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Abstract 

Background: Metabolites play critical roles in regulating nutritional qualities of plants, 
thereby influencing their consumption and human health. However, the genetic basis 
underlying the metabolite-based nutrient quality and domestication of root and tuber 
crops remain largely unknown.

Results: We report a comprehensive study combining metabolic and phenotypic 
genome-wide association studies to dissect the genetic basis of metabolites in the stor-
age root (SR) of cassava. We quantify 2,980 metabolic features in 299 cultivated cassava 
accessions. We detect 18,218 significant marker-metabolite associations via meta-
bolic genome-wide association mapping and identify 12 candidate genes responsi-
ble for the levels of metabolites that are of potential nutritional importance. Me3GT, 
MeMYB4, and UGT85K4/UGT85K5, which are involved in flavone, anthocyanin, and cya-
nogenic glucoside metabolism, respectively, are functionally validated through in vitro 
enzyme assays and in vivo gene silencing analyses. We identify a cluster of cyanogenic 
glucoside biosynthesis genes, among which CYP79D1, CYP71E7b, and UGT85K5 are 
highly co-expressed and their allelic combination contributes to low linamarin content. 
We find MeMYB4 is responsible for variations in cyanidin 3-O-glucoside and delphinidin 
3-O-rutinoside contents, thus controlling SR endothelium color. We find human selec-
tion affects quercetin 3-O-glucoside content and SR weight per plant. The candidate 
gene MeFLS1 is subject to selection during cassava domestication, leading to decreased 
quercetin 3-O-glucoside content and thus increased SR weight per plant.

Conclusions: These findings reveal the genetic basis of cassava SR metabolome vari-
ation, establish a linkage between metabolites and agronomic traits, and offer useful 
resources for genetically improving the nutrition of cassava and other root crops.
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Background
Metabolites not only play critical roles in the growth and development of plants to 
cope with various environments but also provide essential resources for human health 
as foods, nutrients, and medicines [1]. In addition, metabolites are a bridge between 
the genome and agricultural traits and can provide unique insights into the metabolic 
consequences of crop domestication and improvement [2, 3]. Exploring metabolite 
diversity and its underlying genetic variation is thus of fundamental significance for 
crop breeding and germplasm conservation [4]. Combining metabolomics and other 
omics profiling provides an effective approach for identification of gene function and 
elucidation of metabolic pathways [3, 5].

Root and tuber crops (such as cassava, potato, and sweet potato) are important 
for human nutrition due to their high carbohydrate contents and varying levels 
of proteins and vitamins [6]. In recent years, although many advances have been 
made to characterize their genomes and agronomically important traits [7–10], 
the genetic bases underlying the metabolic variation in root and tuber crops are 
still largely unknown. Cassava (Manihot esculenta), a vital root crop in tropical and 
subtropical regions, serves as a source of nourishment for over 800 million people 
worldwide [11]. The cassava storage root (SR) is rich in starch, but relatively defi-
cient in fats, proteins, minerals, and micronutrients [12, 13]. Metabolites including 
cyanogenic glucosides (CGs), anthocyanins, and flavonoids are key components of 
cassava SR quality that affect both its eating and nutritive qualities for humans [11, 
14, 15]. Therefore, understanding the genetic and biochemical bases of metabolites 
among diverse cassava accessions will provide useful insights for breeding elite cul-
tivars with enhanced nutrition (especially for regions in which malnutrition is wide-
spread) and will offer valuable references for related studies in other root and tuber 
crops.

Metabolic genome-wide association studies (mGWAS) have been widely used 
to decipher the genetic basis of metabolite biosynthesis and regulation in crops 
including rice [5, 16], maize [17], and wheat [18, 19]. Combining mGWAS with phe-
notypic GWAS (pGWAS) has allowed rapid identification of candidate genes and 
potential networks underlying specific metabolites and has also provided evidences 
of metabotype-phenotype linkages [1]. Although many achievements have been 
made in cereals, no such comprehensive mGWAS studies have been performed in 
root crops such as cassava to establish possible connections between metabolites 
and traits, which greatly limited the progress of genetic improvement for enhanced 
nutrition.

Domestication has been of great importance for increasing crop yields and quality. 
The effects of domestication can be assessed not only at the genome and transcrip-
tome level but also at the metabolomic level because amino acids, phenolics, organic 
acids, flavonoids, and carbohydrate metabolites have changed concurrent with the 
domestication of major cereals and fruits [2]. However, such metabolite changes and 
their effects on agronomic traits during cassava domestication have not yet been 
investigated at the metabolomic level.
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Here, we describe our comprehensive metabolic profiling of 299 representative culti-
vated cassava accessions together with mGWAS and pGWAS to dissect the genetic bases 
of their metabolic diversity. We further identified 538 metabolites whose contents were 
likely affected during cassava domestication and further demonstrated that MeFLS1 
underwent selection resulting in increased quercetin 3-O-glucoside content. Altogether, 
our results identified key loci underlying the variation in metabolite contents related to 
SR nutrition and quality and laid a foundation for future metabolomics-assisted cassava 
breeding.

Results
Metabolic profiling of cassava cultivars

In total, 2980 metabolites were determined in SR of 299 cassava cultivars (Additional 
file  2: Table  S1). Of which, 489 metabolites were annotated while the remaining 2491 
were unknown (Additional file  2: Table  S2 and Table  S3). The three most abundant 
metabolite classes were flavones, amino acid (AA) derivatives, and lipids and then fol-
lowed by organic acids, nucleotide derivates, hydroxycinnamoyl derivatives, phenolic 
acids, catechin derivatives, carbohydrates, anthocyanins, alkaloids, vitamins, coumarin 
derivatives, and cyanogenic glycosides (CGs). These results revealed the presence of 
a wide array of important metabolic pathways in cassava (Additional file  1: Fig. S1A). 
Among the 489 annotated metabolites, 431 (88%) showed significant (r > 0.25 and P < 
0.01) correlations between the two biological replicates (Additional file 1: Fig. S1B), sug-
gesting a stable repeatability.

The majority (74.0%) of these metabolites showed broad-sense heritability (H2) greater 
than 0.5, and 25.7% displayed heritability greater than 0.8 (Fig.  1A), indicating a high 
genetic contribution to these metabolites. In addition, the coefficients of variation for 
64.3% of these metabolites were >50% (Fig. 1A), with flavones (165.3%) and CGs (31.6%) 
showing the highest and lowest values, respectively. Pairwise Pearson’s correlations were 
calculated to elucidate the links among metabolic pathways, revealing a higher propor-
tion of positive than negative correlations (Fig. 1B). Specifically, most flavones and AA 
derivatives were tightly associated in one metabolite cluster, respectively, and lipids were 
grouped in two major clusters (Fig. 1B and Additional file 1: Fig. S2). These highly cor-
related metabolites tended to be of similar structure (e.g., kaempferol 3-O-glucoside 
and kaempferol 3-O-robinobioside) or located on the same biochemical pathway (e.g., 
L-valine and L-isoleucine for CG biosynthesis, and cyanidin 3-O-glucoside and delphin-
idin 3-O-rutinoside for anthocyanin biosynthesis), supporting their involvement in simi-
lar physiological processes.

Functional interpretation of cassava mGWAS

The whole genome re-sequencing of 299 cassava cultivars was performed by our pre-
viously study [10], yielding a total of 1,155,988 high-confidence SNPs that were sub-
sequently used for mGWAS analysis. We identified 10,666 and 9848 lead SNPs 
corresponding to 1515 and 1576 metabolites in replicate 1 and replicate 2 (Additional 
file 2: Table. S4 and Table. S5), respectively, with 2263 lead SNPs and 334 metabolites 
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identified both in these two replicates. These SNPs explained 7.3–65.8% and 8.5–62.0% 
of the observed metabolic variance, with a median value of 12.1% and 12.4%, respec-
tively. Approximately 58.1% (1,731/2,980) of the detected metabolites were associated 
with at least one SNP, with an average of 10.5 associations per metabolite. The full list of 
significant mGWAS associations is summarized in Additional file 2: Table S6, as a useful 
resource for further validation.

The significant loci were not randomly distributed across the 18 cassava chromosomes 
(Fig.  1C), indicating an enrichment of major genes controlling the levels of multiple 
metabolites in a few regions. In total, 158 mGWAS hotspots were identified. Specifically, 
anthocyanins (cyanidin 3-O-glucoside and delphinidin 3-O-rutinoside), catechin deriva-
tives (catechin gallate and epicatechin gallate), and flavones (naringenin 7-O-rutinoside, 
apigenin 5-O-glucoside, and genistein 7-O-glucoside) related hotspots were found on 
Chr1: 3.06–10.51 and Chr2: 4.38–7.51 Mb (Fig. 1D). The candidate genes and possible 
causative SNPs underlying variation in these metabolites were identified as follows.

Coumaroylquinic acid is one of chlorogenic acids that act as antioxidants in plants 
and protect against degenerative, age-related diseases in humans [20]. Sc06g003480 
near a significant signal (SNP 6:10042730) associated with 5-O-p-coumaroylquinic 
acid encodes a hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl trans-
ferase (MeHCT), a key enzyme involved in chlorogenic acid biosynthesis [20]. A non-
synonymous mutation SNP 6:9924983 (D406A) in the exon 2 is associated with 

Fig. 1 Metabolic profiling and mGWAS signal distribution. A Distribution of coefficient of variation (CV) and 
broad-sense heritability (H2) for the metabolites detected in the GWAS population. The horizontal dashed 
lines indicate the means of CV and  H2, respectively. B Heatmap of metabolites based on their pairwise 
Pearson’s correlations. Positive and negative correlations are indicated in red and blue, respectively. C 
Chromosomal distribution of detected mGWAS signals. The horizontal dashed line indicates the threshold 
(determined by 1000 permutations) of hotspots, represented as the number of mGWAS signals within an 
interval of 100-kb. D Chromosomal distribution of mGWAS of 489 known metabolites. Each row represents 
the mGWAS results for a single metabolite. Metabolites from distinct chemical groups are indicated in 
different colors. The heatmap at the bottom indicates the density of mGWAS within each 100-kb interval 
across the genome
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5-O-p-coumaroylquinic acid content and may alter the 3D structure of MeHCT protein, 
suggesting that MeHCT was the responsive gene with SNP 6:9924983 being the candi-
date polymorphism for the levels of 5-O-p-coumaroylquinic acid (Additional file 1: Fig. 
S3 and Additional file 2: Table S7).

Flavones are also effective antioxidants that can trap free radicals through redox-
dependent pathways [21]. A strong mGWAS signal (SNP 16:657382) associated with 
myricetin 3-O-galactoside content harbors Sc16g000640 (MeANR), which encodes 
an anthocyanidin reductase that functions downstream of myricetin in the anthocya-
nin biosynthesis pathway [22]. A nonsynonymous mutation SNP 16:760436 (E108G) 
in the exon 2 is associated with myricetin 3-O-galactoside content and might alter the 
3D structure of the MeANR protein, suggesting MeANR as a candidate gene for this 
metabolite (Additional file 1: Fig. S4). Similarly, Sc02g014570 (encoding a UDP-gluco-
syl transferase) has been tentatively assigned as a candidate gene underlying the levels 
of dihydrokaempferol (Additional file  1: Fig. S5). Sc02g007770 (encoding an isocitrate 
dehydrogenase) and Sc02g007890 (encoding a glutathione S-transferase) have been 
assigned as the candidates for the levels of naringenin 7-O-rutinoside and genistein 
7-O-glucoside, respectively (Additional file 2: Table S7).

Kaempferol derivatives play important roles in fruit quality and appearance [23]. A 
strong signal (SNP 8:38593261) associated with 8-C-hexosyl-kaempferol O-hexoside 
(Fig. 2A-B) harbors Sc08g017430, which encodes a UDP-glucosyl transferase (Me3GT) 
involved in glucosylation of flavonols such as kaempferol [24]. Me3GT showed high 
sequence similarity with 3GTs from Populus trichocarpa and Vitis vinifera (Fig.  2C). 
Our in vitro enzymatic activity assay confirmed that Me3GT has 3-O-glucosyltransferase 
activity, as it only catalyzed the glucosyltransferation reaction to generate kaempferol 
3-O-glucoside, quercetin 3-O-glucoside, pelargonidin-3-O-glucoside, or cyanidin-3-O-
glucoside, but did not produce apigenin 5-O-glucoside, chrysin-5-O-glucoside, narin-
genin 7-O-glucoside, or eriodictyol 7-O-glucoside (Fig.  2D). Me3GT exhibited higher 
transcript abundances in leaf and stem than that in SR (Fig.  2E). Transient silencing 
of Me3GT resulted in dramatically decreases in 8-C-hexosyl-kaempferol O-hexoside 
contents (Fig.  2F-G). Further analysis revealed that SNP 8:38681061 on the exon 2 of 
Me3GT resulted in a nonsynonymous mutation from Pro to Ser (P334S) and was sig-
nificantly associated with the levels of 8-C-hexosyl-kaempferol O-hexoside (Fig. 2B and 
Fig. 2H). PCR-based resequencing of Me3GT verified this variation and further identi-
fied 12 additional SNPs (including five at the promoter area, two synonymous and five 
nonsynonymous mutations) showing highly significant associations with the levels of 
8-C-hexosyl-kaempferol O-hexoside (Additional file 2: Table S8). The SNPs in the cod-
ing region formed two alleles (allele1 and allele2) that displayed significant differences 
in 8-C-hexosyl-kaempferol O-hexoside content and enzymatic activity (Fig. 2I-K). Site-
directed mutagenesis showed that five of the six nonsynonymous mutations (except 
S146G) strongly affected the enzymatic activity of Me3GT (Fig. 2K), suggesting that they 
are functional SNPs of this gene. Together, these results indicate Me3GT as the gene 
responsible for 8-C-hexosyl-kaempferol O-hexoside content in cassava roots.
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A CG biosynthesis‑related gene cluster influencing linamarin content

CG content is a quality trait that adversely influences the edibility of cassava SR [11]. 
The two major forms of CG in cassava SR, linamarin and lotaustralin, are synthesized 

Fig. 2 Functional annotation of genes responsible for variations in 8-C-hexosyl-kaempferol O-hexoside 
content. A Manhattan plot displaying the GWAS results for 8-C-hexosyl-kaempferol O-hexoside content. B 
Gene model of Sc08g017430 (Me3GT) located 87.2 kb from the lead SNP 8:38593261, which is indicated by 
a vertical arrow. The causative SNP 8:38681061, which is located in exon 2 of Me3GT, is indicated by a red 
star. C Phylogenetic tree of Me3GT and glucosyltransferase genes from other species. Bootstrap values are 
indicated at each node. D HPLC chromatograms of the reaction products of Me3GT with UDP-D-xylose and 
either apigenin 5-O-glucoside, chrysin-5-O-glucoside, naringenin 7-O-glucoside, eriodictyol 7-O-glucoside, 
kaempferol 3-O-glucoside, quercetin 3-O-glucoside, pelargonidin-3-O-glucoside, or cyanidin-3-O-glucoside. 
E Expression level of Me3GT in leaf, root, stem, and among seven developmental stages (S1–S7) of storage 
root. F Reduced transcript expression of Me3GT in Me3GT-silenced cassava plants (CsCMV-Me3GT-1 and 
CsCMV-Me3GT-2) compared with the control (CsCMV-NC) in leaf. Bars indicate mean ± SD, n = 3. G 
Reduced levels of 8-C-hexosyl-kaempferol O-hexoside in Me3GT-silenced cassava plants (CsCMV-Me3GT-1 
and CsCMV-Me3GT-2) compared with the control (CsCMV-NC) in leaf. Bars indicate mean ± SD, n = 3. H 
Boxplot displaying the relative content of 8-C-hexosyl-kaempferol O-hexoside based on the causative SNP 
8:38681061. I SNPs identified in the coding sequence of Me3GT. The two shaded rows above are nucleotide 
polymorphisms of allele1 and allele2, while the two shaded rows below are the corresponding amino acids. 
The SNPs (SNP6-SNP13) are corresponding to those in Additional file 2: Table. S8. J Relative contents of 
8-C-hexosyl-kaempferol O-hexoside between allele1 and allele2. K Enzymatic activity among six mutants 
(A6T, G80D, S101C, T145A, S146G, P334S) and allele1 and allele2. Different letters indicate significant 
differences at P < 0.05 based on Duncan’s multiple range tests. Bars indicate mean ± SD, n = 3
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from L-valine and L-isoleucine, respectively, by the same set of enzymes including 
CYP79D1, CYP71E7, and UGT85K4/UGT85K5 [25]. In addition, hydroxynitrile lyase 
(HNL) is responsible for the generation of hydrogen cyanide from 2-hydroxy-2-me-
thyl-propanenitrile (Fig. 3A). A clear mGWAS signal was observed for linamarin con-
tent on Chr16:32817362. Several signals displaying weakly associations with linamarin 
content were also observed on Chr5, 8, 12, and 13 (Fig.  3B). Among these, the signal 
(SNP 12:35620552) on Chr12 harbors a gene cluster containing five CG biosynthesis 
genes (CYP79D1, CYP71E7a, CYP71E7b, UGT85K4, and UGT85K5) and three tan-
demly repeated HNL-encoding genes (HNL1–3) in a 140-kb region that were identified 
through BLASTP search by querying with previously known homolog genes [26].

Fig. 3 Functional annotation of genes responsible for CG metabolism. A Schematic representation of the 
CG biosynthesis pathway, in which the key enzymes are highlighted in red. B Manhattan plot displaying 
the GWAS results for linamarin content. The lower panel shows the location of five CG biosynthesis genes 
and three HNLs in a 140-kb region. C HPLC chromatograms of the products of the reactions of UGT85K4 
and UGT85K5, respectively, with UDP-glucose and acetone cyanohydrin. D Expression correlation of 
CG metabolism genes in SR of 22 cultivated cassava accessions. E Reduced transcript expression of 
UGT85K5 in UGT85K5-silenced cassava plants (CsCMV-UGT85K5) compared with the control (CsCMV-NC) 
in leaf. Bars indicate mean ± SD, n = 3. F Reduced levels of linamarin in UGT85K5-silenced cassava plants 
(CsCMV-UGT85K5) compared with the control (CsCMV-NC) in leaf. Bars indicate mean ± SD, n = 3. G–I 
Boxplot displaying the relative contents of linamarin based on the causative SNPs 12:35990792 (for CYP79D1), 
12:35945868 (for CYP71E7b), and 12:35953769 (for UGT85K5), respectively. J The relative content of linamarin 
based on the allelic combination of causative SNPs 12:35990792 (for CYP79D1), 12:35945868 (for CYP71E7b), 
and 12:35953769 (for UGT85K5). Different letters indicate significant differences at P < 0.05 based on Duncan’s 
multiple range tests
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UGT85K5 shows high sequence identity with UGT85K4 and both can catalyze the gly-
cosylation of acetone cyanohydrin to produce linamarin (Fig. 3C and Additional file 1: 
Fig. S6). However, UGT85K5, rather than UGT85K4, was highly co-expressed with 
CYP79D1 and CYP71E7b (Fig.  3D and Additional file  1: Fig. S7), implying their com-
mon involvement in CG biosynthesis. Transient silencing of UGT85K5 resulted in sig-
nificantly decreases in linamarin contents (Fig. 3E-F). The SNP variant Chr12:35990792 
in the 3’UTR of CYP79D1 was associated with linamarin content, as cassava acces-
sions harboring the T-allele showed significantly lower linamarin content than did the 
accessions carrying the G-allele (Fig.  3G). Additionally, the SNP Chr12:35945868 in 
the intergenic region of CYP71E7b and the SNP Chr12:35953769 in the downstream of 
UGT85K5 were also associated with linamarin content. Linamarin content was signifi-
cantly higher in accessions carrying the A-allele than in accessions carrying the G-allele 
or T-allele of these two genes, respectively (Fig. 3H-I). Moreover, cassava accessions car-
rying a TGW allele combination (i.e., T-allele for CYP79D1, G-allele for CYP71E7b and 
A/T-allele for UGT85K5) showed the lowest content of linamarin (Fig. 3J). PCR-based 
resequencing was performed to investigate more functional variations of CYP79D1, 
CYP71E7b, and UGT85K5. Highly significant associations were identified between three 
SNPs (SNP1-SNP3) in the promoter of CYP79D1 and the levels of linamarin (Additional 
file 2: Table S9). However, they are not likely the causative SNPs since no significant (P 
= 0.84) correlation was observed between the expression of CYP79D1 and the levels of 
linamarin across 22 cassava cultivars. Three SNPs (SNP14-SNP16, of which SNP16 is 
the causative SNP Chr12:35953769) in the 3’UTR of UGT85K5 showed highly significant 
associations with the levels of linamarin (Additional file 2: Table S10), while no signifi-
cant associations were observed between the SNPs of CYP71E7b and the levels of lin-
amarin (Additional file 2: Table S11).

Anthocyanins determine cassava SR endothelium color

Anthocyanins are responsible for some of the red coloration and nutritional quali-
ties of plant-derived foods [27]. Cassava SR with red endothelium is highly valued for 
its appearance and is therefore popular among consumers. The metabolites cyanidin 
3-O-glucoside and delphinidin 3-O-rutinoside involved in the anthocyanin pathway 
exhibit highly correlated contents (Cor = 0.94, P < 2.2e-16) in cassava SR. A total of two 
mGWAS signals were detected for the contents of these metabolites on Chr1-9.13 Mb 
and Chr2-6.09 Mb, respectively (Fig. 4A-B). Moreover, these two signals were co-located 
with the GWAS signals for SR endothelium color (Fig. 4C-D). These signals both har-
bor the candidate Sc02g007130 (MeMYB4) encoding an ortholog of AtMYB4, which is 
involved in anthocyanin biosynthesis [28]. A possible causative SNP 2:6158256 in the 
5’UTR of MeMYB4 is significantly associated with cyanidin 3-O-glucoside and delphini-
din 3-O-rutinoside contents and also with SR endothelium color (Fig. 4E-G). PCR-based 
resequencing verified this variation as well as these associations in 22 cassava accessions 
(Additional file 2: Table S12). The dual luciferase assay found that the promoter region 
of MeMYB4 carrying C-allele had higher activity than those carrying T-allele, indicat-
ing that this allelic variation affects MeMYB4 expression (Fig. 4H). Cassava accessions 
carrying the C-allele showed higher metabolic levels of cyanidin 3-O-glucoside and del-
phinidin 3-O-rutinoside than did those carrying the T-allele (Fig. 4I-J) and accordingly 



Page 9 of 23Ding et al. Genome Biology          (2023) 24:289  

included a higher percentage of cultivars with red SR endothelium (Fig. 4K). Expression 
of MeMYB4 was significantly (P < 0.05) correlated with the metabolite levels of both 
cyanidin 3-O-glucoside and delphinidin 3-O-rutinoside (Fig. 4L-M). Transient silencing 
of MeMYB4 resulted in dramatically decreases in cyanidin 3-O-glucoside and delphini-
din 3-O-rutinoside contents (Fig. 4N-P). Further, yeast one-hybrid assays revealed that 
MeMYB4 protein could bind directly to the promoter regions of MeCHI (Sc07g012880) 

Fig. 4 Functional annotation of genes responsible for variation in anthocyanin contents and SR endothelium 
color. A‑B Manhattan plot displaying the GWAS results of cyanidin 3-O-glucoside and delphinidin 
3-O-rutinoside. C Manhattan plot displaying the GWAS results for SR endothelium color. D Phenotypes 
of cassava SR with white or red endothelium. E Gene model of Sc02g007130 (MeMYB4). The lead SNP 
2:6017365 is indicated by a vertical arrow. The causative SNP 2:6158256, which located in the promoter 
of MeMYB4, is indicated by a red star. F Expression level of MeMYB4 in leaf, root, stem, and among seven 
developmental stages (S1–S7) of storage root. G Phylogenetic tree of MeMYB4 and MYB genes from other 
species. Bootstrap values are indicated at each node. H Comparison of activities between C-containing and 
T-containing promoter regions (1000 bp upstream of ATG) in dual luciferase assay. Each sample contains 
seven biological replicates. I‑J Boxplot displaying the relative contents of cyanidin 3-O-glucoside and 
delphinidin 3-O-rutinoside based on the single likely causative SNP 2:6158256. K The percentage of SR 
endothelium color attributable to the causative SNP 2:6158256. L‑M Pearson correlations between the 
expression of MeMYB4 and the content of cyanidin 3-O-glucoside and delphinidin 3-O-rutinoside in SR of 22 
cassava cultivars, respectively. N Reduced transcript expression of MeMYB4 in MeMYB4-silenced cassava plants 
(pTRV-MeMYB4-1 and pTRV-MeMYB4-2) compared with the control (pTRV) in leaf. Bars indicate mean ± SD, 
n = 3. O‑P Reduced levels of cyanidin 3-O-glucoside and delphinidin 3-O-rutinoside in MeMYB4-silenced 
cassava plants (pTRV-MeMYB4-1 and pTRV-MeMYB4-2) compared with the control (pTRV) in leaf. Bars indicate 
mean ± SD, n = 3. Q Growth of yeast cells co-transformed with pHis2.1-ProMeCHI/pGADT7-MeMYB4, 
pHis2.1-ProMeF3H/pGADT7-MeMYB4, or the positive control (pHis2.1-P53/pGADT7-Rec2-53). R Reduced 
transcripts of MeCHI and MeF3H in MeMYB4-silenced cassava plants (pTRV-MeMYB4-1 and pTRV-MeMYB4-2) 
compared with the control (pTRV) in leaf. Bars indicate mean ± SD, n = 3. Asterisk symbols (**) in this figure 
indicate a significant difference at P < 0.01 by the Student’s t-test
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and MeF3H (Sc02g010090), which encode two key enzymes involved in anthocyanin 
biosynthesis (Fig.  4Q). Transient silencing of MeMYB4 also resulted in significantly 
decreases in the expression of MeCHI and MeF3H (Fig. 4R). Collectively, these results 
strongly indicate the positive control of MeMYB4 in cyanidin 3-O-glucoside and del-
phinidin 3-O-rutinoside as well as red endothelium in SR through its interaction with 
MeCHI and MeF3H.

Effects of domestication on metabolite contents and the negative roles of quercetin 

3‑O‑glucoside in cassava yield

Due to the rapid modification of agriculturally important traits by humans, metabolite 
contents of the edible portions of crop species have also been strongly affected during 
domestication. To provide insights into the metabolic changes that have taken place dur-
ing cassava domestication, metabolite profiles were compared between 299 cultivated 
and five representative wild cassava accessions (Additional file  1: Fig. S8), resulting in 
a total of 538 differentially accumulated metabolites (DAMs). Among the 132 of these 
metabolites that were annotated, flavones and lipids have changed the most with domes-
tication. Compared with wild accessions, the contents of the majority of AA derivatives 
were higher in cultivars, whereas most flavones, lipids, phenolic acids, hydroxycin-
namoyl derivatives, and nucleotide derivates were lower, with average changes as low 
as 0.14-, 0.08-, 0.06-, 0.07-, and 0.18-fold, respectively (Additional file  2: Table  S13). 
Domestication also caused significant increases in SR weight [10], guiding us to investi-
gate the contribution of metabolites to SR weight.

Clustering of metabolite levels divided the cassava cultivars into four main groups 
that exhibited significant differences in SR weight per plant (Fig. 5A-B). Four flavones 
involved in SR development were significantly negatively correlated with SR weight 
per plant (Fig. 5C-G), suggesting a possible contribution of flavones to SR weight per 
plant via an influence on SR development [29]. The roles of flavones in SR weight 
per plant were further investigated based on the mGWAS and pGWAS co-locations, 
which revealed that mGWAS signals for 16 flavones were co-located with the pGWAS 
signal for SR weight per plant on Chr2:12.84 Mb (Fig. 5H-I and Additional file 1: Fig. 
S9). Among these, 14 flavones were associated with SR development (Additional 
file 2: Table S14), including quercetin 3-O-glucoside as one of the four flavones nega-
tively associated with SR weight per plant (Fig. 5B and Fig. 5G). Candidate gene min-
ing found that Sc02g015220 encoded a flavonol synthase (MeFLS1, Fig. 5J-K), a key 
enzyme involved in the production of quercetin in the flavonoid biosynthesis path-
way [30]. The expression of MeFLS1 was significantly (P < 0.05) correlated with the 
metabolite levels of quercetin 3-O-glucoside contents in SR among different culti-
vars (Fig. 5L). Further, a causative SNP 2:12776464 in the promoter region of MeFLS1 
might be associated with MeFLS1 expression levels, quercetin 3-O-glucoside con-
tent, and SR weight per plant. Cassava accessions harboring the G-allele of MeFLS1 
had lower expression level (P = 0.0003), lower quercetin 3-O-glucoside content (P 
= 0.04), and marginally higher SR weight per plant (P = 0.08) than did the acces-
sions containing the T-allele (Fig. 5M-O). The dual luciferase assay showed that the 
promoter region of MeFLS1 carrying G-allele had lower activity than those carrying 
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T-allele, suggesting that this allelic variation affects MeFLS1 expression (Fig.  5P). 
Quercetin 3-O-glucoside content was significantly higher in wild accessions than in 
cultivars (Fig.  5Q). Nucleotide diversity (Pi) around the MeFLS1 region was signifi-
cantly lower in cultivars than in wild accessions (Fig. 5R), indicating that the MeFLS1 
region was under selection during cassava domestication. Moreover, the frequency of 

Fig. 5 Functional annotation of genes responsible for variation in quercetin 3-O-glucoside content and 
SR weight per plant. A Clustering of four groups (G1–G4) of cultivated cassava based on the metabolite 
profiles in SR. B Differences in SR weight per plant among four groups (G1–G4) of cultivated cassava 
shown in A. Different letters indicate significant differences at P < 0.05 based on Duncan’s multiple range 
tests. C Relative contents of four flavones among seven developmental stages (S1–S7) of storage root in 
cassava cultivar SC205. D‑G Relative contents of four flavones negatively correlated with SR weight per 
plant among four cassava groups (G1–G4) shown in A. H Manhattan plot displaying the GWAS results for 
quercetin 3-O-glucoside contents. I Manhattan plot displaying the GWAS results for SR weight per plant. 
J Gene model of Sc02g015220 (MeFLS1) located 65.6 kb from the lead SNP 2:12844688, which is indicated 
by a vertical arrow. The causative SNP 2:12776464, which located in the 3’UTR of MeFLS1, is indicated by a 
red star. K Phylogenetic tree of MeFLS1 and FLS genes from other species. Bootstrap values are indicated 
at each node. L Pearson correlation between the expression of MeFLS1 and the content of quercetin 
3-O-glucoside in SR of 22 cassava cultivars. M Differences in expression of MeFLS1 in SR attributable to the 
causative SNP 2:12776464. N Boxplot displaying the relative content of quercetin 3-O-glucoside attributable 
to the causative SNP 2:12776464. O Boxplot displaying SR weight per plant attributable to the causative SNP 
2:12776464. P Comparison of activities between G-containing and T-containing promoter regions (1000 bp 
upstream of ATG) in dual luciferase assay. Each sample contains seven biological replicates. Q Differences 
in quercetin 3-O-glucoside contents between wild and cultivated cassava. The significance in (M-Q) was 
determined by the Student’s t-test. R Nucleotide diversity (Pi) between the wild (n = 19) and cultivated (n 
= 299) cassava accessions around the MeFLS1 region in 80-kb sliding windows with 10-kb steps. S Allele 
frequencies of the causative SNP 2:12776464 between wild and cultivated cassava accessions
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the G-allele was higher in cultivars compared with wild accessions (Fig. 5S). Together, 
these results suggested that MeFLS1 was the gene responsible for variation in the con-
tents of quercetin 3-O-glucoside, which might have negatively influenced SR weight 
per plant during cassava domestication.

Discussion
Metabolomics and mGWAS

Determination of metabolites is a fundamental step for studying the genetic control of 
their contents and thereby takes advantage of variation to improve nutritional quality 
of crops. The SR is the most economically valuable part of the cassava plants and con-
tributes substantially to the diets of humans in the tropical regions. The present study 
identified 2980 metabolites (including 489 structurally annotated) in SR of 299 cassava 
cultivars (Additional file 2: Table S2 and Table S3). The number of metabolites detected 
here represents a considerable advance in metabolite detection compared with previous 
studies in cassava [14, 31–33]. Approximately 64.3% of these metabolites exhibited coef-
ficients of variation >50%. A few specifically important metabolites such as linamarin 
and lotaustralin, which have major negative impacts on SR edibility, were included in our 
study (Additional file 2: Table S2). Similar to previous reports in rice, tomato, and wheat 
[34–36], metabolites such as flavones, lipids, and amino acids generally showed strong 
within-class correlations (Fig.  1), providing a useful resource for identifying unknown 
metabolites based on correlations of their contents with those of known metabolites [5]. 
These results will deepen our understanding of natural variation and sub-networks of 
metabolites in SR and suggest further exploration of how variation in the contents of 
these metabolites could influence cassava nutritional quality.

By combining our analysis of metabolite contents in cassava SR with 1,155,988 high-
confidence SNPs, a total of 18,218 mGWAS associations were found. These associations 
were non-randomly distributed across the genome as previously observed in rice, maize, 
and wheat [34, 36, 37], suggesting that multiple metabolites can be influenced by manip-
ulation of a small genomic region during metabolomics-assisted cassava breeding. Here, 
a total of 12 candidate genes were identified as associated with 11 metabolic traits (Addi-
tional file 2: Table S7). The reliability of these candidates was supported by the associa-
tions between metabolite levels and allelic variations in the candidate genes, as well as by 
the functional validation of their orthologs in other species. Several of the candidates we 
designated were then further analyzed by in vitro enzyme assays or the transient silenc-
ing due to the challenges of stable genetic transformation [38]. These data will facilitate 
future genetic improvement and breeding strategies in cassava.

CG biosynthesis genes

As a major component of SR quality, CGs play a key role in plant defense but are also 
toxic to humans [11]. The CG concentrations in SR of cassava cultivars must be reduced 
to a safe level before human consumption. Therefore, improving cassava varieties with 
low CG and exploring the genetic architecture of CG in cassava are of considerable 
interest.

Through quantitative trait locus (QTL) analysis, previous studies have found sev-
eral loci controlling CG content in cassava roots, but did not provide conclusive 
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information on the genetic basis of CG variation due to limitations in available 
genomic resources and QTL detection power [39, 40]. More recently, Ogbonna et al. 
[11] performed a GWAS using multiyear trials and identified two major regions asso-
ciated with CG variation on chromosomes 14 and 16, respectively. However, these 
studies assessed CG content as a whole and did not provide any specific informa-
tion regarding the contents of linamarin and lotaustralin, two major forms of CG 
in cassava. In this work, the contents of linamarin and lotaustralin were assayed in 
299 diverse cultivars, and four mGWAS associations were detected for linama-
rin while only one was detected for lotaustralin (Fig.  3B and Additional file  1: Fig. 
S10). This might be because linamarin is more abundant (~95% of CG) than lotaus-
tralin in cassava SR [41, 42]. Interestingly, the association of SNP 14:6662981 with 
lotaustralin content was congruent with the location of Manes.14G073900 (encod-
ing a plasma membrane ATPase) that is associated with variation in hydrogen cya-
nide (HCN) in cassava root [11]. The position of another HCN-associated gene 
Manes.16G007900 encoding a multi-antimicrobial extrusion protein [11] was also 
close to SNP 16:1643714, which showed a weak association (P = 1.8E-06) with lin-
amarin in this study (Fig. 3B). These results strongly supported the accuracy and pre-
cision of our mGWAS associations and also suggested that Manes.16G007900 and 
Manes.14G073900 could be responsible for the contents of linamarin and lotaustra-
lin, respectively, in SR.

A clear mGWAS signal was found for linamarin content at Chr16:32817362 
(Fig. 3B). This locus has not been reported so far and might represent a novel genetic 
factor influencing linamarin in cassava. A gene cluster containing five CG biosynthesis 
genes and three HNLs was found in a 140-kb region near the locus Chr12:35620552 
(Fig. 3B). We further observed that CYP79D1, CYP71E7b, and UGT85K5 were highly 
co-expressed and that variants in these three genes were associated with low levels of 
linamarin content. Thus, breeding cassava varieties with decreased CG content might 
be feasible via genetic manipulation of CYP79D1, CYP71E7b, and UGT85K5.

CG content is associated with the resistance of cassava to biotic stress and its accu-
mulation is induced by jasmonic acid (JA) [11, 43]. We examined the expression of CG 
biosynthesis genes in response to MeJA treatment and Xanthomonas axonopodis pv. 
manihotis (Xam) infection and found that UGT85K4, CYP71E7b, and CYP79D1 were 
significantly induced at 6 h or 12 h after MeJA treatment (Additional file 2: Table S15). 
Similarly, CYP71E7b and CYP79D1 were significantly induced by Xam infection at 7 
dpi, although UGT85K4 was depressed (Additional file  2: Table  S15). However, the 
haplotypes of CG biosynthesis genes (CYP79D1, CYP71E7b, and UGT85K5) identi-
fied in this study are not significantly (P > 0.05) associated with the resistance of cas-
sava bacterial blight (Xam infection).

CG content is an important domesticated trait in cassava SR that can be decreased 
by selection [44]. Our metabolic data revealed that the contents of substrates for CG 
biosynthesis including L-valine and L-isoleucine (as well as L-leucine) were signifi-
cantly higher in cultivars than in wild accessions. Linamarin showed a reverse trend 
whereas lotaustralin was not significantly changed (Additional file  1: Fig. S11), sug-
gesting that domestication might have reduced the efficiency of conversion from 
L-valine to linamarin. However, no significant selection signal was detected in the 
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region of the 140-kb cluster of genes associated with CG biosynthesis, support-
ing another scenario that cassava domestication might have specifically targeted the 
regulatory rather than the structural genes involved in CG biosynthesis [11]. Further 
investigations are still required to clarify the domestication of CG in cassava.

Associations between metabolic and phenotypic traits

Parallel GWAS analysis of metabolic and phenotypic traits greatly facilitate the dissec-
tion of their associations and are helpful for mining metabolites associated with the 
regulation of phenotypic traits [1, 37, 45]. This method is especially important for the 
analysis of traits whose genetic basis remains unknown, providing a valuable approach 
to explore candidate genes.

In this work, the mGWAS signals for two anthocyanin-related metabolites, cyanidin 
3-O-glucoside and delphinidin 3-O-rutinoside, co-localized with the pGWAS signal 
for SR endothelium color (Fig.  4A-C), which established genetic associations between 
these two metabolites and SR endothelium color. These results also prompted our search 
for candidate genes related to anthocyanin biosynthesis in the co-localization region. 
MeMYB4 was designated as a candidate gene within the signal regions because it dis-
played high sequence similarity to AtMYB4, which participated in anthocyanin biosyn-
thesis in Arabidopsis [28]. Moreover, the SNP 2:6158256 within the 5’UTR of MeMYB4 
was significantly associated with cyanidin 3-O-glucoside and delphinidin 3-O-rutinoside 
contents as well as with SR endothelium color (Fig. 4I-K). MYB4s are usually the repres-
sors on phenylalanine metabolism, but there still are a few reports showing that they 
(e.g., NtMYB4a and BjMYB4) act as activators involved in anthocyanin synthesis [46, 
47]. MYB genes can transcriptionally regulate the expression of anthocyanin biosyn-
thetic genes via the MYB-bHLH-WDR complex [48]. Therefore, we examined the role 
of MeMYB4 via expression analysis and transient silencing and investigated the potential 
interactions of MeMYB4 using yeast one-hybrid assays (Fig. 4L-R). From results of those 
experiments, we concluded that MeMYB4 interacts with the promoter of MeCHI and 
MeF3H to control the red SR endothelium phenotype by regulating the levels of cyanidin 
3-O-glucoside and delphinidin 3-O-rutinoside. Collectively, the connections established 
between metabolites and phenotypes in this study should help to clarify their genetic 
and biochemical regulation and lead to more rational genetic improvements in cassava.

Similarly, five flavones involved in SR development were found to be negatively associ-
ated with SR weight per plant (Fig. 5C-H). This established possible links between fla-
vones and root yield in cassava, as found in a study showing that flavones could affect 
root development in the host plant through modulation of distinct bacterial taxa [29]. 
The relationship between flavones and root yield in cassava is further supported by the 
co-localization of mGWAS and pGWAS signals for flavone contents and SR weight per 
plant on Chr2, in which MeFLS1, which is involved in production of quercetin in the 
flavonoid biosynthesis pathway, was found to be associated with both quercetin 3-O-glu-
coside content and SR weight [30, 49]. Although domestication has caused significant 
increase in cassava SR yield, the genetic mechanism underlying this artificial selection 
remains elusive [44, 50]. Our allelic variation and gene diversity analyses have revealed 
that artificial selection of MeFLS1 contributed to the domestication of the large starchy 
cassava storage root through decreasing quercetin 3-O-glucoside levels. These findings 
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will deepen our understanding of cassava domestication and provide potential future 
targets for selection to increase cassava yield.

To the best of our knowledge, this is the first application of mGWAS to illustrate 
the genetic basis of variation in metabolites in a large number of accessions in a root 
or tuber crop, which will shed light on the discovery of still more useful genes for the 
genetic improvement of these crops. In the near future, more wild accessions should 
be collected and sequenced to further verify the accuracy of our domestication analysis 
because of the limited number of wild accessions used in this work.

Conclusions
In the present study, we quantified 2980 metabolic features in 299 cultivated cassava 
accessions, detected 18,218 significant marker-metabolite associations, and discovered 
12 candidate genes responsible for the levels of metabolites of potential nutritional 
importance or associated with cassava domestication. We also identified a CG biosyn-
thesis-related gene cluster in which CYP79D1, CYP71E7b, and UGT85K5 are highly co-
expressed and whose allelic combinations contribute to low linamarin content. Using 
parallel mGWAS and pGWAS, we found that MeMYB4 is responsible for the variation 
in anthocyanin (i.e., cyanidin 3-O-glucoside and delphinidin 3-O-rutinoside) contents 
in SR and SR endothelium color and that MeFLS1 is responsible for quercetin 3-O-glu-
coside content and SR weight per plant. Moreover, artificial selection acting on MeFLS1 
decreased quercetin 3-O-glucoside content and thus increased SR weight per plant 
during cassava domestication. Our study has provided novel insights into the genetic 
bases of cassava metabolome variation and established linkages between metabolites 
and agronomic traits in SR, which will facilitate the genetic improvement of cassava for 
enhanced nutrition.

Methods
Plant materials

The 299 cultivated and 5 representative wild cassava accessions used for metabolomic 
profiling in this study were taken from a germplasm collection in DanZhou (109.50°E, 
19.51°N) at the Chinese Academy of Tropical Agricultural Sciences (Additional file  2: 
Table S1). For each plant, only one typical SR was sampled and cut into ~3-mm-thick 
slices from the middle of SR. Five to six slices from three different plants per accession 
were pooled as one biological replicate, and placed in liquid nitrogen immediately, and 
stored at −80°C until use [31]. In total, two biological replicates per accession were col-
lected for metabolite profiling.

Genome re‑sequencing and SNP calling

Whole genome re-sequencing of the 299 cultivated and 5 wild cassava accessions men-
tioned above was performed in our previous work [10]. Re-sequencing data for 14 addi-
tional wild accessions derived from Bredeson et al. [51] and Ramu et al. [44] were also 
used in the present study. Raw reads with greater than 5% missing bases or with greater 
than 50% bases of base quality < 5 were discarded. The remaining clean reads were 
mapped to the cassava SC205 reference genome [9] using BWA mem v0.7.17 [52] with 
default parameters, and the results were further filtered using Samtools v1.9 [53] and 
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Picard v1.94 (https:// broad insti tute. github. io/ picard/). After removing low mapping-
quality (MQ < 20) reads, both single- and paired-end mapped reads were used to detect 
SNPs using the GATK toolkit v3.5 [54]. Finally, 1,155,988 high-confidence SNPs were 
identified and further annotated using the ANNOVAR program [55].

Metabolite profiling

The untargeted metabolome was profiled at the Wuhan Metware Biotechnology Co., 
Ltd., as previously described [56]. For each sample, approximately 80 mg crushed lyo-
philized storage root was extracted overnight at 4 °C with 1.0 mL 70% aqueous methanol 
before analysis using an LC-ESI-MS/MS system (HPLC, Shim-pack UFLC SHIMADZU 
CBM30A system; MS, Applied Biosystems 6500 plus Q TRAP). The HPLC used a 
Waters ACQUITY UPLC HSS T3 C18 column (1.8 µm, 2.1 mm × 100 mm) at 40 °C with 
a solvent system of water (0.04 % acetic acid) and acetonitrile (0.04 % acetic acid) fol-
lowing a gradient program of 95:5 V/V at 0 min, 5:95 V/V at 11.0 min, 5:95 V/V at 12.0 
min, 95:5 V/V at 12.1 min, and 95:5 V/V at 15.0 min, with a flow rate of 0.35 mL/min and 
injection volume of 2.0 μL. The ESI source operation parameters were used as following: 
ion source, turbo spray; source temperature, 500 °C; ion spray voltage, (+) 5500 V and 
(−) 4500V; ion source gas I (GSI), gas II (GSII), and curtain gas (CUR) were set at 55, 60, 
and 35 psi, respectively; the collision gas (CAD) was medium. Instrument tuning and 
mass calibration were performed with 10 and 100 μmol/L polypropylene glycol solutions 
in linear ion trap (LIT) and triple quadrupole (QQQ) modes, respectively. QQQ scans 
were acquired as MRM experiments with collision gas (nitrogen) set to 5 psi. A specific 
set of MRM transitions were monitored for each period according to the metabolites 
eluted within this period.

Metabolite‑based genome‑wide association analyses

The biallelic SNPs with minor allele frequency (MAF) > 0.05 and missing call fre-
quency (MCF) < 0.1 were selected for mGWAS using a compressed mixed linear model 
(cMLM) provided by the TASSEL program [57]. Population structure was calculated by 
the ADMIXTURE software [58], kinship was calculated by the TASSEL program [57], 
and they were incorporated in a fixed and random effect MLM to control false posi-
tives. Broad-sense heritability (H2) was calculated by using the following formula : H2 
= var(G)/var(G)+var(E), in which var(G) and var(E) are the genetic and environmental 
variances, respectively [57]. The significant threshold of mGWAS was set to P ≤ 4.43e-
07 after Bonferroni correction. Manhattan graphs were drawn by R (https:// www.r- proje 
ct. org/) in order to visualize the significant associated area and model effect. The adja-
cent significant SNPs (with a minimum of five) whose distance is less than 1 Mb were 
regarded as a significant locus, and the most significant SNP in this locus was defined as 
a lead SNP.

Phenotypic genome‑wide association analyses

A total of 337 accessions were planted in March 2013 and 2016 and harvested in Feb-
ruary 2014 and 2017, respectively, in Danzhou, Hainan Province. Each accession was 
cultivated in single rows of eight plants with 0.8 m distance between two plants. SR 
endothelial color was visually evaluated and classified as either red or white. SR weight 

https://broadinstitute.github.io/picard/
https://www.r-project.org/
https://www.r-project.org/
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per plant was calculated as the average of eight plants. Phenotypic genome-wide associa-
tion analyses were performed as previously described [10].

Mining of candidate genes and causative SNPs

Combined biological and bioinformatics approaches [5] were used to mine candidate 
genes by (1) looking for a protein or protein cluster that is biochemically relevant to the 
associated metabolites encoded at these loci; (2) performing cluster analysis of candidate 
genes relative to homologous genes with known function; and (3) cross-referencing with 
statistical results of Pearson correlation between the metabolic levels and candidate gene 
expression in different tissues or cultivars. The SNPs located within, 2 kb upstream, or 
2 kb downstream of the candidate genes were used to examine their associations with 
the corresponding metabolic traits, and the significant SNPs were considered as possible 
causative SNPs underlying metabolites.

Identification of metabolites associated with domestication

Five of the 299 cultivars were randomly chosen and compared with the 5 wild accessions 
to identify differentially accumulated metabolites (DAMs), setting the variable impor-
tance in projection (VIP) ≥1 and |fold-change| ≥1.5 [31]. This process was repeated 10 
times because of the small sample size. If a metabolite was found to have differentially 
accumulated in all of the 10 comparisons, it was considered associated with cassava 
domestication.

Phylogeny of wild and cultivated cassava accessions was generated by the neighbor-
joining tree method with genome-wide SNPs [10]. Nucleotide diversity (Pi) between 
the wild and cultivated cassava accessions were calculated by VCFtools [59] software in 
80-kb sliding windows with 10-kb steps.

Phylogenetic analysis

The amino acid sequences of reported genes (including glucosyltransferases, flavonol 
synthases, and MYB transcription factors) were obtained from the NCBI database 
(http:// www. ncbi. nlm. nih. gov/) according to their accession numbers. The information 
of candidate genes in this work was obtained from our recently published genome of 
SC205 [9]. Sequence alignments were performed using ClustalX, and the neighbor-join-
ing tree was constructed using MEGA6 with default parameters. The reliability of the 
phylogenetic tree was evaluated by a bootstrap test with 1000 replicates.

The metabolic data generated from 299 cultivated cassava accessions were log2-trans-
formed to construct a neighbor-joining tree for demonstration of the cassava population 
structure. The neighbor-joining tree was constructed based on the pairwise population 
distance by the software PHYLIP v3.69 and then visualized by the software MEGA6.

Detection of mGWAS signal hotspots

As previously described [5], a permutation test was performed to assess the statistical 
significance of the deviation of the observed signal distribution from a uniform distribu-
tion. In the permutation, all signals were randomly assigned into genomic regions for 
each 1-Mb interval, and the number of signals for each interval was recorded. After a 

http://www.ncbi.nlm.nih.gov/


Page 18 of 23Ding et al. Genome Biology          (2023) 24:289 

1000-permutation test, the value of significant (P < 0.01), the number of mGWAS signals 
per Mb would be 60, and the intervals with a larger number of mGWAS signals were 
regarded as hotspots.

RNA‑seq and data analysis

To explore the expression patterns of candidate genes, samples collected from different 
tissues (leaf, root, and stem) as well as seven developmental stages (S1–S7) of SR were 
analyzed in cultivar SC205 using RNA-seq. Cassava SRs were harvested every 40 days 
from 100 days after planting to 340 days after planting for a total of seven time-points, 
referred to as S1–S7 [31]. The SRs from 22 cultivars were also investigated by RNA-seq 
to establish possible links between metabolite levels and the expression of candidate 
genes (Additional file 2: Table S1). Each sample was analyzed with three biological repli-
cates. RNA-seq libraries were constructed by the Annoroad Gene Technology Corpora-
tion (Beijing, China) and sequenced on the Illumina Hiseq 4000 platform. RNA-seq data 
were processed and gene expression levels were calculated by fragments per kilobase per 
million mapped reads (FPKM) as previously described [15].

Genotyping of candidate genes

The genomic regions of five candidate genes (including MeMYB4, Me3GT, CYP79D1, 
CYP71E7b, and UGT85K5) were amplified and the PCR products were sequenced by the 
Sanger method in 16~22 cassava accessions, of which half had high content of metabo-
lites while another half had low content of the corresponding metabolites (Additional 
file 2: Table S8-12). The genomic DNA was extracted from selected cassava accessions 
using the Hi-DNAsecure Plant Kit (DP350, TIANGEN), and then applied as a template 
for PCR amplification with the following parameters: 94°C for 5 min, followed by 35 
cycles of 94°C for 30 s, 55°C for 30 s, and 72°C for 90 s, and a final extension at 72°C for 
10 min.

Functional characterization of MeMYB4

The virus-induced gene silencing (VIGS) experiment was performed as previously 
described [10]. The partial coding sequence of MeMYB4 was amplified from cassava 
cultivar SC205 and cloned into the pTRV2 vector with DNA sequencing verification. 
The recombinant plasmids MeMYB4-pTRV2 and pTRV1 were transformed into Agro-
bacterium tumefaciens GV3101 and thereafter syringe infiltrated into cassava leaves. 
After 14 days cultivation, the cassava leaves were collected for qRT-PCR as previously 
described [60]. The relative expression of MeMYB4, MeCHI (Sc07g012880), and MeF3H 
(Sc02g010090) was measured using the  2-ΔΔCt method with three biological replicates 
(Additional file 2: Table S16).

Yeast one-hybrid (Y1H) assays were performed using the Matchmaker Gold Y1H 
Library Screening System according to the manufacturer’s instructions (Clontech, 
USA). Promoter fragments of MeCHI and MeF3H were amplified from SC205 by 
PCR (Additional file 2: Table S16), verified by DNA sequencing, and then ligated into 
the pHIS2.1 vector using the ClonExpress II one-step cloning kit (Vazyme, Nanjing, 
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China). The recombinant pHIS2.1 vector was then transformed into yeast strain Y187 
and yeast cells were plated onto selective medium (SD/-His/3-AT) to detect any self-
activation. The pHIS2.1-MeCHI and pHIS2.1-MeF3H vectors were used as baits, 
while the full-length CDS of MeMYB4 was fused at C-terminus of GAL4-AD in the 
pGADT7 vector as prey. The bait and prey vectors were then co-transformed into 
yeast strain Y187 by the PEG/LiAc method, and yeast cells were cultured on double 
dropout medium (SD/-Leu/-Trp) and triple dropout medium (SD/-Leu/-Trp/-His/3-
AT) at 28°C.

Dual luciferase assay of MeMYB4 and MeFLS1 promoters

To determine the effect of allele variations (at −661 bp upstream of MeMYB4 and 
−446 bp upstream of MeFLS1) on the activity of MeMYB4 and MeFLS1 promoters, 
we performed a dual luciferase assay in tobacco (N. benthamiana). The promoter 
sequences (from 0 to −1000 bp) of MeMYB4 (carrying C or T) and MeFLS1 (carry-
ing G or T) were cloned and inserted into the pGreenII0800-LUC vector. The recom-
binant constructs were transformed into tobacco leaves by injection as previously 
described [61]. The relative luciferase activity was examined using a dual-luciferase 
reporter assay system (E710, Promega, Madison, USA).

In vitro enzyme assays of Me3GT and UGT85K4/UGT85K5

The full-length cDNAs of Me3GT (including allele1, allele2, A6T, G80D, S101C, 
T145A, S146G, P334S), UGT85K4, and UGT85K5 were cloned separately into the 
pGEX-6p-1 expression vector (Novagen), each with a glutathione S-transferase tag. 
Recombinant proteins were expressed in BL21 (DE3) cells (Novagen), and pelleted 
cells were re-suspended in lysis buffer (50 mM Tris–HCl with pH 8.0, 400 mM NaCl). 
The cells were disrupted using a high-pressure cracker and the supernatants of crude 
protein were obtained by centrifugation at 14,000g for 1 h. Glutathione Sepharose 4B 
agarose (GE Healthcare) was added to the supernatant containing the target proteins. 
After 1 h incubation, the mixture was transferred into a disposable column and then 
washed with lysis buffer (5 column volumes). The target proteins in collected frac-
tions were verified by SDS–PAGE, and the purified recombinant proteins were used 
to perform enzyme assays.

The in vitro glycosyltransferase assay of Me3GT (allele1) was carried out in a final 
volume of 100 µl containing 200 µM flavonoid acceptor (containing kaempferol, 
quercetin, cyanidin, pelargonidin, apigenin, chrysin, naringenin, and eriodictyol, 
respectively), 1.5 mM UDP-sugar donor, 5 mM MgCl2, and 500 ng purified protein in 
Tris–HCl buffer (100 mM, pH 7.4), and the reaction mixture was incubated at 37 °C 
for 15 min. The in vitro glycosyltransferase assay of Me3GT (including allele1, allele2, 
A6T, G80D, S101C, T145A, S146G, P334S) was performed as above, but only using 
kaempferol as the acceptor. The generated contents of kaempferol 3-O-glucoside were 
used to evaluate the relative activity of Me3GT.

The in vitro glycosyltransferase assay of UGT85K4 and UGT85K5 was carried out in 
a final volume of 100 µl containing 200 µM acetone cyanohydrin, 1.5 mM UDP-sugar 
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donor, 5 mM MgCl2, and 500 ng purified protein in Tris–HCl buffer (100 mM, pH 
7.4), and the reaction mixture was incubated at 37 °C for 15 min. When the reaction 
was stopped, the mixture was filtered using a 0.2-mm Millipore filter and was then 
subjected to LC-MS analysis.

Functional characterization of Me3GT and UGT85K5

The cassava common mosaic virus isolate CM (CsCMV-CM) based VIGS system [62] 
was used to verify the function of Me3GT and UGT85K5. The partial coding sequence 
was amplified from cassava cultivar SC205 and cloned into the CsCMV-CM vector 
with DNA sequencing verification. The recombinant plasmid was transformed into 
Agrobacterium tumefaciens GV3101 (psoup) and thereafter syringe infiltrated into 
cassava leaves. After 21 days cultivation, the cassava leaves were collected for qRT-
PCR as previously described [60]. The relative expression of Me3GT and UGT85K5 
was measured using the  2-ΔΔCt method with three biological replicates (Additional 
file 2: Table S16). The leaves of Me3GT-silenced and UGT85K5-silenced plants were 
used to examine the metabolite levels.
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