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Abstract 

Existing RNA velocity estimation methods strongly rely on predefined dynamics 
and cell-agnostic constant transcriptional kinetic rates, assumptions often violated 
in complex and heterogeneous single-cell RNA sequencing (scRNA-seq) data. Using 
a graph convolution network, DeepVelo overcomes these limitations by generalizing 
RNA velocity to cell populations containing time-dependent kinetics and multiple line-
ages. DeepVelo infers time-varying cellular rates of transcription, splicing, and degrada-
tion, recovers each cell’s stage in the differentiation process, and detects functionally 
relevant driver genes regulating these processes. Application to various developmental 
and pathogenic processes demonstrates DeepVelo’s capacity to study complex differ-
entiation and lineage decision events in heterogeneous scRNA-seq data.
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Background
The concept of RNA velocity refers to the time derivative of the mRNA abundance in a 
cell, which reflects the changing rate of RNA processing and degradation. Current veloc-
ity estimation methods leverage the observation that the abundance and ratio between 
unspliced pre-messenger RNAs and spliced mature messenger RNAs can be used to 
infer changes in gene expression dynamics. Higher abundance and ratio of unspliced 
mRNAs to spliced mRNAs indicates increasing transcription of a certain gene - in other 
words, upregulation/induction and a high velocity estimate. Conversely, a lower abun-
dance and indicated ratio lead to a low velocity estimate associated with down-regu-
lation/repression. An equilibrium phase occurs when this dynamic process reaches a 
stable steady-state. Since unspliced mRNAs can be distinguished in common single-cell 
RNA sequencing (scRNA-seq) protocols [1], the idea of estimating dynamic RNA veloc-

ity using only static sequencing libraries becomes feasible.
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The original RNA velocity approach [1] utilized the assumption that the observed tran-
scriptional phases in scRNA-seq last long enough to reach both an apex of induction and a 
quiescent steady-state equilibrium. This technique infers a per-gene steady-state ratio using 
linear regression, and then RNA velocities are calculated as the deviation of the observed 
ratio from the steady-state level. This workflow implies two underlying assumptions, (1) the 
assumption of steady-state: for every gene, sufficient number of sequenced cells are at the 
steady states; (2) the assumption of cell-agnostic kinetic rates: the degradation and splicing 
rate for each gene is shared across all cells. These assumptions are often violated in com-
plex biological systems and bring about limitations in downstream applications, particularly 
when cell states are partially observed or undergo transcription dynamics more complex 
than the steady-state pattern. Although a later approach, scVelo [2], attempted to general-
ize the steady-state assumption by replacing these states with four transcriptional states and 
modeling them with a dynamical model, the aforementioned second limitation still remains.

Furthermore, scVelo assumes a cyclic trajectory within the four transcriptional 
states for all observed genes, but this assumption also rarely holds in real-world single-
cell datasets with complex differentiation trajectories and multifactorial kinetics [3]. 
Although several related works have been further developed, including MultiVelo [4], 
Chromatin Velocity [5], protaccel [6] for extending Velocity beyond RNA, VeloAE [7] for 
denoising velocity with Deep Neural Nets, and Dynamo [8] for exploiting the metabolic 
labeling sequencing data, the core velocity computation follows the original ideas and 
therefore the aforementioned limitations still hold.

Overall, existing techniques assume each gene follows a pre-defined trajectory 
depicted by constant cell-agnostic kinetic rates. This workflow implies that each gene 
goes through the same velocity trajectory across all cell-types, and limits the applica-
tion in complex cell systems. To resolve these limitations, we highlight the need for 
cell-specific kinetics which enables the modeling of multi-lineage systems with heteroge-
neous cell populations. We propose DeepVelo, a deep neural network based method for 
RNA velocity estimation. (1) DeepVelo is optimized using a newly introduced continuity 
framework, resulting in an approach that is unbiased from pre-defined kinetic patterns. 
(2) Empowered by graph convolutional networks (GCN), DeepVelo infers gene-specific 
and cell-specific RNA splicing and degradation rates. Therefore, compared with the cell-
agnostic parameters used in existing techniques [1, 2], DeepVelo is able to model RNA 
velocity for differentiation dynamics of high complexity, particularly for cell populations 
with heterogeneous cell-types and multiple lineages.

We demonstrate the efficacy of DeepVelo on a variety of developmental and path-
ological scRNA-seq datasets, including dentate gyrus neurogenesis [9], pancreatic 
endocrinogenesis [10], hindbrain development [11], mesenchymal/chondrocyte 
organogenesis [12], mouse gastrulation [13], and cerebellar pilocytic astrocytoma 
[11]. DeepVelo yields more consistent velocity estimates and accurately identifies 
transcriptional states than existing models. The method further helps identify puta-
tive driver genes of these transcriptional changes, which are more likely to character-
ize and be involved in dictating lineage fate-decisions. The resulting velocities and 
driver gene analysis, on one hand, accurately recover known differentiation trajecto-
ries in challenging scenarios of time-dependent and multi-trajectory gene regulation 
dynamics and, on the other hand, discover novel biological insights in challenging 
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scenarios such as pilocytic astrocytoma tumor heterogeneity. Based on these findings, 
we envision DeepVelo to be a useful tool for discovering functional programs and 
temporal dynamics using scRNA-seq data of complex biological systems.

Results
The DeepVelo model

Modeling the transcriptional dynamics in single cells provides the theoretical basis of 
RNA velocity. For each cell, the dynamics of transcription, splicing, and degradation 
(Fig. 1a) can be approximated as the following differential processes

(1)

du(t)

dt
= αi,g (t)− βi,g (t)u(t),

ds(t)

dt
= βi,g (t)u(t)− γi,g (t)s(t).

Fig. 1 Overview of the DeepVelo pipeline and velocity prediction method. a DeepVelo estimates 
cell-specific transcription ( αi ), RNA splicing ( βi ) and RNA degradation rates ( γi ). b Overview of the velocity 
analysis pipeline using DeepVelo. Preprocessing is done to ensure the stability of model training (“Continuity 
assumption and learning objectives”), followed by training and prediction of cell-specific kinetic parameters. 
These are used to estimate the RNA velocity and perform various downstream analyses. c Overview of the 
DeepVelo neural network model. Query cells (dark blue) and similar cells (light blue) within a k-nearest 
neighborhood are input into the model. The graph convolutional network (GCN) encoder module encodes 
their spliced/unspliced gene expression into latent space representations. The decoder module then 
predicts the kinetic rates for RNA velocity and extrapolates gene expression to future cell states. The model 
is optimized to match the extrapolation to observed cell states at later developmental stages. After training 
and optimization, these cell-specific rates can be used to determine the RNA velocity vector for each cell. d 
Downstream analyses can be performed with the DeepVelo estimated velocity results, including visualization 
of estimates, pseudotime analysis, assessing the confidence of velocity estimates, and selecting driver genes 
that are associated with the inferred development trends
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where αi,g ,βi,g , γi,g are the kinetic rates for cell i and gene g. t denotes a time coordi-
nate in cell development. Unspliced immature mRNA is first generated by transcription 
of DNA and then post-transcriptionally modified and spliced into mature RNA. The 
dynamics of unspliced RNA abundance, du(t)

dt
 , is modeled by the first equation where αi,g 

and βi,g denote the rates of transcription and splicing, respectively. Similarly, the second 
equation models the dynamics of spliced RNA abundance, ds(t)

dt
 , and γi,g denotes the rate 

for RNA degradation. The kinetic rates are intrinsically cell-specific since there is a high 
degree of variability in transcriptional dynamics between cells [14]. Furthermore, these 
intrinsic cell-specific transcriptional dynamics are likely to be similar among similar 
cell-types [15], necessitating cell-type-specific parameters. However, previous velocity 
estimation techniques [1, 2] assume global constant kinetic rates across cells, leading to 
limitations in inferring multi-lineage dynamics.

DeepVelo models the kinetic rates per cell and per gene (Fig.  1a), providing suffi-
cient expressive power for more faithful velocity estimates for individual cells. Given 
the unspliced gene counts u(t) and spliced gene counts s(t) for individual cells, Deep-
Velo estimates the derivatives of s(t) by modeling cell and gene-specific coefficients 
αi,g ,βi,g , γi,g using a deep neural network model (Fig. 1b, c). Specifically, we predict a 
cell’s velocity vector and extrapolate the cell state to match the future states extracted 
from the sequencing data (Fig.  1c). For each cell i in the population, we extract a 
group of neighbor cells Ni that have similar expression profiles. We take the profiles 
of cell i and neighbor set Ni as the input to DeepVelo model. The model consists 
of stacked layers of GCNs and outputs the coefficients αi,g , βi,g , and γi,g in the final 
layer. Using these coefficients, DeepVelo computes the velocity vi,g = ds(t)

dt
 for each cell 

accordingly as in Eq. 1.
To train the DeepVelo model, i.e., to update the parameters for accurate velocity 

prediction, we first extrapolate the cell state by adding the velocity derivative ds(t)dt
 

onto the original profile s(t) . Then, DeepVelo computes the difference between the 
extrapolated state s(t + 1) and the real profiles of a group of downstream cells (The 
red cells in Fig. 1c). The DeepVelo model parameters are optimized to minimize this 
difference between the predicted future state and the actually observed ones (“Con-
tinuity assumption and learning objectives”). After sufficient training iterations, the 
model is finalized to provide accurate velocity estimates that take into account the 
transcriptional dynamics unique to individual cells. Notably, the above training pro-
cess works in a self-supervised manner and is unbiased from cell-type annotations. 
The full details of the objective function of the DeepVelo model and theoretical con-
tributions are outlined in the “Continuity assumption and learning objectives” section 
and Additional file 1: Note S2.

We tested DeepVelo on a number of developmental and pathological datasets to deter-
mine RNA velocity, estimate cell-specific RNA kinetics, infer developmental pseudo-
time, and prioritize genes for their potential role in differentiation through driver gene 
estimation (Fig. 1d). DeepVelo had the highest direction accuracy and consistency com-
pared to previous approaches on almost all datasets (Additional file 1: Figs. S1, S2 and 
Additional file 5: Table S4).

Aside from the steady-state (Velocyto) and dynamical (scVelo) models, we further con-
sidered a recent approach that also considers multi-faceted kinetics and multi-lineage 
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inference in cellDancer [16]. We found that cellDancer readily performed the worst out 
of all four methods in terms of direction score, especially on the multi-lineage hindbrain 
and chondrocyte datasets (Additional file 1: Fig. S1). Although the performance of cell-
Dancer was high in terms of consistency, poor direction estimates - for example in the 
mouse gastrulation data with known genes that have multiple kinetics (Additional file 1: 
Fig. S29, Additional file 1: Note S3) - indicate that the technique does not truly resolve 
the problem of modeling multi-faceted kinetics and multi-lineage systems.

We also found most datasets contain a high ratio of multifaceted gene dynamics 
(Additional file 1: Fig. S3), and DeepVelo shows even larger margin of improvement on 
the most challenging ones, demonstrating the necessity and advantage of the cell-spe-
cific modeling.

Recovering complex transcriptional dynamics for individual cells using DeepVelo

To test the ability to identify complex kinetics, we applied DeepVelo on a neurogenesis 
scRNA-seq dataset of the developing mouse dentate gyrus [9]. The data consists of tis-
sue samples from two experimental time points, P12 and P35 (postnatal day 12 and 35) 
(Additional file 1: Fig. S4), collected by a droplet-based single-cell RNA sequencing pro-
tocol (10x Genomics Chromium Single-Cell Kit V1).

After pre-processing (“Preprocessing the scRNA-seq data for DeepVelo”), we calcu-
lated the RNA velocities using the proposed DeepVelo model and the dynamical model 
from scVelo [2]. The velocity plots are made by projecting the velocity vectors onto the 
UMAP [17]-based embedding of the data. In the velocity estimates (Fig. 2a), the gran-
ule cell lineage dominates the main structure, where the neuroblast cells develop into 
immature and mature granule cells. The directions of these velocity estimates between 
cell-types reflect the actual development orders [9].

When examining the main lineage toward the terminal cell-type of granule cells, 
although all models capture the principle direction, DeepVelo can show a more consist-
ent flow from the neurogenic intermediate progenitor cells (nIPC) to neuroblasts and 
finally to granule cells. DeepVelo particularly indicates that immature granule cells dif-
ferentiate into mature granule cells in a manner more faithful to the true trajectory com-
pared with the dynamical model (Fig. 2a - zoom-in panel).

The estimated velocities by DeepVelo show higher consistency in quantitative 
analysis. The consistency score is computed as follows - we first compute the average 
cosine similarity of the velocity vector of each cell to its neighbors, which is defined 
as the overall consistency. A similar neighbor-wise consistency was also proposed in 
scVelo [2]. However, the overall consistency could be biased toward over-smoothed 
estimations, which do not account for branching lineages. Therefore, we propose the 
cluster/cell-type-wise consistency as a complement to the overall score, which com-
putes the average cosine similarity of each cell’s velocity to all velocity vectors of the 
same cell-type (“Overall and cell-type-wise consistency evaluation”). For both met-
rics, DeepVelo shows significant improvements over the scVelo dynamical method 
with significantly higher average consistency scores (Mann-Whitney U  two-sided 
test p < 1.0× 10−300 , n = 2930 for both groups, Fig. 2b, c).

Examined at the individual gene level, DeepVelo shows biologically meaningful 
velocity patterns. For example, Tmsb10 is one of the major regulators to the inferred 
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dynamics of granule lineage, and it plays an important role in the development of 
hippocampal CA1 region [18]. In Fig.  2f, velocities derived from the DeepVelo are 
consistent across velocities of neighboring cells. The region of cells showing high 
velocities of Tmsb10 aligns well with the region of high Tmsb10 expression. The 
same alignment is also observed in the example of another regulatory gene, Ppp3ca 
(Fig.  2g). In further analysis (Fig.  3a), we also observed that DeepVelo clearly dis-
entangles the velocity vectors between the granule (blue) and endothelial lineages 
(orange), whereas, in the steady-state and dynamical models, both lineages have 
intertwined velocities. We discuss this advantage of cell-type-specific prediction in 
the next section.

Furthermore, this result demonstrates DeepVelo’s applicability to datasets that 
have multiple time points, and as such, may also contain batch effects. We further 
demonstrate DeepVelo’s applicability in these scenarios in subsequent Results  sec-
tions involving multi-batch/temporal hindbrain and mesenchymal/chondrocyte 
organogenesis developmental datasets.

DeepVelo’s cell‑specific kinetic rates enable accurate quantification of time‑dependent 

and multifaceted gene dynamics

Due to the cell-specific estimation of ( αi,g ,βi,g , γi,g in Eq.  1), DeepVelo for the first 
time provides a profile of individual kinetic rates for each cell. This enables new 
approaches for cell-specific trajectory analysis, visualization, and characterization. 

Fig. 2 Fine-grained temporal patterns in neurogenesis predicted by DeepVelo. a Comparison of DeepVelo 
with the dynamical model from scVelo [2]. The direction and magnitude of velocities are projected as arrows 
onto the Uniform Manifold Approximation and Projection (UMAP) plot of gene expression values across 
cells. DeepVelo provides more consistent velocity estimates with respect to the developmental process 
from immature granule cells to mature granule cells. b The boxplot and histogram of the overall consistency 
scores for scVelo and DeepVelo, which indicate the consistency of velocity estimates in a local neighborhood 
of the data. c The box plot and histogram of the cluster/cell-type-specific consistency scores, which utilize 
the neighborhood consistency metric on a per cluster/cell-type basis. d, e The spliced/unspliced phase 
portrait for Tmsb10 and Ppp3ca, respectively. Cell-types are shown in the same color as in b. f, g Velocity and 
gene expression values projected onto UMAP plots for Tmsb10 and Ppp3ca, respectively. Velocity and gene 
expression values show consistent patterns across cell-types: high velocity values (green in velocity plot) are 
correctly shown in the subset of cells developing to high gene expression values (purple in expression plot)
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We show the UMAP projection of all cell-specific kinetic rates of 2930 cells (Fig. 3a). 
Although DeepVelo is unaware of the cell-types during training, the learned kinetic 
rates are naturally clustered into groups aligned with cell-types. Furthermore, clus-
ters of cells from the same lineage (e.g., the outlined granule lineage) are positioned 
closely compared to other cells. Overall, the similarity of learned kinetic rates reflects 
the biological similarity of cells at both the cell-type and lineage levels. This indicates 
that DeepVelo can estimate kinetics that reflect the dynamics of individual cells as 
opposed to the entire dataset.

Velocity-associated kinetic rates across cells may vary for genes undergoing dynamic 
regulation involving multiple processes. For example, Battich et al. [19] observed var-
ying kinetic rates in the differentiation of intestinal stem cells. These varying kinet-
ics are often misinterpreted in existing velocity methods [20]. This stems from the 
fact that the kinetic rates in previous methods are modeled as constant cell-agnostic 
coefficients in first-order equations (Eq. 2), which lack the ability to model multifac-
eted dynamical variation. In contrast, DeepVelo estimates transcriptional dynamics 
for different cell-types and cell states by introducing cell-specific kinetic rates, leading 
to better velocity estimation in time-dependent and complex multi-lineage systems. 
Here, we show this improvement using two challenging scenarios:

Fig. 3 Velocity estimation for branching and time-dependent kinetic rates. a The UMAP projection of the 
estimated kinetic rates of 2930 cells in the dentate gyrus developmental data. Cells of the same cell-types 
are clustered together by kinetic rates. Furthermore, cells from the same lineage (e.g., the outlined Granule 
lineage) are positioned closely. In general, the similarity of learned kinetic rates reflects the biological 
similarity of cells, although the DeepVelo model is unaware of cell-type labels. b Projection of estimated 
velocity (arrows) onto the spliced/unspliced phase portrait of Tmsb10 by DeepVelo. The endothelial cells 
undergo a separate trajectory on the phase portrait, aside from the main trajectory containing neuroblast 
cells, granule immature, and granule mature cells. DeepVelo successfully captures both trajectories. In the 
zoomed view, cells within the same region comprising of different cell-types are correctly predicted to have 
distinct velocity directions. c Phase portrait of Tmsb10 with RNA velocity predicted by the scVelo dynamical 
model. Only the main trajectory of granule lineage is captured, but the endothelial cells are predicted with 
incorrect directions. d–h A simulation of time-dependent degradation rates. The cell color indicates its 
pseudotime in simulation. d Reference velocity with constant kinetic rates. e, f Constant and time-dependent 
degradation rates as shown on phase portraits. The gene with the time-dependent rate (f) undergoes a 
reversed trajectory. g, h Estimated velocities by DeepVelo and scVelo, respectively, for the simulated 500 cells 
with time-dependent degradation rates. DeepVelo correctly recovers the directions from regions of earlier 
time to later ones
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(1) Estimating velocity for genes that are separately regulated in two lineages. We used 
the previously analyzed dentate gyrus cell population and determined genes with multi-
faceted kinetics [9]. Tmsb10 shows multiple kinetic regimes and undergoes multiple tra-
jectories. We plot the spliced and unspliced reads across all cells in this dataset, in other 
words, the phase portrait of Tmsb10 (Fig. 2d). The cells in the granule lineage (including 
neuroblast, granule immature, and granule mature cell-types) form a cyclic trajectory. 
Meanwhile, the endothelial cells are not a part of the granule lineage and undergo a sep-
arate trajectory. These two regimes are likely regulated by different kinetic rates.

DeepVelo correctly predicted the RNA velocity patterns for both regimes (Fig. 3b). For 
the granule lineage, DeepVelo captures the direction of velocity from neuroblast cells to 
granule immature cells and then to granule mature cells. For the endothelial cells, the 
predicted velocity direction correctly points to the position of the same cell-type with 
amplified spliced reads. We also found that DeepVelo learns to assign similar velocity 
directions for cells of the same type. In contrast to DeepVelo, scVelo forces the RNA 
velocity to follow the cyclic trajectory assumed by the model (Fig.  3c). As a result, 
although scVelo successfully captures the trajectory for the granule lineage, it incor-
rectly points the velocity estimates of endothelial cells to the position of neuroblasts 
(Fig. 3c - Zoom-in panel).

Additionally, DeepVelo is capable of predicting distinct velocity directions for cells 
within the same region (Fig.  3b). The cells in the zoomed view, including both the 
endothelial and neuroblast cells, employ similar RNA dynamics (through the levels of 
spliced and unspliced reads) of Tmsb10. However, the distinct directions for each cell-
type are correctly predicted by DeepVelo. This is due to the ability of DeepVelo to esti-
mate distinct sets of kinetic rates across cell-types, as shown in Fig.  3a. In contrast, 
scVelo uses constant kinetic rates per gene and predicts a uniform direction for the same 
region of cells. Overall, a cell-specific model such as DeepVelo broadens the applica-
tion of RNA velocity for genes with multifaceted kinetics, such as Tmsb10 in the dentate 
gyrus developmental data.

(2) Estimating velocity for genes with time-dependent kinetic rates. We simulated a 
population of 500 cells and 30 genes using the simulator provided by the scVelo pack-
age [2]. We first determined the reference velocity in the setting of constant kinetic rates 
across cells (Fig. 3d, e). From here, the degradation rate, gamma, of 3 out of 30 genes 
was set to increase over time. As a result, the genes underwent a reversed trajectory as 
shown in the respective phase portrait (Fig. 3f ). This simulation procedure of reversed 
dynamics was originally proposed in Bergen et al. [20], and it sets up a challenging sce-
nario for the estimation of RNA velocity. The resulting velocity plots of DeepVelo and 
the dynamical model of scVelo are shown in Fig. 3g, h, and scVelo struggles to predict 
velocities from early to later time points while DeepVelo is able to recover the correct 
velocity directions from regions of earlier to later pseudotime. This advantage is because 
DeepVelo learns to find potential future cell states by integrating across all genes (“Con-
tinuity assumption and learning objectives”); thus, it is more robust to the time-reversed 
directions of a portion of genes in the dataset.
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DeepVelo infers functionally relevant lineage‑specific genes and processes in hindbrain 

development

To test velocity methods in a complex setting with multiple lineages, we applied meth-
ods to a temporal mouse hindbrain development dataset [11] (Fig. 4a, Additional file 1: 
Fig. S4). Specifically, we filtered the data corresponding to the junction and differentia-
tion between the GABAergic and gliogenic lineages (“Preprocessing the scRNA-seq data 
for DeepVelo”). In a multi-faceted system such as this, which is typical of developmental 
scRNA-seq datasets, considering cell-agnostic kinetic rates is haphazard because of the 
different RNA velocity dynamics among lineages. DeepVelo’s ability to learn cell-specific 
kinetic rates alleviates this assumption and accounts for the multi-faceted differentia-
tion of the GABAergic and gliogenic lineages and their respective cell-types. The result 
of DeepVelo (Fig.  4b) shows the RNA velocity over the developmental process from 
Neural stem cells to the differentiating GABA interneurons and gliogenic progenitors. 
We performed trajectory inference using directional PAGA [21] over the velocity graph 
of DeepVelo. We found that DeepVelo was able to recapitulate ground-truth differen-
tiation patterns - specifically the branching between VZ progenitors and differentia-
tion GABA interneurons and gliogenic progenitors (Fig. 4c). The cluster of neural stem 
cells is well recognized as the origin cell-type with outward velocity arrows and a low 
pseudotime index, while the GABA interneurons are confirmed as a terminal cell-type 

Fig. 4 Velocity, trajectory, and driver gene estimation of developing mouse hindbrain cells. a The putative 
developmental order for six cell-types in early mouse hindbrain development. b The velocity projected onto 
the t-distributed stochastic neighbor embedding (tsne) plot of gene expression. DeepVelo’s RNA velocity 
reveals the temporal order in the developing mouse hindbrain, including cells from early progenitors, 
GABAergic, and gliogenic lineages. c Velocity-based PAGA trajectory inference using DeepVelo’s velocity 
estimates. The predicted trajectory correctly reflects the developmental relations shown in a. d The top 
60 driver genes with highest correlation to the GABAergic lineage computed using DeepVelo’s velocity 
estimation. The horizontal coordinates represent the pseudotime estimates. e Gene phase portrait, 
velocity, and gene expression plots of selected driver genes. Known functional genes in the GABAergic 
lineage - Tfap2b, Tfap2a, Lhx5, and Neurod6 - are computed among the top driver genes. f The velocity plot 
and trjectory inference using the scVelo dynamical model
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with incoming velocity arrows and a high pseudotime index. In comparison, the scVelo 
dynamical model predicts partially inverse velocity directions for the gliogenic progeni-
tors, leading to incorrect relations in the inferred trajectory (Fig. 4f, highlighted regions).

Using the velocity vector for each cell, we built a connectivity graph (“Computing 
cell-to-cell connectivity graph”) of the scRNA-seq data. CellRank [22] is a recent visu-
alization and analysis toolbox for scRNA-seq data that utilizes the connectivity graph to 
predict cell’s fate mapping, which corresponds to the probability of the cell differentiat-
ing to a terminal state in the lineage(s). After determining cell fate, gene importance for 
differentiation can be calculated based on the correlation of gene expression with transi-
tion and differentiation probabilities towards all terminal states. The genes that display 
dynamical behavior across a lineage are termed putative “driver genes,” as these are the 
genes most likely to be involved in regulating the differentiation process itself. CellRank 
has been reported to work well with other velocity methods, such as scVelo, to infer line-
age-specific drivers. We incorporated this toolbox with the predicted velocity connectiv-
ity graph from DeepVelo and determined driver genes in the variable gene subset of the 
data for both the GABAergic and gliogenic lineages.

Within the top 100 driver genes across both lineages of interest, we observed groups of 
genes showing particular abundance in specific cell-types in a temporal manner (Fig. 4d). 
For example, Tfap2a, Tfap2b, and Lhx5, which are two known differentiation genes involved 
in the specification of GABAergic interneurons during hindbrain development, are listed in 
the top 100 driver genes from DeepVelo for the GABAergic lineage (Fig. 4e) [23, 24]. Similar 
results were found for the gliogenic lineage from DeepVelo, with detection of known glial 
cell differentiation regulators in Hes1 and Sox9 (Additional file 2: Table S1) [25, 26]. Deep-
Velo also picked up hits that were novel and not detected by scVelo, such as Neurod6 in the 
GABAergic developmental lineage (Fig. 4e). Although the role of Neurod6 in the differen-
tiating GABAergic interneurons and their development is unclear, previous literature has 
indicated the gene’s involvement in regulating the specification of inhibitory GABAergic 
interneuron subpopulations in the hindbrain and spinal cord [27]. This indicates a testable 
link and hypothesis for the differentiation of these cells in the junction within the GABAe-
rgic and gliogenic lineages, highlighting the ability of DeepVelo to guide searches of func-
tional genes in scRNA-seq data and potential drivers of the differentiation process.

To compare the results of driver analysis when employing CellRank with different 
velocity outputs, we determined driver genes for the gliogenic and GABAergic line-
ages using both scVelo and DeepVelo (“Driver gene estimation and comparison”). As 
the complete set of genes driving differentiation in the complex hindbrain developmen-
tal system is unknown, we sought to infer the relevance of inferred driver genes in two 
ways: (1) by considering their overlap with predicted marker genes from the original 
analysis, as these genes are characteristic of cell-type identity and should be correlated 
with lineage specification, and (2) by considering their overlap with transcription fac-
tors (TFs), as TFs are the main elements responsible for differentiation and establishing 
transcriptional and cellular identity. We analyzed and compared the top 100 driver genes 
for both the GABAergic and gliogenic lineages predicted by the scVelo and DeepVelo 
methods (Additional file 2: Table S1). DeepVelo predicted driver genes that overlapped 
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with more of the original markers from Vladoiu et al. [11], for both the GABAergic and 
gliogenic lineages (Fig. 5a) (Additional file 3: Table S2). Furthermore, to determine the 
signal across all driver genes, not limiting to the top 100, we determined the rankings 
of known marker genes in the GABAergic and gliogenic lineages across all tested driver 
genes. These rankings were determined based on the correlation scores, which indicate 
the relative importance of driver genes to a specific lineage. In this case, DeepVelo had 
higher rankings compared to scVelo for known GABAergic marker genes in the driver 
analysis (Mann-Whitney U two-sided test p = 1.376× 10−07 , n = 245 for both groups), 
while the ranking differences in the gliogenic lineage were non-significant ( p > 0.05 , 
n = 131 for both groups) (Fig. 5b). When examining the transcription factor overlap in 
the top 100 driver genes, DeepVelo had more hits than scVelo for the GABAergic lineage 
and an equal number of hits for the gliogenic lineage (Fig. 5c).

For further examination of the results of driver analysis, we took the top 100 
driver genes for the GABAergic and gliogenic lineages from DeepVelo and sought to 
determine their functional signal as gene-sets through pathway enrichment analy-
sis (“Pathway enrichment analysis”). Overall, 97 and 151 pathways were found to 
be significantly enriched for the GABAergic and gliogenic lineages, respectively, for 
DeepVelo (Fig.  5d) (Additional file  4: Table  S3). These pathways were analyzed for 

a. b. c.

d.

e.

f.

p < 0.05 *** p > 0.05 NS

Fig. 5 Functional enrichment of DeepVelo predicted driver genes. a Overlap of the top 100 driver genes 
from scVelo and DeepVelo for GABAergic and gliogenic lineages with annotated lineage marker genes. b 
Ranking density of marker-overlapping driver genes (across all 2000 tested genes) for scVelo and DeepVelo, 
separated by the GABAergic and gliogenic lineages, respectively. c Overlap of top 100 driver genes from 
DeepVelo and scVelo for both lineages with annotated transcription factors. d Pathway enrichment analysis 
results for the top 100 scVelo and DeepVelo driver genes, respectively, in the GABAergic and gliogenic 
lineages. e Functional signal in the enriched pathways for scVelo and DeepVelo, based on the presence of 
pathways involved directly in neurogenesis (“Neurogenesis”), not specific to neurogenesis but involved in 
development (“Developmental non-neuronal”), and not specific to either development or neurogenesis 
(“Non-specific”). f The top 20 DeepVelo pathway enrichment analysis results, based on FDR corrected 
p-values, for the GABAergic and gliogenic lineages, respectively
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the presence of neurogenesis and developmental results, for which we did see a func-
tional enrichment in both lineages (Fig.  5e). More specifically, the top 20 pathways 
for each lineage, ranked in terms of FDR-corrected p values, revealed enrichment 
of pathways relevant to neuronal differentiation processes (Fig.  5f ). In the GABAe-
rgic lineage, enriched pathways included the following: regulation of neuron projec-
tion development, neuron differentiation, and neurogenesis (Fig. 5f ). The results from 
the gliogenic lineage had even more relevant terms, namely gliogenesis and glial cell 
differentiation (Fig.  5f ). When comparing these results with pathway analysis per-
formed on the scVelo top 100 driver genes, we observed a much lower percentage 
of functional enrichment for neurogenesis and developmental pathways compared to 
DeepVelo for the GABAergic lineage (Fisher’s exact two-sided test p = 1.407× 10−09 , 
n = 103 for scVelo and n = 97 for DeepVelo) (Fig.  5e), while the difference between 
the gliogenic results was non-significant ( p > 0.05 , n = 76 for scVelo and n = 151 
for DeepVelo). These functional pathway enrichment results highlight the relevance 
of the driver genes predicted by the DeepVelo method and increased functional rel-
evance compared to those predicted by scVelo.

DeepVelo outperforms current techniques in highly complex multi‑furcating 

developmental data

As DeepVelo demonstrated strong performance and the ability to identify relevant driver 
genes in the hindbrain developmental data with a bifurcating lineage, a natural extension 
is to test in scenarios with multiple ( n > 2 ) furcations. To test DeepVelo’s ability to per-
form in these scenarios, we ran RNA velocity on the mesenchymal/chondrocyte lineage 
from the mouse organogenesis cell atlas (MOCA) dataset [12] (Fig. 6a). Within this line-
age, early mesenchymal cells divide into several distinct cell-types, including myocytes, 
connective tissue progenitors, limb mesenchyme, jaw and tooth progenitors, chondro-
cyte progenitors, osteoblasts, and intermediate mesoderm (Fig. 6a).

DeepVelo was able to correctly predict both the correct direction and multi-furcat-
ing/branching differentiation paths (Fig.  6c). In particular, DeepVelo’s RNA velocity 
estimate indicated that the early mesenchymal cells are the progenitor state in this lin-
eage, and they differentiate into both distinct and highly similar cell-types, including 
chondrocyte progenitors, jaw and tooth progenitors, and connective tissue progenitors 
(Fig. 6c). The dynamical scVelo model on the other hand did not predict the correct 
differentiation path, as it predicted the terminal chondrocyte and osteoblasts cell-type 
to be the progenitor state (Fig. 6c). This result is clearly indicated in the comparison 
of the direction scores based on the RNA velocity estimates (Fig.  6f ) and their con-
cordance with the differentiation lineages defined by Cao et al. (Fig. 6a). Furthermore, 
DeepVelo achieved higher overall and cell-type wise consistency scores (Fig. 6d, e).

As the mesenchymal/chondrocyte differentiation trajectory is multi-furcating, the 
genes involved in these processes are undergoing complex transcriptional dynamics 
that may not be captured by RNA velocity methods that do not consider both gene and 
cell-specificity for the calculation of transcriptional kinetic rates. DeepVelo’s strong per-
formance on this dataset shows its applicability in scenarios where the differentiation 
dynamics are complex and the utility of cell-specific models for calculating RNA velocity.
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Analysis of pilocytic astrocytoma samples by DeepVelo reveals tumor subpopulations 

of varying immunogenicity

Pilocytic astrocytomas (PAs) are a class of low-grade gliomas that resemble astrocytic 
cells which typically localize in the cerebellum and are the most frequent class of brain 
tumor in patients within the ages of 0-19 years [28]. Although they are relatively benign 
tumors with good prognosis after surgical resection, they do have the potential to metas-
tasize via the leptomeningeal route. Furthermore, in cases where complete surgical 
resection is not possible, chemotherapy and radiotherapy may be necessary, and these 
treatments can have adverse effects on the developing brains of the patients [28].

The most common genetic alteration within PAs is a gene fusion between KIAA1549 
and BRAF [28]. This leads to a characteristic pathway alteration found in most PA sam-
ples, which affects the mitogen-activating protein kinase (MAPK) pathway [28]. Reitman 
et al. [29] further characterized the dysregulated gene programs using scRNA-seq data 
and discovered that PA tumor cells and oligodendrocyte precursor cells (OPCs) share 
gene expression signatures and that only a subset of PA cells express the MAPK program 
whereas the other cells express an astrocytic program that is indicative of more differen-
tiated cells. Vladoiu et al. [11] leveraged both bulk and single-cell RNA sequencing data 
of normal hindbrain developmental data in mice and PA tumors from human patients to 
correlate normal developmental signatures with PA tumor markers and discovered that 
PA samples share signatures with normal gliogenic progenitor cells and the oligodendro-
cyte precursor cell lineage.

We sought to determine if RNA velocity analysis using DeepVelo can potentially dis-
cover novel biological signals in pilocytic astrocytoma. We analyzed three PA tumor sam-
ples from different patients with similar clinical and genomic characteristics (Additional 

Fig. 6 RNA velocity analysis of mouse mesenchymal and chondrocyte development. a For the 
mesenchymal/chondrocyte lineage, the differentiation trajectory as indicated by Cao et al. [12]. Solid 
black arrows indicate differentiation confirmed by the original paper, solid grey arrows indicate assumed 
differentiation paths, and dashed arrows indicate differentiation of a subset of the cells. b, c The RNA 
velocity estimates from the dynamical scVelo model (b) and the DeepVelo model (c) for the mesenchymal/
chondrocyte lineage. d, e RNA velocity consistency values for overall consistency (d) and cell-type wise 
consistency (e) for the DeepVelo and dynamical scVelo model for the chondrocyte/mesenchymal lineage. f 
The direction scores for each individual cell in the chondrocyte/mesenchymal lineage for the DeepVelo and 
dynamic scVelo methods
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file 6: Table S5) and performed RNA velocity analysis using DeepVelo exclusively on the PA 
tumor cells after filtering out the microenvironment and immune cell populations (“Pre-
processing the scRNA-seq data for DeepVelo”). Within the PCA projection of the data, 
we observed two branches of tumor cells in each of the three samples, and the DeepVelo 
RNA velocity estimates reflected distinct branching dynamics in these samples (Fig. 7a.). 
We examined these distinct branches using both the discovered pathways from Reitman 
et al. [29] and normal human cerebellar development signatures from Aldinger et al. [30], 
but neither explained the variation that we observed (Additional file 1: Figs. S11-S16).

Given these distinct dynamics that are not correlated with previously observed variation in 
PAs, we performed pseudotime estimation individually for each branch (“Preprocessing the 
scRNA-seq data for DeepVelo”) for subsequent driver-gene analysis (Fig. 7b). After determin-
ing the driver genes for each branch, pathway enrichment analysis was performed on the top 
driver genes to determine any functional signatures that can differentiate the two branches 
in each sample (“Pathway enrichment analysis”). The results revealed that each branch has 
distinct functional signatures and that branches with a higher number of enriched pathways 
share functional signature across samples (Fig.  7c). Branches that had a strong functional 
enrichment signature were enriched for pathways indicating response to immune cells, such 
as antigen processing and presentation, Cytokine Signaling in Immune system, and positive 

a.

b.

d.

c.PA sample 1 PA sample 2 PA sample 3

Neurogenesis

MAPK cascade

Signal transduction

Response to exogenous stimuli

Cognition

Positive regulation 
of transcription

Leukocyte and 
lymphocyte activation 

Adaptive immune response
activation

Su ate biosynthesis

Smooth muscle
proliferation
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Regulation of 
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Sample 1 depleted
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Fig. 7 Analysis of branching dynamics in pilocytic astrocytoma (PA) tumor cells. a The DeepVelo RNA velocity 
results for tumor cells from the three PA samples. b The split-branch pseudotime results for the PA samples, 
indicating the early and late-stage tumor cells. c Upset plot showing set overlap of functionally enriched 
pathways, obtained from top driver genes, for branches within and across all samples. Branches are deemed 
“immunogenic” if they show enrichment for immune response related pathways and “depleted” otherwise. 
d Enrichment map of pathway enrichment analysis results for each of the two branches in the three PA 
samples. Each node is a pathway, colored by whether or not it was found to be statistically significantly 
enriched in the top 100 driver genes for each branch and sample. The size of the node indicates the size of 
the gene set/pathway
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regulation of immune system process (Additional file 7: Table S6). As we observed many of 
these pathways to be enriched, we broadly classified them into general programs such as 
“Adaptive immune response activation” (Fig. 7d). The other branches in each sample exhib-
ited much less functional enrichment in terms of the number of significant pathways and 
were typically enriched in neurogenesis, synaptic organization, and biosynthesis pathways 
(Fig. 7d, Additional file 7: Table S6). As such, we deemed the immune signature enriched 
branches as “immunogenic” and the other branches as “depleted,” as the major differentiat-
ing signal observed in these two tumor cell branches was enrichment for immune response 
pathways (Fig. 7c, d). Furthermore, we also observed that MAPK pathways were only acti-
vated in the immunogenic populations (Fig. 7d), indicating that although the Reitman et al. 
marker genes did not show variation for the MAPK pathway across branches, there may still 
be some concordance between this program and the observed variation in immunogenicity. 
The discrepancy between the Reitman et al. marker scores and the pathway analysis results 
is likely because the Reitman et al. markers were curated for a PA-specific MAPK program 
[29], whereas the Gene Ontology (GO) and REACTOME pathways contain all MAPK asso-
ciated factors. Furthermore, the driver gene analysis infers dynamic programs across pseu-
dotime, whereas a marker-gene-based module score does not.

To the best of our knowledge, intra-tumor variation in immunogenicity and antigen 
presentation has not been previously reported in PAs. The role of the immune sys-
tem in low grade gliomas such as PAs has not been studied extensively. Some studies 
[31, 32] have reported dysregulation of immune-related programs and varying levels 
of infiltration of effector immune cells, but the contribution of these factors to disease 
severity, presentation, and outcome have not been analyzed. Our analysis using Deep-
Velo indicates that there may be tumor compartments with distinct immunogenicity 
profiles which potentially arise from a common progenitor state. A variety of factors 
can contribute to low immunogenicity in tumor cells, such as restriction of antigen 
presentation, upregulation of immunoinhibitory pathways, and low levels of leukocyte 
infiltration [33]. The latter was not observed in the PA samples, as all three had high 
levels of microglia and T-cells in the microenvironment (Additional file  8: Table  S7). 
Therefore, it is likely that modulation of antigenicity or immunoinhibitory programs is 
driving the variation in tumor cell immunogenicity.

To summarize, we discovered variation in PA tumor cells indicating significantly dif-
ferent levels of immune system activation, and this heterogeneity appears consistently 
in all three PA samples. Differing levels of immune system susceptibility of tumor cells 
has major implications in both prognosis and treatment of tumors, particularly those 
that require immunotherapy [34]. Although PAs are typically benign, the driving fac-
tors behind aggressive presentations are not well understood [28], and our findings 
warrant further analysis of tumor cell immunogenicity and their contribution to dis-
ease severity and prognosis. In higher grade gliomas, such as glioblastoma, variation in 
immunogenicity may be an even more important factor, and also warrants application 
and testing. Our findings demonstrate DeepVelo’s ability to pick up nuanced signal and 
generate novel biological hypotheses, particularly in cases where multifaceted dynamics 
are present. Furthermore, the findings were reproduced in three independent samples, 
indicating the robustness of DeepVelo’s results to technical variation and ability to reca-
pitulate common biological signal across samples and datasets.
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DeepVelo is computationally robust and efficient across multiple scRNA‑seq datasets

To examine the robustness of the DeepVelo RNA velocity estimates across settings, we 
tested DeepVelo on five different scRNA-seq datasets. Apart from the previously ana-
lyzed datasets, DeepVelo also recovers accurate RNA velocity vectors and developmen-
tal relations on a large-scale hippocampus data from La Manno et  al. [1] (Additional 
file 1: Fig. S6). On all tested datasets, DeepVelo achieves higher average scores and lower 
variance in terms of the overall consistency compared to the scVelo dynamical model 
and the scVelo stochastic model (Additional file 5: Table S4).

We further tested the influence of multiple training, objective, and preprocessing 
hyperparameters on the dentate gyrus neurogenesis data (Additional file  1: Note S1, 
Additional file  1: Figs. S19-S27). DeepVelo is robust to changes in these hyperparam-
eters and consistently estimates the biologically accurate RNA velocity, indicated by the 
resulting consistency and direction score values (Additional file 1: Figs. S19-S27). Par-
ticularly important is the fact that DeepVelo is robust to the choice of number of neigh-
bors to use for the future time point state calculation (Additional file 1: Fig. S21). This 
calculation is central to the continuity assumption in DeepVelo (“Continuity assump-
tion and learning objectives”), and this result highlights the robustness of continuity to 
hyperparameters central to the assumption.

Lastly, we compared the computational runtime of DeepVelo with other velocity esti-
mation methods. Using the same CPU (central processing unit) device, DeepVelo (cpu) 
achieved a 4 fold speedup with respect to the scVelo dynamical model. Using a more 
powerful GPU (graphical processing unit) for the deep learning backbone, DeepVelo 
(cpu+gpu) can be further accelerated 10–20 times across datasets. For example, Deep-
Velo completed the training and estimation for the 13501 cells of developmental hind-
brain data in just 36 seconds (Additional file 1: Fig. S8).

Discussion
DeepVelo offers a novel velocity estimation framework that goes beyond assump-
tions of constant RNA splicing and degradation rates and instead estimates these 
rates at a cell-specific level. By analyzing the performance of DeepVelo and existing 
velocity estimation techniques, we have demonstrated that DeepVelo’s cell-specific 
estimation through a novel deep learning method allows for the detection and speci-
fication of multiple lineages in calculating RNA velocity. Realistic single-cell RNA 
sequencing settings will likely have more than one lineage/trajectory in a given sam-
ple, and thus it is imperative to develop methods that can account for these multi-
faceted dynamical systems. DeepVelo’s ability to model these multifaceted dynamics 
was demonstrated through analysis of complex differentiation systems, such as the 
development of the dentate gyrus, pancreatic endocrinogenesis, and chondrocyte 
development. Lastly, we demonstrated that DeepVelo can be utilized to identify 
functionally relevant genes that are enriched along multi-furcating differentiation 
trajectories, in systems including hindbrain development and pilocytic astrocytoma. 
We envision that DeepVelo will be more readily applicable to these realistic develop-
mental settings as compared to previous techniques.

DeepVelo internally predicts the first-order derivative of expression per gene 
based on the transcriptome-wide reads of all selected genes. The ability to learn 
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the interaction/regulation between genes could be further explored, for example, 
by replacing the GCN model with recent transformer networks [35] which could 
explicitly model the interaction of internal gene representations. This could allow for 
more interpretable velocity and driver-gene estimates, by considering correlations of 
kinetics and expression patterns between genes and cells. Recent work shows prom-
ising research directions by extending the velocity of cellular dynamics from RNA to 
proteins [6], epigenomics [5], and multi-omics velocities [4]. DeepVelo could be nat-
urally updated and well fitted into these settings by enriching input and output space 
with additional -omics information. Ultimately, the estimation of cell-specific kinet-
ics across multiple steps in the central dogma may increase the signal-to-noise ratio 
[20] and further accurately capture information related to cellular development.

The continuity assumption is central to the DeepVelo model, and although this assump-
tion allows DeepVelo to be more expressive and less constrained, it does have its limi-
tations. One potential limitation is the applicability of DeepVelo to cell-types that may 
be less prevalent or difficult to characterize, such as rare cell-types. Finding the correct 
future time point neighbors for these cell-types may be challenging, thus hampering the 
applicability of the continuity assumption. However, we do show that the DeepVelo model 
is robust to the choice of neighbors in the future time point state calculation. Further-
more, DeepVelo works in a manner that is not biased by cell-type annotation, and as such, 
results will not be affected by incorrect annotation of rarer cell-types. Regardless, the 
challenge of modeling RNA velocity for rare cell-types is an important future research 
direction for RNA velocity methods, irrespective of their central assumptions, and future 
studies should emphasize the inclusion of data with less studied/rare cell-types.

Although DeepVelo demonstrates the efficacy of RNA velocity estimates on indi-
vidual cell and gene levels, building a comprehensive theorem to verify the confi-
dence of velocity estimation remains a major challenge. Empirical metrics, such as 
the consistency of velocity directions among neighboring cells have been used in this 
work and existing approaches [2, 7]. However, there is a lack of probabilistic tools to 
test the kinetics estimated by either previous methods or DeepVelo. We anticipate 
future work in the estimation of RNA velocity will address this gap and incorporate 
better approaches to uncertainty estimation in this field.

Conclusions
RNA velocity techniques have allowed for insights into biological differentiation from 
single-cell RNA sequencing data that go beyond oversimplified trajectory inference 
models and instead infer dynamic processes that indicate the direction and magnitude 
of differentiation potential. Although many major limitations and assumptions for RNA 
velocity methods still exist, we anticipate that continued methodological development 
in this field will lead to better tools to study differentiation and development in a single-
cell setting. DeepVelo overcomes limitations of previous techniques in a major aspect 
with regards to cell-specific model estimates and the continuity assumption. Our experi-
ments on both normal developmental and tumor data demonstrate DeepVelo’s ability 
for more robust velocity estimation in multi-lineage systems, yielding better biological 
insights into real and complex biological use cases.
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Methods
Preprocessing the scRNA‑seq data for DeepVelo

The dentate gyrus neurogenesis [9], mouse hippocampus [1], and pancreatic endocrinogen-
esis [10] data are available at the NCBI Gene Expression Omnibus (GEO) repository. The 
accession numbers are GSE95753, GSE104323 and GSE132188. The mouse gastrulation [13] 
is available at https:// github. com/ Mario niLab/ Embry oTime cours e2018. In this work, we use 
the zipped data of these sequencing datasets provided by the scVelo package [2] (https:// 
scVelo. org). The data is in h5py file format and contains spliced and unspliced gene readout.

Mouse hindbrain developmental data from [11] was used to test velocity techniques for 
estimation at a lineage junction. BAM files from GSE118068 were converted to fastq for-
mat using bamtofastq function from CellRanger. Fastq files were processed into loom files 
using kallisto reference-free alignment through the loompy pipeline [36]. This was done 
individually for each timepoint (E10, E12, E14, E16, E18, P0, P5, P7, P14), and processed 
loom files were concatenated. For the purposes of the analysis, the junction between the 
GABAergic and gliogenic lineages was utilized. The following cell-types were subset from 
time points E10, E12, E14, E16, E18, P0, P5, P7, and P14 - neural stem cells, proliferating 
VZ progenitors, VZ progenitors, differentiating GABA interneurons, gliogenic progeni-
tors, and GABA interneurons. Estimates of spliced and unspliced counts from the kallisto 
quantification method were used for testing DeepVelo and scVelo.

The mouse organogenesis data from [12] was reprocessed using a pipeline from 
Alevin- Fry [37], using version 0.8.0 of the tool. The NCBI accession for the fastq files 
for this data is GSE119945 and is associated with the SRA archive PRJNA490754. The 
indicated pipeline is used to process all downloaded fastq files. We kept the processed 
“spliced,” “unspliced,” and “ambiguous” reads for RNA velocity analysis. Cells from the 
chondrocyte trajectory (subtrajectory name - chondrocyte trajectory) were used in the 
analysis. Cell-type annotations and UMAP coordinates for velocity projection were used 
from the Cao et  al. study metadata. Prior to velocity inference using the reprocessed 
spliced/unspliced counts, cells from this trajectory were downsampled to 30000 cells for 
faster inference and easier interpretability of velocity portraits.

Three pilocytic astrocytoma (PA) tumor samples from the same study by Vladoiu et al. 
[11] were utilized for the PA RNA velocity analysis. The EGA accession for this data is 
EGAS00001003170. Using CellRanger version 7.0.1, BAM files were converted to fastq 
format using the bamtofastq function, and then the count function was utilized to obtain 
the quantified scRNA-seq count matrices - both with default parameters. The hg19 refer-
ence was used as it was the reference the original fastqs were mapped to. For running 
RNA velocity, conversion from BAM to loom format was done using the Velocyto pack-
age with default parameters [1].

The PA samples were filtered at the cell-level such that the number of non-zero genes 
per cell is > 200 and that the mitochondrial genome percentage is < 5% [38]. The data 
was also log-normalized using Seurat’s “LogNormalize” method with a “scale.factor” 
of 10000 [38]. A marker-gene list from Vladoiu et  al. that was used to annotate clus-
ters from the PA scRNA-seq samples in the original paper was used [11]. These clus-
ters were annotated as “tumor cells,” “microglia/monocytes,” or “t-cells,” with different 
cluster numbers. Using the top 25 markers from each of the clusters’ DE lists, Seurat’s 
“AddModuleScores” function [38] was used to rank the cells from the PA samples for the 

https://github.com/MarioniLab/EmbryoTimecourse2018
https://scVelo.org
https://scVelo.org
https://combine-lab.github.io/alevin-fry-tutorials/2021/sci-rna-seq3/
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respective clusters, and the top scoring module for each cell in each sample was used to 
annotate the cell. Afterwards, the granular cluster numbers were omitted, and annota-
tions were collapsed to “tumor cells,” “microglia/monocytes,” or “t-cells.” Only the tumor 
cells were selected from each sample for subsequent analysis.

Module scores for the Aldinger et  al. [30] developmental cell-types and Reitman 
et al. [29] PA programs (MAPK, AC, OC) in PA tumor cells were calculated. To score 
the programs from Reitman et al., the modules marker genes were used with the Seurat 
“AddModuleScore” function [38] and the default parameters for Seuratv4. As the marker 
list for the Aldinger et al. cell-types was based on differential expression (DE), subsetting 
was done for the top 25 markers (based on DE) for each cell-type. Afterwards, the same 
steps were followed as for the Reitman et al. analysis and the Seurat “AddModuleScore” 
function [38] was used to determine signatures of each cell-type in the tumor data.

Processing of unspliced and spliced counts in differing formats across datasets was 
done via three steps and using the scVelo package [2]. First, the spliced and unspliced 
gene matrices were normalized across genes. In more detail, preprocessing includes 
expression matrix normalization and nearest-neighbor-based smoothening. We used the 
scv.pp.filter_and_normalize function from scVelo for these steps with default 
parameters [2]. We selected the top 2000 or 3000 highly variable genes based on the 
spliced reads. The principal components are computed afterward using logarithmized 
spliced counts, and then the expression reads are smoothened using the average of 30 
nearest neighbors for each cell [2].

Modeling individual transcriptional dynamics

Transcriptional dynamic depicts the process from generation to degradation of mRNA 
molecules. It captures unspliced premature mRNAs u(t) with transcription rate α , splic-
ing into mature mRNAs s(t) with rate β and the degradation of spliced mRNA with rate 
γ . The simplified gene-specific dynamics with constant splicing and degradation rates are

This equation is used in existing velocity estimation methods, and it omits the dif-
ference in kinetic rates ( α,β , γ ) across cell-types. Instead, we propose a new deep 
learning method to capture individual cell kinetics.

First, we build a graph convolutional network model to predict cell-specific kinetic 
rates. In this work, we employ a nearest neighbor graph based on the gene expression of 
all cells G = (V , E) . The vertex vi ∈ V in the graph denotes the expression reads of a cell i, 
which include its spliced and unspliced gene expression vi = [si,ui] . A cell i is connected 
to cell j (i.e., Eij = 1 ) if cell j is one of the top 30 nearest neighbors based on the Euclidean 
distance of gene expression. We input this neighbor graph to the DeepVelo model. We 
chose the graph representation because it considers the vicinity of local cells’ based on 
gene expression. This has more expressive power than the expression of individual cells 

(2)

du(t)

dt
=α(t)− βu(t),

ds(t)

dt
=βu(t)− γ s(t).
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because of the sparse and noisy nature of single-cell RNA sequencing counts. Taking the 
neighborhood expression into account smoothens the velocity estimation.

A graph convolutional network (GCN) is a type of deep neural networks that learns 
node embeddings based on message passing along the graph edges [39]. Given a graph 
with nodes V and adjacency matrix A, a multi-layer neural network is constructed on the 
graph with the following layer-wise propagation rule:

where H (l) denotes the node feature vectors at the l-th layer, Ã = A+ IN is the adjacency 
matrix with self-connections, D̃ is the diagonal degree matrix such that D̃ii = j Ãij , 
W (l) is the layer-specific trainable parameter matrix, and σ is the RELU activation 
function.

In this work, the input feature H (0) ∈ R
N×2D to the GCN is the cell by gene count 

matrix. Each row in H stands for the aforementioned vertex vi . H contains the population 
of N cells, and the dimension 2D equals the number of selected spliced and unspliced 
genes combined, D = 2000 by default. The adjacency matrix A ∈ R

N×N depicts the 
aforementioned nearest neighbor graph, where the element at position i,  j has value 1 
if the cell j is one of the nearest neighbors of cell i, otherwise the value is 0. The GCN 
model consists of stacked graph convolution layers, i.e., Eq.  3. The output of the final 
layer HL is processed by a fully connected neural network, which then yields the esti-
mated velocity parameters α ∈ R

N×D , β ∈ R
N×D and γ ∈ R

N×D for all cells and genes.
Finally, the estimated velocity ṽi ∈ R

D for each cell is computed as

where βi and γi are the i-th row in β and γ , ui and si are the unspliced and spliced reads 
of cell i.

DeepVelo also supports estimation of the derivative of unspliced RNA, namely vunsi  , 
which is an estimation for the du(t)

dt
 in Eq. 1.

Continuity assumption and learning objectives

In this section, we propose a learning framework for RNA velocity to optimize the veloc-
ity estimates in Eq. 4, and then introduce the specific training objective following this 
framework.

Extrapolating cell states along time based on the continuity assumption

RNA velocity is defined as the time derivative of spliced mRNA (Eq. 1). For a specific cell 
i out of the sequenced cell population � , the velocity vector vi contains the derivative for 
all genes, as

(3)H (l+1) = σ

(

D̃− 1
2 ÃD̃− 1

2H (l)W (l)
)

,

(4)ṽi = βiui − γisi,

ṽunsi = αi − βisi.
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where s(g)i  denotes the amount of spliced mRNA of one gene. si is the spliced gene 
expression vector containing 

[

s
(1)
i , s

(2)
i , . . . , s

(|D|)
i

]

.

We introduce the multivariate random variable Gi,τ(i) to represent the (spliced) gene 
expression that a cell i could have at its developmental time τ (i) , where τ is an operator 
to obtain a cell’s current time in its developmental process. Thus, the scRNA-seq results 
could be viewed as an observation of Gi,τ(i) taking the value si . For simplicity, let us use 
t = τ (i) as the time of cell i. Similarly, we define the random vector Vi,t as the possi-
ble velocities that cell i can take at time t, and vi is an observation of Vi,t . The relation 
between the expression and velocity random vectors is,

We can use the forward difference to approximate the derivative if the time interval is 
sufficiently small, as

Notably, it is impossible to directly observe the future stage Gi,t+1 for cell expression 
from scRNA-seq, because the sequencing protocol is destructive, and cells no longer 
exist after sequencing. Thus, the estimation of Gi,t+1 is required.

DeepVelo utilized the mRNA expression of neighboring cells to estimate Gi,t+1 
and for this reason, we introduce the continuity assumption: we assume that the 
sequencing data captures a continuous spectrum of cells in consecutive differentia-
tion/developmental stages. Particularly, there exists a t + 1 neighborhood, Ni,t+1 , in 
the sequenced cell population, so that the gene expression of these cells within the 
neighborhood are similar enough to the potential expression of cell i at t + 1 . In other 
words, the expected expression of the t + 1 neighbor cells have the same distribution 
as the expression of cell i at t + 1 . In comparison to the previous strict assumptions 
(i.e., the observation of steady states or the global constant kinetic rates) in existing 
approaches, the continuity is primarily satisfied in high-throughput scRNA-seq data 
of large cell populations. Formally, continuity can be expressed as

where i → j denotes that cell i develops at time t + 1 into a cell that has the same gene 
expression vector as cell j, and P(i → j) is the probability of this event. The expectation 
of Gi,t+1 over all cells in the sequenced population � is

(5)vi :=
dsi

dt
=

[

ds
(1)
i

dt
,
ds

(2)
i

dt
, . . .

ds
(|D|)
i

dt

]

,

Vi,t =
dGi,t

dt
.

(6)Vi,t ≈ �Gi,t = Gi,t+1 − Gi,t .

(7)

∀i ∈ �, ∃Ni,t+1 ⊂ �, s.t.

Gi,t+1 =
∑

j∈Ni,t+1

Gj,τ(j)P(i → j)

= EP(i→j)[Gj,τ(j)],

(8)
Ei∈�[Gi,t+1] = Ei∈�

[

EP(i→j)[Gj,τ(j)]
]

Ei∈�

[

Gi,t+1 − EP(i→j)[Gj,τ(j)]
]

= 0,
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Taking in Eq. 6, we have

The observed sequenced expression in a large cell population can be used to derive 
the Monte Carlo estimator of the outer expectation over cell i. Assuming each cell’s 
expression vector si is independent,

Because the vi and Ni,t+1 are not directly observed, given a set of estimated ṽi and 
Ñi,t+1 , we use the (gene-wise) squared difference as an objective to measure how 
close to zero the value in Eq. 10 is.

This equation provides a general objective for any RNA velocity methods that gen-
erate the estimation of ṽi , Ñi,t+1 and P(i → j).

Training the DeepVelo model

We follow the Eq. 11 to develop the objective to optimize the parameters of the Deep-
Velo model. The objective computes the difference between the estimated velocity ṽi 
(Eq. 4) of DeepVelo and possible future cell states.

We first select Kc number of nearest neighbor cells for each cell i by computing the 
pairwise distances of spliced gene expression. By default, we compute the Euclidean 
distance of the first 30 PCA dimensions of the spliced counts. These selected cells 
compose the neighborhood of cell i, i.e., Ni . We estimate the P(i → j) using

where Scos denotes the cosine similarity and Z is a normalizing factor, i.e., Z equals to 
number of cells in Ni satisfying Scos(sj − si, ṽi) > 0 . The intuition of Pc+ is that if the 
scRNA-seq data satisfies the continuity assumption and the time interval between t and 
t + 1 is small enough, then the possible future cell state j ∈ Ni,t+1 is also close to the 
cell state of current cell i. Therefore, given a sufficient large Kc , Ni,t+1 ⊂ Ni . Further in 
Eq. 12, We use the cosine similarity between the estimated velocity ṽi and the expression 
difference sj − si to select the possible target cell j that aligns with the velocity direction.

Notably, the Eq. 6 is the forward difference operation. Similarly, we can also include 
the backward difference Vi,t = Gi,t − Gi,t−1 and project the cell i into t − 1 . We first 
compute the probability that cell is i differentiated from cell j, Pc−(i ← j) , as follows

(9)Ei∈�

[

Gi,t + Vi,t − EP(i→j)[Gj,τ(j)]
]

= 0.

(10)
1

�

�

i∈�



si + vi −
�

j∈Ni,t+1

sjP
�

i → j
�



 ≈ 0.

(11)L =
1

�

�

i∈�



si + ṽi −
�

j∈Ñi,t+1

sjP
�

i → j
�





2

.

(12)Pc+(i → j) =

{

1
Z if Scos(sj − si, ṽi) > 0 and j ∈ Ni,

0 otherwise,
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We then used this in the computation of L− in Eq. 14. The sum of L+ + L− is sym-
metric to either ṽi or −ṽi , which creates a challenge to determine the correct velocity 
direction. To resolve this issue, we know from Eq. 1 that the velocity across cells should 
be positively correlated to the unspliced expression, ui , and negatively correlated to the 
spliced expression, si . We discuss the properties and applicability of the Pearson correla-
tion heuristics in Additional file 1: Note S4. We add the Pearson correlation in Eq. 14 
term LPearson to promote determining the correct direction for the RNA velocity esti-
mates. The aforementioned objective terms are as follows

where corr denotes the Pearson correlation coefficient. We use the combination of the 
objective terms Lc = L+ + L− + LPearson to train the DeepVelo model. �u, �s are con-
stant factors to balance the scale of the objective terms. The model parameters are opti-
mized to minimize Lc.

Notably, for each gene, the optimization integrates the information of other genes, 
because the estimated target cell probability P(i → j) considers the full gene expression 
of cell i and j. From a per gene estimation perspective, it corrects the target cell prob-
ability when the unspliced/spliced counts of the current gene are noisy with respect 
to the true direction, but the majority of genes point to the correct target cell j. This 
integration of genes is a unique advantage of DeepVelo compared to existing meth-
ods, and it particularly contributes to the capability of cell-type-specific velocity pre-
diction and time-dependent gene dynamics of DeepVelo (“DeepVelo’s cell-specific 
kinetic rates enable accurate quantification of time-dependent and multifaceted gene 
dynamics” section).

The continuity assumption relaxes previous constraints

The continuity assumption works in the situation when sufficient sequenced cells are 
present such that the future neighbors in Eq. 7 are guaranteed to exist. We prove in 
Additional file  1: Note S2 that the satisfaction of previous steady-state or constant-
kinetics assumptions in such sufficient observed scenarios implies the satisfaction 
of the continuity assumption, and furthermore, in other scenarios where sequenced 
cells are insufficient, we proved that optimization using the continuity assumption 
will have smaller asymptotic error with respect to the number of sequenced cells. 
In other words, the continuity assumption relaxes the specific requirements on the 
gene dynamics in previous approaches and broadens scenarios for calculation of RNA 
velocity estimates.

(13)Pc−(i ← j) =

{

1
Z if Scos(sj − si,−ṽi) > 0 and j ∈ Ni,

0 otherwise.

(14)

L+ =
1

�

�

i∈�



si + ṽi −
�

j∈Ñi

sjPc+
�

i → j
�





2

,

L− =
1

�

�

i∈�



si − ṽi −
�

j∈Ñi

sjPc−
�

i ← j
�





2

,

LPearson = −
�

�ucorr(ṽi,ui)+ �scorr(ṽi,−si)
�

,
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Implementation details

DeepVelo is implemented using Deep Graph Library (DGL) and Pytorch. The default 
model uses two hidden graph convolution layers of size 64. A dropout probability of 
0.2 is used, with RELU activations between hidden layers. For each cell (individual 
data input into the model), the β and γ parameters are predicted, and the velocity 
is estimated as outlined in the “Modeling individual transcriptional dynamics” sec-
tion. The Adam optimizer [40] is used with a learning rate of 0.001, no weight decay, 
and AMSGrad enabled. A learning rate decay scheduler is used that decays the learn-
ing rate by a gamma term of 0.97 after each training epoch. Full-size batch training 
(with batch size equal to the number of cells) and 100 training epochs are utilized 
by default. The values for the loss scaling ( Lc = L+ + L− + LPearson ) are 1.0, 1.0, and 
18.0 for each term, respectively. Through experiments on different datasets, we have 
found these default parameters to be sufficient in ensuring convergence and avoiding 
overfitting. Robustness to model and optimization hyperparameters is explored fur-
ther in Additional file 1: Note S1.

Continuity score as a confidence measure for velocity estimation

We use the difference between the final velocity estimates and the expected future 
cell states as an indicator of estimation error. After training and predicting on a given 
dataset, we compute the score per cell and gene as,

Note this follows the inner term of Eq. 11, and we add the subscript g to indicate the 
gene it is computed on. Conceptually, this measures how close the current estimates 
satisfy the continuity assumption.

A cell-wise continuity score, CS-cell, is then computed as a measure of uncertainty 
for the average estimates of individual cells.

Similarly, a gene-wise continuity score, CS-gene, is introduced as the average conti-
nuity score in all cells.

We use the cell-wise and gene-wise continuity scores to indicate the confidence val-
ues for our velocity estimation. For example, we visualize the regions of cells where 
DeepVelo has more confidence (Additional file 1: Fig. S2), and we use continuity scores 
to filter out unfitted genes from downstream applications (Additional file 1: Note S4). 
Throughout the manuscript, we use the terms confidence score and continuity score 
interchangeably.

(15)ǫ
(con)
i,g =

1

si,g
· |si,g + ṽi,g −

∑

j∈Ñi,t+1

sj,gP
(

i → j
)

|,

(16)CS-celli = 1−
1

M

M
∑

g=1

tanh

(

ǫ
(con)
i,g

)

.

(17)CS-geneg = 1−
1

|�|

∑

i∈�

tanh

(

ǫ
(con)
i,g

)

.
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Correlation score

After the training phase, we compute the Pearson correlation in Eq. 14 on the final velocity 
estimates to examine the actual correlation between the estimates and current gene expres-
sion. A higher correlation score indicates that it is more in line with our heuristic that veloc-
ity is correlated to the unspliced reads and anti-correlated to spliced reads.

Overall and cell‑type‑wise consistency evaluation

The overall consistency score is the average cosine similarity of the velocity vectors to their 
neighbors. For each cell i,

where N (s)
i  is the 30-nearest-neighbor cells with similar spliced gene expression, com-

puted in the preprocessing step (“Preprocessing the scRNA-seq data for DeepVelo”). Scos 
denotes the cosine similarity operation. vi, vj are the estimated velocities from Eq. 4.

The cell-type-wise consistency computes the similarities for each cell-type instead. For 
each cell i and associated cell-type T (i),

where |T (i)| denotes the number of cells belonging to the cell-type.

Direction evaluation with annotated inter‑cell‑type relations

To evaluate velocity estimates based on known biological relations between cell-types, we 
measure the alignment between estimated direction and annotated cell-type relations. This 
direction score is inspired by the CBDir metric in [7]. Here, we introduce its original work-
flow and then our modification.

The metric requires annotation of directional pairs of cell-types, e.g., (A → B), and it is 
computed within the cross-boundary cells between A and B. For each given pair of cell-
type annotations (A, B), the boundary cells are selected as:

where TA, TB denote the cells belonging to type A and type B, respectively. N (i) is the 
neighboring cells of cell i. We use the same neighbors from the preprocessing steps 
(“Preprocessing the scRNA-seq data for DeepVelo”). Then, the direction score for each 
boundary cell is

Conceptually, the term sj−si
|sj−si|

 captures the direction from the computed cell i along the 

annotated developing direction A → B. This direction score considers the average cosine 
similarities among all neighbors. A higher direction score indicates better alignment 
with an annotated direction.

Coverall(i) =
1

|N
(s)
i |

∑

j∈N
(s)
i

Scos(ṽi, ṽj),

Ccell−type =
1

|T (i)|

∑

j∈T (i)

Scos(ṽi, ṽj),

(18)NA→B = {i ∈ TA|N (i) ∩ TB �= ∅},

(19)DS(i) =
1

|N (i) ∩ TB|

∑

j∈N (i)∩TB

ṽj · (sj − si)

|ṽj||sj − si|
, i ∈ NA→B.
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The direction score on a dataset of interest is the average across boundary cells, as

where ∩(A,B)NA→B is the union of boundary cells in all annotated cell-type pairs. The 
difference between this direction score and the original CBDir score [7] is on the scope 
of the average in this equation. The CBDir metric used the direction score per cell-type 
pair as 

∑

i∈NA→B
 and then computed the average over pairs. However, not all cell-type 

pairs have the same number of cells and the result score can be unequally biased toward 
the performance on the small portion of neighborhood boundary cells when |NA→B| is 
small. This is problematic in terms of evaluation since a subtle performance change on 
a small number of cells can influence the final results. Therefore, Eq. 20 instead com-
putes the global average over boundary cells and ensures individual cell scores contrib-
ute equally to the final result.

Computing cell‑to‑cell connectivity graph

The similarity of velocity vectors of cells could model cell-to-cell connectivities. We use 
the connectivity graph for downstream tasks, including driver gene analysis and devel-
opmental trajectory inference.

The weight in the velocity graph, wij denotes the estimated magnitude of the connec-
tion. Higher wij means the future state of cell i is close to the current state of cell j. wij 
could be computed by possible similarity measures between velocity vi and the gene 
expression difference sj − si . Here, we used the cosine similarity, which is also adopted in 
scVelo [2], therefore,

We compute the velocity graph on selected genes with high fitting confidence by 
default. Selecting these genes from the complete set of highly variable genes is con-
ducted by filtering on continuity scores (“Continuity score as a confidence measure for 
velocity estimation”), correlation scores (“Correlation score”), and residuals to linear 
regression. The residual filter follows the convention used in scVelo [2] where they first 
fit linear regression between spliced and unspliced expression and select genes that have 
relative residuals larger than zero and smaller than 0.95.

For the visualization of the velocity plot, we adopted the same projection computation 
provided by exiting methods [1, 2] to project velocity as arrows onto low-dimensional 
embeddings, such as tsne [41] and UMAP [17]. To summarize, the transition probability 
πi,j from a cell i to possible target cell j is computed by the Gaussian normalized connec-
tivity weight wij . Then, the velocity vector for vi in a low-dimensional space is computed 
by the weighted sum of 

∑

j πi,jδij , where δij is the direction vector pointing from cell i to j 
in the low-dimensional space.

(20)DS =
1

| ∩(A,B) NA→B|

∑

i∈∩(A,B)NA→B

DS(i),

wij =
vTi (sj − si)

||vi|| · ||sj − si||
.
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Driver gene estimation and comparison

Mouse hindbrain development data

To determine functional signals in the driver genes, the top 100 genes based on positive 
correlation with each lineage were determined, in particular for the hindbrain develop-
mental data from [11]. Positive correlations were used as many genes are anti-corre-
lated between the two lineages and considering all genes would result in a similar set 
of drivers and functional signatures. Selecting positive genes enforces the constraint of 
upregulation across a developmental pseudotime. Overlap of driver genes with marker 
genes based on the original analysis used to annotate cell-types was performed, as well 
as overlap with transcription factors. Transcription factors were pulled from the manu-
ally annotated Human Transcription Factors list curated by [42] and were lifted over to 
mouse data using orthologous gene-matches.

Analysis of marker overlap was further extended by determining the ranking of marker 
genes across all tested driver genes (2000 total) for both scVelo and DeepVelo per line-
age in the [11] data. The DeepVelo and scVelo predicted rankings of these marker genes 
for both lineages were compared, where a higher ranking of marker genes indicated a 
stronger signal for biologically relevant genes in the driver gene analysis. Since the entire 
tested driver gene lists were used, the number of genes per lineage was equivalent, and 
the rankings of the two lists were compared using the Mann-Whitney U test (or Wilcoxon 
rank-sum test), which is a non-parametric test for differences in sample distributions. The 
two-sided version of the test was used in this case, allowing either DeepVelo or scVelo to 
have greater or lesser rankings for relevant marker genes. The top driver genes for each 
lineage were also tested for functional signal using pathway enrichment analysis.

Pilocytic astrocytoma data

We computed the correlation between individual genes and the pseudotime of each 
branch. Notably, the branches are determined by the louvain clusters [43] calculated 
using the DeepVelo velocity graph (Additional file 1: Fig. S17). Similar to the hindbrain 
development data, the top 100 positively correlated driver genes were determined for 
each branch in each PA sample independently. Afterwards, the driver genes from each 
branch were tested for enrichment of functional signatures using pathway enrichment 
analysis.

Pathway enrichment analysis

Mouse hindbrain development data

To determine functional signals in the driver gene results, pathway enrichment analy-
sis was done using the ActivePathways R package [44]. The top 100 driver genes, based 
on positive correlation values with pseudotime for both the GABAergic and gliogenic 
lineages from the [11] data, were input into the ActivePathways gene-set enrichment 
analysis model. The latest Gene-Matrix-Transposed (GMT) files containing gene-
set information from the Gene Ontology Molecular Function, GO Biological Pro-
cess, and REACTOME databases were used [45, 46]. Pathways were labeled as being 
involved in “Neurogenesis,” “Developmental non-neuronal,” and “Non-specific” using 
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manual annotation and the presence of known terms (such as “neuron projection” or 
“proliferation” for “Neurogenesis” and “Developmental non-neuronal,” respectively). 
“Non-specific” pathways indicated those that did not have immediately obvious roles 
in either neurogenesis or general development. To determine significant differences 
between pathway labeling and potential enrichment of neurogenic/development spe-
cific pathways, a two-sided Fisher’s exact test based on the hypergeometric distribu-
tion was done for the contingency table comprising of scVelo and DeepVelo pathway 
results and functional labels (“Neurogenesis,” “Developmental non-neuronal,” “Non-
specific”) for the gliogenic and GABAergic lineages independently.

Pilocytic astrocytoma data

Similar to the hindbrain development analysis, the GO Molecular Function, GO Bio-
logical Process, and REACTOME databases were used [45, 46] with the ActivePath-
ways model, but in this case, the human gene sets were used as the PA data is from 
human tumors. Pathway enrichment analysis was done for the two branches in each 
of the three PA samples based on the top 100 positively correlated driver genes. 
After this step, the branches were labeled as ’immunogenic’ or ’depleted’ based on 
the enrichment of immune-related pathways. The enrichment results were visualized 
using Cytoscape [47] and EnrichmentMap [48]. Unlinked and single-linked pathways 
were removed from the visualization at a linkage threshold of 0.5 based on the gene 
set similarity coefficient [47]. As many pathways in close proximity were present, 
groups of pathways were abstracted to higher-level names for visualization, such as 
“Apoptosis” for a group of apoptosis-related pathways.
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