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Background
Pre-mRNA splicing, a critical step in the processing of eukaryotic genes, involves the 
removal of introns and the joining of adjacent exons. The process begins with the iden-
tification of the 5′ and 3′ splice sites located at the exon–intron boundaries, with the 
5′ss recognized by U1 small nuclear ribonucleoprotein (snRNP) through base-pairing 

Abstract 

Background: The removal of introns occurs through the splicing of a 5′ splice site 
(5′ss) with a 3′ splice site (3′ss). These two elements are recognized by distinct com-
ponents of the spliceosome. However, introns in higher eukaryotes contain many 
matches to the 5′ and 3′ splice-site motifs that are presumed not to be used.

Results: Here, we find that many of these sites can be used. We also find occurrences 
of the AGGT motif that can function as either a 5′ss or a 3′ss—previously referred 
to as dual-specific splice sites (DSSs)—within introns. Analysis of the Sequence Read 
Archive reveals a 3.1-fold enrichment of DSSs relative to expectation, implying synergy 
between the ability to function as a 5′ss and 3′ss. Despite this suggested mechanistic 
advantage, DSSs are 2.7- and 4.7-fold underrepresented in annotated 5′ and 3′ splice 
sites. A curious exception is the polyubiquitin gene UBC, which contains a tandem 
array of DSSs that precisely delimit the boundary of each ubiquitin monomer. The 
resulting isoforms splice stochastically to include a variable number of ubiquitin mono-
mers. We found no evidence of tissue-specific or feedback regulation but note the 8.4-
fold enrichment of DSS-spliced introns in tandem repeat genes suggests a driving role 
in the evolution of genes like UBC.

Conclusions: We find an excess of unannotated splice sites and the utilization of DSSs 
in tandem repeats supports the role of splicing in gene evolution. These findings 
enhance our understanding of the diverse and complex nature of the splicing process.
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with the 5′ end of U1 small nuclear RNA (snRNA) [1–3]. The typical consensus motif 
for the 5′ss is AG|GTR AGT  [4]. The recognition of the 3′ss involves three components: 
the branch point (BP), the polypyrimidine tract (PPT), and the conserved 3′ss with a 
consensus sequence of  Y10NCAG|G [5–7]. Proteins such as SF1, U2AF65, and U2AF35 
recognize the BP sequence, the PPT, and the 3′ss, respectively [8–10]. The U2 snRNP 
is then recruited to the BP sequence by U2AF, joining with U1 snRNP and other splic-
ing factors to strengthen the recognition of both the 5′ and 3′ splice sites. Higher-order 
models of splice site recognition describe the coordinated recognition of the 5′ss and 
3′ss either across the exon in the exon definition model [11–13] or across the intron in 
the intron definition model [12, 14].

Research suggests the spliceosome can be assembled through either a U1-first pathway 
or a U2-first pathway [15]. The reversibility of the spliceosome assembly both increases 
flexibility and makes observation of splice site selection and the interpretation of discov-
ered intermediates like lariat introns more challenging [16, 17]. While these and similar 
observations suggest an increasingly complex model of recognition, the prevailing belief 
has been that the removal of introns occurs as a complete entity, facilitated by the cata-
lytic pathway that paired the 5′ss at the beginning of the intron to the 3′ss at the end of 
the intron. However, recent evidence suggests that intron removal can occur in sections, 
either through recursive splicing (i.e., sequential splices to AG|GT motifs that recon-
stitute splice sites for an additional splice) or introns-within-introns [18–20]. Similarly, 
dual-specific splice sites (DSSs) can function as either 5′ or 3′ splice sites (for differences 
between recursive splice sites and DSSs, see Additional file  1: Fig. S1) [21, 22]. While 
these discoveries suggest additional layers of splicing activity that is not apparent from 
the final annotation, we do not know the extent to which splicing outside of the anno-
tated sites occurs in typical intron removal.

In this study, we assay the ability of each position in a full-length pre-mRNA to serve as 
a splice site using minigene splicing reporters and compare the results to events detected 
in  vivo across more than 20 thousand RNA-seq experiments in the Sequence Read 
Archive (SRA) [23]. Among the excess of observed splicing events, we characterized the 
case where a single element can function as two different types of splice sites (i.e., DSSs). 
We detailed how the alternative splicing of the human UBC gene occurs through a series 
of DSSs and how tandem repeats that contain DSSs can drive gene evolution.

Results
Splicing occurs more frequently than suggested by annotation

The prevailing model of pre-mRNA splicing describes the removal of annotated introns 
by a two-step process catalyzed by the spliceosome. However, recent findings suggest 
the spliceosome can act multiple times on individual introns [24]. To examine the perva-
siveness of this mode of splicing, we analyzed a database of splicing events derived from 
splice junctions observed in 21,504 RNA-seq experiments from the SRA [23]. We found 
an excess of splicing events in these sequencing samples (42,882,032 observed splicing 
events vs 288,518 annotated introns) with many splice junctions indicating the presence 
of smaller novel introns within annotated introns. To confirm this excess of unannotated 
splice sites, we designed two massively parallel reporter assays (MPRAs) to test the abil-
ity of every sequence within 3 genes of interest (BRCA1, BRCA2, and LDLR) to function 
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as a 5′ or 3′ splice site (Fig. 1a). For each gene, we extracted all successive 150-nucleotide 
windows tiled by 20-nucleotide increments across the gene of interest. This procedure 
yields a total of 6290 DNA oligonucleotides (oligos) for BRCA1, 4251 for BRCA2, and 
2215 for LDLR. In the 5′ss-testing library, each tile was paired with a common 3′ss in 
order to test for the ability of sequences within that window to function as a 5′ss. In 
the 3′ss-testing library, each tile was paired with a common 5′ss in order to test for the 
ability of sequences within that window to function as a 3′ss. Due to the tile length and 
increment size, each position within the transcript was tested in the 6 or 7 different til-
ing registers. Splicing efficiencies were measured as enrichments, with log10 ratios of 
the relative representation of spliced product in the output normalized by the relative 
representation of parent species in the input library. Comparing the results to splice site 
usage observed in the reference annotation, we found that almost all the canonical splice 
sites of the three genes were identified in our MPRA. In comparison to canonical sites, 
we observed approximately ten-fold as many cryptic sites (Fig. 1b and Table 1). A large 

Fig. 1 Massively parallel reporter assay (MPRA) reveals a high frequency of cryptic splice sites. a Schematic 
of MPRA employed for cryptic splice site identification. b Splice sites identified in the MPRA on BRCA1, 
BRCA2, and LDLR. The blue and red bars represent 5′ splice sites (5′ss) and 3′ splice sites (3′ss), respectively. 
The height of the bars corresponds to the original enrichment score (not log10 transformed), with taller bars 
indicating higher scores. The plot within the dashed box provides a zoomed-in representation of the splice 
sites identified in BRCA1 intron 3. c The proportion of splice sites identified in the MPRA that were found in 
the Sequence Read Archive (SRA). d Comparison of enrichment scores for splice sites found in SRA and those 
not found in SRA (Mann–Whitney test). e Sequence logos depicting the consensus sequence for cryptic 5′ 
and 3′ splice sites identified in the MPRA. The dotted boxes represent the dinucleotides present in the 5′ and 
3′ splice sites. f RT-PCR validation of pseudo-exons created by cryptic sites in BRCA2 using TaqMan® Control 
Total RNA. Each lane represents one of three pseudo-exons created by cryptic sites identified in our MPRA. 
The blue and yellow boxes represent exons and the gray lines denote intron, the red dots indicate cryptic 
splice sites and arrows represent the primers used for RT-PCR
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proportion of the detected splice sites (39.25% of 5′ss; 41.94% of 3′ss) were supported by 
observed usage in the SRA (Fig. 1c). The enrichment scores for 5′ and 3′ splice sites pre-
sent in the SRA were significantly higher than those not identified in the SRA (p <  10−5, 
p <  10−21, respectively, see Fig. 1d). Moreover, the sequence motifs of the cryptic 5′ and 3′ 
splice sites identified in our assay resembled the motifs of the canonical 5′ and 3′ splice 
sites (whereas the cryptic 3′ motif shows less preference at the upstream adjacent posi-
tion (i.e., “C” in “CAG”)), implying that the splicing machinery in the cell has the abil-
ity to recognize these cryptic sites in a similar manner to canonical sites (Fig. 1e). This 
recognition of cryptic splice sites raises the possibility of detecting alternative transcript 
isoforms using these sites in the human genome. To confirm this, we performed RT-PCR 
on the BRCA2 gene and were able to detect low levels of transcript isoforms that used 
the unannotated splice sites identified by our MPRA (Fig. 1f ).

Identification and characterization of dual‑specific splice sites in vitro and in vivo

In our MPRA, we discovered 24 loci containing a core AGGT sequence which can be 
used as either 5′ or 3′ splice sites, also known as DSSs. Given the overlap of the two types 
of sites within each DSS, it is possible that there is competition between their use as a 
5′ss and their use as a 3′ss. Alternatively, it is also possible that factors associated with 
the recognition of each site could recruit factors to the other site as occurs during exon 
definition and formation of the A complex [13]. Interestingly, we found that the DSSs 
have a lower agreement to 5′ss and 3′ss consensus motifs compared to occurrences of 
AGGT that are only used as a 5′ss or 3′ss (MaxEnt score, Fig. 2a). To determine whether 
this is true in  vivo, we analyzed instances of AGGT splicing events in an expansive 
subset of samples from the SRA [23]. In agreement with the DSSs recovered from our 
MPRA, the DSSs present in the SRA data tend to have weaker splice sites both quanti-
tatively (Fig. 2b) and qualitatively (Fig. 2c) than AGGTs which function as only one type 
of splice site. Given the weaker splice sites of DSSs, these sites may simply be less active 
than single splice sites. In order to control for this, we used junction reads counts from 
the SRA as a proxy for splicing activity and found that even at the same level of read 
support DSSs have lower MaxEnt scores than single sites (Additional file 1: Fig. S2). The 
definition of an enhancer is the ability of a cis element to compensate for a suboptimal 
site [25]. Following this definition, the SRA read analysis suggests that either site within 
a DSS can function as an enhancer for the other.

To further test the synergy between 5′ss and 3′ss, we tested if sites observed to 
function as a 5′ss or 3′ss would be more, less, or equally likely to also function as a 
3′ss or 5′ss, respectively. Dependency between 5′ss recognition and 3′ss recognition 

Table 1 The number of splice sites identified in our MPRA

a The numbers in parentheses represent splice sites that were not identified in the MPRA

Genes Canonical splice sites Cryptic splice sites

5′ss 3′ss 5′ss 3′ss

BRCA1 21 19 (2)a 433 266

BRCA2 24 (2)a 22 (4)a 319 167

LDLR 17 17 167 148
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in AGGT motifs was measured at various supporting read count thresholds for call-
ing splicing activity (e.g., > 10 reads, > 100 reads). For example, 6.9% of AGGTs were 
observed to function as a 5′ss and 3.5% as a 3′ss when requiring over 10 support-
ing reads (Table  2). We found significant positive dependency between 5′ss and 
3′ss usage (Fisher’s exact test, p < 2.2 ×  10−16 and chi-square test of independence, 
p < 2.2 ×  10−16). These sites function as DSSs 3.1-fold higher than expected (> 10 
reads), confirming the synergy between 5′ss recognition and 3′ss recognition. This 
estimate is stable across different thresholds and conservative as instances of recur-
sive splicing undercount splicing events.

Fig. 2 Dual-specific splice sites (DSSs) are used as both 5′ss and 3′ss and are underrepresented in annotated 
splice sites. a The distribution of 5′ss (left) and 3′ss (right) MaxEnt scores for splice sites with an AGGT motif 
that function as either DSSs or single splice sites from our MPRA (Mann–Whitney test). b The distribution of 
5′ss (left) and 3′ss (right) MaxEnt scores for splice sites with an AGGT motif that function as either DSSs or 
single splice sites from SRA splice junction data (Mann–Whitney test). c The 5′ss (left) and 3′ss (right) motifs of 
single splice sites with an AGGT motif (top) compared to DSSs (bottom) from the SRA data. d The percentage 
of annotated 5′ss and 3′ss compared to all 5′ss and 3′ss in the SRA junction reads (minimal threshold > 10 
reads) which exhibited DSS activity (> 10 reads supporting 5′ss usage and > 10 supporting 3′ss usage). 
p-values were calculated from the chi-square test of independence

Table 2 The number of dual-specific splice sites identified in the Sequence Read Archive

a The total number of AGGT in human transcripts (based on the GENCODE v32 annotation) is 12,703,961

AGGT as 5′ssa AGGT as 3′ss DSSs

Reads > 10 871,690 441,107 105,875

Reads > 50 434,604 172,456 29,048

Reads > 100 333,691 122,639 16,897
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Taken together, the data suggest DSSs confer a recognition advantage in addition to 
the greater versatility of being able to function as either a donor or acceptor site. This 
greater versatility could also be a liability for a constitutive splice site as an additional 
splicing event would disrupt the coding region. To test whether DSSs are avoided 
in annotated junctions, the SRA was used to detect DSSs in annotated sites. Using a 
threshold of > 10 5′ss junction reads and > 10 3′ss junction reads to call a DSS, we find 
that 3199 of 253,711 (1.26%) annotated 5′ splice sites function as DSSs, while 1971 of 
276,517 (0.713%) annotated 3′ splice sites function as DSSs. In contrast, out of 3,087,201 
5′ splice sites and 3,156,210 3′ splice sites in the SRA with > 10 junction reads, 105,875 
sites function as DSSs (3.43% of 5′ss and 3.35% of 3′ss; Fig. 2d). Thus, the prevalence of 
DSSs in annotated 5′ splice sites and 3′ splice sites is 2.7-fold and 4.7-fold lower than 
observed in unannotated 5′ splice sites and 3′ splice sites, respectively (chi-square test of 
independence, p < 2.2 ×  10−16).

To provide additional evidence that these unannotated splice sites are utilized, we 
looked for lariat reads that originated from splicing events involving these DSSs. We 
modified our lariat-seq mapping pipeline to detect lariats containing 5′ splice sites from 
the DSSs supported by > 10 junction reads. We then applied this pipeline to RNA-seq 
data collected from a HEK293T-derived DBR1 knockout cell line as these cells have par-
ticularly elevated lariat levels. This method recovered 55 unannotated DSSs from the 
SRA for which we found lariats utilizing their 5′ splice sites (Additional file 1: Table S1). 
These lariat reads provide a further indication of the usage of unannotated DSSs beyond 
the splice junction data present in the SRA.

UBC is processed via a tandem array of DSSs

We identified a high density of DSSs in the unusual gene architecture of UBC, the 
human polyubiquitin gene. UBC contains 9 copies of ubiquitin monomers separated 
by DSSs which are located between the second and third amino acids (i.e., arginine (R) 
and glycine (G)) upstream of each monomer coding region (Fig.  3). These two amino 
acids are part of the LRGG binding motif, a cleavage site recognized by deubiquitinating 
enzymes (DUBs) [26–28]. DUBs are responsible for both removing polyubiquitin chains 
from substrate proteins and generating free ubiquitin monomers, playing a crucial role 
in the regulation of the ubiquitin–proteasome system. The UCSC annotation (based 
on the hg19 genome) [29] indicated multiple isoforms where each DSS functioned as 
a 5′ss, a 3′ss, or neither (Fig. 3). Interestingly, the DSSs exhibited a low level of conser-
vation suggesting relaxed selection across species on the precise splicing patterns. As 
alignments of tandem repeats can lead to artifacts, we performed RT-PCR on total RNA 
from HEK293 cells to confirm the annotated processing pattern of the UBC gene. We 
also tested genomic DNA to confirm that the laddered pattern was not originating from 
ubiquitin pseudogenes in the genome or an artifact of PCR. Consistent with the annota-
tion, the UBC RT-PCR and capillary electrophoresis returned a ladder of bands whose 
difference in size corresponded to a single ubiquitin unit (Fig. 4). While ubiquitin’s amino 
acid sequence is highly conserved, variations in the monomers’ DNA sequences allow 
for manual validation of the alignments to infer which splice sites were used. Sanger 
sequencing identified one isoform consisting of 4 tandem ubiquitin units, while another 
one contains 3 tandem units, with the difference explained by the precise removal of 
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Fig. 3 The UCSC annotation (based on the hg19 genome) of UBC shows multiple isoforms with DSSs 
functioning as 5′ss, 3′ss, or neither. DSSs (highlighted in the purple box) are located between the second 
and third amino acids upstream of each monomer coding region. The “M” inside the green box represents 
the first amino acid in the ubiquitin monomers. The red and blue boxes indicate the DSSs functioning as 
5′ and 3′ splice sites within some but not all transcripts. The green bars represent the phastCons score, 
indicating conservation among 100 vertebrates. The yellow box represents the LRGG motif recognized by 
deubiquitinating enzymes (DUBs) (yellow oval)

Fig. 4 Detection of transcripts processed by DSSs in UBC. RT-PCR amplification of UBC from HEK293 cells 
reveals a ladder of bands. The experiment was performed in three biological replicates. The schematic on 
the right side displays the composition of the transcript isoforms, which were sequenced through Sanger 
sequencing. The yellow boxes denote the ubiquitin units, the red bar indicates the AGGT motif, and the 
numbers in the yellow boxes represent the order of ubiquitin monomers. The blue boxes represent exons 
within which ubiquitin units are located



Page 8 of 18Duan et al. Genome Biology           (2024) 25:33 

the monomer by the spliceosome (Fig. 4 and Additional file 1: Table S2). Ensembl [30] 
contains additional examples of differences in ubiquitin copy number generated by DSSs 
splicing (e.g., ENST00000538617.5).

Interestingly, the DSSs are located precisely at 228-nucleotide intervals that fall 
between the boundaries of each ubiquitin coding region so each ubiquitin monomer 
exists as a discrete exon (or intron). The consequence of interspersed DSSs is a ubiq-
uitin coding region that can be removed as an intron or retained as an exon without 
changing the reading frame of the transcript, resulting in different amounts of ubiquitin 
in the final mRNA transcript. This unusual architecture suggests the amount of ubiqui-
tin in a cell could be controlled by splicing. There have been reports of UBC expression 
regulated by negative feedback from the ligatable monomer [31]. If this regulation were 
achieved by splicing, we would anticipate a reduction of splicing when overexpressing 
the ubiquitin gene. To test this, we transfected different levels of an HA-tagged ubiquitin 
expression vector into HEK293 cells and examined the effect on UBC splicing. However, 
despite demonstration of elevated levels of ligatable monomers (Additional file  1: Fig. 
S3a), no notable variations in the splicing pattern were observed (Additional file 1: Fig. 
S3b). We also did not observe a difference in UBC splicing in different tissues in mice 
(Additional file 1: Fig. S4), but this may not be surprising as Mouse Genome Informatics 
[32] data shows relatively uniform ubiquitin expression across tissues. We speculate on 
potential roles of DSSs in the evolution and gene expansion of repeat genes (like ubiqui-
tin) below.

The gene structure of polyubiquitin evolves rapidly

Considerable variation in gene architecture and gene family size has been observed 
in ubiquitin genes across species [33–36]. To better understand introns like UBC, we 
retrieved all introns located in tandem repeat blocks in the human genome. This analysis 
returned 792 introns embedded in 262 tandem repeats (see Methods, Fig. 5). We did not 
consider the 603 cases where the repeat was very large relative to the intron (e.g., introns 
in a gene that maps to a segmental duplication). Instead, we considered all cases where 
an intron was embedded in tandem repeats of repeat unit length equal to or smaller 
than the intron. UBC is the special case where the intron is a multiple of the repeat unit’s 
length. We regard these cases as DSS spliced as the same sequence is used as a 5′ss and 
3′ss (e.g., Fig. 5a). We were surprised to find an 8.4-fold enrichment for this special case 
of DSS spliced introns whose length is a multiple of repeat unit length (n = 77; p <  10−5, 
permutation test, 100,000 trials) (Fig. 5b). Within these special cases, 45/77 had a length 
that was a multiple of 3 and so their failure to splice would not disrupt the reading frame, 
representing an 8.7-fold enrichment (p <  10−5, permutation test, 100,000 trials) (Fig. 5b). 
As repeat expansions occur 1000 times more frequently than other types of mutations 
[37–39], we considered the evolutionary scenario of de novo intron formation via expan-
sions of DSS-containing repeat units (Fig.  5c). Most repeat expansions in the coding 
region of a gene are deleterious; however, in these special cases, loss of fitness could be 
ameliorated by splicing out insertions in the RNA. In the final section below, we discuss 
our discovery of polymorphic introns in repeat genes as potential evolutionary interme-
diates of de novo intron creation.
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Discussion
This study reports an excess of splicing events in the human genome by analyzing 
the SRA [23] and direct testing in an MPRA. We further confirmed the prevalence of 
unannotated splice sites by MPRA in BRCA1, BRCA2, and LDLR, revealing 10 times 
more unannotated splice sites than what was annotated. These findings suggested that 
splicing occurs more frequently than what was initially indicated by the final annota-
tion. According to recent findings by Wan et al., the splicing of many human introns 
occurs through a multi-step and recursive process, rather than being removed as a 
single unit [24]. This may be accomplished by the formation of the spliceosome com-
plex at multiple potential splice sites within each intron, where the appropriate splice 
site is selected in a stochastic fashion. As a result, the spliceosome makes multiple 
cuts within introns and the intermediates, eventually leading to the creation of a final 
spliced mRNA. Many events cannot be placed in a temporal sequence so it is also 
possible that splicing could continue after the annotated event on the excised lariat.

The accurate recognition of both 5′ and 3′ splice sites is a critical step in the splic-
ing process. However, when both sites are present as in a DSS, the ambiguity in iden-
tifying the correct splicing outcome poses a challenge for the spliceosome. In this 
study, we found evidence of coordination between the 5′ and 3′ splice site recognition 

Fig. 5 Introns in tandem repeats could suggest an evolutionary mechanism for de novo intron creation. 
a Illustrated example of an intron (blue line) in a tandem repeat (yellow) whose length is a multiple of 
the repeat unit’s length. b Enrichment of introns that splice via DSSs (permutation test, see Methods). c 
Comparison between two models of de novo intron creation in a tandem repeat: the DSS expansion model 
(1) and the 2-hit model (2). Arrows indicate evolutionary change. Probabilities of motif creation and repeat 
expansion taken from Conrad et al. [37] and Fan and Chu [38]
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processes in DSSs. The synergy provided by combining the two types of sites is seen 
in DSSs recovered from both MPRAs and SRA data, which can perform the same 
level of splicing activity with weaker motifs than single splice sites.

Our observations were particularly noteworthy in the UBC gene, as shown in Fig. 4, 
where the DSS on the second subunit serving as the 5′ss had a strong MaxEnt score of 
4.3, while the paired DSS on the eighth subunit serving as the 3′ss had a weaker score 
of − 0.21. Despite the weaker score, the presence of the strong 5′ss may enhance the rec-
ognition of the weak 3′ss. This enhancement could occur because U1 snRNP not only 
binds to the 5′ss but also recruits U2 snRNP and other splicing factors to the adjacent 
3′ss [13, 40]. This collaboration between trans-acting factors could compensate for sub-
optimal cis-acting elements such as weak splice sites. The first study to characterize 
DSSs suggested that there was a competition between spliceosomal components in rec-
ognizing a DSS as a 5′ versus 3′ splice site [22]. This analysis was based on the degree of 
agreement to 5′ss or 3′ss position weight matrices (PWMs). However, PWMs are built 
from annotated sites which are underrepresented for DSSs (Fig. 2b), and so, it is possible 
interactions outside the motif windows enhance spliceosome recruitment.

Analysis of observed events in the Sequence Read Archive revealed a 3.1-fold enrich-
ment of DSSs relative to expectation based on the frequency of single-use AGGT sites, 
suggesting synergy in recognition of intronic locations. In addition to the splice junc-
tions from the SRA, we found support for the usage of these DSS by mapping lariat reads 
present in RNA-seq data (Additional file 1: Table S1). Interestingly, these dual-use sites 
are underrepresented in the annotation, which are the sites required to make the final 
mRNA. It has been noted that if the spliceosome engages in stochastic splicing it is no 
longer hard to understand how splice sites are selected [24]. Instead, the question shifts 
to how splice site selection stops. Here, we report the annotated 5′ and 3′ splice junc-
tions are 2.7- and 4.7-fold underrepresented for DSSs (Fig. 2d). We believe the depletion 
of DSSs in annotated sites may be one way to stop splicing.

Perhaps the more interesting cases of DSS usage were found in the human UBC gene 
which has 9 ubiquitin-coding units that are linked head-to-tail, separated by DSSs. 
The intron/exon boundaries precisely align with the protein-coding boundaries. This 
unique structure allows for the possibility of regulating the amount of ubiquitin by either 
removing or retaining the coding region through alternative splicing at the DSSs without 
affecting the reading frame of the transcript. A previous study suggested that increasing 
cellular ubiquitin levels resulted in a higher amount of intron-retaining UBC transcripts 
in the nucleus, subsequently leading to lower UBC gene expression [31]. As we did not 
find evidence supporting the idea that ubiquitin exerts a negative feedback on itself via 
transcript isoform regulation, we focused on the potential roles of DSSs in ubiquitin 
evolution and gene expansion.

The proximity of each DSS to the boundaries of the encoded ubiquitin peptide is remi-
niscent of the “intron first” evolutionary theory of the origins of splicing [41–43]. The 
intron first theory suggests the diverse repertoire of modular proteins evolved from exons 
that were used to encode protein domains. This idea requires an alignment between 
splice sites and the boundaries of protein domains. In the proteome, evidence for this 
alignment is controversial. However, in UBC, there is a precise alignment between the 
peptide recognition element of the factor (i.e., DUB) that cleaves polyubiquitin into 
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ubiquitin monomers and the DSS which cleaves the pre-mRNA (Fig.  3). It is relevant 
that there is a great diversity of repeat numbers in UBC genes across species. We found 
that the degree of expansion ubiquitin subunits in UBC homologs varies considerably 
among organisms–from as few as 3 in Eurasian Red Squirrels to as many as 46 in Eastern 
Happy fish–with no obvious phylogenetic pattern (Additional file 1: Fig. S5 and Addi-
tional file 1: Table S3). We suggest this indicates relaxed selection on the repeat number 
and/or a high mutation rate. It is likely that both explanations are valid. The repeat unit 
is a multiple of three, so an expansion will either be removed by splicing or processed 
to create an extra monomer. The mutation rate for repeat expansions and contrac-
tions is known to be high because uneven recombination, gene conversion, or replica-
tion slippage occur at frequencies at least 1000-fold higher than substitutions [37–39]. 
Consistent with expansion being a frequent event, we observed a potential evolution-
ary intermediate: an additional copy of intron 3 of the VCX3A gene appears as an insert 
polymorphism in the Genome Aggregation Database [44] (ENST00000398729; Addi-
tional file 1: Fig. S6, Fig. 5a). To our knowledge, this is the only example of an evolution-
ary intermediate of de novo intron creation that involves a spliceosomal intron. VCX3A 
is analogous to the UBC gene in that it contains 8 tandem repeats with a DSS within 
the repeat unit. A global search for similar cases returned an 8.4-fold excess of introns 
in the human genome whose length was a multiple of a surrounding repeat’s length 
(n = 77, p <  10−5) and therefore have a dual-specific 5′ss and a dual-specific 3′ss. There 
was also an 8.7-fold excess of introns with the additional constraint that the repeat unit’s 
length was a multiple of 3 (n = 45, p <  10−5), but this is likely due to selective pressure on 
repeat expansions to not disrupt protein-coding sequences since there was only a small 
increase in enrichment (Fig. 5b). It is likely that a DSS-containing repeat expansion is 
less deleterious as the expanded region can be spliced out and therefore have minimal 
impact on fitness. Expansions of DSS-containing repeats at nongenic loci could result 
in de novo gene creation since the mechanism of creation (repeat expansion of a single 
DSS) is more probable than two separate splice-site creation events, and introns increase 
gene expression and pol II elongation [45]. Similarly, DSS-containing repeats that are 
incompletely spliced may give rise to processed pseudogenes that contain introns. It is 
possible that cDNA insert via retrotransposition and because of the presence of func-
tional introns in UBC (or other) mRNA, the retrotransposed element is more likely to 
be expressed at its new loci. This idea is supported by the great diversity of ubiquitin-
containing genes found in many genomes (Additional file 1: Fig. S5).

Conclusions
Our study reveals an abundance of unannotated splice sites, suggesting increased 
chances of stochastic splicing at various potential sites within introns. By identifying 
DSSs and their extensive usage in the SRA, we have expanded our understanding of the 
mechanisms involved in splicing regulation. Additionally, our investigation of the poly-
ubiquitin (UBC) gene, where DSSs delineate tandem repeats of ubiquitin coding mono-
mers, highlights the intricate nature of splicing and its impact on generating variable 
numbers of ubiquitin monomers. Furthermore, our genome-wide analysis suggests that 
DSSs embedded within tandem repeats serve as a mechanism for gene evolution, poten-
tially driving the diversification and adaptation of genes over time.
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Methods
Sequence read archive data

We used the exon-exon junction dataset “intropolis” as a representative sample of the 
full population of human introns. This dataset was produced from the sequencing 
data of 21,504 human RNA-seq samples that were publicly available in the Sequence 
Read Archive (SRA) [23]. We extracted the 4-bp sequences for the 5′ splice sites (2 bp 
upstream of the 5′ss and the 5′ss itself ) and 3′ splice sites (the 3′ss itself and 2  bp 
downstream of the 3′ss) listed in intropolis. Our focus was solely on dual-specific 
splice sites (DSSs) with an AGGT motif. A site that includes the AGGT motif and 
demonstrates the capability to function as both a 5′ss and a 3′ss, each with a mini-
mum read count of 10, is identified as a DSS.

Oligonucleotide library design and synthesis

Three large genes BRCA1, BRCA2, and LDLR were used in the massively parallel 
reporter assay (MPRA). DNA oligonucleotides (oligos) were designed such that each 
gene was tiled in 150 nucleotide windows with a step-size of 20 nucleotides. The gene 
sequences were based on the GENCODE v32 reference genome and basic gene anno-
tation [46]. This resulted in 6290 oligos for BRCA1, 4251 for BRCA2, and 2215 for 
LDLR (12,756 oligos in total). Each oligo was flanked by forward and reverse common 
primer sequences, producing a 230-nucleotide oligo. Finally, the three oligo libraries 
for these three genes were synthesized by Agilent Technologies.

Minigene construction

The three oligo libraries were first amplified by 20 cycles of PCR (Q5 Hot Start High-
Fidelity DNA Polymerase, NEB), and then separately incorporated into two types 
of minigene report constructs: a 5′ss-testing minigene and a 3′ss-testing minigene. 
The former consists of, in order from 5′ to 3′, a cytomegalovirus (CMV) promoter, a 
230-mer sequence from one of three oligo libraries, exon 16 of the ACTN1 gene with 
parts of its upstream intron 15, and a bGH polyA sequence. The ACTN1 3′ss tests for 
potential 5′ splice sites. The 3′ss-testing minigene consists of a CMV promoter, an 
adenovirus pHMS81 exon (AD81 exon) with part of its downstream intron, a 230-mer 
sequence from one of three oligo libraries, and a bGH polyA sequence. The AD81 
exon’s 5′ss tests for potential 3′ splice sites. The minigene fragments upstream and 
downstream of the oligo libraries were extended to include primer sequence over-
lap, and full minigene libraries were subsequently assembled by overlapping PCR. The 
minigene libraries were then pooled together in equimolar amounts, resulting in an 
input library with all minigene reporter constructs.

Minigene library transfection and input and output library sequencing

The resulting minigene input libraries were transfected into HEK293 cells obtained 
from the American Type Culture Collection (ATCC CRL-316) in three cell culture 
replicates using Lipofectamine 3000 (Invitrogen) in a 6-well plate. Twenty-four hours 
after transfection, RAN was extracted by RNeasy Mini Kit (Qiagen), followed by 
DNase treatment (Invitrogen). Random 9-mers were used to generate cDNA with 
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SuperScript IV Reverse Transcriptase (Invitrogen) followed by PCR (GoTaq, Pro-
mega), resulting in output libraries of transcripts with all potential 5′ or 3′ splice sites. 
Input and output libraries were sequenced using Illumina HiSeq 2 × 150 bp. Cultured 
cells were authenticated using short-tandem-repeat profiling and were periodically 
tested for mycoplasma contamination.

Enrichment score calculation

Input and output library reads were trimmed to endogenous sequence using SeqKit 
amplicon [47], and then the endogenous sequence was aligned to the gene sequence 
using STAR [48] in unspliced, end-to-end, unique alignment mode. Each aligned input 
read corresponded to an oligo tiling the gene of interest. Each aligned output read corre-
sponded to a pair of splice junctions and tiling oligo. The enrichment score was the read 
coverage in the output library normalized by the read coverage in the input library, and 
the resulting value was log10-transformed. Each splice junction had to have at least 20 
reads in each replicate’s output library to be included.

Lariat mapping of unannotated dual splice sites

Our custom lariat mapping pipeline was implemented based on the method described in 
Pineda and Bradley 2018 [49]. First, reads are filtered out if they contain > 5% ambiguous 
characters. Then, reads are mapped to the genome, and aligned reads are discarded. A 
mapping index is then created based on the unaligned reads, and a Fasta file containing 
the sequence of the first 20 nt of each annotated intron in the transcriptome is mapped 
to the unaligned reads. In order to capture splicing events from unannotated sites, we 
also added the 20 nt 5′ss sequences from unannotated DSSs with > 10 supporting junc-
tion reads in the Sequence Read Archive. Reads are then identified where only one 5′ss 
maps to them and the alignment has no mismatches or indels. These reads are then 
trimmed of the sequence from the start of the 5′ss alignment to the end of the read, and 
reads with a trimmed length of < 20 nt are filtered out. The remaining trimmed reads are 
mapped to an index built from the last 250 nt of every annotated intron. The trimmed 
read alignments are then filtered to only consider those with <  = 5 mismatches, <  = 10% 
mismatch rate, and no more than one indel of <  = 3 nt. Then, for each trimmed read, the 
highest scoring alignment was chosen after restricting to alignments in the same gene as 
the 5′ss alignment and those with the expected inverted mapping order of the 5′ and 3′ 
segments. The end of this highest scoring alignment is then taken to be the branchpoint 
of the lariat the read is derived from.

Previously, we generated a DBR1 knockout cell line from HEK293T cells via CRISPR 
(under review at Nature Communications). Due to the high level of lariats in this cell 
line, we processed RNA-seq samples from it with the pipeline above in order to test 
for the presence of lariat reads originating from unannotated dual splice sites. Table S1 
(Additional File 1) contains information about the lariat reads that were recovered from 
these DSSs.

Plasmid transfections and PCR amplification

HEK293 cells were seeded the day before transfection into a 6-well plate in order to 
reach ~ 60–70% confluence at the time of transfection, and each well was transfected 
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with 0.5  μg, 2  μg, or 5  μg of pRK5-HA-ubiquitin-WT plasmid (Addgene plasmid # 
17,608) [50] using Lipofectamine 3000 (Invitrogen) transfection reagent. After 48 h, cells 
were harvested for RNA and protein analyses. PCR amplification was performed using 
GoTaq Master Mix (Promega). The primer sequences for UBC amplification were as fol-
lows: forward (5′-3′): TGG GTC GCA GTT CTT GTT TG; reverse (5′-3′): GTG CAA TGA 
AAT TTG TTG AAA CCT TAA AAG GGG. Validation of PCR products was done using 
the QIAxcel ScreenGel Software.

Western blot

Cell lysates were prepared with cOmplete Lysis M buffer, EDTA-free according to the 
manufacturer’s protocol (Roche). Protein samples were separated on 4–20% Mini-PRO-
TEAN gels (Bio-Rad) and transferred to a polyvinylidene difluoride (PVDF) membrane. 
The blot was probed with rabbit monoclonal HA-Tag (C29F4) antibody (Cell Signaling 
Technology, #3724) and mouse monoclonal beta-actin antibody (Abcam, ab8226) and 
then was imaged by the LiCor Odyssey System.

Ubiquitin annotation

The 9 ubiquitin subunits in UBC and 3 ubiquitin subunits in UBB were aligned in Snap-
Gene using MUSCLE (v3.8.1551), and the resulting consensus sequence was ATG CAG 
ATC TTC GTG AAG ACC CTG ACT GGT AAG ACC ATC ACC CTC GAG GTG GAG CCC 
AGT GAC ACC ATC GAG AAT GTC AAG GCA AAG ATC CAAGANAAG GAA GGC ATC 
CCT CCT GAC CAG CAG AGG TTG ATC TTTGCNGGNAAA CAG CTG GAA GATG-
GNCGC ACC CTG TCT GAC TAC AAC ATC CAG AAA GAG TCC ACC CTG CAC CTG 
GTG CTC CGTCTNAGA GGT GGG. This sequence was used to identify ubiquitin subu-
nits in UBC orthologs identified from Ensembl release 109, assembly GRCh38.p13 [30], 
excluding orthologs with Target %id < 50% or Query %id < 50%.

Each gene’s coding sequence was aligned to the consensus sequence in pairwise local 
alignments using the EMBOSS matcher application (v6.6.0.0) [51]. We ran matcher with 
the default scoring matrix, open gap penalty, and gap extension penalty for DNA. For 
each gene, the number of alternative alignments was set equal to the length of the cod-
ing sequence divided by the length of the consensus sequence (228  bp), rounded up. 
Alignments with identity < 50%, similarity < 50%, or length < 171 bp were discarded. No 
overlapping alignments remained after filtering.

A phylogenetic tree of the orthologs was built using the R package rotl, which queries 
the Open Tree of Life taxonomy v3.3 draft 1 [52, 53].

Mapping gnomAD inserts to annotated introns

Variant Call Format (VCF) files covering variants in chromosomes 1–22 and X from 
Genome Aggregation Database (gnomAD) v2.1.1 were obtained from Google Cloud 
Public Datasets at gs://gcp-public-data–gnomad. VCF files covering chromosomes 
1–22, X, and Y from gnomAD v3.1.1 were obtained from the same public dataset [44]. 
Insert variants that passed all gnomAD filters and were at least 50 bp long were extracted 
from the gnomAD v2.1.1 and v3.1.1 VCF files.

Annotations for hg19 and hg38 introns were obtained from the University of Califor-
nia Santa Cruz (UCSC) Genome Browser Database tables wgEncodeGencodeCompV19 
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and wgEncodeGencodeCompV41 tables, respectively, using Table Browser tool [54]. The 
hg19 and hg38 introns’ DNA sequences were obtained from the primary assemblies of 
GENCODE releases 19 and 41, respectively [46]. gnomAD v2.1.1 and v3.1.1 inserts were 
mapped to hg19 and hg38 introns, respectively, using bowtie2 in end-to-end mode with 
the “–very-sensitive” argument [55]. Successful alignments were then filtered, retaining 
alignments wherein the intron’s length was within 5 bp of the mapped insert’s length.

We identified an insert from gnomAD v3.1.1 in VCX3A with a sequence that exactly 
matched VCX3A’s third intron (Additional file  1: Fig. S6). The ubiquitin consensus 
sequence (see the “Ubiquitin annotation” section) was also mapped to hg19 and hg38 
introns, but none of the resulting alignments passed filtering.

Intron‑tandem repeat intersection analysis

Annotations for introns and tandem repeat blocks in hg38 were obtained from the 
UCSC Genome Browser Database tables knownGene and simpleRepeats, respectively, 
using the Table Browser tool [54]. Introns which were in different genes or transcripts 
but had the same genomic coordinates were collapsed into one intron. Tandem repeats 
with the same genomic coordinates were also collapsed. The consensus length reported 
for each repeat was treated as the length of its repeat unit length, using the smallest con-
sensus length among identical repeats.

We analyzed these annotations and identified 792 introns within tandem repeat in the 
human genome (Additional file 1: Table S4). Due to overlapping annotations, some of 
these introns were matched with multiple repeat blocks. There were 77 introns whose 
length was a multiple of the repeat unit’s length in at least one of the tandem repeats 
they fell within, and for 45 of those introns, the repeat unit’s length was a multiple of 
3 (Additional file 1: Fig. S7). We tested the statistical significance of these subsets in a 
permutation test of 100,000 trials by randomizing the intron-repeat pairings, counting 
the number of introns that fell into each subset, and then comparing the counts to our 
results. We excluded intron-repeat pairings where the intron was shorter than the repeat 
unit length from these trials since we were only interested in cases where the intron was 
at least as long as the repeat unit. The mean count over all trials for each subset was 
9.1786 (8.4-fold enrichment) and 5.17901 (8.7-fold enrichment), respectively. In both 
subsets, no trials produced a count equal to or greater than the count we observed.   
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