
Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo-
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

METHOD

Ovchinnikova and Anders Genome Biology (2024) 25:43
https://doi.org/10.1186/s13059-024-03164-3

Genome Biology

Simple but powerful interactive data analysis
in R with R/LinekdCharts
Svetlana Ovchinnikova1 and Simon Anders1*

Abstract

In research involving data-rich assays, exploratory data analysis is a crucial step.
Typically, this involves jumping back and forth between visualizations that provide
overview of the whole data and others that dive into details. For example, it might be
helpful to have one chart showing a summary statistic for all samples, while a second
chart provides details for points selected in the first chart. We present R/LinkedCharts,
a framework that renders this task radically simple, requiring very few lines of code
to obtain complex and general visualization, which later can be polished to provide
interactive data access of publication quality.

Background
Effective data visualization has been crucial for scientific success since the first quantita-
tive experiments. Yet, the amount and complexity of the available data have continuously
grown over the last decades, while there are certain limits to how much information one
can learn from a static image [1]. Excessive details and multiple overlapping layers make
it harder to grasp the crux of a plot. One solution to the problem is to come up with
more and more creative and elaborate types of plots, the other is to add an extra dimen-
sion by employing interactivity. The first attempts of the latter started in the 1970s [2, 3],
and by now interactivity is applied ubiquitously, not only in science but also in market-
ing, journalism, and any other field, where there is a need to communicate data-based
knowledge to an audience.

Interactive figures are engaging. They allow users to observe data from multiple self-
chosen angles making the conveyed message more credible. They also bolster data explo-
ration sparing researchers the necessity of handpicking presumably important parts of
data in advance. Therefore, we believe that further integration of interactive tools in a
researcher’s routine can significantly improve the quality of research.

Numerous tools [4] now provide means of interactive inspection for many specific
types of data. Examples from biology include metabolic maps [5], genome assemblies
[6], scRNA-Seq or other kinds of omics data [7, 8], QTL data [9], and many more. While

*Correspondence:
simon.anders@bioquant.uni-
heidelberg.de

1 Center for Molecular
Biology and BioQuant Center
of the University of Heidelberg,
Heidelberg, Germany

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-024-03164-3&domain=pdf
http://orcid.org/0000-0003-4868-1805

Page 2 of 17Ovchinnikova and Anders Genome Biology (2024) 25:43

such solutions are each tailored for one very specific type of data, there are also a num-
ber of general low-level frameworks to create interactive apps, such as D3 [10] and Vega-
Lite [11], and more high-level but still general-purpose packages, such as Vega [12],
Shiny, BPG [13], plotly, Bokeh, and Observable Plot.

A crucial part that is used in many of the special-purpose solutions is “linking” of
charts: the user’s click on, e.g., a data point in one overview chart (the overview chart)
causes details to this very data item to be shown in another chart (the details chart) [14].
Even though such linking is often what makes interactive tools for specialized purposes
useful, functionality for linking in general is missing from most general-purpose frame-
works. For technical reasons, such functionality is, if at all, only offered by frameworks
for web programming in JavaScript―which is most unsatisfactory for bioinformatics,
a field where most work is done using R and Python.

In this paper, we present R/LinkedCharts, an R package that makes it very simple to
produce linked interactive plots by providing convinient R wrappers around a core built
using D3. We will first review the concept of chart linking and explain why it is of so
much value especially for bioinformatics data analysis and then demonstrate the versa-
tility of our framework and justify our design decisions. We end with a Discussion on
what sets our approach apart from earlier work.

Results and discussion
Linking charts

As its name suggests, the central concept of LinkedCharts is linking and focusing [14]:
one can connect two or more plots thus that interacting with one of them affects what is
displayed in the others. We illustrate the concept of linking charts with a simple example
based on data from Conway et al. [15].

In that study, three samples were taken from each of 17 patients with oral cancer: of
normal, cancerous, and dysplasic tissue. mRNA from all these samples was sequenced to
obtain gene expression values. The goal was to find genes that are differentially expressed
between the tissue types―a standard task in bioinformatics, readily addressed using
available software tools [16, 17]. Here, we have used the function voom from the “limma”
package [18] to compare normal and cancerous tissues. It is common to visualize such a
comparison with an MA plot [19], where each dot represents a gene, showing the gene’s
average expression on the X-axis and log fold change between the two groups on the
Y-axis (Fig. 1A). Red dots correspond to genes that are considered significantly different
between the two conditions (adjusted p-value < 0.1).

About these genes, one may now wonder: how does the difference in expression look
like for every single patient? Is it consistent across all the patients or only detected in
some of them? Are there any artifacts or outliers that cause the p-value to be too small?

To investigate such questions, we can add another plot that shows expression values
(as “counts per million”, CPM) from each individual sample (Fig. 1B). While this sec-
ond plot can show expression for only one selected gene at a time, the linking between
the two charts overcomes this limitation: in our implementation, a mouse click on a
point in the MA plot causes the plot to the right to switch to displaying the expression
values for the thus selected gene. Figure 1 depicts our LinkedCharts app, while a live
version of the app is provided in this paper’s online supplement (https:// anders- biost

https://anders-biostat.github.io/lc-paper/

Page 3 of 17Ovchinnikova and Anders Genome Biology (2024) 25:43

at. github. io/ lc- paper/; also available on the Journal’s web site as Additional file 1 to
the publication)―and we encourage the reader to pause for a moment and try it
out there.

Of course, there are already several tools available for exploring the data from dif-
ferential-expression assays (e.g., iSee [8]), and these may or may not fit the needs of a
specific analysis. With R/LinkedCharts, we offer the building blocks to build such an
app with minimal effort “from scratch,” while giving the analyst the flexibility to gen-
erate arbitrary plots and arbitrary linkages.

In fact, the minimal code to set up this app takes only the few lines shown in
Fig. 2 (the full code, i.e., including the code for loading the data and adjusting point
colours, sizes and labels is provided in the paper supplement; code for running
limma/voom, is given in our online tutorial at https:// anders- biost at. github. io/ linked-
charts/ rlc/ tutor ials/ oscc/ data_ prep. html).

The two lc_scatter calls set up the two scatter charts shown in Fig. 1. In the
left-hand chart (“A1”), each point depicts a gene, and x and y coordinate and point
color are taken from the indicated columns of voomResult, the results table pro-
vided by the limma/voom differential-expression tool. Similarly, the right-hand chart
(“A2”) takes its data from the sample table, and the y axis from the matrix of normal-
izxed read counts (that was also used as input to limma/voom).

The lines highlighted in blue cause the linking: In line 2, we introduce a global vari-
able, gene, which stores the index of the gene to be shown in the right-hand plot.
This index tells the chart which line of the normCounts matrix (where the normal-
ized counts are stored) to use as y values of the expression plot (line 17). Almost every
chart type in R/LinkedCharts has the on_click argument, which allows the user
to define a function that is called whenever someone clicks on an element of the plot
(point, line, cell of a heatmap, etc.) and is passed the index of the clicked element (k).

Average expression
-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16

lo
g2

 fc

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

A LAMB4

Patients

PG
00
4

PG
03
8

PG
04
9

PG
06
3

PG
07
9

PG
08
6

PG
10
5

PG
10
8

PG
11
4

PG
12
2

PG
12
3

PG
12
9

PG
13
6

PG
13
7

PG
14
4

PG
14
6

PG
17
4

PG
18
7

PG
19
2

C
P
M

1e-1

2e-1

3e-1

1e+0

2e+0

3e+0

1e+1

2e+1

3e+1

1e+2

T
is
su

e normal
tumour

B

Fig. 1 An example for two linked charts, based on a study by Conway et al. [15] comparing cancerous and
normal tissues from 19 patients. The MA plot (A) shows all genes with their average expression on the X-axis
and log2-fold change between tumor and normal on the Y-axis. Red indicates genes where the difference
was reported as significant by the “voom” method [18]. The plot to the right (B) shows, for one selected gene
(here, LAMB4), the individual expression values (as counts per million, CPM) for each sample. This figure is
a screenshot of a LinkedCharts app, the live version of which is provided in the supplement (as Interactive
Supplementary Fig. 1): When the user clicks on any point in the MA plot (A), the expression plot (B) changes,
showing the selected gene. Thus, one can rapidly gain an impression of the details hidden in a summarizing
plot like the MA plot

https://anders-biostat.github.io/lc-paper/
https://anders-biostat.github.io/linked-charts/rlc/tutorials/oscc/data_prep.html
https://anders-biostat.github.io/linked-charts/rlc/tutorials/oscc/data_prep.html

Page 4 of 17Ovchinnikova and Anders Genome Biology (2024) 25:43

Here, our callback function simply changes the value of gene to the clicked point
index (line 10). Then, we tell R/LinkedCharts to update the second plot (line 11; “A2”
is its ID set in line 20). Updating means that the package will reevaluate all arguments
inside the dat() function and redraw the chart accordingly. In our case, a new value
of gene will yield new y values for the expression plot.

This simple logic is not limited to just two plots but provides a basis to create many
simple and complex apps. In the following, we will showcase a few more examples. The
paper’s online supplement contains live versions for all these apps, as well as the full
code to generate the apps and links to necessary data files, allowing the reader to imme-
diately get the app in their R session and experiment with it. For all examples, we provide
two versions of the code: minimal with only essential parameters needed to make the
app functional and more extended with custom colors, labels, etc. In the paper, we only
focus on the minimal code.

Even more example can be found in our online tutorial at https:// anders- biost at.
github. io/ linked- charts/ rlc/ tutor ials, including examples dealing with exploration of sin-
gle-cell sequencing data.

Event handling in R

In the simple example just discussed, the ability to link the two charts is what made the
app useful and what sets R/LinkedCharts apart from other solutions for R, such as Shiny.
A short technical detour might therefore be in order to explain why linking is non-triv-
ial. Here, we first have to clarify that virtually all interactive visualization frameworks

Fig. 2 Code for generating Fig. 1. See text for details

https://anders-biostat.github.io/linked-charts/rlc/tutorials
https://anders-biostat.github.io/linked-charts/rlc/tutorials

Page 5 of 17Ovchinnikova and Anders Genome Biology (2024) 25:43

leverage the power of browser engines for HTML5 and JavaScript: the actual app is dis-
played by a browser. Therefore, a use interaction, such as a mouse click, is handled by the
browser, and any custom event handler has to be specified using the language that the
browser understands, i.e., JavaScript.

If the event handler should be written in R (such as our on_click function), the
framework must provide specific functionality to connect that R code with the JavaScript
code running in the browser in a manner that preserves all details of the user-interaction
event. The difficulty in doing so explains why, so far, only native-JavaScript frameworks
like D3 and Observable Plot, offer linking, while R- and Python-based frameworks
(Shiny, Plotly, Bokeh) are (despite recent progress) still very limited with respect to offer-
ing custom event handling without having to revert to JavaScript.

The possibility to write custom event handler in JavaScript is insufficient if the user
interaction should trigger a complex calculation that the analyst has already coded in
their usual language of choice, here presumably in R. This is the gap that R/LinkedChart
fills.

For details on how R/LinkedCharts makes it now possible to write event handlers in
native R, see the “Methods” section.

Basic syntax, chart types, and HTML5 integration

We aimed to make R/LinkedCharts simple and familiar to any user with at least some
basic knowledge of R. Every chart has a set of properties to define each of its specific
aspects. In the previous example, we set the properties x, y and color, which received

Fig. 3 Typical syntax of an R/LinkedCharts plot with comparison to the “ggplot2” [20] package, one of the
most widely used plotting libraries. Lines of the code are arranged to put the same aspects of the charts next
to each other. The “iris” dataset, one of the built-in example datasets of R, was used here. Both pieces of code
are complete and fully functional, and their output is shown above the code

Page 6 of 17Ovchinnikova and Anders Genome Biology (2024) 25:43

vectors of coordinates and colors to specify the scatter plots’ data points. This principle
will be familiar to most users from other plotting libraries. For example, Fig. 3 shows a
comparison of the syntax in R/LinkedCharts (“rlc” package) and ggplot (from the widely
used “ggplot2” Wickham [20]) for a simple scatter plot. Lines are arranged to match the
same aspects of the plots; above each code block, its output is shown. One can see that
the input data structure is identical, and there is hardly any difference between the two.

R/LinkedCharts is not limited to scatter plots. There are 15 main functions in the “rlc”
package, each generating a specific type of plot (such as scatter plot, heatmap, bar plot,
etc.) or a navigation element (such as sliders or text fields). Figure 4 shows them all. Each
plot is defined by its properties: some of them are required (such as x and y for a scat-
ter plot or value for a heatmap); others are optional (palette, title, ticks etc.).
A full list of all the properties with live examples is available at https:// anders- biost at.
github. io/ linked- charts/ rlc/ tutor ials/ props. html and also on the R man page of each
plotting function. For each chart type, event handlers (such as the on_click function
already mentioned, and others) can be defined.

LinkedCharts apps are displayed as HTML pages, using a standard Web browser. This
means that the layout, as well as decorations (such as headlines), can easily be specified
by producing a standard HTML5 page, in which the elements where the charts are to be
placed are marked by their id attribute. As knowledge of HTML5 is wide-spread, this
allows practitioners to improve the appearance of the LinkedCharts app without having
to learn anything new.

Furthermore, it facilitates integrating LinkedCharts with other web-based apps. For
example, one can easily link a LinkedChars app with a web-browser-based genome
browser, such as IGV.js [22], so that the user’s interaction with the LinkedCharts app
controls what genomic region is displayed in IGV’s genome track (an example is given
on the tutorial web page).

Fig. 4 Gallery of all available plotting functions in the “rlc” package. A scatter plot (A); a bee swarm plot
(based on the d3-beeswarm plugin of Lebeau [21]) (B); a collection of various lines (C); a histogram and a
density plot (D); a heatmap (E); a bar chart (F); a collection of interactive elements to gather input from the
user (G); functions to add custom HTML code and static plots to the page (H). All these examples with code
to create them can be found in the supplement

https://anders-biostat.github.io/linked-charts/rlc/tutorials/props.html
https://anders-biostat.github.io/linked-charts/rlc/tutorials/props.html

Page 7 of 17Ovchinnikova and Anders Genome Biology (2024) 25:43

Once one has developed a rough prototype of a LinkedCharts app, the app’s appear-
ance can be easily improved by using HTML5 to specify layout, decorations, and add
further static elements. To facilitate this, the web server integrated in R/LinkedCharts
provides basic functionality to also serve, e.g., images and CSS style sheets.

Use cases

Interactivity for EDA and for presentation

In general, the use of interactive data visualization falls into two areas, exploratory data
analysis (EDA) and data presentation and dissemination. The latter case is becoming well
established: more and more authors now accompany their papers with an interactive
resource to present their data and results (for example [25–27]) and allow the reader to
browse through them. Typically, this chiefly serves to present and communicate research
that has already been completed, and, often, it is only after most of the work on a project
has been finished and the paper is being written up that researchers spend a couple of
days implementing a nice-looking interactive app to accompany their publication.

However, interactive visualization has possibly even more potential in the early stages
of an analysis where the analyst tries to explore new data and to get a feel for it. The
reason this is so rarely done (the “interactive visualization gap” in the words of Batch
and Elmqvist [28]) might be that setting up interactive visualization usually seems time-
consuming and cumbersome. This is why R/LinkedCharts is designed to make it easy
to rapidly create a simple app with only a few lines of code. The analyst might produce
many such “quick-and-dirty” visualizations and only keep a few to later turn them into
more polished works for presentation.

In the following, we will discuss use cases along this axis from early EDA to polished
presentation.

Back‑tracking in analysis pipelines

Most analysis of big data comprises multiple steps of data summarization, each reducing
the total amount of data and thus losing information.

For example, in the oral-cancer example, we first have for each gene expression values
from 28 samples, but the differential expression data analysis summarizes this to just 3
values: the gene’s average expression over all samples, the fold change between tumor
and healthy, and the associated p-value. The LinkedCharts app shown in Fig. 1 allows to
“undo” this summarization by inspecting the original values for each gene.

As an example of an analysis pipeline with multiple data-reduction steps, we use the
drug-screening study of Ozkan-Dagliyan et al. [24]. A collection of drugs was tested
against various pancreatic cancer cell lines at several concentrations per drug. Fig-
ure 5 illustrates a possible analysis pipeline: Panel A shows the viability read-out from
the microtiter plates. For each combination of one cell line and one drug, the values
for the different tested concentrations can be shown as a scatter plot, with each point
depicting the viability value from one well (panel B). Here, we can fit dose-response
curves, which can then be further summarized to a single number, such as the area
under the curve, or, in the case of this study, a refined variant of that, called the drug
sensitivity score (DSS) [29]. If two drugs show effect on the same subset of cell lines,

Page 8 of 17Ovchinnikova and Anders Genome Biology (2024) 25:43

they likely have similar modes of action. Hence, to assess the similarity for each pair
of drugs, we compare their activity over all cell lines, as shown by the scatter plots in
panel D, where each point represents a cell line, with its x and y coordinates denot-
ing the drug sensitivity scores of that cell line for the two compared drugs. Again, we

H1FO4B−N7272 H1FO4B−N7274

H1FO4B−N3277 H1FO4B−N6272

H1FO4B−N2276 H1FO4B−N3271

Raw readout

0

50

100

1e+02
1e+03

1e+04
1e+05

8−amino−adenosine

0

50

100

1e+01
1e+02

1e+03
1e+04

1e+05

AT7519

0

50

100

1e+01 1e+
02

1e+
03

1e+
04

1e+
05

AZD8055

0

50

100

1e+
01

1e+
02

1e+
03

1e+
04

1e+
05

Alvocidib

0

50

100

1 10 100 100
0

100
00

Bortezomib

0

50

100

1 10 100
1000

10000

Docetaxel

0

50

100

1 10 100
1000

10000

Gedatolisib

0

50

100

1e+01
1e+02

1e+03
1e+04

1e+05

KX2−391

0

50

100

1e+01
1e+02

1e+03
1e+04

1e+05

Prexasertib

0

50

100

1e+01
1e+02

1e+03
1e+04

1e+05

Selinexor

Estimating drug scores

Y
M

155
P

F
_03758309

D
aporinad

V
inorelbine

V
incristine

V
inblastine

P
atupilone

R
igosertib

K
X

2_391
D

ocetaxel
C

abazitaxel
P

licam
ycin

S
N

_38
O

N
X

_0914
B

ortezom
ib

C
arfilzom

ib
O

prozom
ib

B
C

I
D

inaciclib
M

epacrine
O

m
acetaxine

D
actinom

ycin
AT

7519
S

N
S

_032
A

lvocidib
P

F
_04691502

A
Z

D
8055

C
U

D
C

_907
R

om
idepsin

U
C

N
_01

B
IIB

021
Tanespim

ycin
Lum

inespib
S

elinexor
P

rexasertib

YM155
PF_03758309
Daporinad
Vinorelbine
Vincristine
Vinblastine
Patupilone
Rigosertib
KX2_391
Docetaxel
Cabazitaxel
Plicamycin
SN_38
ONX_0914
Bortezomib
Carfilzomib
Oprozomib
BCI
Dinaciclib
Mepacrine
Omacetaxine
Dactinomycin
AT7519
SNS_032
Alvocidib
PF_04691502
AZD8055
CUDC_907
Romidepsin
UCN_01
BIIB021
Tanespimycin
Luminespib
Selinexor
Prexasertib

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Correlation heatmap

0

10

20

30

0 10 20 30
BIIB021

V
in

cr
is

tin
e

0

10

20

30

0 10 20 30
BIIB021

C
ar

fil
zo

m
ib

0

10

20

30

0 10 20 30
UCN_01

S
N

S
_0

32

0

10

20

30

0 10 20 30
UCN_01

B
IIB

02
1

Drug vs. Drug comparison

A

D

B

C

Data generation Data visualization

Fig. 5 LinkedCharts can be used to “walk backwards” through an analysis pipeline. This is illustrated here
using a drug screening experiment [23, 24] as an example. For an interactive version, see Interactive
Supplementary Fig. 4. The blue arrows show the direction of a typical analysis pipeline used in drug screening
experiments. We start with reading intensity values from plates with different cell lines cultured in the
presence of studied drugs (A). These values are then normalized and turned into a fraction of the cells that
remained viable. A sigmoid curve is fitted to the obtained viability values at different drug concentrations,
and the area under the fitted curve yields a single score for each drug (B). Different drugs’ scores are
compared to each other across all the tested cell lines (C). A drug-drug correlation heatmap is then produced
to identify clusters of similar drugs (D). The red arrows illustrate the direction of interactive data exploration:
We start by showing the summary heatmap plot (D). Suppose the researcher is interested in a particular drug
combination or a cluster of drugs. In that case, he or she can examine the corresponding drug scores simply
by clicking on the heatmap cell (D) to see the underlying correlation plots (C). Similarly, one can click in a
point in (C) to examine the individual viability values at the tested concentrations and check the sigmoid fit
(B). And finally, if needed, it is possible to take one more step back and to look at the raw read-outs to inspect
them for the presence of any artifacts (A)

Page 9 of 17Ovchinnikova and Anders Genome Biology (2024) 25:43

summarize each such plot into a single number, the correlation coefficient, and finally,
we depict all the correlation coefficients in a correlation-matrix heatmap (panel C).

Often, such an analysis pipeline is fully automated and no one ever looks at the inter-
mediate plots. Inspecting them is, however, crucial to note problems with data quality or
mistakes in the design or programming of the analysis pipeline.

LinkedCharts allows to “walk” such an analysis pipeline backwards: in the supplement,
we show an app that depicts the plots of Fig. 5 in an interactive fashion, as follows. As
each cell of the final heatmap (panel C of Fig. 5) summarizes on a scatter plot compar-
ing two drugs (panel D), we can click on any cell in the heatmap and then see the corre-
sponding scatter plot. Each point in that scatter plot represents a pair of drug sensitivity
scores, which are, themselves, summaries of dose-response curves. Again, clicking on a
point in the correlation scatter plot will display these two dose-response curves. Finally,
each value in a drug response curve stems from a well in a microtiter plate, and hovering
over a point there hence highlights the well in a heatmap depicting the plate.

Thus, LinkedCharts allows to explore the “parentage” of any result value. If we find a
specific drug-drug correlation value suspicious or surprising, or if we just wish to dou-
ble-check it before drawing further conclusions from it, we can check its provenance in
arbitrary detail. Similarly, we can perform random spot checks.

Each layer in the backwards journey can inform about another type of problem: from
the correlation scatter plots, we may find that the correlation coefficient was unduly
influenced by a single out-lying cell line; from the dose-response plot, we may find that
specific dose-response curves fail to have the expected sigmoid shape; and from inspect-
ing plate plots, we may trace back a surprising final result to, say, a normalization issue
or a plate-edge effect.

Once such an analysis pipeline has been developed, all the intermediate results are
typically available in suitable data structures, which can be readily explored with Linked-
Charts. The supplement provides code for the example just described.

Quality assurance thresholds

Typically, analysis pipelines include steps to exclude bad-quality data. Often, this is done
by calculating quality metrics and setting thresholds. In the drug screen example, the
goodness of fit of the dose-response curves might be quantified by the residual sum of
squares, and if this value exceeds a threshold, the drug sensitivity score might be dis-
carded as unreliable. In the oral-cancer sample, the log fold change of some genes might
be unduly influenced by a single outlying sample, and one might use a threshold on an
outlier-detection score such as Cook’s distance to flag such genes.

Typically, the thresholds on such quality metrics are chosen a priori, often simply tak-
ing over values from previous work or from tutorials, even though the characteristics
of the assay might have changed. Doing otherwise seems to cause a chicken-and-egg
problem: one cannot run the analysis without first somehow deciding on thresholds, and
therefore, one cannot use analysis results to guide the choice of thresholds.

The approach of “walking the pipeline backwards” with LinkedCharts opens another
approach: typically, outliers tend to cause false positive results. Therefore, one can run
the analysis first without excluding any outliers, then inspect the provenance of the sta-
tistically significant items found and will be so guided to specifically those places in the

Page 10 of 17Ovchinnikova and Anders Genome Biology (2024) 25:43

raw data where outliers can actually cause false positives. This provides the analyst with
a better “feel” for the data and the analysis procedure and helps build an intuition that
will allow to more critically judge whether traditionally used standard values for quality-
assurance thresholds are appropriate for the specific data set under analysis.

Exploratory analysis

Analyzing complex data sets from many different angles and asking many different ques-
tions about them is crucial to all computational biology, not only to ensure that one
does not overlook potential problems but also in order to not miss the chance of seren-
dipitous discoveries. The importance of such exploratory data analysis (EDA) has been
argued since long, and it therefore forms a large part of computational biologists’ every-
day work. An important element is to pick examples and study them in detail, similarly
to the quality-assurance applications discussed in the previous section, but now with the
aim of getting a “feel” for the data and looking for insights.

The standard approach in inspecting examples is to pick, e.g., a gene from a result list,
produce a plot showing the provenance of this result, then pick another gene, change the
code for plotting to now show underlying data for this gene, etc. At that point, it is trivial
to alter this code into a linked charts app, using the similarity between code for static
and dynamic plots (Fig. 6).

Figure 6 illustrates this with another example based on the oral cancer dataset. A bio-
informatician had produced a correlation heatmap depicting correlations between all
sample pairs (Fig. 6A), using, e.g., the pheatmap package [30], and now wishes to inspect

Fig. 6 An example of an R/LinkedCharts app (C, D) for a simple exploratory analysis and the code to
generate it in comparison with static plots (A, B) produced for the same purpose. The heatmaps (A, C)
show Spearman correlation of gene expression for all samples from Conway et al. [15]. Here, we can see,
inter alia, two outlier samples in the heatmap’s bottom-right corner and some more or less pronounced
clusters of samples with similar gene expression levels. The scatter plots (B, D) show expression values for
two samples plotted against each other. Browsing through several such plots can help the researcher get a
feeling of the data and explore unexpected patterns like the outliers just mentioned. The code is split into
two pieces, where the upper one is responsible for generating the plots and the lower part shows the code
to update them to show a specific sample pair. For static plots, one has to execute the same lines of code for
any pair of samples, while for R/LinkedCharts the provided code should be added to the list of arguments
for the heatmap. After that, switching between pairs of samples can be done simply by clicking on the
corresponding cell of the heatmap. The static heatmap (A) was generated with the “pheatmap” package [30];
scatter plot (B) was made with a base R function. The live version of the app can be found in the supplement.
For simplicity, gene expression for all the samples is subset to 8000 randomly selected genes

Page 11 of 17Ovchinnikova and Anders Genome Biology (2024) 25:43

a specific correlation value (panel B) and writes to this end the short code shown in the
figure. To inspect other sample pairs, she would simply change the sample indices in the
code. This is routine practice for most bioinformaticians, but cumbersome. As the code
example below the plots in Fig. 6 shows, however, it is now virtually none effort to trans-
form the code into a LinkedCharts app, by merely making a few simple substitutions.

Public apps and concurrent use

Technically, an R/LinkedCharts app is provided by a web server running inside the R ses-
sion and can hence be used from any web browser. Importantly, there is no need for that
web browser to be running on the same computer as the R session. This allows a bioin-
formatician to easily share a LinkedCharts application with colleagues. They only have to
direct their operating system’s firewall to open the TCP/IP port the app is listening at for
incoming connections and tell their colleagues their computer’s IP address or DNS name
and the port number, which they simply enter into their browser’s address line.

As now multiple users might use the app simultaneously, we have to make sure that
each user gets their own copy of any global variable, such as the variable gene in the
initial code example. To do so, a trivial change is required: one only has to list all such
session variables at the beginning. In the initial code example, one would simply amend
the first line to

Apps with complex user interfaces

In all examples discussed so far, user input is constrained to selecting data points in
one chart in order to affect the display in a linked chart. However, the LinkedCharts
library also provides for more general means of data input by the user, by leveraging the
HTML5 tag <input> and thus offering buttons, checkboxes, radio buttons, scrolls, and
text fields via the “rlc” function lc_input (Fig. 4G). As for any other LinkedCharts
element, lc_input can be provided a callback function that is run every time the
user changes the state of an input element (e.g., clicks a button or enters new text). This
allows to easily add functionality to enter, say, a gene name rather than clicking on its
point (as in Fig. 7) but also to build up complex apps.

Figure 8 shows a screenshot of an example of a more complex LinkedCharts app,
which was developed as part of an effort to establish LAMP-based testing for SARS-
CoV-2 at Heidelberg University campus [32]. In this project, a colorimetric assay based
on loop-mediated DNA amplification (LAMP, [35]) was carried out on microtiter plates.
The app allowed lab technicians to inspect the measured change in pH as function of
incubation time, to link curves to wells and to patients, to compare replicates, and to
check and, if needed, amend automatic result calling (see [33] for details). Such continu-
ous quality control is vital for reliable medical diagnostics and has to be offered in an
easy-to-use manner and quick-to-grasp to avoid mistakes from repetition and fatigue.

Here, LinkedCharts turned out to be well suited to quickly develop the app, to con-
tinuously refine it while the assay was finalized, and to turn it into a production tool, well
integrated into the testing campaign’s databases and result reporting services.

Page 12 of 17Ovchinnikova and Anders Genome Biology (2024) 25:43

LinkedCharts for Open Science

Analyses in computational biology are often complex and involved, making them dif-
ficult to explain and even more so to verify. It is not uncommon that neither the peer
reviewers nor the readers of a publication are effectively able to double-check a result
unless they would be willing to redo the whole analysis themselves. The importance of
making all raw data and code available to do that has been often stressed [36], but even
verifying a complex analysis is a demanding task.

Published interactive apps for data exploration are hence the next step towards open
science. Traditionally, publications illustrate the characteristics of typical data by show-
ing “typical examples”―but whether an example can be considered typical can be
quite controversial. A LinkedCharts app in a paper’s online supplement allows readers to
chose their own examples rather than relying on the authors potentially “cherry-picked”
ones. A second, less obvious, advantage is that interactivity can help clarify the details of
a complex analysis.

While we consider the main area of application for the LinkedCharts to be a part
of data analysis, it can be used for result presentation as well. For instance, a Linked-
Charts app was used as online supplement to the paper of Wang et al. [31], a big-data
study aiming at elucidating to which extent evolution of expression regulation acts on

Fig. 7 A screenshot of a paper supplement [31] made with LinkedCharts. The main chart (upper row, center)
shows for every gene in the study its average expression and so-called �-score, which indicates whether
evolutionary changes in the translatome compensate for changes in the transcriptome or introduces
additional variance. The two plots below show expression values for the selected gene in all the tested
samples. The user selects a gene by clicking on the corresponding point of the main plot or by entering
the gene name (upper-left corner). The density plot to the right shows the distribution of �-scores, and its
Y-axis is linked to the Y-axis of the main plot. In the upper-right and bottom-left corners, some additional
information on the selected gene is displayed. Icons in the upper left corner allow switching between the
three studied tissues. Detailed information on the data, study goal and the source code for the app can be
found in the related publication. The app is written in JavaScript and, thus, can be downloaded and opened
in any modern browser without installation requirements. Though largely customized, the app is based on
the same principles as other examples throughout this paper. For the live version, see https:// ex2pl orer. kaess
mannl ab. org/

https://ex2plorer.kaessmannlab.org/
https://ex2plorer.kaessmannlab.org/

Page 13 of 17Ovchinnikova and Anders Genome Biology (2024) 25:43

transcription and to which extent on translation. Using RNA-Seq and ribosomal foot-
printing data from three organs, taken from animals of six species, changes in transcript
abundance and in translation of transcripts into proteins were quantified and compared.
A core idea of the analysis was that the evolutionary changes to transcription and trans-
lation may either compensate for each other (thus compensating deleterious changes in
one layer by an opposite change in the other), or reinforce each other (in case of adaptive
changes). To this extent, a score denoted as � was calculated, which is negative if the
between-species difference is lower in the ribosome footprinting data than in the tran-
scriptional data (thus indicating that transcriptional difference are at least partially com-
pensated on the translational layer) and positive if the variance at the ribosomal layer is
higher (indicating reinforcement).

The definition of this �-score is technical, and it is hard for the reader to form an intui-
tion on its meaning. By “playing around” a bit with the app, available at https:// ex2pl orer.
kaess mannl ab. org/ (static picture: Fig. 7), this is quickly remedied: the reader can click
on any gene in the upper scatter plot, inspecting examples of genes with positive, nega-
tive, or near-zero �-score to see the data from the individual samples. After a few clicks,
the relationship between the transcriptional and the translational data on the one hand
and the � score on the other hand will be clearer than after reading several paragraphs
of text. The use of HTML design elements to position explanatory labels renders the app
nearly self-explanatory. Here, it is not a simple picture, but an interactive one, that is
worth the proverbial thousand word.

Fig. 8 A screenshot of an app that was used as a GUI to perform manual inspection and classification of
LAMP testing for SARS-CoV-2 viral RNA [32, 33]. The app was used during our SARS-CoV-2 surveillance study
[34] and for voluntary testing for COVID-19 infection on campus (University of Heidelberg) in 2020/2021. To
the right, the app shows a 96-well plate layout colored either by content type (sample, empty, positive or
negative control) or by the assigned result. To the left, it shows the results of three tests and one control for
each sample. Accumulation of the LAMP product is indicated by the change of color from red to yellow and
is measured as a difference in absorbance on two wave lengths. This difference is plotted as a function of
time. Besides exploration (highlighting the corresponding lines for each sample), the app allows to manually
reassign status, store results, and send them to the server, where they can be queried by the test subjects. The
app is provided as an R script; the code and some example data are available on GitHub at https:// github.
com/ anders- biost at/ lamp_ plate_ analy sis

https://ex2plorer.kaessmannlab.org/
https://ex2plorer.kaessmannlab.org/
https://github.com/anders-biostat/lamp_plate_analysis
https://github.com/anders-biostat/lamp_plate_analysis

Page 14 of 17Ovchinnikova and Anders Genome Biology (2024) 25:43

LinkedCharts apps can be used as paper supplements in two ways. As it was described
previously, any R/LinkedCharts app supports concurrent use and therefore can be made
available for public usage with a very few changes to the code. Alternatively, a user with
the knowledge of JavaScript can use the linked-charts.js library which is a foundation
of R/LinkedCharts to make an app fully contained within an HTML file, as the afore-
mentioned supplement to Wang et al. [31]. Though this approach requires considerably
more effort, the resulting app is extremely easy to share, does not require any form of
installation, and can be run in any modern web browser. The interface of linked-charts.js
in many aspects is the same as of R/LinkedCharts, which facilitates the code transforma-
tion. To give readers a feeling of similarity between R code of R/LinkedCharts and JavaS-
cript apps of linked-charts.js, for every example in the supplement, we provided code for
the both languages.

Summary and conclusion
The importance of using interactivity in data exploration has been discussed since long.
In bioinformatics, applications to perform specific analyses for specific data types often
offer useful interactive features for data exploration. However, wherever fitting spe-
cial-purpose tools are not available, analyses are still conducted using static plots, and
general-purpose frameworks for interactive visualization are, if at all, only used for pres-
entation of the details of an already finished analysis. The reason that general-purpose
frameworks for interactive data visualization are rarely used in the actual analysis is two-
fold: for technical reasons, the most versatile tools are only available for JavaScript, while
bioinformaticians typically work with R and JavaScript. Available tools for R miss a cru-
cial feature: linking.

We have presented R/LinkedCharts, a general-purpose framework for interactive data
visualization for R that pulls all event handling from the JavaScript core to the R-based
development side. This enables bioinformaticians to code arbitrary reactions to user
interactions with individual data points in a chart and to thus link several charts. We
show that this allows to easily set up apps where an “overview chart” shows the main
results and a click on any item in this overview displays details on this element in a
“detail chart.” We have discussed numerous ways how variations on this general idea
enable powerful data analysis strategies that can be easily incorporated into a data ana-
lyst’s existing work routine. We have argued that the consequent use of such techniques
allows for improvements at all stages of a project.

Methods
Implementation

The JavaScript foundation of R/LinkedCharts is built on top of the D3 library [10].
linked-charts.js is by itself a fully functional tool for interactive data visualization

that can be used by those familiar with JavaScript to create stand-alone apps. The
library is open-source and available on GitHub at https:// github. com/ anders- biost at/
linked- charts.

The “jrc” package package is used as a bridge between R and JavaScript. It allows
one to run JavaScript code from an R session and vice versa. It also manages client

https://github.com/anders-biostat/linked-charts
https://github.com/anders-biostat/linked-charts

Page 15 of 17Ovchinnikova and Anders Genome Biology (2024) 25:43

connections to the app and is responsible for all the functionality necessary to make
an R/LinkedCharts app public. “jrc” in turn is based mainly on “httpuv” [39] package
to run a local server and ensure a WebSocket connection [40]. A current version can
be found at https:// github. com/ anders- biost at/ jrc, an archived one at [41].

R/LinkedCharts (“rlc” package) is an R [42] interface to the JavaScript version of
LinkedCharts. In addition to providing access to linked-charts.js functionality, it also
ensures proper storing of charts and serving them to each connected client by extend-
ing “App” class of the “jrc” package. “rlc” is open source and is available on CRAN or
GitHub https:// github. com/ anders- biost at/ rlc.

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s13059- 024- 03164-3.

Additional file 1. Zip file containing the interactive supplement.

Additional file 2. Review history.

Review history
The review history is available as Additional file 2.

Peer review information
Andrew Cosgrove was the primary editor of this article and managed its editorial process and peer review in collabora-
tion with the rest of the editorial team.

Supplement
The interactive supplement to this paper can be found online at https:// anders- biost at. github. io/ lc- paper/ or offline in
the zip file accompanying the paper as Additional file 1. To see the supplement offline, unpack the zip file and use a web
browser to open the file index.html contained within.

Authors’ contributions
SO implemented the “rlc” package and wrote the manuscript. SA conceived and supervised the project, contributed to
its implementation, and edited the manuscript. Both authors jointly designed the software architecture.

Funding
Open Access funding enabled and organized by Projekt DEAL. The authors acknowledge funding by the Deutsche
Forschungsgemeinschaft via CRC 1366 and by the Klaus-Tschira-Stiftung via grant 00.022.2019.

Availability of data and materials
R/LinkedCharts is available as an R package from CRAN, the standard archive for R packages (https:// cran.r- proje ct. org/),
i.e., it can simply be installed with install.packages("rlc"). No further installation is required, as all compo-
nents, including the web server and the functionality to link to the web browser, are included in the package and started
automatically. For an archived version of the software, see [37]. R/LinkedCharts, as well as its dependency jrc and its
variant linkedchart.js (see the “Methods” section) are open-source software, made availabe under the GNU General Public
License version 3 (GPL3).
 Codes and detailed explanations for all examples discussed in this paper are given in the paper’s interactive supple-
ment, which is also available at https:// anders- biost at. github. io/ lc- paper/. Several detailed usage tutorials are available at
https:// anders- biost at. github. io/ linked- charts/.
 The dataset used for example in Fig. 1 is available on the European Read Archive (ERA) under accession PRJEB7455 (sec-
ondary accession: ERP007185). The count data have been downloaded from the recount2 project [38] at https:// jhubi
ostat istics. shiny apps. io/ recou nt/. The dataset for example in Fig. 5 was obtained from the authors. All the data necessary
to recreate the example apps are provided in the Supplement of the paper along side the corresponding code. The sup-
plement is available at https:// anders- biost at. github. io/ lc- paper/ and as Additional file 1 at the Journal’s web site.

Declarations

Ethics approval and consent to participate
Not applicable for this publication.

Competing interests
The authors declare that they have no competing interests.

Received: 7 February 2022 Accepted: 3 January 2024

https://github.com/anders-biostat/jrc
https://github.com/anders-biostat/rlc
https://doi.org/10.1186/s13059-024-03164-3
https://anders-biostat.github.io/lc-paper/
https://cran.r-project.org/
https://anders-biostat.github.io/lc-paper/
https://anders-biostat.github.io/linked-charts/
https://jhubiostatistics.shinyapps.io/recount/
https://jhubiostatistics.shinyapps.io/recount/
https://anders-biostat.github.io/lc-paper/

Page 16 of 17Ovchinnikova and Anders Genome Biology (2024) 25:43

References
 1. Hegarty M. The cognitive science of visual-spatial displays: implications for design. Top Cogn Sci. 2011;3(3):446–74.
 2. Newman WM, Sproull RF. Principles of interactive computer graphics. New York: McGraw-Hill; 1979.
 3. Becker RA, Cleveland WS. Brushing scatterplots. Technometrics. 1987;29(2):127–42.
 4. Caldarola EG, Rinaldi AM. Big Data Visualization Tools: A Survey. In: Proceedings of the 6th International Conference

on Data Science, Technology and Applications. Setubal, Portugal: SCITEPRESS - Science and Technology Pulications;
2017. p. 296–305.

 5. Noronha A, Daníelsdóttir AD, Gawron P, Jóhannsson F, Jónsdóttir S, Jarlsson S, et al. ReconMap: an interactive visuali-
zation of human metabolism. Bioinformatics. 2017;33(4):605–7.

 6. Wick RR, Schultz MB, Zobel J, Holt KE. Bandage: interactive visualization of de novo genome assemblies. Bioinfor-
matics. 2015;31(20):3350–2.

 7. Hillje R, Pelicci PG, Luzi L. Cerebro: interactive visualization of scRNA-seq data. Bioinformatics. 2020;36(7):2311–3.
 8. Rue-Albrecht K, Marini F, Soneson C, Lun AT. iSEE: interactive summarizedexperiment explorer. F1000Research.

2018;7:741.
 9. Broman KW. R/qtlcharts: interactive graphics for quantitative trait locus mapping. Genetics. 2015;199(2):359–61.
 10. Bostock M, Ogievetsky V, Heer J. D3 data-driven documents. IEEE Trans Vis Comput Graph. 2011;17(12):2301–9.
 11. Satyanarayan A, Russell R, Hoffswell J, Heer J. Reactive vega: a streaming dataflow architecture for declarative inter-

active visualization. IEEE Trans Vis Comput Graph. 2015;22(1):659–68.
 12. Satyanarayan A, Moritz D, Wongsuphasawat K, Heer J. Vega-lite: a grammar of interactive graphics. IEEE Trans Vis

Comput Graph. 2016;23(1):341–50.
 13. P’ng C, Green J, Chong LC, Waggott D, Prokopec SD, Shamsi M, et al. BPG: Seamless, automated and interactive

visualization of scientific data. BMC Bioinformatics. 2019;20(1):1–5.
 14. Buja A, McDonald JA, Michalak J, Stuetzle W. Interactive data visualization using focusing and linking. In: Proceed-

ings of the 2nd conference on Visualization’91. Washington, DC: IEEE Computer Society Press; 1991. p. 156–63.
 15. Conway C, Graham JL, Chengot P, Daly C, Chalkley R, Ross L, et al. Elucidating drivers of oral epithelial dysplasia

formation and malignant transformation to cancer using RNAseq. Oncotarget. 2015;6(37):40186–201. https:// doi.
org/ 10. 18632/ oncot arget. 5529.

 16. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-
sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47. https:// doi. org/ 10. 1093/ nar/ gkv007.

 17. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.
Genome Biol. 2014;15(12):1–21.

 18. Law CW, Chen Y, Shi W, et al. voom: precision weights unlock linear model analysis tools for RNA-seq read counts.
Genome Biol. 2014;15:R29. https:// doi. org/ 10. 1186/ gb- 2014- 15-2- r29.

 19. Dudoit S, Yang YH, Callow MJ, Speed TP. Statistical methods for identifying differentially expressed genes in repli-
cated cDNA microarray experiments. Stat Sin. 2002;12:111–39.

 20. Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer; 2016.
 21. Lebeau F. d3-beeswarm plugin. 2017. https:// github. com/ Kcnarf/ d3- beesw arm.
 22. Robinson JT, Thorvaldsdóttir H, Turner D, Mesirov JP. igv.js: an embeddable JavaScript implementation of the Inte-

grative Genomics Viewer (IGV). Bioinformatics. 2022;39:btac830. https:// doi. org/ 10. 1093/ bioin forma tics/ btac8 30.
 23. He L, Kulesskiy E, Saarela J, Turunen L, Wennerberg K, Aittokallio T, et al. Methods for high-throughput drug com-

bination screening and synergy scoring. In: Cancer Systems Biology. New York: Humana Press Springer; 2018. p.
351–98.

 24. Ozkan-Dagliyan I, Diehl JN, George SD, Schaefer A, Papke B, Klotz-Noack K, et al. Low-dose vertical inhibition of the
RAF-MEK-ERK cascade causes apoptotic death of KRAS mutant cancers. Cell Rep. 2020;31(11):107764. https:// doi.
org/ 10. 1016/j. celrep. 2020. 107764.

 25. Travaglini KJ, Nabhan AN, Penland L, Sinha R, Gillich A, Sit RV, et al. A molecular cell atlas of the human lung from
single-cell RNA sequencing. Nature. 2020;587(7835):619–25.

 26. Roider T, Seufert J, Uvarovskii A, Frauhammer F, Bordas M, Abedpour N, et al. Dissecting intratumour hetero-
geneity of nodal B-cell lymphomas at the transcriptional, genetic and drug-response levels. Nat Cell Biol.
2020;22(7):896–906.

 27. Kalucka J, de Rooij LP, Goveia J, Rohlenova K, Dumas SJ, Meta E, et al. Single-cell transcriptome atlas of murine
endothelial cells. Cell. 2020;180(4):764–79.

 28. Batch A, Elmqvist N. The interactive visualization gap in initial exploratory data analysis. IEEE Trans Vis Comput
Graph. 2017;24(1):278–87.

 29. Yadav B, Pemovska T, Szwajda A, Kulesskiy E, Kontro M, Karjalainen R, et al. Quantitative scoring of differential drug
sensitivity for individually optimized anticancer therapies. Sci Rep. 2014;4(1):1–10.

 30. Kolde R. pheatmap: Pretty Heatmaps. R package version 1.0.12. 2019. https:// CRAN.R- proje ct. org/ packa ge= pheat
map.

 31. Wang ZY, Leushkin E, Liechti A, Ovchinnikova S, Mößinger K, Brüning T, et al. Transcriptome and translatome co-
evolution in mammals. Nature. 2020;588(7839):642–7.

 32. Dao Thi VL, Herbst K, Boerner K, Meurer M, Kremer LP, Kirrmaier D, et al. A colorimetric RT-LAMP assay and LAMP-
sequencing for detecting SARS-CoV-2 RNA in clinical samples. Sci Transl Med. 2020;12(556):eabc7075. https:// doi.
org/ 10. 1126/ scitr anslm ed. abc70 75.

 33. Lou D, Meurer M, Ovchinnikova S, Burk R, Denzler A, Herbst K, et al. Scalable RT-LAMP-based SARS-CoV-2 testing for
infection surveillance with applications in pandemic preparedness. EMBO Rep. 2023;24(5):e57162. https:// doi. org/
10. 15252/ embr. 20235 7162.

 34. Deckert A, Anders S, de Allegri M, Nguyen HT, Souares A, McMahon S, et al. Effectiveness and cost-effectiveness of
four different strategies for SARS-CoV-2 surveillance in the general population (CoV-Surv Study): a structured sum-
mary of a study protocol for a cluster-randomised, two-factorial controlled trial. Trials. 2021;22(1):1–4.

 35. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, et al. Loop-mediated isothermal amplifica-
tion of DNA. Nucleic Acids Res. 2000;28(12):e63–e63.

https://doi.org/10.18632/oncotarget.5529
https://doi.org/10.18632/oncotarget.5529
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1186/gb-2014-15-2-r29
https://github.com/Kcnarf/d3-beeswarm
https://doi.org/10.1093/bioinformatics/btac830
https://doi.org/10.1016/j.celrep.2020.107764
https://doi.org/10.1016/j.celrep.2020.107764
https://CRAN.R-project.org/package=pheatmap
https://CRAN.R-project.org/package=pheatmap
https://doi.org/10.1126/scitranslmed.abc7075
https://doi.org/10.1126/scitranslmed.abc7075
https://doi.org/10.15252/embr.202357162
https://doi.org/10.15252/embr.202357162

Page 17 of 17Ovchinnikova and Anders Genome Biology (2024) 25:43

 36. Gentleman R. Reproducible research: a bioinformatics case study. Stat Appl Genet Mol Biol. 2005;4:2. https:// doi. org/
10. 2202/ 1544- 6115. 1034.

 37. Ovchinnikova S, Anders S. rlc: v 0.5.0. Zenodo. 2023. https:// doi. org/ 10. 5281/ zenodo. 10402 925.
 38. Collado-Torres L, Nellore A, Kammers K, Ellis SE, Taub MA, Hansen KD, et al. Reproducible RNA-seq analysis using

recount2. Nat Biotechnol. 2017;35(4):319–21.
 39. Cheng J, Chang W. httpuv: HTTP and WebSocket Server Library. 2020. R package version 1.5.4. https:// cran.r- proje ct.

org/ packa ge= httpuv.
 40. Fette I, Melnikov A. RFC 6455: The WebSocket protocol. Internet Engineering Task Force; 2011. https:// tools. ietf. org/

html/ rfc64 55. ISSN 2070-1721.
 41. Ovchinnikova S, Anders S. jrc: v 0.6.0. Zenodo. 2023. https:// doi. org/ 10. 5281/ zenodo. 10402 943.
 42. R Core Team. R: a language and environment for statistical computing. Vienna, Austria; 2019. https:// www.R- proje ct.

org.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.2202/1544-6115.1034
https://doi.org/10.2202/1544-6115.1034
https://doi.org/10.5281/zenodo.10402925
https://cran.r-project.org/package=httpuv
https://cran.r-project.org/package=httpuv
https://tools.ietf.org/html/rfc6455
https://tools.ietf.org/html/rfc6455
https://doi.org/10.5281/zenodo.10402943
https://www.R-project.org
https://www.R-project.org

	Simple but powerful interactive data analysis in R with RLinekdCharts
	Abstract
	Background
	Results and discussion
	Linking charts
	Event handling in R
	Basic syntax, chart types, and HTML5 integration
	Use cases
	Interactivity for EDA and for presentation
	Back-tracking in analysis pipelines
	Quality assurance thresholds
	Exploratory analysis
	Public apps and concurrent use
	Apps with complex user interfaces
	LinkedCharts for Open Science

	Summary and conclusion
	Methods
	Implementation

	References

