. org/

https://ex2plorer.kaessmannlab.org/
https://ex2plorer.kaessmannlab.org/
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transcription and to which extent on translation. Using RNA-Seq and ribosomal foot-
printing data from three organs, taken from animals of six species, changes in transcript 
abundance and in translation of transcripts into proteins were quantified and compared. 
A core idea of the analysis was that the evolutionary changes to transcription and trans-
lation may either compensate for each other (thus compensating deleterious changes in 
one layer by an opposite change in the other), or reinforce each other (in case of adaptive 
changes). To this extent, a score denoted as � was calculated, which is negative if the 
between-species difference is lower in the ribosome footprinting data than in the tran-
scriptional data (thus indicating that transcriptional difference are at least partially com-
pensated on the translational layer) and positive if the variance at the ribosomal layer is 
higher (indicating reinforcement).

The definition of this �-score is technical, and it is hard for the reader to form an intui-
tion on its meaning. By “playing around” a bit with the app, available at https:// ex2pl orer. 
kaess mannl ab. org/ (static picture: Fig. 7), this is quickly remedied: the reader can click 
on any gene in the upper scatter plot, inspecting examples of genes with positive, nega-
tive, or near-zero �-score to see the data from the individual samples. After a few clicks, 
the relationship between the transcriptional and the translational data on the one hand 
and the � score on the other hand will be clearer than after reading several paragraphs 
of text. The use of HTML design elements to position explanatory labels renders the app 
nearly self-explanatory. Here, it is not a simple picture, but an interactive one, that is 
worth the proverbial thousand word.

Fig. 8 A screenshot of an app that was used as a GUI to perform manual inspection and classification of 
LAMP testing for SARS-CoV-2 viral RNA [32, 33]. The app was used during our SARS-CoV-2 surveillance study 
[34] and for voluntary testing for COVID-19 infection on campus (University of Heidelberg) in 2020/2021. To 
the right, the app shows a 96-well plate layout colored either by content type (sample, empty, positive or 
negative control) or by the assigned result. To the left, it shows the results of three tests and one control for 
each sample. Accumulation of the LAMP product is indicated by the change of color from red to yellow and 
is measured as a difference in absorbance on two wave lengths. This difference is plotted as a function of 
time. Besides exploration (highlighting the corresponding lines for each sample), the app allows to manually 
reassign status, store results, and send them to the server, where they can be queried by the test subjects. The 
app is provided as an R script; the code and some example data are available on GitHub at https:// github. 
com/ anders- biost at/ lamp_ plate_ analy sis

https://ex2plorer.kaessmannlab.org/
https://ex2plorer.kaessmannlab.org/
https://github.com/anders-biostat/lamp_plate_analysis
https://github.com/anders-biostat/lamp_plate_analysis
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LinkedCharts apps can be used as paper supplements in two ways. As it was described 
previously, any R/LinkedCharts app supports concurrent use and therefore can be made 
available for public usage with a very few changes to the code. Alternatively, a user with 
the knowledge of JavaScript can use the linked-charts.js library which is a foundation 
of R/LinkedCharts to make an app fully contained within an HTML file, as the afore-
mentioned supplement to Wang et al. [31]. Though this approach requires considerably 
more effort, the resulting app is extremely easy to share, does not require any form of 
installation, and can be run in any modern web browser. The interface of linked-charts.js 
in many aspects is the same as of R/LinkedCharts, which facilitates the code transforma-
tion. To give readers a feeling of similarity between R code of R/LinkedCharts and JavaS-
cript apps of linked-charts.js, for every example in the supplement, we provided code for 
the both languages.

Summary and conclusion
The importance of using interactivity in data exploration has been discussed since long. 
In bioinformatics, applications to perform specific analyses for specific data types often 
offer useful interactive features for data exploration. However, wherever fitting spe-
cial-purpose tools are not available, analyses are still conducted using static plots, and 
general-purpose frameworks for interactive visualization are, if at all, only used for pres-
entation of the details of an already finished analysis. The reason that general-purpose 
frameworks for interactive data visualization are rarely used in the actual analysis is two-
fold: for technical reasons, the most versatile tools are only available for JavaScript, while 
bioinformaticians typically work with R and JavaScript. Available tools for R miss a cru-
cial feature: linking.

We have presented R/LinkedCharts, a general-purpose framework for interactive data 
visualization for R that pulls all event handling from the JavaScript core to the R-based 
development side. This enables bioinformaticians to code arbitrary reactions to user 
interactions with individual data points in a chart and to thus link several charts. We 
show that this allows to easily set up apps where an “overview chart” shows the main 
results and a click on any item in this overview displays details on this element in a 
“detail chart.” We have discussed numerous ways how variations on this general idea 
enable powerful data analysis strategies that can be easily incorporated into a data ana-
lyst’s existing work routine. We have argued that the consequent use of such techniques 
allows for improvements at all stages of a project.

Methods
Implementation

The JavaScript foundation of R/LinkedCharts is built on top of the D3 library [10].
linked-charts.js is by itself a fully functional tool for interactive data visualization 

that can be used by those familiar with JavaScript to create stand-alone apps. The 
library is open-source and available on GitHub at https:// github. com/ anders- biost at/ 
linked- charts.

The “jrc” package package is used as a bridge between R and JavaScript. It allows 
one to run JavaScript code from an R session and vice versa. It also manages client 

https://github.com/anders-biostat/linked-charts
https://github.com/anders-biostat/linked-charts
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connections to the app and is responsible for all the functionality necessary to make 
an R/LinkedCharts app public. “jrc” in turn is based mainly on “httpuv” [39] package 
to run a local server and ensure a WebSocket connection [40]. A current version can 
be found at https:// github. com/ anders- biost at/ jrc, an archived one at [41].

R/LinkedCharts (“rlc” package) is an R [42] interface to the JavaScript version of 
LinkedCharts. In addition to providing access to linked-charts.js functionality, it also 
ensures proper storing of charts and serving them to each connected client by extend-
ing “App” class of the “jrc” package. “rlc” is open source and is available on CRAN or 
GitHub https:// github. com/ anders- biost at/ rlc.
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