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Abstract 

Background: The cost-free increase in statistical power of using imputation to infer 
missing genotypes is undoubtedly appealing, but is it hazard-free? This case study 
of three type-2 diabetes (T2D) loci demonstrates that it is not; it sheds light on why 
this is so and raises concerns as to the shortcomings of imputation at disease loci, 
where haplotypes differ between cases and reference panel.

Results: T2D-associated variants were previously identified using targeted sequenc-
ing. We removed these significantly associated SNPs and used neighbouring SNPs 
to infer them by imputation. We compared imputed with observed genotypes, exam-
ined the altered pattern of T2D-SNP association, and investigated the cause of impu-
tation errors by studying haplotype structure. Most T2D variants were incorrectly 
imputed with a low density of scaffold SNPs, but the majority failed to impute even 
at high density, despite obtaining high certainty scores. Missing and discordant impu-
tation errors, which were observed disproportionately for the risk alleles, produced 
monomorphic genotype calls or false-negative associations. We show that haplotypes 
carrying risk alleles are considerably more common in the T2D cases than the reference 
panel, for all loci.

Conclusions: Imputation is not a panacea for fine mapping, nor for meta-analysing 
multiple GWAS based on different arrays and different populations. A total of 80% 
of the SNPs we have tested are not included in array platforms, explaining why these 
and other such associated variants may previously have been missed. Regardless 
of the choice of software and reference haplotypes, imputation drives genotype infer-
ence towards the reference panel, introducing errors at disease loci.

Background
Genotype imputation is a statistical technique that infers missing data by assigning 
the most likely genotypes for SNPs that have not been directly genotyped using a col-
lection of allelic combinations (haplotypes) from a very large number of individuals, 
known as the haplotype reference panel. This haplotype reference panel, typically from 
whole genome sequence, is then used to impute into the study panel at a subset of non-
genotyped SNPs by finding haplotype segments that are shared between the study and 
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reference panels. This popular technique has become a standard tool [1] in candidate 
gene studies, in genome-wide association studies (GWAS), and their meta-analysis, to 
maximise the number of SNPs which can be tested for association by overcoming the 
varied SNP coverage across studies. The wide acceptance of using imputed (in silico) 
SNPs is thus justified by the need to increase power through the substantial increase in 
marker density (typically using hundreds of thousands of genotyped SNPs in the study 
to impute millions of missing study SNPs in the final analysis) and the ability to meta-
analyse identical SNPs across different array platforms. But interrogating the contexts 
in which the accuracy of imputation is compromised requires closer investigation, since 
most studies that have examined imputation performance have considered genome-
wide error rate and focussed on ways to improve imputation errors by comparing differ-
ent software, data, and reference panels. But detailed investigations on the performance 
of imputation at specific gene regions or disease-associated loci in relation to haplotype 
structure are lacking.

We recently examined the impact of imputation in a chromosomal region under 
positive selection [2]. Variants within the region of the well-known lactase gene (LCT), 
which have become frequent in a limited number of modern populations due to selec-
tion, were studied by comparing imputed and directly observed genotypes. The majority 
of incorrectly assigned and failed genotype imputations in this context were observed to 
be a result of long haplotypes that are evolutionarily closely related to those carrying the 
derived alleles [2] but were also due to rare and recombinant haplotypes. We concluded 
not only that signatures of selection can decrease the accuracy of imputation but also 
that in most cases there was an allelic bias for the imputed and missing assignments.

Here, we investigate the impact of imputation on mapping disease susceptibility vari-
ants. The accuracy of imputation in association mapping of disease loci is of particu-
lar importance when interpreting GWAS results but also polygenic risk scores as they 
too are based on imputed SNPs. In addition, it is now well-known that association sig-
nals identified in European-GWAS show low reproducibility in other ethnic populations 
despite similar disease prevalence. Currently, imputation is used across the board, from 
the integration of multiple types of data for colocating signals, fine mapping of candidate 
genes, to plant and animal breeding studies [3] where genomic analyses for economically 
important traits are further complicated by the impact of long-term artificial selection.

Therefore, and following up from our previous work on imputation in relation to selec-
tion, studying the accuracy of imputation in the context of gene mapping is as topical 
as ever, and questioning the role of imputation from different and new perspectives is 
paramount. This study is motivated by the desire to (a) use a more realistic study design 
to investigate imputation by assigning multiple statistically significant markers ‘missing’ 
as opposed to masking one marker at a time, (b) to reconstruct haplotypes for the case–
control study panel and compare them with the haplotypes from the reference panel in 
order to identify how and why imputation errors arise, and (c) to use candidate disease 
loci as opposed to genome-wide data because differences in haplotype frequencies are 
expected to arise at disease loci and also because more accurate haplotypes can be deter-
mined for smaller regions  [4].

The three loci we are examining for imputation accuracy herein were chosen from 
our previously reported transethnic study [5] on type-2 diabetes (T2D) in Europeans 
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and African-Americans using a multi-SNP association method that obviated the need 
for imputation. Instead of reporting lead SNPs, this methodology directly estimates the 
locations of disease susceptibility variants on genetic maps with distances expressed in 
linkage disequilibrium units (LDU maps). Hence, the previous study [5] was powered by 
incorporating population-specific patterns of linkage disequilibrium (LD) in the asso-
ciation mapping analyses. Two of the three loci, ACTL7B and KCNK3, were selected 
for investigating imputation because they were first reported by us [5] but had not been 
identified in other GWAS, and in addressing why this might be the case, we speculated 
that associations might be missed through inaccuracy of imputation. The third locus, 
TCF7L2, was selected because it is a well-established and most potent T2D signal that 
we (without imputation) [5] and many others (with imputation) had identified. Hence, 
the latter is used as benchmark in the present imputation study. For all three loci, we 
are using previously available fine mapping data (targeted next-generation sequencing, 
NGS).

Results
Study data, reference panel and haplotypes

The performance of imputation was investigated using NGS data in T2D cases and con-
trols for the three T2D susceptibility loci, ACTL7B, KCNK3, and TCF7L2, with lengths 
of 40, 41, and 8 kb, respectively (Table 1). Andres et al. [4] have shown that phasing per-
formance is the most accurate with segments shorter than 50  kb making these three 
regions good candidates for investigating the impact of haplotype structure on the qual-
ity of imputation. Also, the SNP density used for this study is 3–5 times higher than 
standard SNP arrays that have been used in meta-analyses and even the more recent 
2.5-M SNP array (Table  1). The available NGS data of European ancestry have been 
previously reported elsewhere [5], and in the “Methods” section herein, but in brief, 
these included 92 T2D cases with a family history of T2D and 93 selected controls with-
out a history of T2D.

The total number of significant SNPs (P < 0.05) from all three gene regions with evi-
dence of association with T2D is 23. These associations are based on allelic χ2 tests for 

Table 1 Characteristics of the three gene regions studied. Total number of SNPs in the study 
panel includes the masked SNPs (23 T2D associated) and scaffold SNPs. The density of the study’s 
experiments is compared with the density of two second-generation genotyping platforms with 
approximately 1 and 2.5 million SNPs

Gene regions ACTL7B KCNK3 TCF7L2

Chromosome 9q 2p 10q

Genomic location in bp (B37) 111550543–111589986 26894433–26935356 114740628–
114748940

Distance in kb 39.4 40.9 8.3

Total SNPs in the NGS study (197) 118 59 20

Total significant T2D-associated SNPs (23) 7 8 8

Density (average number of SNPs per 1 kb)
 Our NGS study panel 3.0 1.5 2.4

 Affymetrix 6.0 1-M SNP array 0.7 0.3 0.5

 Illumina Omni 2.5-M SNP array 0.9 0.7 0.7



Page 4 of 17Lau et al. Genome Biology            (2024) 25:7 

each SNP in the real targeted NGS data (Table 1). The study investigated the perfor-
mance of genotype imputation by ‘masking’ these 23 significant SNPs (i.e. removing 
them from the data) and imputing them using the remaining NGS SNPs as ‘scaffolds’ 
via three experiments, as shown in the schematic Fig.  1A–C. Experiments 1 and 2 
masked all 23 T2D-associated SNPs simultaneously and imputed them using the scaf-
fold SNPs at low and high coverage, respectively. The low-coverage experiment rep-
resents the low SNP density of the early generation GWAS arrays, such as the 500-k 
Affymetrix used for T2D by the WTCCC [6]. The high coverage in experiment 2 used 
all the remaining SNPs in the NGS study for these 3 loci ( 197–23 = 174) with aver-
age density much higher than the more recent second-generation genotyping arrays 
(Table 1). The final experiment 3 used the high-density 174 scaffold SNPs but masked 
the 23 T2D-associated SNPs one at a time rather than simultaneously for compari-
son with previous studies of imputation quality. Note that the TCF7L2 region was 
excluded from the first sparse marker panel experiment due to its shorter kb length 
than the ACTL7B and KCNK3.

Fig. 1 Study design schema for the imputation experiments (bottom to top A–E). T2D-associated SNPs 
were masked simultaneously and imputed using scaffold marker SNPs at A low density and B high density 
based on all the remaining NGS data, while C masked one T2D-associated SNP at a time. D The full NGS data 
was phased independently using PHASE v2.1.1, and E the haplotype frequencies in cases and controls were 
compared with those from the 1000GP haplotype reference panel
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Imputation was carried out using IMPUTE2 [7], and the phase 3 global haplotypes 
from the 1000 Genomes Project (1000GP) [7] were used as our main reference panel to 
impute genotypes for the masked SNPs. The 1000 GP has been used by most GWAS to 
date, including the two latest large-scale T2D studies [8, 9]. For the low-coverage exper-
iment 1, we also used the case–control T2D NGS as the reference panel. Single SNP 
association analyses (allelic χ2 tests) were carried out for both the observed and inferred 
genotypes of all the T2D-associated SNPs using PLINK [10].

In addition, the NGS 92 cases and 93 controls were independently phased as one 
group (Fig. 1D) using PHASE v2.1.1 [11] in order to conduct detailed comparisons of 
haplotypes between the study and reference panels (Fig. 1E). Results of the analyses on 
haplotype structure are thus independent from those of the imputation analyses and 
allowed us to identify the reasons for errors that arose. The LD structure for the three 
gene regions studied is also shown by plotting the genetic locations of all SNPs in linkage 
disequilibrium units (LDU) on their physical locations in kb. Two high-resolution LDU 
maps were constructed based on the 1000GP European (EUR) and African-American 
(AA) SNP datasets (Fig. 2).

Comparisons between observed and imputed genotypes

Table 2 presents the summary statistics for all the significant SNPs for the three com-
parison experiments. The first experiment, based on the low-resolution study panel with 
all significant SNPs masked, produced the worst outcome as none of these SNPs was 
accurately imputed. All but two of the SNPs across loci were imputed as monomorphic. 
For markers with low MAF of 0.01 (e.g. rs144726287, ACTL7B), incorrect genotype calls 
were sufficient to impute them as monomorphic, but other SNPs with higher MAF were 
inferred as monomorphic due to missingness as well as incorrect genotyping, mainly for 
the risk allele (e.g. ACTL7B rs72756001 with MAF = 0.08, Additional file  1: Table  S1). 
This was despite the high reported info score for this marker (0.72). The only two SNPs 
that remained polymorphic after imputation (ACTL7B SNPs rs10979533, rs12380226) 
were in perfect LD with each other, and despite their exceptionally high info score of 
0.95, which implies near perfect inference, both were imputed incorrectly and with type 
2 errors. The result was that these two ACTL7B SNPs were no longer significantly asso-
ciated with phenotype (χ2 of 0.009 instead of the expected χ2 of 4.131, Table 2), primarily 
due to very large number of incorrectly imputed genotypes but also few missing geno-
types for the risk allele (Additional file 1: Table S1).

The second experiment using the high-resolution study panel increased the number of 
imputed genotypes (Table 2). Nevertheless, the quality of imputation was still poor over-
all with three noteworthy results:

1) Despite the very large increase of scaffold SNPs, some SNPs were still imputed as 
monomorphic and only few (5/23) imputed genotypes across the 3 loci matched the 
observed ones;

2) Despite the high info scores, > 0.75 for the last 3 markers of TCF7L2 and > 0.85 for the 
first 3 of the KCNK3, markers were imputed at high discordance with the observed 
genotypes due to a combination of missing and incorrect calls, mainly for the risk 
allele at both loci. These SNPs, within each of the two genes, are in perfect LD in 
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the 1000GP European population (CEU), but nevertheless, their LDU genetic dis-
tance is not zero (i.e. there is some LD breakdown, see Fig. 2B, 2C). This difference 
is detected because the LDU map considers all informative pairwise associations in 
a gene region to calculate genetic distances, not just pairwise analyses of the three 
SNPs.

Fig. 2 Locations of the imputed SNPs in relation to the T2D locations and surrounding haplotypes. The 
tables for the a) ACTL7B, b) KCNK3 and c) TCF7L2 regions give the frequencies of the haplotypes using all 
♦scaffold and ♦T2D-associated (imputed) SNPs with their risk alleles in bold. The white bars within the tables 
represent other allelic differences between the haplotypes. The T2D locations, A and E were estimated [5] 
from African-American (AA) and European (EUR) data and mapped onto the respective LDU maps (linkage 
disequilibrium distances on Y axis). The published GWAS lead SNP (rs7903146) for TCF7L2 is also plotted in 
Fig. 1c
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3) Finally, the KCNK3 rs59435210 is flanked on either side by well-imputed SNPs 
(rs73920335 and rs59284336), but incorrect imputation still yielded a false-negative 
association with this SNP. These SNPs are in an LDU block for the African ances-
try population, but rs59435210 is on a different block on the European LDU map 
(Fig. 2B). The MAFs for these SNPs were very similar between the European NGS 
and the European 1000GP populations (0.04 and 0.05, respectively) but different 
from the reference global panel for which these markers are much more common 
(MAF of 0.17).

Masking all the significant SNPs at once for this experiment represents a realistic sce-
nario as the vast majority (80%) of these were found to be missing in the second-gener-
ation large-scale genotyping arrays (e.g. Illumina Omni 2.5 M, Affymetrix 6.0 1 M). In 
particular for ACTL7B, none of the SNPs we tested are included on these GWAS plat-
forms or on the Metabochip, which is a custom SNP array designed to follow up large-
scale genotyping studies.

The third experiment involved the masking of significant SNPs one at a time rather 
than simultaneously. As expected, this analysis produced the best quality of imputed 
genotypes. With the exception of three ACTL7B SNPs that remained monomorphic, all 
other markers were imputed with almost perfect info scores (> 0.96, Table 2) and high 
concordance between the in silico and observed genotypes, giving an overall accuracy 
of ~ 90%. Of the three monomorphic SNPs, the risk allele for rs13285616 (MAF = 0.13) 
was missing from both cases and controls. But for the two rarer ones with MAF = 0.01, 
the risk allele of rs144726287 was incorrectly assigned the alternative allele in the cases, 
and the alternative allele of rs117056494 was incorrectly assigned the risk allele in the 
controls (Additional file 1: Table S1). Overall, we did not notice any obvious relationship 
between MAF and quality of imputation. For example, imputation of TCF7L2 SNPs with 
the same MAF of 0.01 yielded identical results to the observed genotypes.

However, the high quality of imputation for this third analysis does not represent a 
real-world GWAS nor does it provide insight into the process of imputation. The strik-
ing differences between masking one SNP at a time versus masking several simultane-
ously required closer examination. To help elucidate this, we examined and compared 
the haplotypes from the study panel in relation to the haplotypes from the reference 
panel (1000 GP). To our knowledge, comparisons of haplotype frequencies between 
the study- and reference- panels have not been previously investigated, but we con-
sider this an essential analytical strategy because regardless of the imputation method 
used (e.g. IMPUTE2, minimac4, Beagle4.1), the same principle applies to all, whereby 
many variants that are not directly genotyped are being assigned inferred alleles based 
on a global collection of haplotypes from a high-resolution reference panel. The high-
resolution NGS study panel from the second experiment was used because we wanted 
to examine haplotype frequencies under the best scenario possible in terms of marker 
density.

Comparisons of haplotypes between the cases and the reference panel

For each of the three T2D loci, haplotypes were independently reconstructed for 
the pooled NGS study data using PHASE. Haplotypes carrying risk alleles of the 
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T2D-associated SNPs were selected for further analysis with the aim of comparing 
their frequencies between the cases and controls and with the frequencies of the iden-
tical haplotypes from the 1000GP reference panel (Fig. 2). For KCNK3 and TCF7L2, 
all the risk alleles co-segregated and tagged a set of highly similar haplotypes indicat-
ing a monophyletic origin (single founder). For KCNK3, all four risk haplotypes were 
found to be more common in cases compared to both the controls and global refer-
ence data. Two haplotypes in particular (A and B) were much rarer in the global ref-
erence panel (Fig. 2B). TCF7L2 gave very similar results, with all five risk haplotypes 
being much rarer in the global and NGS control data than in cases (Fig.  2C). Hap-
lotype A in particular showed a more than double the frequency in the NGS cases 
(0.27) and in the NGS cases and controls combined (0.24) compared to the global 
reference panel (0.098).

Unlike the other two genes, ACTL7B yielded six risk  haplotypes with varying com-
bination of risk alleles at different haplotypes, demonstrating the more complex and 
polyphyletic origin. Recurrent mutation [12], admixture, recombination, and gene con-
version can produce such polyphyletic haplotypes [13], and here, they seem to compli-
cate imputation further. In the case of ACT7B, there has clearly been recombination as 
shown by the breakdown of LD on the genetic map (Fig. 2A). ACTL7B is the only locus 
with failed imputed SNPs (Table 2) even for the third experiment (masked one at a time). 
Like the other loci though, the same finding was replicated with the ACTL7B where hap-
lotypes were found to be rarer in the reference panel than in the T2D cases.

Discussion
Imputation is used as a tool for increasing the power of GWAS as well as facilitating fine 
mapping of candidate loci [14]. It also enables increased coverage of low-depth whole-
genome sequencing allowing this to be used as an alternative to SNP arrays [15, 16]. How-
ever, our study demonstrates that imputation can be inaccurate when searching for disease 
risk alleles which differ in frequency in cases compared with controls and reference pan-
els, resulting in an imputation bias against the risk allele and consequently false-negative 
results. Indeed, other studies have also shown this bias, which results in a decrease of the 
association effect size [17], and have speculated that differences in the haplotype structure 
between study and reference panels might provide an explanation [17].

We thus have some sobering messages for those seeking to impute. The results pre-
sented in Fig. 2 show experimentally for the first time that when haplotypes carrying 
the risk alleles are considerably less common in the reference panel than in the cases 
included in the study, imputation distorts genotype inference towards the global ref-
erence panel. This novel finding was replicated in all the three gene regions we stud-
ied. Imputation is typically based on haplotypes constructed from a random cohort 
(e.g. 1000GP). The high-coverage whole-genome sequencing from the Trans-Omics 
for Precision Medicine (TOPMed) [18] programme provides a much larger reference 
panel than the 1000GP. Interestingly, recent studies [19] have shown improved quality 
of TOPMed imputation for rare SNPs (< 0.01) across the genome. But still, TOPMed 
imputation quality was found to vary widely, with regions not well imputed across 
ancestries even at > 0.05 MAF [19]. This finding supports the need for our study which 
was designed using short but disease-associated regions, to elucidate why many of the 
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key SNPs are inaccurately imputed and hence give rise to false-negative tests of asso-
ciation. Even larger and more diverse reference panels will not overcome the problem 
of differences in prevalence between an ascertained case study and the overall haplo-
type frequencies of a reference panel. Hybrid panels that combine custom reference 
and public reference panels [1] or small samples of ethnically matched disease-specific 
cases and controls as reference panels [17] have been suggested as ways of improving 
accuracy of imputation. But when we used our own high-density NGS case–control 
data on T2D as the reference panel instead of 1000GP and with the low SNP-density 
scaffold SNPs as the study, we did not observe any major improvement in genotype 
errors compared to 1000GP (Additional file 1: Table S2). This is because, unsurpris-
ingly, differences in haplotype frequencies still exist between the pooled T2D data and 
the frequencies in the cases carrying risk alleles at disease susceptibility loci. In fact, it 
is these differences that give rise to true-positive associations. Furthermore, the strat-
egy of obtaining disease-specific reference panels is questionable, not only because of 
our findings but also because it would defeat the purpose of imputation if disease- 
and population-specific reference panels are required for every polygenic disease and 
trans-ancestry GWAS.

The demonstration of improved imputation by increasing study panel density 
is consistent with previous findings [7, 20, 21]. Here, we additionally demonstrate 
that SNPs with high certainty info scores (> 0.7 and > 0.9) in the ACTL7B region are 
incorrectly imputed even though our ‘low SNP-density analysis’ had marker cover-
age far higher than the suggested > 200/Mb [21] for optimum performance. This is 
of concern since current published meta-analyses include multiple first-generation 
GWAS arrays with low density and filtering criteria including info scores of > 0.5 for 
T2D [9] or even using thresholds as low as > 0.3 in other studies [22]. Even after pro-
vision of much higher density in the study panel, genotypes may not be adequately 
imputed for certain SNPs across the MAF spectrum (common, intermediate, and 
rare) despite info scores of > 0.7.

Focusing on three disease loci  instead of genome-wide error rates has allowed us to 
examine imputation in the context of haplotypes and to compare the findings from 
large-scale meta-analyses of T2D (Table 3). ACTL7B in particular is an interesting case 
because the significant SNPs presented herein are not included in any SNP genotyping 
arrays, including the second-generation platforms such as Illumina Omni 2.5  M and 
Affymetrix 6.0, which makes it comparable with our masking experiments. The sum-
mary statistics published in 2020 by the Million Veteran Program [8] based on transeth-
nic T2D GWAS of 1.4 million participants show only one SNP (ACTL7B, rs117056494) 
at nominal significance level with no information on the remaining SNPs within 
ACTL7B and KCNK3 (Table 3). The latest transethnic study on T2D in 2022 [9] meta-
analysed more than 120 GWAS of ~ 181,000 cases and 1,160,000 controls from multiple 
populations. Again, the seven ACTL7B SNPs were not directly observed but imputed as 
nonsignificant (Table 3).

By contrast, using only two GWAS arrays of European and African ancestry, with-
out imputation [5], we replicated a genome-wide significant causal location within the 
ACTL7B region for both populations that closely overlapped with an adipose eQTL for 
the distal cis-gene EPB41L4B [5]. The recent T2D Million Veteran Program (MVP) study 
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did identify a GWAS signal within EPB41L4B [8] and subsequently replicated in the 
2022 study but within a very long interval of 1 Mb [9]. We therefore should also consider 
the fact that our findings for ACTL7B and KCNK3 were based upon much finer scale 
replication co-localisations (13 and 0 kb, respectively) between T2D studies of different 
ancestries based on their population-specific genetic LDU maps, which may also have 
contributed to their earlier discovery [5] without the use of imputation.

Similar results were obtained when imputing our significant interval in the TCF7L2, 
which is 10 kb away from the published lead SNP (rs7903146). This is a region of strong 
LD with limited haplotype diversity, and a few of the masked SNPs are included on 
GWAS/Metabochip arrays. Nevertheless, the results demonstrate the lack of sufficient 
power of the imputation methods to identify new variants within a well-studied and 
significant T2D locus and is consistent with other studies [20]. The 2014 meta-analy-
sis identified only three of the eight significant TCF7L2 SNPs we studied here, and only 
the 2022 meta-analyses (which uses ~ 1.5-M cases/controls) identify all eight as highly 

Table 3 Comparison of results with the published T2D large-scale meta-analyses. P-values and odds 
ratios from two independent studies [8, 9] that used imputation. Odds ratios (NA) in the NGS study 
[5] cannot be estimated because the allele is only present in either cases or controls. For the 2020 
study, (ns) were nonsignificant but with no P-values provided. For the 2022 study, (ns) were imputed 
but nonsignificant with the exception of one (?) SNP that could not be imputed

Directly observed from the 
NGS study [5]

2020
Meta-analysis [8]

2022
Meta-analysis [9]

SNPs Risk Location (bp) χ2 p-value Odds ratio p-value Odds ratio p-value Odds ratio

ACTL7B

 rs13285616 A 111556995 5.11 2.4E-02 2.04 Ns Ns 0.99

 rs144726287 T 111559654 4.09 4.3E-02 NA Ns Ns 0.97

 rs60388922 G 111579228 4.37 3.7E-02 2.09 Ns ? ?

 rs72756001 A 111583976 4.66 3.1E-02 2.40 Ns Ns 1.00

 rs10979533 G 111588286 4.13 4.2E-02 2.22 Ns Ns 1.01

 rs117056494 C 111588683 4.00 4.6E-02 NA 1.1E-03 1.11 Ns 1.11

 rs12380226 T 111589552 4.13 4.2E-02 2.22 Ns Ns 1.00

KCNK3

 rs78489206 A 26897778 4.67 3.1E-02 4.73 Ns Ns 1.00

 rs7588614 G 26898869 3.99 4.6E-02 3.51 Ns Ns 1.00

 rs77786658 A 26899221 4.84 2.8E-02 4.85 Ns Ns 1.00

 rs6707973 G 26901215 3.99 4.6E-02 3.51 Ns Ns 1.00

 rs73920335 C 26904377 3.99 4.6E-02 3.51 Ns Ns 1.00

 rs59435210 G 26905580 3.99 4.6E-02 3.51 Ns Ns 1.00

 rs59284336 T 26906436 4.67 3.1E-02 4.73 Ns Ns 1.00

 rs113076024 A 26909473 4.75 2.9E-02 4.79 Ns Ns 1.00

TCF7L2

 rs7081062 A 114740745 9.96 1.6E-03 2.04 2.8E-69 1.07 9.2E-66 1.07

 rs149954646 G 114741507 4.00 4.6E-02 NA 1.9E-24 1.21 6.5E-12 1.19

 rs145034729 G 114741673 4.00 4.6E-02 NA 2.0E-24 1.21 6.4E-12 1.19

 rs10128255 A 114742835 9.32 2.3E-03 2.00 3.4E-68 1.07 4.3E-66 1.07

 rs7895307 G 114743961 9.32 2.3E-03 2.00 6.8E-71 1.07 1.2E-67 1.07

 rs4073980 G 114746580 6.85 8.9E-03 1.73 3.5E-185 1.18 2.6E-213 1.18

 rs4074720 T 114748497 6.85 8.9E-03 1.73 4.4E-185 1.18 2.4E-214 1.18

 rs4074718 A 114748617 6.85 8.9E-03 1.73 2.2E-185 1.18 7.8E-215 1.18
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significant (Table  3). This supports our findings that the presence of T2D-associated 
scaffold SNPs in the datasets of the study panel does improve imputation. Indeed, mask-
ing one SNP at a time improved all results for all three regions, even for the ACTL7B 
locus with its more diverse set of background haplotypes. Therefore, the choice of the 
masking strategy in studies that examine imputation will have significant impact on 
the findings. It is likely that the ‘leave-one-out at a time’ approach or other masking 
approaches is one of the reasons behind the high-accuracy estimates of previous assess-
ments on imputation. Another reason is that many of these used large datasets that are 
not specific to disease loci (i.e. no ascertained cases) with no anticipated haplotype dif-
ferences between study and reference panels to impact upon the accuracy of imputation.

To further investigate recent large-scale T2D GWAS that used imputation, we tested 
the extent of LD around all published lead SNPs identified to date by the large-scale 
transethnic meta-analyses in 2020 [8] and an independent one in 2022 [9]. We compared 
these with the LD surrounding the T2D signals identified without imputation [5] (Fig. 3). 
The GWAS studies that examine SNP associations and include imputation tend to iden-
tify disease loci in regions with more extended LD than loci identified with our multi-
SNP LDU mapping approach that does not use imputation (Fig. 3). Regions of strong LD 
are more likely to contain some directly genotyped markers in the GWAS because array 
platform strategy is to tag LD blocks. But the implication of this observation is that miss-
ing genotypes are also more likely to be correctly imputed in regions of very strong LD. 
This is partly because haplotypes in the reference panel can be reconstructed with less 
error in such regions[4].

Fig. 3 Comparison of genetic distances at T2D loci with or without imputation. Box plots of genetic distance 
across ± 10 kb from T2D-associated genetic loci, measured in a linkage disequilibrium units (LDU, European) 
and b centimorgan (cM) from the 1000 Genomes Project. Distances are plotted from loci mapped with no 
imputation (111 [5] loci) and loci mapped using imputation (459 [8] and 277 [9] loci). Lower median values 
(stronger LD) are observed in imputation studies. P-values from the Wilcoxon rank test statistic
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Another question is whether the odds ratios (ORs) from imputed SNPs in these LD 
regions are accurate. Comparing the ORs of the same studies in 2020 [8] and 2022 [9], we 
find that these are considerably lower than the ORs for the same directly observed SNPs 
that we genotyped in our NGS study. For example, the substantially increased number of 
T2D cases and controls that were meta-analysed for TCF7L2 led to correspondingly low 
P-values but with ORs still close to 1.0 (Table 3), while our OR estimates for the same 
TCF7L2 SNPs ranged from 1.73 to 2.04. This is also true for the previously reported, lead 
SNP rs7903146 within TCF7L2, which is included on some array platforms but not all. 
One of the first T2D GWAS [23] with no imputation, but also candidate-gene studies 
[24, 25] that directly genotyped the lead rs7903146, estimated much higher ORs (1.50–
2.15) compared to the recent meta-analysis in Table 3 that was based on imputation [9]. 
It is therefore reasonable to conclude that even minor imputation errors can lead to con-
siderably reduced effect size estimates.

Provided favourable assumptions hold, imputation is likely to perform well in 
population cohorts, but for disease-specific loci, problems of fine mapping and 
meta-analysing different GWAS will always remain, even in regions of strong LD. 
This is because of the variation in LD, and hence in haplotype structures, which is 
expected in the same regions but different populations. This could explain the com-
mon observation made by the community about the low reproducibility of lead SNPs 
across ancestries. Therefore, future work should investigate imputation in relation 
to LD, recombinational and genomic history, but also in other contexts, for example, 
in relation to other response variables such as RNA expression for mapping eQTLs. 
In addition, further consideration should be given to the accuracy of long-range 
phasing, which is another factor that impacts heavily upon imputation accuracy. 
The haplotypes in the reference panels (e.g. 1000GP or TOPMed) are inferred from 
unrelated individuals. Thus, the length of the genomic region used in phasing and 
the intensity of historical recombination (increased haplotype diversity), which var-
ies across populations, will inevitably have a major impact upon the construction of 
haplotypes for any phasing and imputation software.

Conclusion
Here, we show that haplotype differences between the study panel and the reference 
panel drives  imputation towards making allelic calls that are more frequent in the 
reference panel, than in the case–control study. Therefore, searching of susceptibil-
ity variants using imputation is likely to produce inaccurate genotypes where it mat-
ters most, that is to say, in regions where haplotype differences between cases and 
controls are expected due to true-positive associations. This effect will be present 
regardless of how big and diverse the reference panel is; hence, we advocate meth-
ods which test for association without imputation. Here, we find that these errors 
lead to false-negative results, but equally, large differences in haplotype frequencies 
between cases and reference data could in some cases have other effects. The prob-
lems with imputation for mapping causal variants, together with previous findings 
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on its inaccuracy in regions of positive selection [2], suggest the need for a shift in 
designing ways to integrate directly observed association signals, rather than imput-
ing millions of SNPs with the hope they will perform equally well  across different 
populations and omics data.

Methods
Study samples, genotyping, and T2D-associated and scaffold SNPs

Sequencing was conducted using the Agilent  SureSelectXT2, on 92 T2D cases with a fam-
ily history of T2D and 93 selected controls without a history of T2D. Cases and controls 
were from the same population of European ancestry and matched for age, BMI, and 
sex. At the time of publication [5], sequence reads were aligned to the human reference 
sequence (hg19/build37) using Burrows-Wheeler transform [26]. Post-alignment QC, 
variant calling, and QC were conducted according to Genome Analysis Toolkit guide-
lines [27]. SNP data were further filtered for having a minor allele frequency (MAF) 
above 1%, deviations from Hardy–Weinberg equilibrium in the controls only (HWE 
χ2 < 10). SNPs also required a read depth of 30 × for inclusion. A total of 23 significant 
T2D-associated SNPs (P < 0.05), based on allelic χ2 tests for each SNP in the real NGS 
data using PLINK[10], were investigated by ‘masking’ them (i.e. removing them from 
the data) and imputing them using the remaining NGS SNPs as ‘scaffolds’. Details of the 
three regions are summarised in Table 1, and the genotypic data from all the NGS cases 
and control that were used in this study are provided in Additional file 2.

Reference panel, imputation, and haplotype analysis

Imputation was carried out using IMPUTE2 [7] with the recommended default 
parameters. For all three comparisons, the cases and controls were pooled together 
to create the study panels, which were phased using SHAPEIT2 [28] using the default 
parameters. As recommended by IMPUTE2, the global list of haplotypes from the 
phased 1000 Genomes Project (1000GP) was used as the main imputation reference 
panel (b37, Oct 2014 release  [29]  , https:// mathg en. stats. ox. ac. uk/ impute/ 1000GP_ 
Phase3. html). Genotypes were called from imputed data using GTOOL (http:// www. 
well. ox. ac. uk/ ~cfree man/ softw are/ gwas/ gtool. html) with calling default threshold of 
probability 0.9. Standard single SNP association analyses (allelic χ2 tests) were car-
ried out for the observed and inferred genotypes of all the T2D-associated SNPs 
using PLINK [10]. The performance of imputation was examined by comparing the 
observed and inferred genotypes for all three experiments that are shown in Fig. 1A–
C. For the low-coverage experiment 1, we also used the case–control T2D NGS as the 
reference panel. Metrics such as info scores, missingness, and genotype discordance 
were collected after imputation. The info score is an information metric that ranges 
from 0 to 1, with values of ~ 1 indicative of no uncertainty in the imputed genotypes. 
The SNP data from the 92 cases and 93 controls were independently phased as one 
group using PHASE v2.1.1 [11] in order to conduct detailed comparisons of haplo-
types between the study and reference panels. Haplotypes with posterior probabilities 
less than 90% were excluded from these comparisons (Fig. 1E).

https://mathgen.stats.ox.ac.uk/impute/1000GP_Phase3.html
https://mathgen.stats.ox.ac.uk/impute/1000GP_Phase3.html
http://www.well.ox.ac.uk/~cfreeman/software/gwas/gtool.html
http://www.well.ox.ac.uk/~cfreeman/software/gwas/gtool.html


Page 16 of 17Lau et al. Genome Biology            (2024) 25:7 

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s13059- 023- 03140-3.

Additional file 1: Table S1. Detailed output from the imputation for the three different experiments as shown in 
Fig 1. Table S2. Comparison between the main reference panel (1000GP) and the NGS case-control data as the 
reference panel.

Additional file 2. In this file we provide the genotypes of all SNPs from the NGS T2D cases and controls and for all 3 
loci that were used in this study.

Additional file 3. Review history.

Review history
The review history is available as Additional file 3.

Peer review information
Andrew Cosgrove was the primary editor of this article and managed its editorial process and peer review in collabora-
tion with the rest of the editorial team.

Authors’ contributions
NM conceived the study and directed it in collaboration with DMS and TA. The co-authors WL, AA, and HM analysed the 
data. NM, WL, and HM produced the final version of the tables and figures. NM wrote the first draft of the paper, and 
DMS and TA produced the final draft. All authors edited and approved the final version of the manuscript.

Funding
This study was funded by the Wellcome Trust (209106/Z/17/Z) and the Medical Research Council (MR/X011070/1).

Availability of data and materials
The dataset that generated this study is available in additional file 2. The IMPUTE2 software, the 1000GP phase 3 haplo-
types that were used as the reference panel and the cM distances can all be found at [7]. The PHASE v2.1.1 software that 
was used to phase the data in additional file 2 could be found at [11].

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests. 

Received: 8 November 2022   Accepted: 4 December 2023

References
 1. Das S, Abecasis GR, Browning BL. Genotype imputation from large reference panels. Annu Rev Genomics Hum 

Genet. 2018;19:73–96.
 2. Ali AT, Liebert A, Lau W, Maniatis N, Swallow DM. The hazards of genotype imputation in chromosomal regions 

under selection: a case study using the lactase gene region. Ann Hum Genet. 2022;86:24–33.
 3. Xiang R, MacLeod IM, Daetwyler HD, de Jong G, O’Connor E, Schrooten C, et al. Genome-wide fine-mapping identi-

fies pleiotropic and functional variants that predict many traits across global cattle populations. Nat Commun. 
2021;12:860.

 4. Andrés AM, Clark AG, Shimmin L, Boerwinkle E, Sing CF, Hixson JE. Understanding the accuracy of statistical haplo-
type inference with sequence data of known phase. Genet Epidemiol. 2007;31:659–71.

 5. Lau W, Andrew T, Maniatis N. High-resolution genetic maps identify multiple type 2 diabetes loci at regulatory 
hotspots in African Americans and Europeans. Am J Hum Genet. 2017;100:803–816.

 6. Burton PR, Clayton DG, Cardon LR, Craddock N, Deloukas P, Duncanson A, et al. Genome-wide association study of 
14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447:661–678.

 7. Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation method for the next generation of 
genome-wide association studies. PLoS Genet. 2009;5:e1000529.

 8. Vujkovic M, Keaton JM, Lynch JA, Miller DR, Zhou J, Tcheandjieu C, et al. Discovery of 318 new risk loci for type 2 dia-
betes and related vascular outcomes among 1.4 million participants in a multi-ancestry meta-analysis. Nat Genet. 
2020;52:680–91.

 9. Mahajan A, Spracklen CN, Zhang W, Ng MCY, Petty LE, Kitajima H, et al. Multi-ancestry genetic study of type 2 diabe-
tes highlights the power of diverse populations for discovery and translation. Nat Genet. 2022;54:560–72.

https://doi.org/10.1186/s13059-023-03140-3


Page 17 of 17Lau et al. Genome Biology            (2024) 25:7  

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 10. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: a tool set for whole-genome asso-
ciation and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.

 11. Stephens M, Smith NJ, Donnelly P. A new statistical method for haplotype reconstruction from population data. Am 
J Hum Genet. 2001;68:978–989.

 12. McVean G, Awadalla P, Fearnhead P. A Coalescent-Based Method for Detecting and Estimating Recombination From 
Gene Sequences. Genetics 2002;160:1231–41.

 13. Morton NE, Zhang W, Taillon-Miller P, Ennis S, Kwok PY, Collins A. The optimal measure of allelic association. Proc Natl 
Acad Sci. 2001;98:5217–21.

 14. Marchini J, Howie B. Genotype imputation for genome-wide association studies. Nat Rev Genet. 2010;11:499–511.
 15. Rubinacci S, Ribeiro DM, Hofmeister RJ, Delaneau O. Efficient phasing and imputation of low-coverage sequencing 

data using large reference panels. Nat Genet. 2021;53:120–6.
 16. Homburger JR, Neben CL, Mishne G, Zhou AY, Kathiresan S, Khera A v. Low coverage whole genome sequencing 

enables accurate assessment of common variants and calculation of genome-wide polygenic scores. Genome Med. 
2019;11:74.

 17. Khankhanian P, Din L, Caillier SJ, Gourraud PA, Baranzini SE. SNP imputation bias reduces effect size determination. 
Front Genet. 2015;6:30.

 18. Hanks SC, Forer L, Schönherr S, LeFaive J, Martins T, Welch R, et al. Extent to which array genotyping and imputation 
with large reference panels approximate deep whole-genome sequencing. Am J Hum Genet. 2022;109:1653–66.

 19. Taliun D, Harris DN, Kessler MD, Carlson J, Szpiech ZA, Torres R, et al. Sequencing of 53,831 diverse genomes from 
the NHLBI TOPMed Program. Nature. 2021;590:290–9.

 20. Shea J, Agarwala V, Philippakis AA, Maguire J, Banks E, Depristo M, et al. Comparing strategies to fine-map the 
association of common SNPs at chromosome 9p21 with type 2 diabetes and myocardial infarction. Nat Genet. 
2011;43:801–5.

 21. Shi S, Yuan N, Yang M, Du Z, Wang J, Sheng X, et al. Comprehensive assessment of genotype imputation perfor-
mance. Hum Hered. 2019;83:107–16.

 22. Tedja MS, Wojciechowski R, Hysi PG, Eriksson N, Furlotte NA, Verhoeven VJM, et al. Genome-wide association meta-
analysis highlights light-induced signaling as a driver for refractive error. Nat Genet. 2018;50:834–48.

 23. Sladek R, Rocheleau G, Rung J, Dina C, Shen L, Serre D, et al. A genome-wide association study identifies novel risk 
loci for type 2 diabetes. Nature. 2007;445:881–5.

 24. Dahlgren A, Zethelius B, Jensevik K, Syvänen A-C, Berne C. Variants of the TCF7L2 gene are associated with beta cell 
dysfunction and confer an increased risk of type 2 diabetes mellitus in the ULSAM cohort of Swedish elderly men. 
Diabetologia. 2007;50:1852–7.

 25. Chandak GR, Janipalli CS, Bhaskar S, Kulkarni SR, Mohankrishna P, Hattersley AT, et al. Common variants in the TCF7L2 
gene are strongly associated with type 2 diabetes mellitus in the Indian population. Diabetologia. 2006;50:63–7.

 26. Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 
2010;26:589–95.

 27. Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, del Angel G, Levy-Moonshine A, et al. From fastQ data to 
high-confidence variant calls: the genome analysis toolkit best practices pipeline. Curr Protoc Bioinformatics. 
2013;43:11.10.1–11.10.33.

 28. Delaneau O, Zagury JF, Marchini J. Improved whole-chromosome phasing for disease and population genetic stud-
ies. Nat Methods. 2013;10:5–6.

 29. Delaneau O, Marchini J, McVeanh GA, Donnelly P, Lunter G, Marchini JL, et al. Integrating sequence and array data to 
create an improved 1000 Genomes Project haplotype reference panel. Nat Commun. 2014;5:3934.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	The hazards of genotype imputation when mapping disease susceptibility variants
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Results
	Study data, reference panel and haplotypes
	Comparisons between observed and imputed genotypes
	Comparisons of haplotypes between the cases and the reference panel

	Discussion
	Conclusion
	Methods
	Study samples, genotyping, and T2D-associated and scaffold SNPs
	Reference panel, imputation, and haplotype analysis

	Anchor 16
	References


