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Abstract 

Background: To analyze the large volume of data generated by single-cell technolo-
gies and to identify cellular correlates of particular clinical or experimental outcomes, 
differential abundance analyses are often applied. These algorithms identify subgroups 
of cells whose abundances change significantly in response to disease progression, 
or to an experimental perturbation. Despite the effectiveness of differential abundance 
analyses in identifying critical cell-states, there is currently no systematic benchmarking 
study to compare their applicability, usefulness, and accuracy in practice across single-
cell modalities.

Results: Here, we perform a comprehensive benchmarking study to objectively 
evaluate and compare the benefits and potential downsides of current state-of-the-
art differential abundance testing methods. We benchmarked six single-cell testing 
methods on several practical tasks, using both synthetic and real single-cell datasets. 
The tasks evaluated include effectiveness in identifying true differentially abundant 
subpopulations, accuracy in the adequate handling of batch effects, runtime efficiency, 
and hyperparameter usability and robustness. Based on various evaluation results, this 
paper gives dataset-specific suggestions for the practical use of differential abundance 
testing approaches.

Conclusions: Based on our benchmarking study, we provide a set of recommenda-
tions for the optimal usage of single-cell DA testing methods in practice, particularly 
with respect to factors such as the presence of technical noise (for example batch 
effects), dataset size, and hyperparameter sensitivity.

Keywords: Benchmarking, Differential abundance (DA), Clinical phenotyping, Single-
cell bioinformatics
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Background
In studying data generated by modern single-cell technologies, differential abundance 
(DA) testing methods [1–6] have become indispensable for uncovering cellular cor-
relates of particular biological, developmental, and disease states [7]. Inspired by early 
developments in microbiome-based DA analysis [8–12], these methods broadly high-
light significant differences in cellular compositions between conditions (see Fig. 1 for 
an intuitive illustration). Despite the challenges posed by the inherent heterogeneity in 
single-cell data, DA analysis techniques, including both clustering-based and clustering-
free variants, offer insights into phenotype or outcome-associated cell subsets. Cluster-
ing-based methods, such as Diffcyt and Cydar [1, 2], are highly dependent on having 
appropriately binned cells into phenotypically coherent cell populations, which may 
pose limitations in identifying novel, and functionally distinct cellular subsets. In con-
trast, clustering-free strategies, such as Meld, Milo, Cna, and DA-seq introduced in Refs. 
[3–6], excel at inferring condition-specific per-cell importances, which offers a more 
granular approach for identifying outcome-associated cells.

Differential abundance approaches have be productively used in practice in both clini-
cal and experimental settings. For example, these approaches highlighted an increased 
presence of granulocytes, monocytes, and B cells in fatal cases of COVID-19 [13]. 
They also led to the discovery of cell populations associated with rheumatoid arthritis 
[6] and the unveiling of a novel subset of cells in mouse intertropical thymic epithelial 
cells (TECs) that diminish with age [5]. Despite the fact that numerous research efforts 
focused on developing new DA methods, there have been considerably few studies pro-
viding thorough and quantitative comparisons of the strengths and weaknesses of the 

Fig. 1 An illustration of DA effects in a toy single-cell dataset containing three samples under two 
experimental conditions. Cells from condition 1 are enriched in lower left region (red circle), while cells from 
condition 2 is enriched in lower right region (blue circle). The upper region (black circle) is equally mixed with 
cells from both the condition 1 and 2 without DA effects
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common DA testing approaches, such as Milo [5], Meld [4], and Cna [6]. Currently, 
across original papers introducing differential abundance methods, Milo [5] is the only 
work to provide a quantitative evaluation of aspects of accuracy across methods. How-
ever, further work is needed to systematically benchmark and understand dataset or 
modality-specific trends in interpretability in usability in extracting biological insights 
across DA testing methods. To bolster the quantitative and objective comparison 
between methods at scale, we designed the first comprehensive benchmarking study to 
compare several nuances of the current state-of-the-art differential abundance testing 
methods.

Specifically, in this benchmarking study, we evaluated six DA testing methods pro-
posed for single-cell omics data analysis. The methods span both clustering-based and 
cluster-free approaches, and we systematically applied these methods across both syn-
thetic and real single-cell datasets. We examined various aspects of the usability of the 
DA methods in practice, including, (1) the precision in detecting DA subpopulations in 
data with diverse differential trajectory structures; (2) the capacity to handle technical 
and biological variables, such as batch effects; (3) runtime efficiency and scalability; and 
(4) usability and robustness with regard to hyperparameters. To summarize a key insight 
gleaned across all experiments, we reasoned that several DA methods cannot perform 
well when the number of cells is significantly unbalanced between DA subpopulations, 
which is a likely phenomenon to arise in practice. After investigating the characteristics 
of each method in relation to the unique characteristics of our diverse datasets studied, 
we ultimately provided data-specific suggestions for choosing the best DA approaches to 
use in particular settings.

Results
Benchmarking overview

In this benchmarking study, we objectively and quantitatively compared current state-
of-the-art DA testing methods in their capacity to accurately identify cell-populations 
that were associated with clinical or experimental outcomes of interest. To do so, we 
examined six prevalent DA approaches and evaluated them on three synthetic and four 
real single-cell datasets [7, 14–16]. To facilitate a thorough benchmarking study, the 
experimental datasets differ in several ways and include variations in cell counts, topol-
ogy of differential trajectories, ratio or magnitude of the differential abundance effect 
(DA ratio), and single-cell modality (e.g., protein vs. gene measurement). The three syn-
thetic datasets, for example, have different topological structures (linear, branch, and 
cluster) of their differential trajectories and DA ratios (see Additional file 1: Fig. S1). The 
real datasets are comprised of two single-cell RNA sequencing (scRNA-seq) datasets–
COVID-19 PBMC [7] and Human Pancreas [16]–and two mass cytometry (CyTOF) 
datasets-BCR-XL [14] and Levine32 [15] with manually annotated cell-type labels (see 
Additional file 1: Fig. S2). To evaluate scalability of these approaches, we also simulated 
six additional scRNA-seq datasets, with cell counts ranging from 4000 to 100,000.

Figure  2 depicts our benchmarking workflow. We evaluated a total of six distinct 
DA testing approaches, which can be broadly categorized into two groups: (i) cluster-
ing-based methods [17] and (ii) clustering-free methods [1, 3–6]. For clustering-free 
methods, we benchmarked five methods including Cydar [1], Milo [5], DA-seq [3], 
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Meld [4], and Cna [6]. Noting that clustering-free methods often exhibit superior per-
formance in comparison to clustering-based methods, we compared all such results 
to those attained through the Louvain algorithm [17], a commonly used graph-based 
clustering method in single-cell data analysis. To further show the differences of the 
six DA testing methods, we compare their properties in Additional file  1: Table  S1. 
Here, we provide a brief summary of the six approaches included in this benchmark-
ing study. For more implementation details, see the “Differential abundance (DA) 
testing methods” section in the “Methods” section. 

1 Cydar [1]: Cydar detects DA cell populations by assigning cells to hyperspheres and 
testing whether the number of cells in each hypersphere varies in a statistically sig-
nificant way between conditions. The spatial false discovery rate (FDR) throughout 
the high-dimensional space controls Cydar’s type I error

2 DA-seq [3]: DA-seq predicts DA scores for each cell under two separate conditions 
by applying a logistic regression model. Label permutation is then used to empiri-
cally evaluate the statistical significance of the prediction results

3 Meld [4]: Meld calculates the likelihood that each cell belongs to or is prototypical of 
each condition, using a graph-based kernel density estimation (KDE) method. The 
DA cells are then selected by setting a heuristic likelihood threshold

4 Cna [6]: Cna uses random walks on graphs to generate a neighborhood abundance 
matrix (NAM), which quantifies the relative abundance of each sample within par-
ticular cellular neighborhoods. DA cell-populations are then ultimately identified 
through statistical testing based on the NAM across the conditions

5 Milo [5]: Milo begins by counting the number of cells from each sample within 
k-nearest neighborhoods and then applies a negative binomial generalized linear 
models (NB-GLM) to test the DA of each local graph (first order neighborhood). 
Milo, like Cydar, controls type-I error via spatial FDR

Fig. 2 Schematic illustration of the benchmarking workflow. Using both synthetic and real single-cell 
datasets, six DA testing methods were evaluated under three configurations for the DA prediction task. 
A, B Single-cell RNA-seq and mass cytometry datasets were generated from patient samples, or synthetic 
datasets were generated using the packages dyntoy [20] or splatter [18]. C, D Next, we evaluated the six 
clustering-based [17] and clustering-free [1, 3–6] DA testing methods on datasets with different topologies, 
DA ratios, and technical biases such as batch effects. E Lastly, we compare the performance of the DA testing 
methods using both the AUROC and AUPRC scores
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6 Louvain [17]: The Louvain method first clusters cells across samples using the Lou-
vain algorithm and then counts the cells of each sample within each cluster. Louvain 
further uses the same procedure as Milo to ultimately determine the DA cells

Due to the fact that the six methods employ diverse strategies to estimate DA cell 
populations, we had to design a principled way to compare between these varied 
approaches. To do so, we used the area under the receiver operator curve (AUROC) and 
precision-recall curve (AUPRC) scores to quantify the accuracy of these approaches in 
practice. Noting that our datasets do not have ground truth DA labels, we employed a 
data-driven technique to construct such labels for each individual cell after setting the 
target DA cell populations (see the “Generation of ground-truth DA labels”  section in 
the “Methods” section). By aggregating results across all datasets with different experi-
mental configurations, we ultimately ranked the overall predictive performance of the 
six DA testing methods. This gauges how well cell populations that are strongly related 
with the corresponding conditions, such as phenotype and experimental perturbations, 
can be inferred via DA testing.

In addition to accurately inferring the condition-specific cells, further issues should 
be addressed to make DA testing methods more applicable in real-world settings. First, 
in order to provide reliable predictions, a DA testing method must be robust to other 
variables in a dataset, such as batch effects and sample covariates. Second, a DA test-
ing method should be resilient to datasets with different characteristics. For instance, 
(1) there are numerous single-cell profiling modalities, such as scRNA-seq and CyTOF, 
which measure the expression of genes and proteins, respectively; (2) the structure of 
differential trajectories in single-cell datasets varies in high-dimensional gene or protein 
expression space; and (3) the size and differential abundance ratio of DA cell popula-
tions can vary between datasets. Finally, a practical DA testing method should be com-
putationally efficient, such that it can be readily applied to single-cell datasets containing 
more than 100,000 cells. Hence, we ran a series of experiments to evaluate and com-
pare the performance of DA testing methods in various configurations and to see if they 
are capable of handling the challenges above. Furthermore, we also carried out studies 
to examine the sensitivity of results with respect to the input hyperparameters. This 
is crucial because, in practical applications, it might be difficult for users to specify an 
appropriate hyperparameter as input for a new given dataset without some background 
knowledge (see the “Hyperparameter tuning and sensitivity” section). In our implemen-
tation, the hyperparameters were tuned as suggested in the original work. For specific 
hyperparameter values used in our experiments, refer to Additional file 1: Table S2.

DA testing performance on synthetic datasets

First, the DA testing methods were evaluated on three synthetic datasets, referred to 
throughout the text as linear, branch, and cluster (see Additional file  1: Fig. S1). Fig-
ure 3 and Additional file 1: Tables S3  and S4 show the performance of the six DA test-
ing methods on the three synthetic datasets and generally show how the performance 
changes with respect to DA ratios. On the synthetic datasets, we represented each 
individual high-dimensional cell in terms of its top 50 principal components (PCs) and 
systematically evaluated performance across varying DA ratios, target cell populations, 



Page 6 of 22Yi et al. Genome Biology            (2024) 25:9 

and random seeds. When comparing the performance of the DA testing methods, we 
unsurprisingly observed that the accuracy of all DA methods as evaluated with AUROC 
and AUPRC increased consistently as the DA ratio increased from 0.75 to 0.95 across 
the three datasets. This suggests that a higher DA ratio leads to a simpler and less-noisy 
DA testing problem (Fig. 3). To quantify the performance of each method, we evaluated 
both AUROC and AUPRC scores, averaging the median results across all DA ratios. The 
average AUROC scores for DA-seq, Meld, Milo, Cydar, Cna, and Louvain on the lin-
ear dataset were 0.91, 0.98, 0.98, 0.96, 0.93, and 0.97, respectively, while their respective 
AUPRC scores were 0.75, 0.92, 0.91, 0.88, 0.67, and 0.47 (Additional file 1: Tables S3 and 
S4). On the linear dataset, when considering the AUROC metric, all the six methods 
are very effective for predicting DA cell populations. When examining the AUPRC met-
ric, it is notable that Meld, Milo, and Cydar maintained their scores around 0.9, while 
other methods dropped their performance significantly. DA-seq demonstrated AUPRC 
scores below Meld, Milo, and Cydar but superior to Cna and Louvain. Similar patterns 
were also observed in the branch dataset (Fig. 3B). The average AUROC scores for DA-
seq, Meld, Milo, Cydar, Cna, and Louvain on the branch dataset were 0.90, 0.96, 0.96, 
0.93, 0.87, and 0.91, respectively, while their respective AUPRC scores were 0.73, 0.85, 
0.83, 0.79, 0.56, and 0.44 (Additional file 1: Tables S3 and S4). Noting that the DA testing 
methods provided similar performance and relative performance rankings on the lin-
ear and branching datasets, we hypothesize that this was due to their similar differential 
trajectories.

Fig. 3 Performance of the six DA testing methods for DA prediction on the three synthetic datasets (linear 
(A), branch (B), and cluster (C)) with a range of DA ratios (0.75, 0.85, and 0.95) in the target DA cell population. 
The boxplots represent the distributions of AUROC and AUPRC scores for various target DA cell populations 
across multiple random seeds. #points represents the number of points for each boxplot
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On the cluster dataset, the averaged AUROC scores for DA-seq, Meld, Milo, Cydar, 
Cna, and Louvain were 1.00, 1.00, 1.00, 0.98, 0.93, and 1.00, respectively, while the cor-
responding AUPRC scores were 0.99, 1.00, 0.95, 0.97, 0.79, and 0.50. (Fig. 3C). Since the 
cluster dataset has a simpler topology, the performance of all the methods was better 
than their results on the linear and branch datasets. When examining the distribution 
of AUROC scores across various target DA cell populations, we found extremely high 
variance, especially for DA ratios of 0.75 or 0.85. In addition, the imbalanced distribu-
tion of AUROCs (high median value and variance) in Fig. 3C revealed that the DA test-
ing methods performed very poorly in a small subset of the experiments. To further 
explore this, we visualized boxplots of AUROC scores for each target DA cell popula-
tion on the cluster dataset (Additional file 1: Fig. S3). This suggested that the DA testing 
methods perform well and consistently when the target DA population is M1 cell type or 
M3 cell type, whereas for the M2 population (Additional file 1: Fig. S3A), all the meth-
ods had a significant drop in performance compared to M1 and M3. To understand this, 
we checked the predictions and found that the DA testing methods generate more false 
negative results when M2 is the target DA population. Since the M2 population con-
tained significantly more cells than the M1 and M3 populations, we hypothesized that 
this is due to the heterogeneity of DA effects in the M2 populations.

To validate our hypothesis, we implemented a subsampling technique to reduce the 
M2 population and subsequently conducted another experiment using a balanced clus-
ter dataset. When the target DA population was M2 on the balanced cluster dataset, 
the performance of each method was greatly improved (Additional file 1: Fig. S3B). Fur-
ther comparisons with results from the initial cluster dataset (Additional file 1: Fig. S3A) 
revealed a notable reduction in the variance of AUROC scores across the M1, M2, and 
M3 target populations within the balanced dataset. Our experiments thereby revealed 
that the DA testing methods tend to prioritize local differential abundance. If faced with 
a large DA cell population exhibiting heterogeneous DA effects, these methods might 
struggle with accurately determining the entire cell population as differentially abundant.

DA testing performance on scRNA‑seq and CyTOF Datasets

Next, we used two scRNA-seq (COVID-19 PBMC and Human Pancreas) and two 
CyTOF (BCR-XL and Levine32) datasets to benchmark DA testing methods in real 
single-cell datasets. Consistent with the patterns observed in the synthetic datasets, 
we also observed that the performance of all methods improved steadily as the DA 
ratio increased (Additional file 1: Tables S5  and S6). Similarly, the variance of AUROC 
scores also decreased as the DA ratio increased across datasets for all methods except 
for Cydar. This showed that, similar to the patterns observed in the synthetic dataset, 
the DA ratio can significantly affect the performance and stability of the DA testing 
methods. The averaged AUROC and AUPRC scores across the six DA testing meth-
ods and real datasets were shown in Fig. 4 and Additional file 1: Tables S5 and S6. For 
AUROC scores, all the methods achieved strong overall performances and Meld was 
ranked first across the datasets, followed by Milo, Louvain, DA-seq, Cna, and Cydar. 
Milo and Louvain performed similarly, and DA-seq and Cna also performed similarly. 
For AUPRC scores, Meld was ranked first among the six DA testing methods and across 
the real datasets as well, surpassing Milo, DA-seq, Cna, Cydar, and Louvain. Overall, the 
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methods’ performances and rankings remained consistent in both the synthetic and real 
single-cell datasets, demonstrating that their performances are independent of the data 
but are reflections of their own capabilities. For example, the performance of Meld and 
Milo were robust and both ranked top-2 on the synthetic and real datasets. In addition, 
all the methods showed a significant decrease in AUPRC scores on the real datasets, 
indicating that DA testing task is more difficult for real datasets. We also noticed that 
Cydar showed a considerable decrease in its AUROC score on the real datasets. This 
demonstrated that Cydar is not robust to the biases between synthetic and real datasets, 
or it may have been sensitive to changes in other factors, such as hyperparameters.

DA testing performance on datasets with additional technical and biological covariates

In addition to the clinical outcomes used in DA testing, such as clinical phenotype or 
disease status, single-cell datasets are often affected by additional technical and biologi-
cal factors, such as batch effects, donor type, and cell cycle artifacts. These undesirable 
variables provide additional variance in the data and can confound the biological vari-
ations in the subsequent analysis, resulting in more false positives. In this subsection, 
we examine how the performance of DA testing methods changes when batch effects 
are present in the data, as well as how each DA testing method particularly accounts for 

Fig. 4 Performance of the six DA testing methods for DA prediction on the four real single-cell datasets with 
a range of DA ratios (0.75, 0.85, and 0.95) across the target DA cell types. The bar plots represent the AUROC 
(A) and AUPRC scores (B) for different target DA cell types evaluated over different random seeds
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additional covariates, such as batch effects. Out of the six DA testing methods, Cydar, 
Milo, Cna, and Louvain can explicitly include such external variables into their testing 
models to account for variance, whereas DA-seq and Meld do not. Following the pro-
cedure in Ref. [5], we simulated batch effects with a variety of magnitudes and added 
them to the three synthetic datasets. We then evaluated the performance of the six DA 
testing methods on the synthetic datasets containing batch effects (Fig. 5). To exclude 
impact from different hyperparameters, we used the same hyperparameter values that 
were used when no batch effects were present. Overall, the results demonstrated that all 
DA methods exhibited poorer performance when batch effects were present in the data, 
in comparison to batch-effect free data, as exhibited by a decline in AUROC scores with 
increasing magnitude of batch effects (Fig. 5). The imbalance of class labels in our pre-
diction task (Fig. 5) potentially skewed classification thresholds, which further worsened 
the performance of some methods (e.g., Cydar) with AUROC scores < 0.5. This showed 
that technical artifacts such as batch effects had a significant adverse effect on the qual-
ity of DA testing methods. Of the six DA testing methods, Milo consistently performed 
the best over a range of batch effect magnitudes. Despite no explicit implementation 
to include batch labels in their models, DA-seq and Meld were inferior to the perfor-
mance of Milo but comparable to other methods like Cna and Louvain. We also noticed 
a strong negative link between how well DA-seq and Meld worked and how strong 
the batch effects were (Fig. 5). Cydar, Cna, and Louvain were the weakest methods for 
handling batch effects as their performances were affected by even slight batch effects. 
Moreover, in Fig. 5A, Louvain and Cydar did not exhibit significantly improved perfor-
mance when decreasing batch effect magnitude, suggesting a varying sensitivity to batch 
effects among different methods. Since we used the same hyperparameters across orders 
of batch effect magnitude in Fig.  5 for each method, this unexpected trend for Cydar 
and Louvain can also be attributed to their high sensitivity to hyperparameter choice. 
Moreover, this observation is consistent with our results in “Hyperparameter tuning and 
sensitivity” section.

In addition, we conducted a second experiment to examine whether incorporating 
batch labels into the models could improve the performance. In this experiment, we 

Fig. 5 Performance of the six DA testing methods in identifying differentially abundant cell-types in three 
synthetic datasets (linear (left), branch (middle), and cluster (right)) with batch effects of varying magnitudes 
(from 0 to 1.5). When batchSd=0, no batch effects are present. The boxplots represent the AUROC scores 
for different target DA cell populations, DA ratios, and random seeds. #points represents the number of 
points for each boxplot
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applied Cydar, Milo, Cna, and Louvain on synthetic datasets using two different setups. 
In the first setup, batch labels were included in the models, whereas in the second setup, 
they were omitted. Additional file  1: Fig. S5 illustrated the performance of these four 
approaches with or without inclusion of batch information. We discovered that, with 
the exception of Cydar, explicitly modeling batch effects can greatly enhance the perfor-
mance of DA testing procedures in datasets with prominent batch effects. Furthermore, 
these experiments demonstrated that it is crucial for DA testing procedures to account 
for the variance introduced by additional technical and biological factors in order to pro-
duce accurate and meaningful results.

Runtime efficiency and scalability of DA testing methods

Next, we evaluated the runtime efficiency and scalability of the six DA testing meth-
ods. We measured the execution time of each method on the four real datasets using 
the tuned hyperparameters. In the CyTOF datasets containing over 200,000 cells, all 
methods were able to finish running within a few hours (Fig. 6A). Additionally, some of 
the DA testing approaches with even higher efficiency, such as Cydar, Cna, and Louvain, 
only took a few minutes. Thus, we proved that efficiency is not a limiting factor for any 
of the six DA testing methods when applied to the vast majority of single-cell datasets. 
Noting that wall-clock runtime depends on numerous factors such as algorithm com-
plexity, hyperparameters, and computing infrastructure, it cannot objectively and com-
pletely reflect the scalability of the DA testing methods. As a result, we conducted an 
additional experiment to quantify the scalability of the DA testing techniques by evaluat-
ing the relative runtime growth rate as the number of cells increased. We simulated six 
single-cell datasets with increasing numbers of cells (4k, 10k, 15k, 30k, 50k, and 100k) 
using the splatter [18] package. To specifically evaluate the runtimes of the core 
components of the DA methods without the variable times required for hyperparameter 
selection, we used default hyperparameters for all datasets. We quantified how well each 
method scaled by calculating the relative runtime growth with respect to the runtime 

Fig. 6 Runtime efficiency and scalability of the six DA testing methods. A Runtime of the six DA testing 
methods on the four real single-cell datasets. The error bars reflect the standard deviation of runtime across 
various target DA cell populations, DA ratios, and random seeds. The execution times were measured on the 
nodes of a cluster with Intel Xeon E5-2680 v3 CPUs and 256GB RAM. B Relative runtime growth ratio of the 
six DA testing methods on the single-cell datasets as a function of an increasing number of cells (4k, 10k, 
15k, 30k, 50k, and 100k). The runtime of the smallest dataset was used to normalize the runtimes of the larger 
datasets
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on the smallest dataset with 4k cells for various data sizes. Figure 6B shows the relative 
runtime growth as a function of the number of cells in each dataset. Among the six DA 
testing methods, we discovered that Cna was the most scalable, while Louvain and Meld 
were the least scalable. The scalability of DA-seq, Milo, and Cydar fell between Cna and 
Meld, with Cydar being marginally superior to Milo and DA-seq. Notably, the majority 
of the runtime of the six approaches was spent either counting cells across conditions in 
cell neighborhoods or building the cell-to-cell graph across samples.

Hyperparameter tuning and sensitivity

We further evaluated the hyperparameter tunability and sensitivity of the six DA testing 
methods. Hyperparameters are crucial to the performance of machine learning meth-
ods and the best way to identify the optimal hyperparameters is through a line or grid 
search in hyperparameter space, which takes a lot of time and computational resources. 
In general, machine learning models with fewer hyperparameters are easier to tune. Fur-
thermore, if a machine learning model’s performance is sensitive to its hyperparameters, 
it is challenging to identify the best hyperparameters, hence making the model’s per-
formance unstable. Thus, here we examined two major criteria impacting the hyperpa-
rameter tuning, including the number of hyperparameters and the overall sensitivity of 
hyperparameters. The number of hyperparameters reflects how easily a method can be 
tuned, and sensitivity of hyperparameters measures how stable the DA testing method is 
overall. Milo and Cna only have one hyperparameter, k, which is the number of k-nearest 
neighbors to use in the graph-representation of the data. Alternatively, DA-seq, Meld, 
Cydar, and Louvain have more hyperparameters (Additional file 1: Table S5). As a result, 
the hyperparameters of Milo and Cna are easier to tune than those of DA-seq, Meld, 
Cydar, and Louvain.

To test the hyperparameter sensitivity of each DA testing method, we evaluated their 
performance for predicting DA cells on three synthetic datasets (linear, branch, and 
cluster) and on the COVID-19 PBMC scRNA-seq dataset by altering their hyperparam-
eters. Since Meld, Milo, Cna, and Louvain all share a common hyperparameter, k, we 
fixed k and solely tested the hyperparameter sensitivity relative to the other parameters 
in order to control variable. In contrast to other methods, DA-seq employs a range of 
hyperparameters k = [k1, . . . , kl] to generate k-nearest neighbor graphs. We altered the 
hyperparameters of DA-seq by replacing k1 with the same k used in the other methods, 
while varying the step size between ki and ki+1 . The boxplots in Fig. 7 visualize the vari-
ation in performance of DA-seq, Meld, Cydar, and Louvain, with each dot representing 
a run with specific hyperparameters. First, DA-seq had the lowest overall hyperparam-
eter sensitivity, indicating that users do not need to modify its hyperparameters exces-
sively for practical applications. Second, although having somewhat higher variance than 
DA-seq, Meld’s performance did not show significant variance. Cydar and Louvain, on 
the contrary, consistently had high variance in their performances across all datasets. 
These experiments suggested that Cydar and Louvain are hyperparameter-sensitive. 
The rationale for Cydar’s high hyperparameter sensitivity is that finding an appropriate 
radius in high-dimensional space is inherently difficult, as data points become sparser 
as the dimensionality increases [19]. Louvain’s strong hyperparameter sensitivity is pri-
marily due to the resolution parameter, which ultimately controls the number of clusters 
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identified. Taken together, it is crucial to identify the optimal hyperparameters for Cydar 
and Louvain for real-world application to ensure their robust performances across all 
settings.

Discussion
In this work, we evaluated and compared six prominent single-cell DA testing meth-
ods for resolving cell populations in response to external variables, such as clinical 
phenotype or experimental perturbation. Our benchmarking workflow was designed 
to cover as many realistic applications of DA testing scenarios as possible, including 
diverse single-cell data types, various data topologies, and the existence of technique-
induced biases. In our experiments, we assessed the DA testing methods using both 
synthetic and real single-cell datasets with distinct topological structures. In addi-
tion, simulated batch effects were generated and applied to the datasets to assess the 

Fig. 7 Hyperparameter sensitivity of the six DA testing methods. Performance of the four DA testing 
methods (DA-seq, Meld, Cydar, and Louvain) on the three synthetic datasets and the COVID-19 scRNA-seq 
dataset with a range of DA ratios (0.75, 0.85, and 0.95) in the target DA cell population. The boxplots show 
(e.g., each data point) the distribution of AUROC scores across various hyperparameters. High variance 
implies sensitivity to choice of hyperparameters. #points represents the number of points for each boxplot



Page 13 of 22Yi et al. Genome Biology            (2024) 25:9  

robustness of DA testing methodologies. Thus, our benchmarking strategies offered a 
thorough, quantitative evaluation of the DA testing methods. We evaluated the per-
formance of each method by calculating AUROC and AUPRC scores to quantify the 
similarity between predicted and established ground-truth DA labels. By objectively 
comparing the performance of the six DA testing approaches on a variety of tasks, we 
determined that no single method outperformed the others across the board. In other 
words, the appropriate selection of DA testing methods depends on properties of the 
data and ultimate task of interest (e.g., the existence of batch effects). In the discus-
sion that follows, we summarize our experimental findings for each given task.

The majority of the DA testing methods examined in our work, particularly Meld, 
Milo, and Cydar, demonstrated consistently strong accuracy across datasets and DA 
ratios for identifying DA cell types in synthetic datasets (Fig. 3 and Additional file 1: 
Tables S3 and S4). Meld performed the best across all approaches in the single-cell 
datasets, but Milo also attained satisfactory accuracy. When additional technical chal-
lenges, such as batch effects were present in the datasets, Milo was the most effective 
at correcting them and reducing their negative impacts on testing accuracy. In addi-
tion, we demonstrated that including batch labels in a DA testing model enhanced 
performance in comparison to not including them. As for runtime efficiency and 
overall scalability, all methods can successfully complete their workflows on typi-
cally sized scRNA-seq and large CyTOF datasets using standard CPUs in a few hours. 
Finally, we looked at the sensitivity and usability of the hyperparameters used in the 
DA testing methods. While Milo required tuning of the fewest hyperparameters, 
DA-seq and Meld were robust to the selection of hyperparameters. Furthermore, our 
benchmarking evaluations identified a common problem across the majority of DA 
testing methods. In particular, all methods performed poorly, even on simple data-
sets, when a substantial imbalance of cells existed between cell-types. Our hypothesis 
is that such behavior is caused by local DA heterogeneity in a large cell population. 
As this issue is seemingly complex, we leave a more in-depth analysis of this phenom-
enon across methods and datasets to our future work.

Conclusion
Based on our thorough benchmarking analyses, the following are our general sugges-
tions for the usage of DA testing methods in practice (Additional file  1: Table  S7). 
First, we observed that Meld is the most accurate methods overall when there is no 
substantial technical noise, such as batch effects. Moreover, in the event of techni-
cal or biological noise, Milo performs better on average than Meld. Our experiments 
further suggested that Milo, Cydar, Cna, and Louvain are all viable candidates for 
robustly identifying DA cell-populations, while controlling the false discovery rate. 
Milo, DA-seq, and Meld either have the fewest hyperparameters or are insensitive 
to hyperparameter changes. Therefore, they are the robust strategies for performing 
DA testing on a new dataset. Lastly, for large single-cell datasets with many cells, we 
found Cna to be the most scalable method. The presented benchmarking study has 
hopefully revealed some critical insights to help users in selecting the optimal differ-
ential abundance approach for their specific datasets.
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Methods
Datasets and data pre‑processing

Synthetic datasets

For the comparison of DA testing performance, we generated raw count matrices 
for each of the three synthetic single-cell datasets with different topological struc-
tures, including linear trajectories, branching trajectories, and discrete clusters using 
the generate_dataset() function in the R package dyntoy [20]. Each data-
set included six samples from a simulated experiment with three replicates (R1, R2, 
and R3) and two experimental conditions (C1 and C2). Each dataset varies in their 
number of total cells. For example, the linear and branch datasets contain 7500 cells 
and 500 genes, whereas the cluster dataset contains 2700 cells and 500 genes. For the 
comparison of runtime efficiency and scalability, we simulated six single-cell datasets 
with increasing numbers of cells (4k, 10k, 15k, 30k, 50k, and 100k) using the splat-
Simulate() function in the splatter [18] package.

Real datasets

COVID‑19 PBMC Dataset The COVID-19 PBMC dataset is a scRNA-seq dataset gen-
erated by profiling 44,721 peripheral blood mononuclear cells (PBMCs) from seven hos-
pitalized COVID-19 patients, four of whom had acute respiratory distress syndrome, 
and six healthy controls [7]. Considering that one of the patients was sampled twice, 
this dataset contains 8 samples with COVID-19 symptoms and 6 healthy controls. In 
addition to basic clinical outcomes, this dataset contains information regarding the 
COVID-19 illness trajectory of each patient, such as, severity classification at the time of 
admission (ICU/Floor), ventilation status, etc. In the original study (Ref. [7]), the authors 
investigated the changes in cell type proportions between the COVID-19 samples and 
the healthy controls and revealed that case severity was associated with the depletion or 
expansion of several canonical immune cell-types, including developing neutrophils and 
plasmablasts. Therefore, the intended use of this dataset was to examine the efficacy of 
different DA testing approaches for identifying differentially abundant cell-populations.

Human Pancreas Dataset The Human Pancreas dataset is a scRNA-seq dataset, where 
samples were collected from pancreatic tissue and cultured islets of six healthy and four 
Type 2 diabetes donors [16]. For our benchmarking purposes, we exclusively used cells 
from the healthy donors, which resulted in a dataset of 1,597 cells. This dataset is pre-
dominantly comprised of five distinct endocrine cell types: α cells (secreting glucagon, 
GCG), β cells (insulin, INS), γ/PP cells (pancreatic polypeptide, PPY), δ cells (somatosta-
tin, SST), and ǫ cells (ghrelin, GHRL).

BCR‑XL CyTOF Dataset The BCR-XL dataset presented in Ref. [14] is comprised 
of 172,791 human PBMCs collected across 16 CyTOF samples, eight of which were 
stimulated with B cell receptor/Fc receptor cross-linker (BCR-XL) with the remain-
ing being case controls. Cells in this dataset belong to one of eight manually-gated cell 
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populations, including B-cells IgM-, B-cells IgM+, CD8+ T-cells, CD4+ T-cells, DC, 
surface-cells, NK cells, and monocytes.

Levine32 CyTOF Dataset This is a CyTOF dataset originally introduced in Ref [15], 
containing 265,627 healthy human bone marrow mononuclear cells (BMMCs) sourced 
from two healthy individuals. In this dataset, 14 distinct cell populations were manually 
gated based on 19 out of the 32 measured surface protein markers.

Data Pre‑processing For all the scRNA-seq datasets, we first normalized the raw 
count matrices using a log+1 transformation. Then, we projected the normalized gene 
expression data into principal component (PC) space and embedded the data into the 
manifold approximation and projection (UMAP) [21] space using the top-50 PCs. In our 
analysis of the COVID-19 PBMC dataset, we directly utilized the previously processed 
data introduced in Ref. [7], whose processing procedures adhered closely to best prac-
tices for the analysis of single-cell data [22]. In addition to the data, the authors also pro-
vided embeddings for each cell according to both PCA and UMAP. The PC embeddings 
were generated using the normalized data of the highly variable genes and the UMAP 
embeddings were constructed using the top 50 PCs. In all the CyTOF datasets, we nor-
malized all protein expressions with an arcsinh transformation with a cofactor of 5, as 
suggested in Ref. [23].

Generation of ground‑truth DA labels For all the synthetic and real datasets, we gen-
erated ground-truth DA labels as follows. First, we selected one of the cell populations 
as the target population to exhibit differential abundance between the two experimen-
tal conditions (conditions denoted by C1 and C2) , and further considered the remain-
ing cells as background. Next, following the same pipeline introduced in Ref. [5], we 
assigned a given cell, i, represented as xi , a probability P(C2)i of being generated under 
condition C2 as,

Here, wi represents the logit-transformed weighted distance between a cell xi and the 
centroid of the target cell population. A cell xi that is closer to the centroid of the target 
cell population will result in a higher value of wi , thereby leading to a larger value of 
P(C2)i . The parameter pDA denotes the maximal enrichment of condition C2 within the 
target cell population, thereby illustrating the magnitude of the differential abundance 
effect, or DA ratio. Given equation (1), a P(C2)i value of 0.5 indicates no differential 
abundance, while a value greater than 0.5 suggests a higher abundance of the cell in con-
dition C2. Lastly, we assigned the ground-truth DA label oi to each cell based on the 
simulated probability:

(1)P(C2)i =
wi −min(wi)

max(wi)−min(wi)
(pDA − 0.5)+ 0.5.

(2)
oi = NegLFC (enriched in C1), if P(C2)i < t

oi = PosLFC (enriched in C2), if P(C2)i > 1− t

oi = NotDA,Otherwise.
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Here, the threshold t is calculated based on the proportion of the target cell popula-
tion within the entirety of the dataset. Visual depictions for each synthetic dataset can be 
found in Additional file 1: Fig. S1.

Simulation of batch effects To simulate batch effects, we first randomly assigned cells 
across samples to two simulated batches (B1 and B2). Subsequently, a Gaussian random 
vector was sampled and integrated (added) into the principal component (PC) profile of 
every cell within each batch. To simulate varying intensities of batch effects, we adjusted 
the standard deviation (denoted by batchSd) of the Gaussian vector in 0.25 increments, 
ranging from 0.75 to 1.5.

Differential abundance (DA) testing methods

Problem formulation

We define a sample Xn×p = (x1, . . . , xn)
⊤ to be the normalized gene or protein expres-

sion matrix with n cells and p measured features, where xi = (x1i, . . . , xpi)
⊤ is the feature 

vector for cell i. Given a collection of N samples {Xk}Nk=1 profiled from N individuals 
(donors), with a particular sample i associated with a clinical or experimental label yi , 
the goal of DA testing is to identify a subset of cells exhibiting differential abundance 
(density) in response to the labels encoded (e.g., using the yi s for each individual i) across 
the samples. This DA testing problem can alternatively be stated as a density estimation 
problem [19]. In this case, each experimental condition can be viewed as a primary dis-
tribution, and the objective of DA testing is to detect cells with relatively lower or higher 
densities under each label or condition. In this subsection, we describe all of the bench-
marking methods in this study. For a more detailed introduction about the DA testing 
methods, please refer to their respective original papers [1, 3–6, 17].

Cydar

Cydar [1] is a statistical testing approach developed to identify cell populations in sin-
gle-cell mass cytometry datasets with a differential abundance of particular cell-types 
between conditions. Cydar’s central idea is to construct hyperspheres in the multi-
dimensional marker space as local units to test if the number of cells among samples 
in each hypersphere is related to external labels, such as clinical or experimental out-
comes. Given an N-sample single-cell dataset measuring p markers in each cell, Cydar’s 
testing pipeline works as follows: (1) Cydar randomly samples a subset of cells from the 
entire dataset and uses these cells as the centers of hyperspheres to allocate cells from 
all samples to the hyperspheres; (2) Cydar then counts the number of cells assigned to 
each hypersphere in each sample, resulting in an N-dimensional abundance vector; (3) 
next, Cydar employs the negative binomial generalized linear models (NB-GLMs) in 
the edgeR package [24] to perform statistical testing on these count data with respect 
to clinical outcomes and other informational covariates and assigns a P-value to each 
hypersphere; (4) lastly, Cydar identifies the statistically significant hyperspheres as DA 
regions by controlling the spatial false discovery rate (FDR), a weighted form of FDR that 
regulates FDR across volume, at a predetermined threshold α . Here, Cydar applies the 
Benjamini-Hochberg (B-H) procedure [25] to calculate the maximum P-value needed to 
keep a hypersphere below the spatial FDR threshold α , which is defined as,
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Here, n is the number of hyperspheres, p(1) < p(2) < . . . < p(n) provides an ordering 
of the P-values of the hyperspheres and w(l) is defined as the weight of hypersphere l, 
which is the reciprocal of the density of hypersphere l. In our benchmark, Cydar v1.18 
(http:// bioco nduct or. org/ packa ges/ cydar) was applied across all the experiments.

DA‑seq

In DA-seq [3], a logistic regression classifier is used to compute a local DA score for each 
cell so that DA subpopulations can be identified. The logistic regression classifier creates 
feature vectors for each cell, which reflect the abundance of two biological conditions in 
the area around each cell at different scales. Using the labels of the samples from which 
the cells originated, DA-seq trains a logistic regression model. The fitted probability is 
then used as the DA score for each cell. In this case, the trained logistic regression model 
serves as a smoothing function that transforms a cell’s input feature vector to its cor-
responding soft DA score. Next, DA-seq uses a random permutation test to find statisti-
cally significant DA cells in the dataset. The upper and lower cut-off thresholds are based 
on the highest and lowest DA scores inferred under the null hypothesis that the condi-
tion labels are distributed randomly. In our experiments, we used the official DA-seq 
implementation, which can be accessed at https:// github. com/ Kluge rLab/ DAseq.

Meld

Meld [4] is a graph-based kernel density estimation method. It is used to estimate the 
likelihood of a sample (in this case, a cell) under various experimental perturbations. 
Inspired by the recent success of applying manifold learning techniques to single-cell 
data visualization [21, 26, 27], Meld extends kernel density estimation (KDE) from 
the regular spatial domain to a manifold represented by a cell-by-cell similarity graph 
denoted by G = (V ,E) . Here, Meld requires two steps to obtain the edge weights in G . 
First, the Euclidean distance between cells is calculated for a pair of cells, (i, j). Next, the 
weight (similarity) between a cell pair (i, j) by feeding their distance to some predefined 
kernel functions, such as the α-decaying kernel [27] or the MNN kernel [28].

The Meld algorithm interprets the cell label as a signal across the cell-cell similarity 
network. It employs a low-pass graph filter [29] to denoise the node labels across the 
graph and uses the smoothed label as the DA score measurement for each cell. Not-
ing that this graph filtering step is performed independently on each condition, the 
smoothed condition labels for each cell must be normalized (summed to 1) in order to 
derive the conditional label associated likelihood. For experiments with several experi-
mental and control replicates, the Meld algorithm must be applied to each replicate 
separately, and the DA scores therefore must be averaged across replicates. Meld uses a 
heuristic strategy to choose DA cell subpopulations by setting a threshold on the per-cell 
likelihoods to determine whether a cell is in a zone where a certain label is more or less 
abundant. We used the Meld python package, which can be accessed at https:// github. 
com/ Krish naswa myLab/ MELD.

(3)max
i

p(i) : p(i) ≤ α

i
l=1 w(l)
n
l=1 w(l)

.

http://bioconductor.org/packages/cydar
https://github.com/KlugerLab/DAseq
https://github.com/KrishnaswamyLab/MELD
https://github.com/KrishnaswamyLab/MELD
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Cna

Cna, or “co-varying neighborhood analysis,” identifies phenotype-associated cell pop-
ulations by examining cell neighborhoods that co-vary in abundance with respect to 
certain sample covariates, such as experimental treatment or clinical outcome. Simi-
lar to Meld, the Cna approach begins by constructing a k-nearest neighbor graph of 
cells across all samples. Cna adopts the scanpy.pp.neighborhood() function 
from the scanpy package to encode the neighborhood associations between cells 
into a sparse weighted adjacency matrix A . Next, Cna uses a random walk to calculate 
the likelihood that the m′-th cell is in the neighborhood of the m-th cell. Formally, 
this is given by

Here, s represents the steps of random walk, em and em′ are the indicator vector 
defined at indices m and m′ , respectively, and Ã is the random-walk Markov matrix with 
self-loops, whose entries are computed as,

Here, I is an identity matrix and A is the weighted adjacency matrix that is com-
puted in the graph building step. Letting c(n) denote the cells from sample n, then Rn,m 
is the expected number of cells that would arrive at the neighborhood of the m-th cell 
after s steps of random walking beginning from sample n. Formally, this is calculated 
via Rn,m =

∑

m′∈c(n) P
s
m′→m . Cna further defines the neighborhood abundance matrix 

(NAM) Q ∈ R
n×m by normalizing the rows of R (summed to 1), where

Once the NAM is defined, Cna tests its association with a known sample-level covari-
ate y using a linear regression model. The linear model is formally defined as,

Here, Uk represents the first k columns of Q ’s left matrix of singular vectors U , βk is 
the vector of coefficients, and ǫ denotes zero-mean Gaussian noise. Thus, the P-value is 
calculated using a multivariate F-test for a range of ks, such that the one attaining the 
smallest P-value is ultimately selected. To identify the differentially abundant neighbor-
hoods, Cna computes a “smoothed correlation” between each neighborhood m and the 
sample-level covariate y . The smoothed correlation is mathematically defined as,

Here, k⋆ denotes the optimal number of singular vectors (e.g., components) deter-
mined by the multivariate F-test, Vk⋆ is the first k⋆ columns of Q ’s right singular vector 
matrix, Dk⋆ is the top-left k⋆ × k⋆ submatrix of Q ’s singular vector matrix, and βk⋆ is the 
coefficient vector defined in (7). To assess the statistical significance, the null distribu-
tion of γ is obtained by fitting (7) using different permutations of y . Lastly, the DA cell 

(4)Ps
m′→m :=

(

em′
)⊤

Ãsem.

(5)Ãm′,m :=
(I+ A)m′,m

1+�m′′A·,m′′

.

(6)Qn,m =
Rn,m

�mRn,m
.

(7)y = Ukβk + ǫ.

(8)γ := Vk⋆Dk⋆βk⋆ .
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sub-populations are determined by a given FDR threshold for γ . The Cna approach is 
implemented in python and is available at https:// github. com/ immun ogeno mics/ cna.

Milo

As an improved version of Cydar, Milo also uses NB-GLMs to test DA cells in single-cell 
datasets but replaces the hypersphere in Cydar with cell neighborhoods from the cell-
cell similarity graph. Here, the neighborhood of a cell ci is defined as the set of first order 
neighbors (including ci itself ) in a kNN graph created by the findKNN() function in the 
BiocNeighbors package. After counting the number of cells in the neighborhoods of 
several samples, Milo employs the same statistical testing pipeline with edgeR as Cydar, 
except that the testing unit is a cell-neighborhood instead of a hypersphere. To reduce 
complexity, Milo samples only a small proportion (by default, 0.1) of cell neighbors to 
find DA neighborhoods. As various cell neighborhoods may share certain cells in the 
kNN graph, it is vital to highlight that a cell neighborhood must propagate its DA score 
to each of its respective cells. Hence, the DA score of a tested cell is ultimately deter-
mined by adding the DA scores of all the cell neighborhoods to which it belongs. In this 
work, we used the R-based implementation of Milo (https:// github. com/ Mario niLab/ 
miloR), as suggested by the authors.

Louvain

The Louvain algorithm [17] is a cluster-based approach for DA testing. Unlike other 
more granular approaches, which are performed on single cells [3, 4], hyperspheres [1], 
and cell neighborhoods [5, 6], Louvain’s results are typically coarser, operating on a clus-
ter level, and hence can only determine whether a cell cluster is a DA region or not. In 
other words, if a cell cluster is determined to be a DA cluster, all cells insides this cluster 
become classified as DA cells with identical DA scores. The Louvain method is imple-
mented as follows: (1) a kNN graph or cell-to-cell similarity graph is constructed, (2) the 
Louvain algorithm partitions the graph into clusters [17] (implementation provided by 
the cluster_louvain() function in the R package igraph [30]), and (3) apply the 
statistical framework of Milo [5] to identify DA cell-populations. Note that the Louvain 
approach does not implement DA-score aggregation step introduced by Milo and there-
fore produces solely non-overlapping cell clusters.

Evaluation and metrics

Evaluating and comparing the performance of the various DA testing methods is non-
trivial due to their variable testing procedures for identifying and quantifying the sig-
nificance of DA cells. Cydar, Milo, and Cna, for instance, employ traditional statistical 
testing measures like FDR and spatial FDR to detect DA cell populations, whereas 
DA-seq and Meld use a conditional probability threshold. Therefore, it is impossi-
ble to develop a uniform criterion that can be consistently applied to all methods. To 
eliminate the bias of selecting a distinct threshold for each approach, each method’s 
predicted labels were generated using a range of thresholds based on its own crite-
rion. To quantify overall classification performance, we compared predicted labels 
with ground truth labels that were generated through simulation for each cell and 
had three distinct categories: (1) enriched in C1 (NegLFC, negative log fold-change in 

https://github.com/immunogenomics/cna
https://github.com/MarioniLab/miloR
https://github.com/MarioniLab/miloR
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condition C2 vs. C1), (2) enriched in C2 (PosLFC, positive log fold-change in condi-
tion C2 vs. condition C1), and (3) not DA, respectively.

To generate a list of evaluation thresholds, we first calculated DA scores (FDR or 
conditional probability, depending on the approach) under each method. Next, for 
each method, we specified the thresholds using the values at different percentiles (by 
default: 0% to 100% with 1% increments) of its DA scores. We then used the false 
positive rate (FPR) and true positive rate (TPR), two binary classification metrics, to 
assess the performance of each approach for each threshold, yielding a list of FPR and 
TPR pairs. We treated both the PosLFC and NegLFC as the “positive” label of binary 
classification to account for the fact that there are three possible ground-truth labels. 
The FPR and TPR are defined respectively as,

Here, FP is the number of cells with false positive DA predictions, TN is the number 
of cells with true negative predictions, TP is the the number of cells with true positive 
predictions, and FN is the number of cells with false negative predictions. Finally, we 
connected the 2d-points of the FPR and TPR pairs sequentially with FPR plotted on 
the horizontal axis and TPR plotted on the vertical axis to construct receiver operator 
curves (ROC) and reported the area under ROC (AUROC) score as the overall per-
formance for each method. Similarly, we also calculated precision score and used the 
area under precision-recall (PR) curve (AUPRC) as another complementary metric.
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four real single-cell datasets, where the cells are colored by their annotated cell types. Figure S3. Performance of 
the six DA testing methods for DA prediction on the synthetic cluster dataset (A) and the balanced cluster dataset 
(B) with a range of DA ratios (0.75, 0.85, and 0.95) in the target DA cell populations (M1, M2, and M3). The boxplots 
represent the AUROCscores over different random seeds. Figure S4. Performance of the six DA testing methods for 
DA prediction on the synthetic cluster dataset (A) and the balanced cluster dataset (B) with a range of DA ratios (0.75, 
0.85, and 0.95) in the target DA cell populations (M1, M2, and M3). The boxplots represent the AUPRC scores over 
different random seeds. Figure S5. Performance comparison of DA testing methods by modeling or not mod-
eling batch effects. Performance of the four DA testing methods (Cydar, Milo, Cna, and Louvain) for DA prediction 
on the three synthetic datasets (linear (left), branch (middle), and cluster (right)) with batch effects of varying magni-
tudes (from 0 to 1.5), where the colors (orange and blue) indicate whether batch labels are utilized in the model. The 
boxplots represent the AUROC scores for different target DA cell populations, DA ratios, and random seeds. Table S1. 
The single-cell DA testing methods benchmarked in this study and their basic characteristics. Table S2. Hyperpa-
rameters of the six single-cell DA testing methods used on the single-cell datasets in the benchmarking experi-
ments. Table S3. The corresponding median AUROC scores in Figure 3 for the six DA testing methods on the three 
synthetic datasets (linear, branch, and cluster) with a range of DA ratios (0.75, 0.85, and 0.95). Table S4. The cor-
responding median AUPRC scores in Figure 3 for the six DA testing methods on the three synthetic datasets (linear, 
branch, and cluster) with a range of DA ratios (0.75, 0.85, and 0.95). Table S5. The corresponding median AUROC 
scores in Figure 4A for the six DA testing methods on the four real single-cell datasets with a range of DA ratios (0.75, 
0.85, and 0.95). Table S6. The corresponding median AUPRC scores in Figure 4B for the six DA testing methods on 
the four real single-cell datasets with a range of DA ratios (0.75, 0.85, and 0.95). Table S7. Overall suggestions for the 
usage of DA testing methods.
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