
Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate‑
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// 
creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi 
cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Tjärnberg et al. Genome Biology           (2024) 25:24  
https://doi.org/10.1186/s13059-023-03134-1

Genome Biology

Structure-primed embedding 
on the transcription factor manifold enables 
transparent model architectures for gene 
regulatory network and latent activity inference
Andreas Tjärnberg1,2,3,8,11*  , Maggie Beheler‑Amass2,3†, Christopher A. Jackson2,3†, Lionel A. Christiaen1,3,9,10, 
David Gresham2,3 and Richard Bonneau2,3,4,5,6,7* 

Abstract 

Background: Modeling of gene regulatory networks (GRNs) is limited due to a lack 
of direct measurements of genome‑wide transcription factor activity (TFA) making 
it difficult to separate covariance and regulatory interactions. Inference of regulatory 
interactions and TFA requires aggregation of complementary evidence. Estimating TFA 
explicitly is problematic as it disconnects GRN inference and TFA estimation and is una‑
ble to account for, for example, contextual transcription factor‑transcription factor 
interactions, and other higher order features. Deep‑learning offers a potential solution, 
as it can model complex interactions and higher‑order latent features, although does 
not provide interpretable models and latent features.

Results: We propose a novel autoencoder‑based framework, StrUcture Primed Infer-
ence of Regulation using latent Factor ACTivity (SupirFactor) for modeling, and a metric, 
explained relative variance (ERV), for interpretation of GRNs. We evaluate SupirFactor 
with ERV in a wide set of contexts. Compared to current state‑of‑the‑art GRN inference 
methods, SupirFactor performs favorably. We evaluate latent feature activity as an esti‑
mate of TFA and biological function in S. cerevisiae as well as in peripheral blood 
mononuclear cells (PBMC).

Conclusion: Here we present a framework for structure‑primed inference and inter‑
pretation of GRNs, SupirFactor, demonstrating interpretability using ERV in multiple 
biological and experimental settings. SupirFactor enables TFA estimation and pathway 
analysis using latent factor activity, demonstrated here on two large‑scale single‑cell 
datasets, modeling S. cerevisiae and PBMC. We find that the SupirFactor model facili‑
tates biological analysis acquiring novel functional and regulatory insight.
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Background
Transcription factor (TF) regulation of mRNA transcription is a main mechanism 
through which cells control gene expression and respond to context-specific signals [1, 
2]. The relationship between TFs and the genes they control forms an interconnected 
gene regulatory network (GRN), and interpreting this network is necessary to under-
stand cell and organism heterogeneity, development and differentiation, tissue organiza-
tion, and diseases [3–6]. GRNs are typically represented as causal graphs, which have 
regulatory TFs linked to target genes. Regulatory interactions in the GRN are difficult 
to collectively determine experimentally, so it is necessary to infer the structure of the 
GRN. This inference is complicated by regulatory relationships between TFs and genes 
that are context-dependent [7], as TFs may control gene expression differently in differ-
ent cell types or under different conditions [8].

TFs themselves can be regulated transcriptionally (by changing their mRNA levels), 
translationally (by changing the amount of protein produced from mRNA), or post-
translationally (by modifying the protein to alter localization or DNA binding ability). 
Transcription factor activity (TFA) can be thought of as a representation of how much a 
transcription factor influences the transcriptional rate of Pol II at its target genes, theo-
retically measured as the marginal rate of nascent transcripts produced per minute per 
target gene. To have activity, the TF protein must itself be  expressed, and it must be 
able to localize to the nucleus and bind to its DNA target. Depending on the TF, it may 
require specific post-translational modifications, presence or absence of a small mole-
cule, and presence or absence of co-activators or co-repressors. This TF activity is dif-
ficult to measure experimentally genome-wide.

Explicit inference of TFA as a latent model parameter is a core component of several 
GRN inference methods [9–13]. Generally, TFA is inferred from existing evidence of TF 
to target gene regulation, combined, using linear models, with the measured expression 
of the target genes. Although powerful, this framework lacks the flexibility to account 
for heterogeneity and contextual relations observed in biological systems, and the activ-
ity estimates have limited interpretability. Workarounds to contextualize regulatory rela-
tionships have been proposed [14, 15]; however, the inflexibility of the models and the 
lack of interpretability of latent factors remain an issue.

Using more complex models to better match known transcriptional regulatory biology 
places numerous demands on optimization and inference machineries and limits scale. 
However, the field of deep learning offers scalable learning and optimization techniques 
that could aid in GRN inference. Deep learning has been used to model expression and 
covariance networks [16], to build a sparse representation of gene clusters [17], to group 
genes into co-regulated modules [18, 19], to do supervised clustering of gene sets [20, 
21] and for dimensionality reduction and denoising [22]. However, interpretable deep 
learning models for gene regulation, which provide biological insight into causal rela-
tionships in addition to prediction, have been difficult to construct and is an active area 
of research [23]. Techniques to interpret deep-learning latent features often focus on 
removing latent features to quantify their influence and importance [24]. Feature quanti-
fication can use change in mean squared error on removal of input features (COM) [25], 
backpropagation of the output layer into latent features (Grad-CAM) [26], or forward 
propagation of the latent layers into the output layer [19]. These methods often require a 
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target value, e.g., as in classification tasks, or cannot be compared reliably between out-
put features as non-normalized error rates depend on feature scaling. These techniques 
cannot be used for model selection. To make statements on the active GRN in a given 
context, we need to be able to determine predictive and non-predictive interactions. 
For unbounded metrics, this remains a problem as we need to construct a secondary 
heuristic on what constitute predictive and non-predictive bounds. Deep learning mod-
els generally remain over-parameterized, making biological interpretation difficult, and 
techniques must be applied after training to eliminate model parameters and enforce 
sparsity for GRN evaluation [27–35].

Knowledge priming embeds existing structural evidence into the model architecture 
by limiting connectivity between features based on epigenetic or regulatory evidence 
found in the literature. This informs the model of constraints on regulation which are 
complementary and not directly measured by the readout of gene expression in the 
training data. These constraints allow direct interpretation of the model, as priming with 
biological interactions allows biological interpretation of the resulting network graph 
[36]. Other structure evidence embedding methods use this prior data type as a con-
straint on covariance [37]. Both of these methods lack the ability to infer novel regula-
tory structure.

Results
We present a model inspired by white-box machine learning approaches [38], that we 
call StrUcture Primed Inference of Regulation using latent Factor ACTivity (SupirFactor). 
This model incorporates knowledge priming by using prior, known regulatory evidence 
to constrain connectivity between an input gene expression layer and the first latent 
layer, which is explicitly defined to be TF-specific. This model ties the latent TF layer 
causally to informative genes, genes that have known upstream regulators given an inde-
pendent set of evidence derived from literature or epigenetic data as described in “The 
SupirFactor regulation model” section, and allows the activation of latent features in this 
layer to be directly interpreted as transcription factor activity (TFA). This latent layer is 
then linked to gene expression in an output layer, which is interpreted as an explicitly 
inferred GRN.

We also adapt new metrics for model interpretation in this context; we define 
explained relative variance (ERV), a novel concept to interpret the structure of the 
inferred network graph for any architecture. Briefly, ERV is defined as the change in 
residual variance when a latent feature is removed from the model, and is used to rank 
and interpret graph weight importance within the model. Using ERV allows TF to gene 
interactions to be interpreted through additional latent layers placed between the TF 
latent layer and the output layer.

Benchmarking across multiple datasets we find that SupirFactor outperforms previ-
ous methods using similar frameworks for recovering GRNs. We find that our model 
uncovers biologically relevant TFA and predicts biological function of latent aggregates 
of TFs in deeper layers, suggesting our model is useful for predictive analyses beyond 
inferring GRNs. In particular we expect to predict activity of specific TFs and to aggre-
gate TFs into regulatory pathways, which we demonstrate on an experimental S. cerevi-
siae data set and a mammalian large single cell PBMC dataset. GRN interpretability and 
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context-specific network analysis is facilitated by using ERV, and we demonstrate its util-
ity by applying trained models to context-specific and unseen data.

The SupirFactor regulation model

The SupirFactor model learns a set of weights connecting genes to TFs in the prior. 
These genes functionally serve as reporters for the activity of connected TFs. As 
opposed to inferring TFA explicitly, as in network component analysis (NCA) (see 
the “Network component analysis (NCA)” section) where regulatory evidence is static 
in the prior, we set φ = g(W , x) , where W ∈ P is the weighted influence of genes to TFs 
derived from prior evidence P , and x is the expression of genes informing on φ which 
may be a subset of informative genes connected through W  . This extends our model to 
x = f (g(W , x),�) , where � is the GRN.

We actualize this model using a deep learning framework choosing f, and g and learn 
W  , and � with φ as a latent feature produced by the weighted output from x mapped 
through a learned W  . Depending on the form of f, and including non-linearities, we can 
learn additional higher order interactions and regulatory pathways (see the “StrUcture 
Primed Inference of Regulation using latent Factor ACTivity (SupirFactor)” section). The 
complex version of the model that can capture other interactions in f we call “hierarchi-
cal” SupirFactor (Fig. 1A). A simple version of this framework uses a single bottleneck 
layer for our function f we refer to as “shallow” SupirFactor (Fig. 1B).

Constructing a prior matrix P is a challenging but essential task for including informa-
tive evidence of regulation. This step is also a way to integrate data types that can shed 
light on TF-target relationships. This matrix can represent previously known interac-
tions, and it can also encode higher probability interactions derived from chromosome 
accessibility or TF-chromatin interactions (experimentally measured by ATAC-seq and 
ChIP-seq) [39, 40]. A more dense P is likely to include more false positives and will 
therefore result in a noisier propagation of TF variance. A sparser P is likely to have 
many false negatives, limiting the variance that the model is able to explain, resulting in 
an model that may be less predictive.

A concern is that prior connectivity P rarely includes reliable sign or weight estimates. 
Inferring signs for P from the direction of change after perturbations is technically dif-
ficult, as it requires perturbing all TFs included in the model. Relying on expression cor-
relation to infer signs will conflate both indirect and co-varying regulation. We expect 
that refitting weights W ∈ P dependant on � will mitigate these problems.

Selection of SupirFactor hyperparameters

We evaluate the SupirFactor framework (Fig.  1) for GRN inference from bulk and 
single-cell RNA expression data. First, to test our model setup, explore interpretabil-
ity, and compare performance to other models, we benchmark using multiple data 
sets where a partial ground truth network is available (called the gold standard in this 
work) on the “shallow” SupirFactor. We have previously assembled a GRN inference 
data package that consists of two prokaryotic Bacillus subtilis bulk RNA expression 
data sets (B1 and B2), two Saccharomyces cerevisiae bulk RNA expression data sets 
(S1 and S2), and one S. cerevisiae single-cell RNA expression data set (scY) [41]. This 
data package also includes a Bacillus subtilis gold standard network [10], covering 154 
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TFs and 4218 informative genes also used as the prior evidence, and a S. cerevisiae 
gold standard network [42], covering 98 TFs and 993 target genes, both derived from 
literature databases, we also use a S. cerevisiae prior evidence matrix with 150 TFs 
and 5578 informative genes used in previous work [41]. Single-cell RNA expression 
data is preprocessed (see the “Single cell pre-processing” section) and both bulk and 
single-cell data is feature normalized (see the “Feature normalization” section) prior 
to model fitting. For the SupirFactor model, the number of latent features used |�| = 
number of TFs available in the prior evidence.

Fig. 1 Outline of the SupirFactor framework. The SupirFactor model is constructed like an autoencoder 
where we embed gene expression data on the transcription factor manifold, exploring two architectures, 
the “hierarchical” A, and the shallow B architecture. The output of the first layer defines the latent features 
marked as TFs (Transcription Factors) and the activation φ is the transcription factor activity (TFA). The prior 
P connect the evidence of TF to a set of informative downstream genes, with learnable weights W . For A, � 
connects the TFs to the latent features, here called the meta TFs (mTFs). � weights the mTF activity (mTFA) to 
predict genome wide gene expression profiles. In B, the TFs directly weights TF to gene influence in � . C: To 
make the model completely interpretable and transparent we use explained relative variance (ERV) ξ2 . ERV 
estimate importance of all latent factors influence on model output features. This is then used to evaluate the 
model and its performance. The GRN is cross validated, where genes to TF connections are held out in the 
input W and predicted in the GRN which for the shallow model is � and for the hierarchical model is �̌ the 
indirect effect from the TFs to output features. The measured recovery of these links gives insight on stability 
and biological relevance of the GRN where parameters are ranked by their predictability measured by ξ2 . 
D Gene regulatory network extracted as indirect TF‑gene interaction in hierarchical SupirFactor and direct 
TF‑gene interactions in shallow SupirFactor. E Multi‑task learning is implemented in SupirFactor through a 
joint representation learning (JRL) architecture where biological distinct contexts is independently weighted 
into a joint GRN representation. F Architecture pruning and sparsity procedure in SupirFactor is used to 
stabilize and eliminate over‑parameterization by eliminating non‑predicting model parameters facilitated be 
ERV
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To be able to extract a GRN from our model that gives us latent feature to output 
connections, we need to be able to interpret model weights, features, and their rela-
tive importance. This is difficult in multi-layer architectures, and weights may not be 
scaled with biological importance. Instead, we devise a metric to quantify the direct 
effect a latent feature has on its targets in the output, explained relative variance (ERV) 
ξ2 (Fig. 1C), with appealing properties for GRN inference. This metric is based on fea-
ture removal [24] and is computed as the coefficient of partial determination (CPD) [43]. 
We disconnect each latent model feature and compute the consequent effect on the out-
put variance MSE, scoring the separated model feature against the full model prediction 
without retraining (see the “Model selection and model parameter ranking” section).

Deep learning models have a number of hyperparameters that needs to be tuned for 
optimal model performance. Two critical hyperparameters for GRN inference are the 
weight-decay, typically called the L2 penalty, and dropout, stochastic perturbation 
of the data during training to attenuate noise and improve model generalization (see 
the “Model regularization” section). We test dependence on these hyperparameters by 
searching for L2 and dropout (on input and latent features) with the simplified shallow 
SupirFactor model. Each hyperparameter value is tested by splitting expression data 
50–50 into training and validation set, using 80% of the gold standard network as prior 
network information for the model and holding out 20% for scoring. Negative controls 
consist of either shuffling the data or the prior network. Area under precision recall 
curve (AUPR) is used to score the network structure against the gold standard network 
and R2 is used to quantify prediction accuracy. Each configuration is rerun repeatedly 
and average performance is reported (Additional file 1: Figs. S2-S9).

We observe that in some cases (for S2 and B1 datasets), when increasing L2 beyond 
a specific value, R2 decreases while AUPR increases (Additional file  1: Figs. S3 & S4). 
We interpret this as overfitting to the prior network structure and increasing recovery 
of the gold standard in cases where the these two structures align, such as in scale-free 
networks with dense highly connected TFs. The model then emphasizes these TFs at the 
cost of prediction accuracy and inclusion of less connected TFs. This is undesirable, so 
we select hyperparameters that maximizes R2 while maintaining a high AUPR. Negative 
controls perform as expected; shuffling the data eliminates the biological interpretability 
and predictive power of the resulting GRN, and shuffling the prior network eliminates 
only biological interpretability while still achieving good predictive power.

To determine an optimal L2, we look for where R2 is maximized. We find that pre-
diction accuracy is maximized in the span L2 ∈ [10−6, 10−4] for all data sets, where we 
select an L2 of 10−4 for B1 and B2 and 10−6 for S1, S2 and scY for further comparisons 
(Additional file  1: Figs. S2C-S9C). For dropout, in general, we find that setting larger 
dropout on input and smaller dropout on latent features increases AUPR while main-
taining a higher R2.

SupirFactor benchmarking demonstrates improved biological regulatory network recovery

We summarize the performance of the shallow SupirFactor model using a linear acti-
vation function with several modeling choices (Fig. 2A). Using ERV as an estimator 
for biological relevance outperforms interpretation based on model weights alone, 
as determined by AUPR. Selecting the optimal dropout hyperparameters based on 
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maximum R2 for the selected L2 (max R2) improves model R2 at a cost of decreasing 
network prediction performance (AUPR), when compared to setting a fixed dropout 
(fixed; input = 0.5 and latent = 0).

Fig. 2 SupirFactor benchmark and hyperparameter evaluation. Performance is evaluated on gold‑standard 
networks consisting only of edges held out of the prior network P , measuring recovery using AUPR. R2 
is computed on a validation set of 50% of the data samples held out of the training data. Data sets are 
labeled for species, with Bacillus subtilis (B1 and B2), S. cerevisiae bulk RNA expression (S1 and S2), and S. 
cerevisiae single‑cell RNA expression (scY). A Comparing network interpretation using model weights ( � ) to 
interpretation using explained relative variance (ERV), measured using AUPR against edges held out of the 
prior network P . R2 is calculated from the full network model. Model hyperparameters are set based on results 
in Additional file 1: Figs. S2‑S9 as detailed in the  “Model regularization” section. B Comparing normalization 
and activation functions for single‑cell RNA expression data, as in (A). SS‑ is normalizing to mean of zero and 
unit variance, RM‑ is normalizing to maintain a minimum value of 0 (retaining sparsity), ‑L is linear activation, 
and ‑R is ReLU activation. C Benchmarking SupirFactor with optimal parameters selected from (B) against a 
comparable GRN inference method, the Inferelator, and two methods not using prior evidence; GRNBoost2 
and GENIE3. D Comparing multi‑context network performance between shallow SupirFactor, Hierarchical 
SupirFactor, and the multi‑task Inferelator. GRNs are learned from single‑cell (scY) data, with context/task 
groupings determined by growth condition. Global GRNs are learned from the data without separate 
groupings (using StARS‑LASSO for the Inferelator [41]). Context networks are computed post‑training in 
SupirFactor and split here on growth condition. E Evaluating model prediction R2 on four novel test data sets, 
using a GRN trained by Hierarchical SupirFactor. F Recovery of independently collected regulatory evidence 
not in the prior. Comparing the full Hierarchical SF with the Inferelator, GRNBoost2, and GENIE3 on using the 
trained single cell Yeast (scY) models. G Comparing contextual network for GRNs defining cell cycle M‑phase 
and S‑phase (Table 1). Each point is an interaction from the two contextual networks, colored by the target 
gene functional annotation. X and Y axis are ξ2 of the S‑phase and M‑phase networks. GRN interactions 
targeting S‑phase genes (purple) have higher ERV in the S‑phase contextual network, and interactions 
targeting M‑phase genes (green) have higher ERV in the M‑phase contextual network
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For single-cell RNA expression data (Fig.  2B), we extend the comparisons, compar-
ing linear and rectified linear (ReLU) activation functions (see the  “ReLU in hier-
archical SupirFactor” section), and comparing standard normalization to a robust 
sparsity-retaining normalization (see the “Feature normalization” section). RobustMin-
Scaler outperforms StandardScaler normalization, implying that preserving sparse data 
for model training is advantageous (Fig. 2B). To summarize these benchmarking results, 
ERV should be used to evaluate model parameters, and dropout hyperparameters can be 
fixed without loss of prediction accuracy and GRN recovery.

Finally, we compare shallow SupirFactor performance to that of the Inferelator 
(Fig. 2C), a method which takes comparable RNA expression and prior network inputs 
and learns a GRN. We note that other methods which take these inputs are not ame-
nable to scoring on holdouts that we are employing for our benchmark [41], making 
comparison difficult. Adding prior evidence implies a causal chain defined by the prior, 
resulting in a better representation of regulation in the model. To test this assumption, 
we also benchmark against two state of the art methods using covariance of expression 
of a regulator to its targets, GRNBoost2 [37] and GENIE3 [34]. Using the configura-
tions from our benchmarking, SupirFactor improves significantly over previous methods 
results on all of the data sets tested. Including prior evidence significantly improves net-
work reconstruction.

Hierarchical SupirFactor with non‑linear activation facilitates interpretation of latent 

feature activation as biological activity in cell contexts

To account for more complex, multi-TF regulatory interactions, we extend our mode 
in multiple ways, introducing non-linearities and adding additional latent layers that 
represent interactions. Non-linear functional forms are necessary in the proposed hier-
archical SupirFactor architecture to model interactions more complex than linear rela-
tionships. We add an extra latent layer with number of latent features |�̂| = |�| as shown 
in Fig. 1A. This is necessary as GRNs are context- and cell-type-dependent, and thus, 
a TF to gene regulatory interaction may, e.g., exist when the organism is in one state, 
but be inaccessible in another or change its regulatory role, e.g., activating or inhibiting, 
depending on its regulatory partners.

SupirFactor can distinguish contextual networks by embedding context-specific 
assigned data and computing ERV only within that data set. We explore learning context-
dependent GRNs here; we evaluate this ability on the single-cell RNA expression data 
set, which has samples annotated by growth conditions (Fig. S1A). We compare hierar-
chical SupirFactor (Fig. 1A), shallow SupirFactor (Fig. 1B), and a comparable multi-task 
learning approach (AMuSR) in the Inferelator that also learns context-dependent net-
works. Both the shallow SupirFactor and hierarchical SupirFactor outperform the Infer-
elator (Fig. 2D). Shallow SupirFactor outperforms the hierarchical SupirFactor in some 
contexts, although the shallow model uses a linear activation function, and the hierar-
chical model uses a ReLU activation function. As this activation function constrains the 
latent features to be strictly positive, latent features are interpretable in the hierarchical 
model.

We use hierarchical SupirFactor to construct context-specific GRNs for cell cycle 
phases, by inferring cell cycle phase from transcriptional markers (Fig. S1B). Regulatory 
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edges that are actively used in a context-specific GRN should explain more relative vari-
ance, compared to edges which are inactive. For each cell cycle, we used the gene anno-
tation of cell cycle phase genes and compare ERV between phases for each relevant gene 
(Table  1). We compare both neighboring phases and phases skipping the immediate 
following phase. Computing a one-sided fisher exact test classifying genes in the GRN 
where they have the highest ERV, only using ERV that has ξ2 > 0.01 in at least 1 of the 
conditions, we find that for all comparisons we have a strong enrichment of the phases 
relevant genes in terms of ERV in the corresponding phases.

Hierarchical SupirFactor introduces a larger set of learnable weights and a poten-
tial over-parameterization of the model, and thus, the expanded model presents new 
model selection challenges in the context of sparse GRN inference. We test if an itera-
tive method for removing model weights could be used without loss of model perfor-
mance. ERV is used to rank model weights, and an ξ2 ≤ 0 indicates a non-predictive 
model weight. Identifying these non-predictive links, pruning them, and then refit-
ting the model attenuate over-parameterization (Fig. 1E). After 1 iteration of pruning, 
nonzero weights reduce to ∼ 57% ∈ � , ∼ 52% ∈ �̂ and ∼ 80% ∈ � of the pre-pruning 
model trained on scY. It is critical to determine if models learned by hierarchical Supir-
Factor generalize. We evaluate the predictive ability of a hierarchical SupirFactor model 
trained on data set scY using prior knowledge P without holdouts (Fig. 2B, RM-R). To 
do this, we generate four new experimental test single cell RNA expression data sets by 
collecting and sequencing cells grown in environmental conditions seen in the training 
data set (YPD and MMD). This model explains the variance of the training data well 
( R2 = 0.37 ), and also explains the variance of the YPD ( R2 = 0.62 ) and MMD test data 
sets ( R2 = 0.52 ) well (Fig. 2E).

Finally, we wanted to validate on regulatory edges not in the prior. We assembled an 
independent set of regulatory edges (see the “Yeast test GRN” section) and removed the 
overlap with the prior used for training. With this independent set of regulatory evi-
dence, we evaluated each method’s model performance with AUPR. We found that the 
prior based method models outperform the other methods tested for the independent 
set (Fig. 2F).

We conclude that SupirFactor generalizes and predicts expression patterns of new 
data even when model weights have been removed.

The SupirFactor model explicitly fits an intermediate layer which can be directly inter-
preted as latent Transcription Factor Activity (TFA) for each TF, when this layer uses a 
ReLU activation function [44]. Using hierarchical SupirFactor, we calculate latent TFA 
for all TFs. When examining the role of cell cycle TFs, the advantages of TFA are appar-
ent. The TFA for cell cycle TFs is maximal in phases the TFs are expected to regulate 
(Fig. 3A), based on known TF roles from literature [45]. Almost all cells have non-zero 
TFA for cell cycle TFs in at least one phase of the cell cycle, but TF expression is highly 
sparse, complicating causal linkage to targets based on TF expression (Fig. 3B). We note 
that for these cell cycle TFs, the expression of the TF often peaks in the phase before the 
TFA of the TF.

We also wanted to test the role of functionally related TFs. Transcription factors 
often interact with each other to define regulatory states, as part of multi-subunit 
complexes, or by competing for the same DNA binding regions. These interactions 
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should be reflected in how TF activity correlates, even if these interactions are not 
explicitly embedded in the model. We select several typical examples of TF pairs with 
known interactions and compare inferred TFA between hierarchical SupirFactor and 
the Inferelator (Fig.  3C). MSN2 and MSN4 are partially redundant stress response 
TFs that bind to the same DNA motif, and we expect their activity to be partially cor-
related. Hierarchical SupirFactor TFA is weakly correlated ( r = 0.18 ), unlike expres-
sion of MSN2 and MSN4, which are uncorrelated ( r = 0.01 ). RTG1 and RTG3 are 
obligated to form a physical dimer for functionality, and we expect their activity to 
be strongly correlated. Hierarchical SupirFactor TFA is strongly correlated ( r = 0.61 ), 
unlike expression of RTG1 and RTG3, which are uncorrelated ( r = 0.01 ). Finally, 
HAP2 and HAP5 are part of the multisubunit heme-activated TF complex, and we 

Fig. 3 Transcription factor activity in single cell yeast. TFA estimated from hierarchical SupirFactor model. 
Violin plots are generated by scaling [0, 1] the underlying measurement. A Cell cycle TFs regulate gene 
expression in specific cell cycle phases, with the phase the TF regulates annotated on the right y‑axis [45]. 
Cell cycle phase of each cell is inferred from transcriptome and annotated on the x‑axis. Panel (i) plots TFA, 
and panel (ii) plots the RNA expression of the TF. B Same as A. Dot size represents the percentage of cells 
with a non‑zero value. Color represents log fold‑change (log FC) across the cell cycle phases. Panel (i) plots 
TFA, and panel (ii) plots the RNA expression of the TF. C: Interacting TF pair Pearson correlation for SupirFactor 
TFA, Inferelator TFA, and TF expression. D Comparing TFA between rapamyacin (RAPA) treated and untreated 
(YPD) cells TFs known to be activated by treatment [46] or known to be more active in untreated cells are 
annotated on the right y‑axis. E UMAP projection of the scY dataset showing TFA estimate of co‑regulator TFs 
and growth conditions
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expect their activity to be strongly correlated. In this case, hierarchical SupirFactor 
is less successful at correlating TFA ( r = 0.14 ) than the Inferelator ( r = 0.33 ); expres-
sion is again uncorrelated ( r = 0.03 ). Overlaying TFA onto a reduced-dimensionality 
plot allows for the comparison between TF activities and the experimental conditions 
which cause them to be correlated or uncorrelated (Fig. 3D).

Finally, we compare the TFA between perturbed, rapamycin-treated cells and 
untreated control cells (Fig. 3E). Rapamycin is expected to inhibit TOR pathway signal-
ing, altering stress response and nutrient response TF activities [45]. By comparing the 
TFA between perturbed and control cells, hierarchical SupirFactor is able to reconstruct 
which TFs are activated and deactivated by this perturbation.

Hierarchical SupirFactor combines TFs into pathways

In hierarchical SupirFactor, we introduce an additional latent layer, which we interpret 
as meta transcription factors (mTFs) that aggregate TFs into multi-regulator pathways. 
As this mTF layer is directly connected to the output gene expression, we expect that the 
mTF layer activity (mTFA) can be interpreted as the activity of a regulatory pathway.

To test this hypothesis, we explore the hierarchical SupirFactor model trained on the 
single-cell yeast data (scY). mTF functions are determined by enrichment for regulation 
of genes that are annotated with Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways [47]. As this data was collected from cells growing in different carbon and 
nitrogen sources, we focus on enrichment of a specific subset of metabolic pathways. 
Forty-two of 148 mTFs are enriched for target genes (defined as mTF to gene connec-
tions with ξ2 > 0.1 ) to these metabolic KEGG pathways (Fig. 4A).

We focus on the 12 mTFs which are enriched for glycolysis target genes, a pathway 
which is a core part of the central carbon metabolism. Many of the growth conditions 
in the training single-cell yeast gene expression data set use glucose as a primary carbon 
source (Additional file 1: Fig. S1E), and we see that these conditions have similar mTF 
activation (for mTFs; 78, 72, 57, 88, 64, 116) within the glucose conditions (Fig. 4B). The 
remaining growth conditions use different carbon sources, requiring different regula-
tion of the central carbon metabolism. Six of the glycolysis mTFs are activated in these 
non-glucose carbon sources, but have considerably more repressive (negative weighted) 
links to target genes (Fig.  4C), suggesting that they are mainly downregulating glyco-
lytic genes. We can further overlay mTF activity onto a low-dimensionality projection 
in order to identify mTFs which are linked to carbon source with little heterogeneity 
(e.g., 74 and 79) and which have heterogeneity within growth conditions (e.g., 57 and 78) 
(Fig. 4D). We observe that mTFs aggregate biologically functional groups in their targets 
and can be evaluated quantitatively as activities of these pathways.

SupirFactor model regulation of mammalian PBMCs with multimodal single cell 

sequencing data

We evaluate the use of SupirFactor to model complex biological systems by applying the 
method to model Peripheral Blood Mononuclear Cell (PBMC) gene regulation, using a 
paired multi-omic single cell ATAC-seq and RNA-seq dataset [48] (Fig. 5A). These two 
data types are integrated by using ATAC-seq chromatin accessibility as a cell-specific 
mask (Eq. 16).
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PBMCs are a heterogeneous pool of multiple cell types, and each cell type may have 
subsets of cells in different states. We annotate these cells as dendritic cells (DC), mono-
cytes (Mono), natural killer cells (NK), B-cells (B),  CD4+ T-cells (CD4 T), and  CD8+ 
T-cells (CD8 T). To account for this heterogeneity, we build a context aware joint rep-
resentation learning (JRL) SupirFactor model (see the “Joint representation learning for 
context-specific constraints” section). This allows the model to weight regulatory evi-
dence based on context and aggregate into a joint latent feature space to build a joint 
SupirFactor GRN model. We define cell contexts for JRL by clustering cells using Lei-
den clustering [49], with a resolution = 0.2 , generating 7 clusters (Additional file 1: Fig. 
S11A-B). The PBMC SupirFactor model was trained using JRL on ATAC masked data 
(epochs = 400) and subset to the most explanatory model weights once (epochs = 100), 
resulting in a model that is scored on held-out cells ( R2 = 0.35 ). The modeled PBMC 
regulatory network predicts 818 active TFs regulating 13,698 genes, connected through 
492 mTFs in a latent mTF layer ( ξ2 ≥ 0 ) (Additional file 1: Fig. S11C).

Fig. 4 Meta transcription factor (mTF) functional enrichment analysis in single cell yeast. mTFA estimated 
from hierarchical SupirFactor model trained in Fig. 3. mTFs are nodes in the SupirFactor model �̌ latent layer 
and are numbered from 1 to 148. A Pathway enrichment of mTFs to selected core metabolic KEGG pathway 
annotations on target genes. B mTF activity for cells in each growth condition (mTF activity scaled [0, 1] for 
comparison). C Positive (activating) and negative (repressing) weights from mTFs to target genes within 
the Glycolysis KEGG‑pathway for each mTF. D mTF activity for cells overlaid on a low‑dimensional UMAP 
projection. Cell metadata plotted in Additional file 1: Fig. S1
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Eleven of these mTFs are linked to target genes which are functionally enriched 
for immune cell specific KEGG pathways (Fig.  5B), and we interpret these mTFs as 
regulatory pathways. As an example, mTF-637 is active in B cells but largely inactive 
in other PBMCs (Fig. 5B-D); the target genes of this mTF are functionally enriched 
for B-cell receptor signaling (Fig.  5B). mTF 313 is activated in dendritic cells (DCs) 
and regulates genes functionally enriched for phagocytic activity and for neutrophil 
extracellular trap formation, which activate DCs and allow them to mature [50]. mTF 
227 is also linked to phagocytosis, although is principally active in monocytes. mTF 
17 is active in NK cells with functional enrichment for natural killer cell-mediated 

Fig. 5 Single cell PBMC TFA and mTF functional enrichment analysis. TFA and mTFA are estimated from a JRL 
SupirFactor model. mTFs are associated with latent features φ̂ and are numbered 0‑881. A UMAP projection 
of the single cell PBMC dataset, labeled with cell type annotations. B Selected enriched terms and associated 
mTFs for cell‑type specific KEGG pathway based on mTF target genes, ξ2 > 0.01 (for mTF 227, phagosome 
pathway, adjusted p = 0.0081, gene ratio = 0.0309). C Activity of functionally enriched mTFs, over each 
cell‑type. D UMAP projection of PBMCs colored by mTF activation. E Significant TF activation for specific 
cell‑type populations and corresponding gene expression (scaled [0, 1] for comparison). Dot plots of (i) TFA 
and (ii) TF mRNA expression. Violin plots of (iii) TFA and (iv) TF mRNA expression
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cytotoxicity genes. Overall, this demonstrates the utility of SupirFactor mTFs as a tool 
for identifying cell type-specific regulation.

We can further examine TFs that have inferred cell-type-specific activity (Fig.  5E). 
SupirFactor distinguishes activation between myeloid (monocytes and DCs) and lym-
phocytic (B, NK, and T cells) lineages (Fig. 5E). The framework also recovers known cell-
type-specific regulators along the myeloid lineage, monocytes and DCs, (KLF1) [51], B 
cells (PAX5, SMAD5) [52, 53], NK cells (ARNT) [54], CD4 T cells (IRF1, RUNX3) [55, 
56], and CD8 T cells (NR4A1) [57]. We show that SupirFactor infers cell-type-specific 
differential mTF activation and TF activation among distinct cell types that correspond 
with known biological processes and protein activity for multiple key cell types. The 
analysis of SupirFactor performance on the PBMC dataset demonstrates that SupirFac-
tor can learn biologically relevant interactions in complex organisms and datasets.

We apply the trained PBMC model to single-cell PBMCs collected from healthy and 
from COVID-19-infected individuals [58] (Additional file  1: Fig. S13). This trained 
model computes TFA for each cell, allowing determination of differentially active TFs 
for each cell type (Additional file  1: Fig. S13A). Immune cells from COVID-infected 
patients show an upregulation of core inflammation TF activities (e.g., the Activator pro-
tein-1 TF components FosB and JUN), and changes to differentiation and proliferation 
TF activities (e.g., RUNX3 and IRF5). We further identify several TFs which are not, in 
healthy cells, specific to any immune cell type, but are predicted to have cell type-specific 
changes to TF activity during infection (e.g., HMBOX1, ZNF24, ZNF691). Based on this 
analysis, we conclude that exploring condition-specific data with SupirFactor models 
can uncover upstream causal regulators that are both cell-type and condition specific.

Discussion
SupirFactor has been carefully benchmarked using both bulk RNA expression data sets 
and single cell RNA expression data sets. We rely on model organisms Bacillus subti-
lis and S. cerevisiae for benchmarking, as these organisms are well-characterized and 
have a partial experimentally validated ground truth network available, which we use for 
scoring recovery of GRN structure. This model organism benchmarking is important, 
as mouse and human data sets used for GRN inference benchmarking often lack reli-
able ground truth networks for scoring and are restricted to using predictive metrics 
which have limited value. This benchmarking shows that the SupirFactor framework is 
versatile and has improved GRN inference over a comparable framework that relies on 
statistical learning, measured by recovery of network edges which are held out of the 
modeling. The SupirFactor GRN models are also predictive, and we expect that future 
work will tune the model to optimize network recovery using AUPR, or other model 
selection appropriate metrics, of held out gold standard network edges, by maximizing 
R2 for predictive power.

Additionally, we provide a novel metric for evaluating deep neural networks (DNN) 
architectures, ERV, specifically designed for the needs of GRN inference. By using ERV 
to evaluate linkages from regulatory TFs, through a latent meta-TF layer, to target genes, 
we are able to use the meta-TF layer as a powerful pathway analysis tool.

We demonstrate the validity of ERV by comparing it directly to GRN inference using 
model weights alone and find that it improves GRN inference link interpretation. ERV 
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also allows for post-training analysis of any gene expression data to determine which 
parts of the network is specific to that context. We show this by extracting context-
specific networks from the S. cerevisiae single cell data set, which contains observations 
from fifteen different growth conditions. The recovery of these post-training context-
specific networks is an improvement over previous work, which requires that the con-
text is embedded into the model pre-training. SupirFactor is therefore a valuable tool to 
identify context specific and contextual regulatory interactions.

The driving features of GRNs can be condensed into TFs. Another core concept 
explored in this work is that of latent feature inference and interpretation, i.e., TFA. In 
the model organisms S. cerevisiae, we demonstrate that the model latent feature activity, 
the TFA of a TF, is distinct from the expression of that same TF. We do this by studying 
the cell-cycle where we see a clear delay of relevant TFA compared to expression. Dem-
onstrating that using TF expression as the independent feature to model a GRN will not 
capture the regulatory  structure of GRNs, a drawback in many works related to GRN 
inference.

To demonstrate that SupirFactor scales to the complexity of mammalian systems, we 
evaluate a model learned from a PBMC multi-ome single cell dataset and characterize 
the pattern of TFA and functional enrichment in different contexts. The model makes 
use of context-specific prior evidence to further restrict TF variance. And we find that 
we can extract functional enrichment based on annotated cell types reliably.

Reuse of computational models can be valuable as a tool to understand and concep-
tualize new experimental data evident by recent reuse of single cell sequencing atlases 
in the field of genomics [48, 59]. Unfortunately, the reuse of GRNs themselves is rare, 
and for most studies, gene regulatory networks are inferred entirely based on new data. 
We consider this to be a general limitation in current-generation GRN inference models, 
which do not have mechanisms to embed new data into an existing GRN. SupirFactor 
tackles this issue by using a DNN architecture together with the transparency frame-
work (ERV). We demonstrate this reuse by embedding new data and by contextually 
analyzing sub-networks and condition specific latent activation after the model has been 
trained, gaining insight not explicitly provided to the model before training.

Conclusion
In this study, we describe StrUcture Primed Inference of Regulation using latent Factor 
ACTivity (SupirFactor), a model within the class of knowledge primed deep learning 
models. SupirFactor explicitly treats transcription factor activity (TFA) as an interpret-
able latent state which drives gene transcription. This model uses a single objective func-
tion where the influence of the prior regulatory structure is optimized together with the 
gene regulatory network (GRN). SupirFactor combines the power of DNN optimiza-
tion with prior structure constraints for inferring GRNs and explicit estimation of TFA. 
These TFA estimates are bounded by a ReLU activation function and are directly quanti-
fiable and interpretable on a per-observation basis.

Additionally, in this work, we devise the explained relative variance (ERV) metric. 
ERV estimates the importance of each latent feature to each output feature, both directly 
and indirectly depending on the model layer in question. This metric has appealing 
properties for GRN inference, e.g., ERV is bounded and facilitates ranking regulatory 
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relationships and discarding non-predictive model weights when interpreting the model. 
As biological GRNs are sparse model selection must be part of the evaluation of any 
GRN inference algorithm and ERV facilitates this critical component. This model evalu-
ation metric we propose is also useful for evaluating the contribution of intermediate 
DNN layers which are not explicitly defined as TFs and facilitate functional annotation 
and latent feature interpretation.

Developing explainable deep learning models for GRN inference is a critical require-
ment for improving models of gene expression and regulation [23]. The goal of this work 
was to build a formalized GRN inference model with explicit optimization and objec-
tive functions, from which latent states can be directly interpreted. The resulting for-
malism, SupirFactor, is a powerful GRN inference tool with additional pathway analysis 
and protein activity functionality, that can be applied to both bulk and single cell data. 
SupirFactor can harmonize regulatory evidence, epigenetic data and expression readout 
in a regulatory and functionally meaningful way. While challenges still exist, like model 
stability and model selection, tightly connected to the nature of non-linear machine 
learning algorithms, advances in single cell multi-omics and epigenetic sequencing are 
steadfast and will further narrow the specificity in model constraints with its inclusions. 
With additional work related to architecture, algorithm development, and prior evidence 
construction, the framework can be further extended and prove even more useful.

Methods
StrUcture Primed Inference of Regulation using latent Factor ACTivity (SupirFactor)

We define two SupirFactor models. The shallow model, used mainly for testing, which 
consists of a single layer that represents individual TFs and their activity. The hierarchi-
cal model, which consists of two layers, the first representing individual TFs and their 
activity, and the second representing TFs aggregated into pathways, termed meta TFs 
(mTFs). The hierarchical model is the main model used in this work.

Shallow SupirFactor

Starting from our model framework (see the  “The SupirFactor regulation model” sec-
tion), gene expression is a function of TFA and is used as the independent feature to 
weight influence on gene expression from TFs. We can formulate the problem as

where x ∈ R
n is the gene expression of one observation with n genes, with g, f as func-

tions of the form

and

with the activation function σ , aggregating the linear combination of inputs for each 
latent feature. The linear combination of inputs without activation is similar to the NCA 

(1)x̂ = h(x) = (g ◦ f )(x)

(2)φ = f (x) = σ(Wx)

(3)x̂ = g(φ) = σ(�φ)
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framework described in “Network component analysis (NCA)” section, with the distinc-
tion that this formulation weighs W  instead of fitting φ with a static P.
� and W  are the weighted connections of input features to output features in a single 

layer, with equation (3) corresponding to the shallow SupirFactor (Fig. 1C). φ is the inferred 
latent activity interpreted as TFA of expression mapped through f. We set W ∈ P , such that 
the sparsity structure of W  is identical to P . This ensures that (I) φ ∈ R

K , with K TFs, con-
straining the informative genes influences to those in the prior P , and (II) the causal flow 
from regulator to target defined by the prior is enforced. Causality does not imply direct 
binding but rather in this case the variance of each TF being constrained to the variance of 
its targets as opposed to the covariance of the TF expression.

Hierarchical SupirFactor

In hierarchical SupirFactor (Fig.  1A), we add an additional mTF layer between TFs and 
output gene expression. This allows higher order interactions between TFs (representing 
biological concepts like redundancy, competition, and physical complexing), and other con-
ditional non-linear dependencies to be modelled. This extends the formulation of Supir-
Factor so that it can generate TF interaction hypotheses and be used as a tool for pathway 
analysis.

where

and

� is the weight matrix of TF-TF interactions that maps individual TF activity to the mTF 
layer.

Joint representation learning for context‑specific constraints

Joint representation learning is a transfer learning method where context-specific evidence 
is aggregated into a common model structure (see [44], chap. 15) (Fig. 1E). This is imple-
mented in SupirFactor by adding a biological context-specific constraint on the prior evi-
dence. We define PC as prior evidence for C where C is a biological context, like a cell type, 
growth condition, or temporal group. Weights W C ∈ PC are also context-specific and are 
mapped jointly through � and � that are common to all contexts. Experimental data is 
labeled with the appropriate context and data for each context is submitted batch-wise to 
the model for training. Context weights W C are individually trained and may vary between 
contexts if PC is the same. Equation (4) then takes the form;

where fC is the context specific structure ( PC ) primed encoder.

(4)x̂ = h(x) = (g ◦ s ◦ f )(x)

(5)φ̂ = s(φ) = σ(�φ)

(6)x̂ = g(φ̂) = σ �φ̂

(7)x̂C = (g ◦ s ◦ fC)(xC)
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Fitting model

To train the SupirFactor model, W  , � , and � are fit to minimize mean squared error 
between x̂ and x.

This is implemented as minimization by batch stochastic gradient descent with the 
Adam solver [60] and pytorch [61].

Nonzero encoder weights are initially mirrored and made non-negative in both the 
decoder � and encoder W  , although all elements in � are free to be fit by the solver. 
The prior assumption is that TFA is positively correlated with gene expression during 
model initialization if no other evidence is available.

Model regularization

Parameter penalties

Model weights are penalized, regularizing models to mitigate overfitting and to bal-
ance bias and variance [62]. We use a weight decay factor, corresponding to a ridge 
penalty (see [63], Section 6.7.6). The objective function to be minimized is then

where ζ is the ridge penalty applied. The ζ parameter is set by cross validation, splitting 
the data into equal training and validation sets and evaluating model performance where 
ζ ∈ {0, 10−10, 10−9, . . . , 10−1} [31, 64].

Dropout

Dropout is an additional regularization method [65] where a fraction of nodes are 
removed from each sample during training, mitigating the risk that noise in the data 
will trap the model in a local minimum. Dropout can be applied to input or to latent 
layers. In short, training data is randomly batched into groups, and each batch is then 
used to train a network where a fraction, p of data points are removed randomly from 
each sample in each batch before feeding it through selected layer(s). This is imple-
mented in SupirFactor through the Dropout module in pytorch. Droput is tested 
by cross validation as above on both the input and the latent TF layer, searching 
p ∈ {0, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5}.

Explained relative variance (ERV)

Model selection and model parameter ranking

GRNs are sparse and most genes have a limited number of directly regulating TFs. 
The importance of model parameters is quantified, and relatively unimportant param-
eters are shrunk to zero. Two different ways of ranking inferred interactions are eval-
uated in this work: (I), ranking the magnitude of model weights |θi,k | (MODEL), and 
(II) ranking interactions by their explained relative error (ERV). ERV perturbs latent 
features and quantifies the consequence of that perturbation [35]. The goal is not to 

(8)MSE =
1

N

∑

i

∥∥xi − h(xi)
∥∥2

(9)MSE+ ζ�W �2 + ζ���2 + ζ���2
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eliminate redundancy, but rather to eliminate over-parameterization and constrain 
the parameter space of SupirFactor.

ERV is calculated as coefficient of partial determination [43] so the bound on the error 
contributing to predict gene expression can be evaluated ξ2 ∈ ] −∞, 1] where a predic-
tive link has an ξ2 ∈ ]0, 1] . The GRN model is trained once, as re-training for each per-
turbed latent feature is computationally intractable. ERV is determined from the ratio of 
the full model MSE to the perturbed model MSE.

h̄ is the trained model, MSEi(h̄(x)φ) is the MSE of the full, unperturbed model for gene i, 
and MSEi(h̄(x)φK �=k

) is the MSE of the perturbed model for gene i where the activation of 
the latent layer for regulator k is set to 0. Model parameters for each gene i are ranked by 
the value of ξ2i,k for all k.

Ranking model parameters for models with multiple layers

To be able to interpret any parameter in the model we use the ERV concept (see 
the “Model selection and model parameter ranking” section). To determine the impor-
tance in any hidden layer L not directly connected to the output, we compute two ξ2 
matrices. ξ2L and ξ2L+1 . Where L indicates the layer with corresponding latent feature 
input to the layer in question and L+ 1 the next layer with corresponding latent feature 
input. For layer weights � we compute each element πm,k with m as output feature and 
k as input feature by first computing the vectors ξ2:,k ,L and ξ2:,m,L+1 . That is, the ξ2 of each 
element of �:,m and the ξ2 of each element of the indirect contribution of latent feature k 
in layer L to the output genes ξ2:,k ,L . To eliminate weights in � we threshold ξ2:,k ,L+1 > ǫ1 
and ξ2:,m,L > ǫ2 and compute the ERV:

where i ∈ k ∩m is the intersection set of predictive TF to gene interactions for latent 
feature k from layer L, and m for layer L+ 1 . If k ∩m = ∅ then ξ2m,k ,� ≡ 0.

The classical GRN realization is interpreted as the indirect connections from ξ2i,k ,L , 
connecting the latent input features in layer L, k to the output target genes i. With L in 
this case representing the TFA activation layer.

Stable architecture and non‑predictive weight elimination

To select an interpretable model, we want to reduce the model size in terms of indi-
vidual weights to arrive at a model with parameters that are predictive and stable. We 
define predictive as when an individual parameter that can be determined to connect an 
upstream regulator to its downstream target, has ξ2 > ǫ . Stable in this case means that 
the parameter is predictive on unseen data when the model is trained on reduced subset 
of parameters.

We apply model constraints on individual weights. Parameter weights θ̂i,k ( and θi,m 
in hierarchical SupirFactor), with i output and k, and m input features are removed if 

(10)ξ2i,k = 1−
MSEi(h̄(x)φ)

MSEi(h̄(x)φK �=k
)

(11)ξ2m,k ,� ≡ 1−

∑
i∈k∩mMSEi(h̄(x)φ)∑

i∈k∩mMSEi,k ,L(h̄(x)φK �=k
)
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ξ2i,k ,L ≤ ǫ for the respective layer L, with a choice of ǫ = 0 , i.e., not predictive of the out-
put, is the most conservative.

To enforce these constraints in number of regulators per gene, we use a model selec-
tion step after an initial training run (Fig. 1E). The model selection step is derived from 
ξ2 where

with ξ2i as the maximum ξ2 for gene i. Selection is done iteratively by selecting a thresh-
old ǫ . The model is then refit with parameters where ξ̂2i,k > ǫ . This is done iteratively 
until convergence where at each step ξ2 is recomputed. ǫ is a measure of inclusion of rel-
ative predictive power. Using ǫ = 0 means all predictive links are kept after sub-setting 
and relative predictive power ξ̂2 is not impacting the subset.

Using ξ̂2i,k facilitate selecting regulator subsets where, unless the gene is too noisy or 
the prior lack sufficient information that can reliably predict the specific expression pat-
tern (i.e., all ξ2k ≤ ǫ for the gene in question), at least 1 TF can be inferred to be predic-
tive relative to all k for that gene i and other regulators are ranked relative to it.

For the hierarchical model sub-setting, weights are eliminated if no predictive interac-
tions can be derived from the indirect path between a latent feature k through the latent 
feature m in the subsequent layer to the set of joint output features, above the chosen ǫ 
threshold. If ξ2k ,m,� ≤ 0 the hidden layer weight is pruned.

Network component analysis (NCA)

Network component analysis (NCA) can be used to estimate TFA directly by formulat-
ing the causal network inference problem so that

where Y ∈ R
S,n is gene expression with n genes and S samples, φ ∈ R

m,k is the TFA with 
k TFs, and � ∈ R

k ,n is the regulatory effects linking genes to TFs. The unknown “true” � 
is the regulatory interaction between genes and TFs we want to find. φ is unknown given 
the assumption that the expression level of a transcription factor k does not correlate 
well with the activity of the protein [66]. Therefore, we need to solve for both � and φ , 
which forces us to convolve our estimation of regulatory effect and the TFA. To decon-
volve and solve this, we impose a prior P with elements ∈ {0, 1} as an initial guess to the 
structure of � and use that to solve for an initial estimate for φ.

This is solved by ordinary least squares. The estimated φ is then used to solve for �

This is interpreted as an estimate of TFA given a number of reporter genes defined by 
the prior P , i.e., the expression level of the target genes is a proxy for how active a TF is 

(12)ξ̂2i,k ≡
ξ2i,k

ξ2i

(13)Y = φ�

(14)φ̂ = argmin
φ

�Y − φP�

(15)�̂ = argmin
�

∥∥∥Y − φ̂�

∥∥∥
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in any given sample. The variance of the TF activity is defined and constrained by the 
variance of the reporter genes.

Epigenetic masking

To incorporate the paired ATAC- and RNA-sequencing data we create a masking 
scheme to mask input gene expression profiles with the ATAC so that expression input

with xi,s being the expression of gene i in sample s and ap,s being an available ATAC peak 
p in the set of accessible regions Ai associated with gene i.

Data acquisition

Bulk expression data

Bacillus subtilis bulk expression data for data set 1 (B1) [10] and data set 2 (B2) [67] and 
the known prior network [10] were used as previously described [41]. Saccharomyces 
cerevisiae bulk expression data for data set 1 [68] and data set 2 [69], and the known 
prior network [70] were used as previously described [41].

Single cell expression data

Saccharomyces cerevisiae single cell training data was assembled from [13] and [71] as 
previously described [41].

S. cerevisiae test data was collected using a method previously published [13]. In short, 
biological replicates containing unique, transcriptionally expressed molecular barcodes 
of a wild-type strain 1 (MATα/MATa �ho::NatMX/�ho::KanMX) and a wild-type strain 
2 (MATα/MATa HO/�ho::NatMX HAP1+::pACT1-Z3EV::NatMX/HAP1 ura3�0/URA3 
can1�::prSTE2-HIS5/CAN1 HIS3/his3�1 LYP1/lyp1�0) were generated as previously 
described [13].

Strains were grown overnight in rich media (YPD as previously described [13]) and 
then subcultured into 100 mL YPD or minimal media (MMD as previously described 
[13]) for 3 h. Cells from each flask were then taken, fixed with saturated ammonium 
sulfate, processed, and sequenced using the protocol as previously described [13]. Raw 
sequencing data was processed into count data using a previously-described pipeline 
[13] which joined the transcriptional barcodes to individual cells, assigning specific gen-
otypes to cells and removing any cell containing multiple distinct barcodes as doublets. 
Four data sets were then created from this count table; YPD 1 (n = 1531, wild-type strain 
1 in rich YPD media), YPD 2 (n = 1428, wild-type strain 2 in rich YPD media), MMD 1 
(n = 492, wild-type strain 1 in minimal MMD media), and MMD 2 (n = 463, wild-type 
strain 2 in minimal MMD media). This data is deposited in NCBI GEO as GSE218089.

Yeast test GRN

Yeast network performance evaluation was performed using a previously described 
high-confidence gold-standard GRN [41, 68] containing 1403 regulatory edges connect-
ing 993 genes to 98 TFs. The yeast prior knowledge network consists of 11,486 regula-
tory edges connecting 3912 genes to 152 TFs, and many of the edges are shared with the 

(16)ẋi,s = xi,s · 1 if ap,s ∈ Ai else 0
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gold-standard GRN, necessitating the hold-out for testing strategy used for performance 
evaluation.

An additional test GRN was constructed which had no edges from the prior knowl-
edge network. This test GRN was obtained from the Saccharomyces Genome Database 
(yeastgenome.org) and consists of 29,253 regulatory edges connecting 6367 genes to 170 
regulatory TFs. We further modify it by masking every regulatory edge which occurs 
in the prior knowledge network, excluding it from scoring. This yields a test GRN with 
25,621 edges, none of which occur in the prior knowledge network or the gold-standard 
GRN, connecting 6367 genes to 170 regulatory TFs.

Yeast annotations

Cell cycle related yeast genes are annotated based on [72]. Ribosomal, ribosomal biogen-
esis, and induced environmental stress response genes are annotated based on [73].

Individual cells in single cell RNA expression data sets are assigned a cell cycle phase 
based on cell cycle gene annotations. Expression of each cell cycle gene is normalized 
to a mean of 0 and unit variance. All marker genes annotated with a specific cell cycle 
phase (G1, S, G2, M, or M/G1) are grouped, and the cell is assigned to the phase that has 
the maximum mean group expression.

Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations [47] were 
selected to cover the majority of the core yeast metabolism. KEGG annotations are 
KEGG:04111 (Cell cycle), KEGG:00010 (Glycolysis), KEGG:00020 (TCA cycle), 
KEGG:00500 (Starches), KEGG:00660 (C5-Branched), KEGG:01210 (C5-Branched), 
KEGG:00250 (AA (A, D, E, N, Q)), KEGG:00260 (AA (G, S, T)), KEGG:00330 (AA (R 
& P)), KEGG:00400 (AA (F, Y, W)), KEGG:00270 (AA (C & M)), KEGG:00920 (Sulfur), 
KEGG:00061 (Fatty acids), KEGG:00230 (Purines), and KEGG:00240 (Pyrimidines).

PBMC multi‑ome dataset preprocessing

Paired PBMC scRNA-seq and scATAC-seq was downloaded from the 10x website [74]. 
This data was preprocessed using a previously published workflow [48]. In short, the 
RNA-seq data is preprocessed as detailed in the “Single cell pre-processing” section, 
with the additional filtering of cells with > 25000 or < 1000 counts and < 20% mitochon-
drial counts of total. For the ATACseq data, we used epiScanpy [75], filtering peaks in 
< 10 cells and cells with < 5000 or > 7 · 104 counts, and with a variability score < 0.515 . 
Final data contains 10,411 cells, 21,601 genes, and 75,111 peaks.

Cell types are annotated using the reference PBMC dataset [59] passed to scanpy’s [76] 
inject label transfer function, resulting in 8 annotated celltypes (Fig. 5A).

ENCODE PBMC prior knowledge network construction

TF-ChIP peaks were obtained as narrowPeak BED files from the ENCODE project data-
base. The GRCh38 genomic annotations (NCBI GCF_000001405.39) were obtained as a 
GTF file from NCBI and filtered for protein-coding genes.

TF-ChIP peaks were linked to candidate target genes with the inferelator-prior pack-
age [41]. TF peaks were annotated as possible regulators of a gene if they were within 
50 kbp upstream of a gene transcription start site and 2 kbp downstream of a gene 
transcription site, with no other gene between the TF peak and the gene transcription 
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start site. TF peaks were further filtered to remove any regulators not annotated as TFs 
(including GTFs, chromatin modifiers, and polymerase subunits).

This large pool of potential TF regulatory peaks were then subset for intersec-
tion with annotated regulatory regions for PBMC cell types (ENCODE Accession IDs 
ENCFF776AJJ, ENCFF497NXM, ENCFF984SPH, ENCFF079TQT, ENCFF862ULW, 
ENCFF504FDC, and ENCFF905BHJ). The peak intensity (signalValue) was summed for 
all peaks annotated to each TF-gene pair to generate genes by TFs putative regulatory 
matrix. This matrix was further constrained for sparsity by retaining at most 1.5% non-
zero values for each TF, shrinking all values below this threshold to zero, and producing 
a genes by TFs prior knowledge network matrix with a sparsity of 1.22%.

PBMC COVID dataset preprocess

Healthy and COVID patient single cell data from [58] was fetched from [77]. Expression 
counts were preprocessed similarly as the PBMC data (see the “PBMC multi-ome data-
set preprocessing” section).

Data preprocessing and model parameterization

Single cell pre‑processing

For the single cell data, unless otherwise stated, we follow standard normalization pro-
cedures which include (i) filtering genes with expression in < 10 cells and (ii) count nor-
malization, scaling each cells total count to the same value over the dataset. This serves 
to eliminate the effect of variable sequencing depth in the experimental technique, and 
(iii) log transforming the (data + 1) using the natural logarithm.

Feature normalization

For bulk data, we use the standard normalization of each input feature so that

for each gene with µ = mean and σ = standard deviation over the gene.
To preserve the sparse structure of single cell data, we, in addition to the above, adopt 

a robust normalization approach without centering. Each gene is scaled by the range of 
the 1 and 99 percentile and shifted so the lowest value for each gene = 0 implemented 
using the scikit-learn RobustScaler method [78] which we call RobustMinScaler.

ReLU in hierarchical SupirFactor

For DNN linear activation does not contribute meaningfully in different layers and can 
be reduced to a single linear map. The rectified linear unit (ReLU) [44] truncates activa-
tion to stay strictly positive and injects non-linearities into the model architecture. For 
hierarchical SupirFactor, we therefore use ReLU and define the gradient for the ReLU 
function

so that with z = 0 the gradient is ≡ 1 . With z as the linear combination of inputs to each 
feature.

z =
x − µ

σ

ReLU0 ≡ σ(z) = max (0, z)
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Data preprocessing and model parameterisation

Visualizations throughout this work, if not stated otherwise, were generated in Mat-
plotlib [79] with some components done with seaborn [80] and scanpy [76].
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