
Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate‑
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo‑
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

METHOD

Gupta et al. Genome Biology           (2024) 25:23  
https://doi.org/10.1186/s13059-023-03162-x

Genome Biology

Improved modeling of RNA-binding protein 
motifs in an interpretable neural model of RNA 
splicing
Kavi Gupta1, Chenxi Yang2, Kayla McCue3, Osbert Bastani4, Phillip A. Sharp3,5, Christopher B. Burge3*   and 
Armando Solar‑Lezama1* 

Abstract 

Sequence‑specific RNA‑binding proteins (RBPs) play central roles in splicing decisions. 
Here, we describe a modular splicing architecture that leverages in vitro‑derived RNA 
affinity models for 79 human RBPs and the annotated human genome to produce 
improved models of RBP binding and activity. Binding and activity are modeled by sep‑
arate Motif and Aggregator components that can be mixed and matched, enforcing 
sparsity to improve interpretability. Training a new Adjusted Motif (AM) architecture 
on the splicing task not only yields better splicing predictions but also improves pre‑
diction of RBP‑binding sites in vivo and of splicing activity, assessed using independent 
data.
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Background
Genomic sequences encode the form and function of organisms, and their interpretation 
is an important scientific goal. The complex gene architectures present in metazoans 
makes this particularly challenging. Non-coding segments, or introns, frequently inter-
rupt the coding sequence in eukaryotic genes (with 10 or more per gene on average in 
mammals), requiring intron excision and ligation of the flanking exons by the RNA splic-
ing machinery in order to assemble the mature protein-coding mRNA [1]. Thus, finding 
the boundary elements or splice sites that are recognized in this process, the RNA splic-
ing code, is important in interpreting the genome, and understanding how these sites are 
recognized by the spliceosome is a longstanding puzzle in molecular biology.

As the human genome was being sequenced and assembled, gene prediction was a 
priority, and incorporating detailed models of RNA splicing features proved useful [2]. 
Models more specifically focused on various aspects of splicing rather than gene finding 
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have since been developed. The splice site motifs were the first aspects to be modeled, 
typically by giving scores for short sequences as potential 5′ splice sites (5′SS) or 3′ 
splice sites (3′SS)—the sites recognized at the beginning and ends of introns [3–5]. How-
ever, these motifs were found to be insufficient to predict splicing patterns, even in the 
simpler case where all introns are short [6], implying that other features must broadly 
contribute to intron recognition. Subsequent efforts have focused on splicing regula-
tory elements (SREs)—short RNA segments that typically function by recruiting splicing 
regulatory factors (SRFs), RBPs that promote or inhibit assembly of core machinery at 
nearby splice sites [1] (Fig. 1). Incorporating known exonic SREs into a simple splicing 
model was found to substantially improve its predictions [7].

Related problems have since been tackled, such as predicting the splicing phenotypes 
of mutations or predicting aspects of alternative splicing such as the percent spliced in 
(PSI) values of exons or the direction of changes in exon inclusion between different tis-
sues [8–13]. Most models emphasized features known to be recognized in splicing, but 
to improve accuracy, some models also considered features not available to the spliceo-
some, such as evolutionary conservation [14, 15].

More recently, some attention has returned to the question of predicting splicing 
from raw sequence using neural network methods that have been highly successful at 
predictive tasks in many fields [16–18]. Rather than curating features by hand, these 
machine learning methods have feature selection built into their training process, albeit 
in a manner that makes extracting and interpreting these features extremely difficult. For 
instance, SpliceAI, a deep convolutional neural network (CNN), can produce extremely 
high end-to-end accuracy in predicting splice sites in the human genome using up to 
10,000 bases of sequence context. The model is essentially a black box that does not 

Fig. 1 Types of models of RNA splicing. a SpliceAI models splicing as a black box mapping from pre‑mRNA 
to splice sites. b We conceptualize splicing as a process in which various protein and ribonucleoprotein 
factors bind to the pre‑mRNA sequence and influence which sites are chosen as splice sites and which are 
not. c Our SAM model predicts 5′ and 3′ splice site motifs and RBP binding motifs first, and then predicts 
which splice sites will be chosen by modeling interactions between these motifs
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allow extraction of which specific features are of general utility in predicting splicing, 
although some clues can be gleaned about sequences important for prediction of indi-
vidual splice sites using in silico mutagenesis [18]. Related CNNs have been developed 
for prediction of tissue-specific splicing patterns [19, 20]. Some recent work [21] has 
explored more interpretable learned models of splicing but has done so in the domain of 
short (70 nt) synthetic exons rather than gene-level splicing.

A recent line of research in AI has focused on interpretable neural networks that use 
some intermediate processing of the input that corresponds to known information about 
a particular process [22, 23]. These techniques use auxiliary losses on intermediate lay-
ers to ensure that the network actually makes predictions based on general underlying 
data. Here, we instead use a hard constraint that requires the intermediate concept to 
resemble previously known information, which is made possible using a sparsity-based 
approach. Other techniques use multiple datasets with the same intermediate features 
[24], which is unfortunately not applicable to the splicing domain. Yet other techniques 
attempt to disentangle features of the input, in such a way as to extract information 
about the intermediate state [25]; however, these techniques attempt to preserve all 
information in the input, while we wish to force the model to use only a limited set of 
well-defined motifs and binding locations.

Here, we sought to develop predictive splicing models that are interpretable and 
achieve high accuracy on gene-level splicing, with interpretability the paramount 
goal. This was achieved by developing sub-models inside of our Sparse Adjusted Motif 
(SAM) model that are directly anchored to known biology. Our Local Splice Site Iden-
tifier (LSSI) model learns the 3′SS and 5′SS motifs, and what we call the Fixed Motif 
(FM) model estimates the binding locations of RBPs using existing biophysically based 
models derived from in vitro RBP:RNA binding data [26, 27]. These two models, which 
each predict the binding sites of some protein, have their outputs fed into an Aggre-
gator model, which is then used to predict the actual splicing outcomes. This two-step 
process ensures that we predict splicing from a known intermediate value, rather than 
from uninterpretable latent features learned directly from the RNA sequence. We fur-
ther developed an Adjusted Motif (AM) model which tunes these motifs as part of 
end-to-end training on the splicing task. This approach affords a substantial increase in 
accuracy while ensuring that the AM models describe in vitro RBP binding comparably 
well as the original FM models, preserving the ability to infer the involvement of specific 
motifs and associated RBPs in splicing and to interpret variants that alter RBP binding.

Results and discussion
A modular architecture for splicing with enforced sparsity

Our approach combines neural techniques with a modular structure that constrains the 
model to consider elements relevant to splicing. The three main model components are 
(1) a Local Splice Site Identifier (LSSI) which models the 5′SS and polypyrimidine tract 
(PPT)/3′SS; (2) a “Motif Model,” which incorporates motifs representing in vitro binding 
specificity of several dozen RBPs; and (3) an “Aggregator,” which predicts the locations of 
splice sites based on the LSSI and Motif Model outputs (Fig. 2).

The 3′SS and 5′SS have fairly strong core motifs, which are often captured by graphi-
cal models trained using maximum-entropy estimation or other methods [5]. We chose 
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to model the same core splice site regions modeled by the MaxEnt method to facili-
tate comparison. The 3′SS region comprises 23 nt, consisting of the last 20 bases of the 
intron and first 3 bases of the succeeding exon, while the 5′SS region comprises 9 nt, 
consisting of the last 3 bases of the exon and first 6 bases of the downstream intron. In 
general, our LSSI models slightly outperform MaxEnt models, with top-k accuracies for 
3′SS and 5′SS on the SpliceAI test set of 23.5% and 26.5% versus 18.4% and 24.7% for 
the MaxEnt model (Top-k accuracy is the fraction of splice sites predicted correctly at 
a score cutoff which predicts the same number of splice sites as actually appear in the 
data).

Next, we considered models of RBP-binding sites in the Motif Model. In our baseline 
model, we use what we call Fixed Motifs (FMs), which consist of position-specific affin-
ity matrices (PSAMs) derived by the RBPAmp algorithm [27] from RNA Bind-n-Seq 
(RBNS) in vitro data for 79 human RBPs [26]. Each RBP is represented by 1–5 PSAMs 
(typically ~11 nt long) that yield relative affinity values for any RNA sequence. We have 
also explored using PSAM models inferred from RNACompete data [29]. To score a 
sequence with the PSAM(s) for an RBP, we compute relative affinity from the matrix, 
then multiply this value by the corresponding absolute affinity, and sum the affinities 
across all PSAMs. Our primary contribution, the AM Model described below, is an 
alternative to the PSAM-based FM model. In this paper, the FM model is treated as a 
baseline as it represents a high-quality model of RBP binding from prior literature.

One consideration in designing a modular neural network structure is to ensure that 
the LSSI and Motif model outputs are not simply used by the Aggregator to reconstruct 
the original sequence and then learn a black box splicing algorithm. If this were pos-
sible, high accuracy might be achieved without the essential properties of modularity 
and interpretability. Therefore, it is important to ensure that these models compress the 
information in the sequence, thus preventing it from being reconstructed. Enforcing an 

(See figure on next page.)
Fig. 2 Overview of Sparse Adjusted Motif architecture: components and flow of information. Panels a 
through e summarize our splicing architecture using the baseline RBNS PSAM models (FM model); panels 
d and e describe the “Aggregator” component of our model, inspired by [28]; panels f and g summarize 
training of the “AM” models, which then replace the FM motifs shown in panel b. a The LSSI model processes 
the sequence and produces an annotation of the core 3′ and 5′ motifs. b The motif model processes the 
sequence and produces an estimate of RBP binding affinity at each site. c We enforce sparsity on the motif 
binding affinities, only allowing through high‑affinity sites. d We compute influence scores for each position 
in the sequence; by multiplying with the sparse input, we ensure that these influence values are only used to 
increase or decrease the strengths of known binding sites. e We then run a long‑range processor across the 
sequence to score potential splice sites. We multiply these with the outputs of the core motifs to produce 
our final predictions. We use an LSTM here as the structure of an LSTM’s dataflow graph is identical to that of 
the forward‑backward algorithm, which is commonly used to find the marginal probabilities of states in an 
HSMM. f In our AM model, we first run our FM model and then sparsify it to a level of density k times denser 
than we intend to output (typically k = 2). g We also predict increase/decrease scores at each position. These 
scores are then added only to sites that were plausible binding sites. We then resparsify the output. This 
allows changing both the magnitudes of the sites arbitrarily as well as changing which sites are selected, 
while guaranteeing that all the produced AM sites are among the sites scored highly by the FM. Specifically, 
we compute AM’s output as AM(x) = FM(x) ⊕ Adj(x), where u ⊕ v = 1(u ≠ 0)(u + v). h Table represents a 
high‑level view of the two metrics of accuracy we consider. Both the FM and AM models are novel, though 
under the FM model, the Aggregator is novel while the motifs are previously described [27]. Our AM model 
improves over the FM model in all features, trading some accuracy versus SpliceAI in favor of being able to 
predict relevant RBP binding positions, and is the best at binding motif prediction. N/A indicates that SpliceAI 
is not capable of binding motif prediction
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information bottleneck in order to ensure modularity is a standard technique in machine 
learning [30]; we use a recently described approach [31].

For the LSSI model, we ensure sequence compression by enforcing the minimum 
score to be a log-probability of −10, by setting all values below −10 to −10. This bar, 
if interpreted as a binary classification bar, has the effect of including almost all splice 
sites (98.88% of 3′SS, 99.10% of 5′SS) while assigning meaningful (> −10) scores to just a 
small fraction of locations (2.00% for the 3′SS model, 1.41% for the 5′SS model, a mean 

Fig. 2 (See legend on previous page.)
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of 1.7% of positions). The LSSI model emphasizes recall over precision as one of its func-
tions in the model is as a mask: any position scored −10 by both LSSI models will not 
be considered as a potential SS subsequently. Since we assign meaningful values to only 
1–2% of locations for each splice site type, and this model is trained entirely separately 
from the main model, it greatly compresses the input sequence and could contribute at 
most minimally to sequence reconstruction.

Enforcing motif sparsity

When modeling SRFs, it is more important to precisely bound the mutual information 
between the input RNA sequence and the motif layer, as there are many RBPs and thus 
much more information could theoretically pass through. We use the fact that we know 
that RBPs bind specific sequences and have finite free concentrations, so that only a frac-
tion of sites in the transcriptome are occupied by RBPs. Therefore, we add a layer imme-
diately after our Motif Model that enforces sparsity, limiting the fraction of sites at which 
the model considers binding by an RBP. We enforce the density, the number of positions 
that contain a nonzero value, to be at most δ by enforcing that the sparsity is at least (1 
− δ). If we have M motif models, if each predicted RBP binding score contains at most 
η bits of information, and we analyze L bases, we can bound the entropy of the motifs 
layer by H/L ≤ M[H(B(δ)) + δ η], where B(x) represents the Bernoulli distribution with 
probability x, δ is the mean motif density, and η represents an upper bound across chan-
nels of the entropy in the distribution of nonzero activations (Additional file 1: Figure S1; 
derivation provided in Additional file 1).

This quantity represents the information per base that is being let through by the 
Motif Model. In general, we require H/L < 1.91 bits, in order to ensure that the sequence 
is being compressed. Throughout this paper, we use M = 79, which is the number of 
RBPs for which we used PSAMs from RBNS as input, unless otherwise specified, and 
we set δ = 0.18% to be our definition of sequence compression. This value allows η < 2.8 
bits while maintaining sequence compression. In general, the outputs of our sparse layer 
contain less than 2.8 bits each, with typical values of about 2 bits (Additional file 1).

We empirically confirmed that our entropy bound is sound, but not particularly tight, 
via an experiment where we trained a neural network to reconstruct the sequence. From 
the motif output of an AM model with H/L bound of 1.79b/nt, the original transcript 
sequence could be reconstructed with only 59% accuracy in one experiment. This cor-
responds to an effective H/L of 1.16 bits/nt. However, we continue to use 0.18% density 
in order to ensure that the motif density is well below the theoretical limit required to 
guarantee compression. Enforcing an entropy bound therefore ensures that the algo-
rithm learns a compressed representation of the sequence and cannot reconstruct the 
input sequence.

To enforce a maximum density of δ, we follow the Sparling technique [31], with a 
minor variation that we find improves accuracy at the cost of training efficiency. To 
train this model, our “standard training” approach is as follows. We start with a very 
large δ value of 75%. As training progresses, we reduce the maximum density thresh-
old δ by a factor of 0.75 at specific steps, allowing the thresholds to update via the 
moving average. Rather than pick a certain number of training steps between reduc-
tions in δ, we instead use validation accuracy as a guide. At specific steps t (20 times 
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per epoch), we check whether V(t) has reached some target accuracy VT(t) and, if 
so, reduce δ to 75% of its previous value.

Unless otherwise specified, we choose VT(t) = VT to be a constant in t and tune 
the value of VT externally. Specifically, we search for the largest VT such that we 
can train our model to achieve a density of δ = 0.18%. In some experiments where 
it was of interest to evaluate the accuracy resulting from various minor model or 
data changes, we instead use a “quick training” method equivalent to the Sparling 
approach. In this approach, we set VT(t) to a dynamic function that starts at a high 
value (typically 85%), then reduces by 1% per epoch of training, increasing to what-
ever validation accuracy was achieved at the previous step whenever δ is reduced. 
Though faster, the quick training approach tends to produce slightly (~1–2%) lower 
performance.

We use the same train/test split as SpliceAI, with the following modification: we 
treat the first 50% of the SpliceAI test set (by total sequence length) as a validation 
set, which is used to determine when to adjust sparsity/accuracy thresholds. We use 
the last 45% of the SpliceAI test set as a true test set, for our evaluation results, with 
the 5% gap serving to avoid overlap of genes between training and validation sets. 
Different random orders of genes are used in training/testing.

Aggregator

The final component of SAM is the Aggregator, a network that aggregates poten-
tial splice sites and RBP-binding sites identified by the LSSI and Motif Model and 
produces a prediction of splice site locations. This network is structured in the fol-
lowing way: the LSSI output is concatenated with the Motif model output, and then 
processed by a small convolutional model of width 49 nt, then an attention layer of 
width 401 nt, which is then multiplied with the output of the motif model to prop-
agate the sparsity. We use a custom attention layer design that takes advantage of 
this limited attention region for performance reasons. We then apply another CNN 
followed by a long-range BiLSTM network, and the result is then multiplied by the 
output of the LSSI model to produce our final splicing prediction. The design of the 
Aggregator is inspired by the hierarchical attention network structure [28], and we 
believe that the two components roughly correspond to RBP influence (attention, 
which considers pairwise relationships) and 3′SS/5′SS matching (BiLSTM, which 
has the same structure as an invocation of the forward-backward algorithm on 
HMMs). However, without the multiplication and convolution (pre-BiLSTM) opera-
tions, the model cannot effectively capture the intrinsic importance of the motifs.

We deliberately decided not to focus on or optimize the Aggregator in this paper, 
mostly treating it as an opaque box, except in a few instances where we use it to 
infer patterns of motif activity. However, we do believe that there is no obvious way 
to improve the Aggregator’s performance. We provide an analysis comparing our 
Aggregator with a SpliceAI-like convolutional network (Additional file 1: Figure S2) 
and find that, while this change helps with end-to-end performance, it reduces motif 
performance. Additionally, we investigated several changes involving simplifying the 
aggregator, and all resulted in reduced end-to-end performance.
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Adjusted motif model

We observed that the accuracy achieved with FM models was moderately high (67.2% of 
splice sites correct, see below for details) but wondered whether these models of in vitro 
binding of 79 RBPs were optimal for predicting splicing. As an experiment, we allowed 
the parameters to change subtly during training, while taking steps to preserve the asso-
ciation with individual RBPs, yielding “adjusted motifs” (AMs) (Fig.  3). For example, 

Fig. 3 Sequence logos for corresponding AMs and FMs show overall similarity with minor differences. 
Sequence logos are shown for three representative SRFs: TRA2A, a splicing activator, and splicing repressors 
HNRNPA1 and HNRNPA2B1. The first column shows the FM motif and the second shows AM logos for 2 
replicate runs. The third column shows differences between each AM and the corresponding FM: each base’s 
height represents its pointwise mutual information, with those above the bar enriched in the AM and those 
below enriched in the FM. The pattern of differences is often but not always related between replicates, as 
shown by the examples above. The accuracy a logistic model can achieve at distinguishing AM from FM 
motifs is shown above each difference plot. The fourth column shows the overlap between FM and AM 
binding sites for each factor, labeled with the fraction of genomic positions for each category. The total 
fraction of genomic positions for each model is shown next to the model’s name in square brackets. For 
example, FMs and AMs for TRA2A bind 0.16% of genomic sites, i.e., one site every 625 nt
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binding preferences of RBPs in vivo might occasionally differ from the in vitro-derived 
FM models as a result of binding partners [32] or post-translational modifications [33]. 
Furthermore, many RBPs belong to families of related proteins, usually with similar but 
not identical RNA-binding preferences, so the AMs might learn the binding preferences 
of the SRFs with most important roles in splicing from information about related fam-
ily members analyzed in vitro. Training an unconstrained neural model to replace the 
FMs might also improve accuracy, of course, but at the expense of interpretability, as the 
learned motifs would no longer correspond to known RBPs.

We compute the binding sites in the adjusted motif (AM) model by adjusting the 
scores for already relatively high-scoring FM binding sites, allowing k times as many FM 
sites as we will eventually use, allowing our AM model to filter out a subset of binding 
sites among plausible sites provided by the FM model (Methods). Here, we have used 
k = 2: for example, the top 1000 sites scored by an AM model would be constrained to 
fall within the top 2000 sites scored by the corresponding FM model. This value of k 
serves to constrain the sequence features of AMs to closely resemble the FM motifs in 
virtually every case, as desired (examples are shown in Fig. 3). Each AM was modeled 
as a CNN composed of 5 residual units, each with two convolutional layers of width 3, 
resulting in a total context window of 21 nt. An exploration of motif widths obtained 
better results with width 21 than with shorter widths (Additional file 1: Figure S3).

We also directly examined the sequence logos corresponding to each motif to assess 
the adjustments. In general, we found that the motifs tend to be quite similar, with 
slight differences at a subset of positions (Fig. 3), and modest variation from replicate 
to replicate. To assess the information captured by the AM models, we trained a logis-
tic classifier with four parameters corresponding to every position in the motif (one-hot 
encoding of the nucleic acids) to predict the difference between sites classified as bound 
exclusively by the AM and those classified as bound just by the FM. In general, these 
classifiers had 75–100% accuracy (average of 90% across RBPs), demonstrating that a 
large fraction of the differential information captured by the AMs is attributable to lin-
ear combinations of the bases present at different motif positions.

As a first evaluation, we evaluated the AM models on the raw RBNS read data used 
by RBPAmp to fit the RBNS PSAMs. If this result were significantly worse than the FMs 
(RBNS PSAMs), it would indicate substantial drift from the FMs and thus a failure in 
the conceptualization of the AM constraint. However, we find that we make a 0.11% 
improvement in accuracy on this task on average (range of −0.02% to +0.25% over 5 
seeds), demonstrating that the AMs remain plausible (and even improved) models of 
RBNS binding.

The substantial improvement in splicing prediction from the AM models, while main-
taining discrimination in the in vitro binding task, raised the question of whether neu-
ral models specifically trained on the RBNS dataset could improve splicing prediction 
(see the “Neural models trained on RBNS data” section for more references). The FM 
models have widths of ~11 nt, but a neural model with width 11nt did not improve dis-
crimination on the RBNS dataset (−0.02% average change in performance), suggesting 
that the PSAMs are near-optimal representations at width 11. A neural model of width 
14 nt and an AM-architecture model (of width 21) trained on RBNS data improved 
performance on RBNS data by 0.33% and 1.76%, respectively. We refer to the 21-wide 
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AM-architecture model trained on RBNS as a “Neural Fixed Motif” (NFM) model, since 
the parameters are frozen after training on the in vitro RBNS data and not allowed to 
vary during training on the splicing task. When the NFM was used in splicing predic-
tion with an adaptive accuracy threshold, performance was 64.1%, slightly below the 
FM model’s 65.3% and far below the accuracy of 78.6% achieved by AMs trained on the 
splicing task (these values are lower than those presented earlier as they resulted from 
the quick training approach). Our interpretation of these observations is that training of 
AMs on the splicing task using genomic data enables learning of specific sequence fea-
tures relevant to binding and/or splicing in vivo that are likely not present in the in vitro 
RBNS data. For example, the AMs might be learning a motif bound in vivo that differs 
somewhat from the in vitro motif because of the presence of specific post-translational 
modifications or binding partners of the RBP. Alternatively, instead of the motif of the 
single RBP analyzed in vitro, the AMs might be learning a motif bound by a close par-
alog, or a composite motif bound by some or all members of the protein family to which 
the RBP belongs, and/or other proteins.

As a control, we checked to see to what extent RBNS binding activity correlated with 
positions that SpliceAI found important. We performed an in silico mutagenesis experi-
ment on SpliceAI, computing an activity score for positions in the sequence as the effect 
that mutating them had on SpliceAI score. While 3′SS and 5′SS sites clearly had more of 
an effect than other sites, this was not true of RBP-binding sites as predicted by RBNS. 
On the other hand, we found that for SAM models, both FM and AM, RBP-binding sites 
did tend to have greater activity scores (see Additional file 1: Figure S4 for more informa-
tion). We can thus conclude that SpliceAI is not representing a model of splicing equiva-
lent to ours and is focusing instead on other features, which may or may not correspond 
to RBPs.

Module substitution experiment

Our SAM model is designed to be explicitly modular. Setting aside the LSSI for now, 
which was unchanged during training, our model can effectively be considered as a com-
position of a Motif Model, M, and an Aggregator, A. In a traditional neural network, 
the intermediate layers of a model represent latent variables that are not necessarily 
stable across different models, as they may converge to different representations of the 
same information or may even represent different pieces of information relevant to the 
learned task. However, in our case, we intend M and A to represent the non-latent con-
cepts of RBP-binding sites and the activities of these RBPs in splicing, respectively. If this 
expectation holds, we should be able to use one model’s M with another model’s A and 
still achieve good performance. An alternative, undesirable possibility would be if the 
AM models side-channel information through their outputs that the Aggregator then 
learns to pick up, which do not represent activities of the RBPs.

To distinguish between these alternatives, we conducted a computational “Module 
Substitution” experiment (Fig. 4) in which we use the AM models as the motif model in 
our architecture and combine it with the Aggregator trained to work with the FMs. One 
subtlety here is that our training process for AMs cannot guarantee that the actual val-
ues of activations are similar across models, so we resolve this by adding a “binarization” 
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layer to pre-trained models that sets all non-zero motif binding site values to 1, followed 
by retraining of the Aggregator.

The results of this experiment (Fig. 4) reveal two clear trends. Comparing to our previ-
ous results (Fig. 3), the AM models tend to perform slightly (1.2–2.9%) worse after bina-
rization, while the FM models are unaffected (Additional file 1: Figure S1 corroborates 
this, though in the case where the aggregator is not retrained). This observation suggests 
that the AM models provide information through motif “strength” as well as location, 
while the FM models’ utility is primarily in identifying potential locations of binding. 
More importantly, AMs tend to outperform FMs across the board, even when using the 
FM Aggregator. Since the FM Aggregator was trained without ever seeing AMs, it can-
not be side-channeling information unique to the AMs. Instead, the consistent improve-
ment seen with AMs here demonstrates that they largely provide information of the 
same type (i.e., binding of the same RBPs) as provided by FMs but of improved qual-
ity. The further improvement seen when using the AM Aggregator is expected and may 

Fig. 4 Module substitution shows that Aggregator learns similar SRF activities when trained with FMs or AMs. 
In this experiment, we demonstrate that the AM model still produces motif sites that carry the same semantic 
meaning as the original FM sites. To this end, we take the AM motifs and send them to the FM aggregator. If 
the AM model were producing non‑motif information, this would lead to a degradation or at best no change 
in performance. However, we observed an improvement, from ~68 to ~71% accuracy, demonstrating that 
the AM models are better at predicting motif binding sites, even provided to a model trained to work with 
FM predictions. a–c Stages of the module substitution process. The FM Motif Model and Aggregator are 
in blue, while those corresponding to the AM model are in red. a Both models are trained as usual. b The 
models are binarized by applying a binary layer and then the FM model’s Aggregator is retrained to handle 
the new binary motif outputs. c The new FM Aggregator is used in conjunction with the binarized AM motif 
model, with sparse layers and binarization layers as shown. d Results of the combination experiment
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reflect that this model makes better use of the motif strength information provided by 
AMs.

Analysis of eCLIP binding data

To understand how well the FM and AM models reflect binding conditions in  vivo, 
we used data from the enhanced crosslinking and immunoprecipitation (eCLIP) assay, 
which has been widely applied to human RBPs in two cell types as part of the ENCODE 
project [34]. The eCLIP datasets consist of sets of eCLIP peaks, each consisting of a start 
and end location in the genome that represent the approximate binding location of the 
associated RBP. At no point were our AM or FM models trained on eCLIP data in any 
way, so these data provide an independent assessment of the extent to which these mod-
els capture RBP binding information. All our analysis results in this section were per-
formed on the subset of 18 RBPs where we had both RBNS PSAMs and eCLIP peak 
data. We defined “eCLIP regions” by extending the eCLIP peak an additional 50 nt to the 
5′ end, since this was found to enrich for known binding motifs [35]. We selected a ran-
dom sample of 10,000 5 kb regions from the SpliceAI test set for our experiments.

Our metric for eCLIP accuracy is eCLIP enrichment of a model versus the FM model 
at equivalent sparsity, calculated separately on intronic and exonic sites. It was impor-
tant to control for intron/exon bias as eCLIP tends to preferentially detect exons, both 
because some crosslinking may occur in the cytoplasm which is essentially devoid of 
introns and because even in the nucleus introns have shorter half-lives than exons 
because they are rapidly degraded after excision. Thus, any bias toward exons could skew 
the results. Therefore, we present results independently for introns and exons. It was 
also important to use equivalent sparsity, since enrichment is sensitive to small changes 
in sparsity (Methods).

As a point of comparison, we also trained AM-format models directly on eCLIP data, 
designating these models “AM-E.” We did so by setting up a training objective where 
the model’s output was treated as predicting the probability that each location within 
a peak is not a match (treating the AM output as the negative log probability of non-
match), then multiplying those probabilities together to produce an overall probability 
of non-match in each peak, and then using the logistic loss against whether or not the 
match is a control peak. We balanced the dataset to be 50% intron and 50% exon, sourc-
ing sequences from the SpliceAI training dataset. As they were specifically trained to 
solve the eCLIP enrichment task, these AM-E models provide an upper bound on the 
performance one might expect any model to achieve on this task, though this bound 
is not necessarily tight as eCLIP-trained models may also learn technical eCLIP biases 
(e.g., related to the efficiency of crosslinking of different sequences) as well as true RBP-
binding signal. When used as part of an end-to-end model of splicing, the AM-E models 
underperformed FM models using the same 18 motifs, achieving an accuracy of 50.3% vs 
56.8% for the FMs, suggesting that, compared to the FM models, the AM-E models less 
accurately predict binding or less accurately predict binding that is relevant to splicing.

The results of these experiments (Fig.  5b) show that, across several seeds, our AM 
models improve on FMs in prediction of eCLIP binding, achieving about 50% of the 
theoretical possible improvement on exons and 10% on introns. These observations 
indicate that, in the process of modeling splicing end-to-end on the genome, the AM 
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models have learned to better model the binding locations of RBPs in vivo. This obser-
vation supports that the constraints built into our model have encouraged modeling of 
biochemical features relevant to splicing.

Splicing activity analysis

Next, we considered whether the AM models have captured more information relevant 
to splicing regulation in vivo relative to the FM models. For this purpose, we turned to 
data from a recent splicing massively parallel reporter assay (MPRA) experiment [36], 
using the randomized segments between alternative 5′SS motifs and between alterna-
tive 3′SS analyzed in this study (Fig. 5c). Since these regions are located in introns only 
when the distal splice point is used (SD1 or SA2), we can use the differences in splicing 
SD1–SD2 and SA2–SA1 as measures of much a sequence favors recognition as intron 
versus exon, referred to as the relative intronic inclusion (RII) of a given segment.

We consider a randomized segment to be bound by a certain RBP according to a motif 
model if the motif model predicts at least one binding site in the region. We did not use 
the Aggregator model in this experiment, since the sequences involved are far shorter 
than those handled by our model. Instead, we compute a baseline motif activity (BMA) 
for each motif by calculating the mean RII in segments that are RBP-bound according 

Fig. 5 AM motifs perform better at predicting splicing, eCLIP peaks, MPRA activity, and knockdown data 
than FM motifs. The SAM model performs improves substantially at end‑to‑end prediction over existing 
RBNS‑derived FM motifs, though it underperforms SpliceAI. In addition, the AM model, unlike SpliceAI, 
can also perform other motif‑specific tasks, in all cases better than the FM motifs. a End‑to‑End Accuracy: 
Bars represent top‑k accuracy of prediction of 3′SS (dark green) and 5′SS (light green) for different models 
trained on the SpliceAI training set and tested on the last 45% of the SpliceAI test set (the rest is used for 
validation. This 45% constitutes 37.14M nt across 730 genes). Error bars indicate the minimum and maximum 
performance among 5 replicates. The MaxEnt model is deterministic so does not have an error bar. b eCLIP 
peak prediction: (i) Schematic of a genomic region showing real eCLIP peaks (cyan) and randomly generated 
control peaks (purple). The control peaks are generated by shifting the locations of peaks for a given RBP to 
random positions in the same transcript. AM motifs (red) and sparsity‑matched FM motifs on the sequence 
are also shown. (ii) We count peak overlap for each of the four comparisons depicted (in practice, we 
collect this separately per motif and average all 4 values over the set of motifs). We compute enrichments 
for each model, and then calculate the % increase from one to the other. (iii) Plotted are the mean relative 
enrichments across motifs, separately for exon and intron. AM‑E models are provided as a reference for the 
maximum improvement we could hope to achieve using a motif model on eCLIP data. By this standard, the 
AM models achieve about 10% of the theoretical maximum performance improvement over FMs on introns 
and about 50% of the theoretical maximum performance improvement on exons. c MPRA activity prediction: 
(i) Schematic of the experimental setup from [36]. Reporters were used involving a pair of alternative 5′ 
(donor) splice sites, or a pair of alternative 3′ (acceptor) splice sites, such that the degenerate region in red 
is either included in the exon or spliced out (triangular lines depict possible introns). We ignore the other 
degenerate region (in orange). To compute the Relative Intron Inclusion (RII) score, we subtract the read 
count of the splice site that indicates the red region is in the intron from the one that indicates it is not. (ii) 
We compute the Baseline Motif Activity by looking at just FM sites and non‑sites, as we are confident that 
FMs indicate binding. We compute the advantage gap for AMs by looking at the difference of uniquely 
AM and uniquely FM slices: note that this is a symmetric measurement. (iii) The relationship between these 
two metrics is significantly positive, on both the 3′ and 5′ data. We highlight the three well‑established 
motifs from Fig. 6 in blue. d Knockdown modeling: (i) We use an existing dataset of skipped exons and 
corresponding in vivo knockdown results. (ii) Filtered for reliability both by looking at low FDR and by looking 
at high counts. (iii) We run our own model to compute in silico knockdowns. (iv) Our metric of interest 
is predictive accuracy of using the in silico values to predict the knockdown values, both using sign and 
magnitude above/below median. (iv) Results at predicting experimental sign and magnitude from in silico 
sign and magnitude. Different AM models indicate different replicates; error bars indicate 95% bootstrap 
confidence intervals

(See figure on next page.)
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to the FM model minus the mean RII in segments not predicted to be bound. The BMA 
establishes an activity for an RBP as promoting recognition of bound regions as intron 
(if BMA > 0) or exon (if BMA < 0). To emphasize differences between the models, we 
compared sites bound only by the AM Model (AM\FM) and sites bound only by the FM 
model (FM\AM), with the difference in RII change referred to as the AM-FM Difference 
(AFD). Assuming that the BMA reflects the true activity of a factor, if ASA and BMA 
have the same sign, then the AM model better captures binding, while if they have the 
opposite sign, then the FM better captures binding.

We calculated AFD versus BMA in 5′SS and 3′SS datasets, averaged across five runs 
(Fig. 5c). For both categories, the correlation of the values and signs is positive and sta-
tistically significantly (p < 0.05 for 5′SS, p < 0.0001 for 3′SS) (the presence of some non-
SRFs in the 79-RBP set may add some noise to the results). Thus, the AM models, in 
general, yield models that better predict splicing activity than FMs. This might result 
from better prediction of in vivo binding or better prediction of sites that have regula-
tory activity, for example. In a similar experiment using NFMs, BMA and AFD had the 

Fig. 5 (See legend on previous page.)
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same sign 46% and 41% of the time on the 5′SS and 3′SS datasets, respectively, i.e., no 
advantage over the FMs. Therefore, these observations support that it is the training of 
the AMs in the end-to-end splicing training task that has improved their prediction of 
binding associated with splicing regulation.

Analysis of RBP knockdown data

To further explore the relative ability of our models to infer the effects of RBPs on splic-
ing, we used the RNA maps dataset from the ENCODE project [34]. This dataset con-
sists of skipped exons annotated with change in percent spliced in (“delta ψ”) values 
with RNAi knockdown of a specific factor in human K562 and/or HepG2 cells; here, 
data from the two cell lines were combined to increase statistical power. Specifically, as 
described in Fig. 5d, we compute “in silico” delta ψ values by first predicting ψ, treat-
ing the model’s probabilistic prediction of splicing as a ψ value, and then subtracting 
from this value the ψ resulting from an “in silico knockout” where all occurrences of the 
relevant motif are zero-ed out (i.e., treated as absent) before passing the values to the 
Aggregator.

We use two separate targets in our experiment. First, we compute the proportion of 
exons for which the correct sign of delta ψ is predicted (Fig. 5d), focusing here on exons 
with FDR < 0.05, i.e., those which showed a significant difference in ψ following knock-
down. Secondly, we compute the accuracy of predicting the magnitude of experimental 
delta ψ from the magnitude of in silico delta ψ, specifically predicting whether the mag-
nitude is above or below the median of exons (filtering for experiments having at least 50 
samples in both control and knockdown conditions).

This experiment has several limitations. First, our model has been trained entirely on 
“canonical” splice sites, which are mostly constitutive, and therefore may not capture 
unique features of alternative splicing. Second, our in silico knockouts are not a perfect 
match for the experimental system, in which the target protein level is depleted but not 
eliminated, and our model does not consider secondary (often compensatory) effects in 
which the expression of other SRFs changes in response to the knockdown. These con-
siderations likely reduce the agreement between the in silico and experimental knock-
downs. Despite this, we find that, in general, our models perform better than chance at 
predicting the sign and magnitude of delta ψ values and that AM models outperform 
FM models. These observations support that our model captures some aspects of the 
splicing regulatory activity of many RBPs and that this regulatory activity is better mod-
eled with AMs than FMs.

Interpretability and modularity

To better understand the inner workings of our model, we conducted a series of com-
putational experiments aimed at understanding the regulatory logic learned by SAM 
models. We first used in silico motif deletion to assess the regulatory impact of different 
motifs on each model’s predictions of individual genomic regions, comparing the FM 
and AM models with LSSI as a baseline reference; a sample exon and sample decoy exon 
are shown in Fig.  6a and Fig.  6b, respectively. For exon 54 of the DNAH14 gene, the 
splice sites are too weak to be predicted by the LSSI model. However, motif deletions 
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Fig. 6 Examples of regulatory landscapes of FM and AM models for annotated and decoy exons. 
Predicted 3′SS and 5′SS are shown as orange and purple lollipops, respectively; height represents score, 
normalized so that − 1 is the top‑k threshold for the model for each class; only splice sites scored above 
− 5 in the normalized score by at least one model are shown. Black triangles on the x‑axis correspond to 
annotated splice sites, while circled predictions correspond to the predicted splice sites for each model. 
Motif predictions are shown as blue lollipops on the FM and AM plots, in relative affinity units. Filled circles 
represent motifs that are present in both models; empty circles are motifs that appear in only one. Solid 
arrows connect any motif to the corresponding splice site if an in silico knockout of the motif increases the 
splice site prediction probability by 1.5‑fold or more (green) or decreases it by a factor of 2/3 or less (red 
arrows). At least the top 5 effects are shown for each exon, using dashed arrows to indicate those that do not 
meet the cutoff for solid line
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showed that the AM model predicts both splice sites correctly primarily because of posi-
tive impacts from RBM41 and TRA2A motifs located inside the exon. The FM model 
identifies some of the same motifs (e.g., the RBM41 motif but not the TRA2A motif ) and 
considers additional negative-regulatory motifs, causing it to miss the exon.

In the second example, a “decoy” (false) exon is predicted by the FM model in the 
gene SNAP47, with the 5′SS also predicted by the LSSI model, but the AM model cor-
rectly does not predict the decoy exon because of inhibitory effects of three RBP motifs 
(associated with SRSF8, FUS and HNRNPA0) not identified by the FM model. These 
examples were curated for compactness and to illustrate cases where the AM and FM 
models differ, but such a “putative regulatory landscape” can be generated for any exon 
or genomic region of interest, with uncertainty estimates possible using several different 
model seeds. Additional examples are shown in Additional file 1.

We also analyzed the aggregate effects of individual motifs on splicing (Fig.  7). For 
purposes of comparison, we show the motif effects predicted by our model for all 
hnRNP, SR, and SR-related proteins studied. These protein classes were chosen as they 
have well-understood effects on constitutive splicing and cassette alternative exons, with 
SR and SR-related proteins generally having positive effects and hnRNP proteins having 
negative effects on exon inclusion when bound in exons [1, 37, 38]. Overall, the anal-
ysis of motif effects in our model matched these expectations well. For example, 5 of 

Fig. 7 Inferred RNA maps for selected RBPs. To create this plot, we performed in silico knockdowns on 
the binarized version of our model and measured changes to splicing. We then aggregated across several 
positions to create overall effects at each position in the meta‑exon. The results here are normalized for each 
motif individually, with an absolute value of 1 corresponding to the 99th percentile across positions. This 
normalization enables us to see the RNA map for each motif. The x‑axis here is in two parts, with the left half 
being relative to 3′ sites (A) and the right half being relative to 5′ sites (D); a schematic exon is shown at 
bottom
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the 8 SR and SR-related proteins studied showed strong positive activity (dark red) in 
exons (SRSF-2, SRSF-4, SRSF-8, SRSF-9, and TRA2A), while 2 had weaker net positive 
activity (SRSF-5 and SRSF-11), and one had negative activity (SRSF10) (Fig. 7). Thus, the 
expected direction was observed in 7 out of 8 cases, and even the 8th case appears to be 
correct, as SRSF10 is an atypical SR protein that can repress splicing in exons [39]. For 
hnRNP proteins, we observed broad agreement with the expectation of negative activity, 
with 9 of 15 proteins showing negative activity in exons (mostly blue), 3 showing positive 
activity (PTBP3, HNRNPL, and HNRNPP2), and the remaining 3 showing a mixed pat-
tern (HNRNP-C, HNRNP-DL, and -E1). Thus, of 23 SR/SR-related and hnRNP proteins 
studied, 16 (or 17, counting SRSF10) exhibited patterns of activity consistent with expec-
tations for their class. Similar results obtained for FM models (Additional file 1: Figure 
S5), indicating that our modular architecture captures the splicing activity of RBPs.

A direct side-by-side comparison with the RNA maps based on eCLIP and knockdown 
data from ENCODE [34] yielded fairly strong overall concordance (Additional file  1: 
Figure S6). The small number of discrepant cases might result from technical biases in 
eCLIP or RBNS, or from “aliasing” issues, where a motif associated with the RBP that 
was CLIPped and knocked down is also bound by another protein with distinct splicing 
regulatory activity.

Prediction of other classes of splice sites

The transcript annotations used in the majority of our model training and testing were 
taken from the SpliceAI “canonical” gene annotations, which include a single annota-
tion for each gene based on the principal transcript from that gene and therefore include 
predominantly constitutive exons. But most human genes contain additional alternative 
exons, and some contain evolutionarily new exons, both of which are likely to be more 
challenging to predict. Previously, it was reported that SpliceAI yields somewhat weaker 
predictions on alternative exons relative to constitutive exons [18], and we observed a 
systematic shift toward lower accuracy for all models on alternative exons. While further 
study is needed, likely contributors to this pattern are that alternative exons have weaker 

Fig. 8 Accuracy for different classes of exons. Top‑k accuracy of splice site prediction for models trained 
on canonical splice sites applied to a canonical exons, b alternatively spliced exons: and c evolutionarily 
new exons (note that the y‑axis range was reduced for this panel to facilitate comparison). Here, the value 
of “k” used for top‑k accuracy is the union of the numbers of splice sites across all 3 classes, rather than per 
splice site type: this approach ensures a consistent threshold across the three conditions. Error bars are 95% 
bootstrap intervals of the mean across 5 replicates
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splice sites and a regulatory element composition that is less biased toward positive-act-
ing elements than constitutive exons (Fig. 8) [40].

We also analyzed a previously described set of evolutionarily new internal human 
exons (i.e., genomic segments spliced as exons in humans but not spliced as exons in 
rodents or other mammals), which we anticipated would be difficult to predict due to 
their weaker splice sites, frequent alternative splicing, and sequence features that are 
reminiscent of their intronic origins [41] (the splice sites of alternative exons and evo-
lutionarily new exons overlapped to only a small extent with the canonical splice site 
dataset (Additional file 1: Figure S7)). As expected, the splice sites surrounding evolu-
tionarily novel exons proved far more challenging to predict for all models (Fig. 8c). On 
this challenging task, our interpretable models (AM, FM) performed moderately better 
than others.

Conclusions
Here, we have shown that a neural model using core types of RNA elements known to 
contribute to splicing mechanisms can achieve fairly high accuracy and can learn bind-
ing and regulatory activities of RBPs. Indeed, we find that the AM models actually 
provide improved descriptions of the in  vivo binding and regulatory activity of RBPs 
involved in splicing. Furthermore, our approach can infer RNA maps for splicing fac-
tors purely from in vitro binding data and the genome sequence, i.e., without requiring 
the CLIP and knockdown/RNA-seq data typically required for RNA map inference. We 
can also generate a putative regulatory landscape for any exon, which could have appli-
cations to genetic variant interpretation or design of therapeutic antisense oligonucleo-
tides to perturb splicing. Furthermore, the general AM approach could potentially be 
applied outside of splicing to study other RNA- or DNA-binding proteins for which a 
defined regulatory activity and suitable training set are available.

Methods
LSSI architecture

We structure our LSSI models as simple feedforward neural networks that first map 
their input to 100 hidden neurons, then have 5 hidden 100-wide layers with ReLU acti-
vations, and then finally mapping to a prediction output. These models are trained on 
the same training dataset as our other models, using 10 epochs, a batch size of 150, and 
a learning rate of  10-3.

Derivation of entropy bound

Here, we provide the derivation of the bound H/L ≤ M[H(B(δ)) + δ η], where B(x) rep-
resents the Bernoulli distribution with probability x, δi represents the sparsity of motif i, 
ηi represents the entropy per nonzero value of channel i, and η represents the entropy in 
the overall distribution of activations across channels:
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Adjusted motif model

We compute the binding sites in the adjusted motif (AM) model by adjusting the scores 
for already relatively high-scoring FM binding sites, allowing k times as many FM sites 
as we will eventually use, allowing our AM model to filter out a subset of binding sites 
among plausible sites provided by the FM model, as follows:

Neural models trained on RBNS data

Given that the FMs are derived via the RBPamp algorithm from the RBNS dataset, we 
also tested the hypothesis that a neural version of motifs trained from the RBNS dataset 
could better represent protein binding. These neural motifs are also used as baselines 
to compare the performance on RBNS binding from AMs. We formulated the train-
ing task of the RBNS dataset as a binary classification task. Given a sequence from the 
RBNS dataset, we measure the accuracy of classification of the sequence being from 
the protein-bound or input RNA pool in the original RBNS experiment. Specifically, 
we select the sequence binding dataset for each protein with the highest 5-mer enrich-
ment (“R value”) from the RBNS dataset. We trained our “Adjusted Motif” architecture 
on this dataset but did not enforce sparsity. This becomes effectively just the sum of a 
PSAM signal and a learned neural model. This approach was used because it allows the 
learned model to have the advantage the AMs have of being able to take advantage of the 
PSAMs, but we do not want to constrain the model to be similar to PSAMs since it is 
being trained on the RBNS data directly.

We also separately trained 4-layer convolutional neural networks with two sliding win-
dow width choices, width = 11 (NM11) and width = 14 (NM14), in order to ensure that 
we are not too heavily tied to a single model architecture. Testing these models with 
a sparsity of 0.18% calibrated on the genome, we find that the NM14 and AM models 
improve on the RBNS dataset: gaining an improvement of 0.33% and 1.76% respectively, 
while the NM11 does not (it yielded a −0.02% change in performance). Our NFM mod-
els also improved on eCLIP, though the results were highly inconsistent. On average, 
they achieved about 6% of the improvement of the AM-E models, but their overall range 
of improvements across 4 replicates overlaps that of the AM.

H(motifs)/L≤ iH(moti)/L [independence]
≤ iH(B(δi))+ δiηi + (1− δi)0 [maximal usage of channel]
= iH(B(δi)) +Mδη [by definition of η]

= M 1
M iH(B(δi)) +Mδη

= M Ex∼{δ1···δM} iH(B(x)) +Mδη
≤ MH(B(δ))+Mδη Jensen′s

f = FM(x)

f ′ = Sparse
(

f , kδ
)

a = Adj(x)

y = f ′
⊕

a
[

x
⊕

y = 1(x �= 0)
(

x + y
)

]
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Analysis of MPRA data

In the case of the 5′SS MPRA data, the leftmost 3 bases in the targeted region do not 
have 10 bases of context to their left (as there are only 7 bases in the SD1 region). Since 
our AM models are 21-wide, they require 10 bases on either side of any site where we 
would predict a motif, we removed the leftmost 3 positions from consideration. For con-
sistency, we did this for both the AMs and the FMs (it would not be strictly necessary for 
FMs, since they are only 11-wide).

Analysis of exon classes

We consider both alternative and evolutionarily new exons whose splice sites were both 
located inside their respective gene boundaries as determined by the canonical data-
set. If an exon’s associated gene was not included in the canonical dataset, it was also 
excluded from consideration. The majority of the resulting splice sites were not included 
in the canonical dataset, though we found 76 splice sites in common between the canon-
ical SS and the evolutionarily new SS and around 180 SS in common between the alter-
native SS and the evolutionarily new SS, as shown in Fig. 7.
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