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Background
The human genome project produced the first assembled human genome over 20 years 
ago [1, 2]. Genomic sequencing efforts reveal genes and genetic variation associated with 
disease but for the most part do not reveal gene function. As such, functional genomics 
efforts have been critical to assign function to the roughly 20,000 human protein-cod-
ing genes identified. In the past decade, CRISPR (clustered regularly interspaced short 
palindromic repeats)-based screens have increased the ease of genome-wide genetic 
screens, allowing researchers to find new components of biological pathways, assign 
mechanism to existing drugs, identify novel therapeutic targets, and uncover synergis-
tic genetic relationships [3–7]. However, due to the size of genome-wide guide libraries 
(20,000–200,000 + elements) and typical cell coverage required (500–1000-fold) to accu-
rately quantify gene hits and average out phenotype-independent variability across the 
population, each screen requires tens to hundreds of millions of cells per sample [8–12]. 
This requirement poses a logistical challenge for cell models where large-scale culturing 
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is difficult, such as adherent cell lines or growth-limited models such as primary and dif-
ferentiated cell lines [13–15].

A major factor that influences cell coverage is library uniformity, as larger variation 
in individual guide RNA abundance requires higher cell coverage to reliably measure 
low-abundance guides. In this work, we report optimizations to several steps in CRISPR 
guide library cloning that significantly decrease guide representation bias, allowing for 
screening at lower cell coverage [16]. Improvements were made in the following areas. 
First, ordering guide oligos in both forward and reverse complement orientations to 
counteract sequence-specific biases in oligo synthesis [17]. Second, decreasing the num-
ber of PCR cycles used to prepare inserts to avoid over amplification to maintain library 
uniformity. Lastly, working at low temperatures during insert preparation to reduce 
biased dropout of inserts with lower melting temperatures (Tm). We used these optimi-
zations to clone new versions of published genome-wide CRISPRi and CRISPRa librar-
ies [18] and achieved more uniform guide distributions, as evidenced by reduced skew 
ratios compared to the libraries available on Addgene (#83969 and #83978; referred to as 
legacy throughout the text).

With the improved CRISPRi library, we demonstrate comparable performance in sur-
vival screens at 100 versus 1000-fold coverage. In a survival screen coupled with treat-
ment with the tyrosine kinase inhibitor dasatinib in K562 cells, we observe more hits 
in expected pathways compared to those identified in parallel screens run using a pub-
licly available CRISPRi library as well as a previously reported CRISPRn screen. Lastly, 
through a transduction titration experiment, we demonstrate the feasibility of perform-
ing screens at 50-fold cell coverage, facilitating genome-wide screens requiring only 5 
million cells per sample for a 100,000-guide library. This level of coverage will enable 
researchers to use more sophisticated and biologically relevant readouts such as FACS-
based, imaging, and single-cell sequencing approaches and model systems such as 
adherent cells, iPSC-derived cells, and primary cells, which were previously challenging 
or impossible to work with at genome-scale. The cloning methods described here are 
generalizable across any library cloned from oligo pools, including guide libraries for any 
type of CRISPR based approach including nuclease, base editing [19], prime editing [20], 
CRISPRoff [21], and RNA editing applications, and are applicable across a range of Cas 
enzymes including Cas9, Cas12, and Cas13.

Results
Cloning optimization reduces library bias

To improve library uniformity, we performed a series of cloning optimizations to 
improve the representation of CRISPR sgRNA libraries using sequences from previ-
ously described genome-wide CRISPRi and CRISPRa libraries [18]. To construct these 
libraries, single-stranded oligo templates are amplified and converted to double stranded 
inserts that are cloned into a vector. In the CRISPRi/a library cloning protocol, the insert 
is digested into a 33-bp double-stranded product, gel purified, and ligated into a lentivi-
ral expression vector (pLGR1002). We first examined whether the polymerase used to 
synthesize double-stranded DNA encoding the sgRNA insert could impact library repre-
sentation. In a pilot experiment comparing three different polymerases (Klenow, Klenow 
exo-, and NEB Q5 Ultra II), we observed varying guide representations in a library of 192 
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sgRNAs, (Fig. 1A) with the most uniform representation observed in inserts prepared 
with Q5 Ultra II polymerase. To check if the clones contained the expected insert, we 
performed colony PCR using PCR primers outside of the BstXI and BlpI restriction sites 

Fig. 1 Factors affecting guide cloning uniformity. A Violin plots depicting guide abundance distributions 
of libraries prepared with three different polymerases (Klenow, Klenow exo‑, and NEB Q5 Ultra II) and inserts 
extracted at 70˚C. B Violin plots of libraries prepared the three different polymerases and a 37˚C extraction. 
C Melting temperature (Tm) and abundance of the lowest, mid, and top 20 guides in the 752‑element pilot 
library. D Mann–Whitney U test comparing Tms of high (top 5%) and low (bottom 5%) abundance guides in 
the 752‑element pilot library. E Correlation between forward and reverse complement oligo pools for CRISPRi 
V2 (top) and CRISPRa V2 (bottom) using a linear least‑squares regression. F Number of guides missing from 
the oligos pools in forward, reverse, or combined sets in the CRISPRi V2 and CRISPRa V2 guide libraries. G 
Mann–Whitney U‑test comparing the Tms of high (top 5%) and low (bottom 5%) abundance guides in the 
CRISPRi V2 genome‑wide library
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(Additional file 1: Fig. S1A). We observed that many of the individual clones in libraries 
prepared with all three polymerases had the expected 290-bp band but 40% exhibited 
additional higher molecular weight bands (Additional file 1: Fig. S1B). Sanger sequenc-
ing of plasmids isolated from these colonies showed mixed bases in the spacer region 
of the sgRNA (Additional file 1: Fig. S1C). We hypothesize that these mixed sequences 
are derived from transformation with plasmids containing non-complementary hybrid 
inserts. As predicted from this model, retransformation of these plasmids yielded colo-
nies that gave a single band upon colony PCR (Additional file 1: Fig. S1D).

Next, we tested if a lower 37˚C insert elution during gel purification narrows guide 
distribution and reduced the formation of hybrid clones. Using the same starting mate-
rial, we found that the lower elution temperatures increased uniformity and Q5 Ultra II 
polymerase still performed better than Klenow (Fig. 1B). Furthermore, the lower elution 
temperature reduced the formation of hybrid clones from 40% to 1.2% (Additional file 1: 
Fig. S2). We also observed that PCR amplification of oligo pools produced a single nar-
row band of product, whereas primer extension with Klenow yielded non-specific prod-
ucts that were both smaller and larger than the intended insert (Additional file 1: Fig. 
S3).

We moved on to a larger pilot library of 752 guide RNAs to further optimize the clon-
ing protocol. Since Q5 Ultra II polymerase performed better than the two different 
mesophilic polymerases, we sought to determine the effect of additional PCR cycles on 
guide distribution. While we used NEB Q5 in this study, there are other NGS-optimized 
polymerases that could provide even better performance. We repeated the library clon-
ing described above with either 1 or 15 cycles of insert PCR. A pairwise comparison 
indicated similar representations of the 752 gRNAs across the two libraries (Additional 
file 1: Fig. S4). During this experiment, we observed higher molecular weight smears in 
some PCR products (Additional file 1: Fig. S5A) that are likely overamplification bub-
ble products that contribute to the hybrid clones observed in earlier experiments. We 
reduced the number of PCR cycles and optimized template concentration to minimize 
these undesired products (Additional file 1: Fig. S5B). In this new library, even though 
the gel-purified insert was eluted at 37˚C, we still observed a relationship between guide 
abundance and the melting temperature (Tm) of the inserts (Fig.  1C). The average Tm 
of the 20 most highly represented gRNAs was higher than 68˚C. In contrast, the aver-
age melting temperature of the 20 most lowly represented gRNAs was less than 62˚C. A 
Mann–Whitney U test comparing the lowest and highest 5th percentiles of guide rep-
resentation (n1 = 38, n2 = 38) indicated a statistically significant difference between the 
Tm distributions of these two populations (Fig. 1D). These results suggest a 37˚C elution 
temperature can still bias guide abundance due to Tm differences. 

We next sought to reduce heterogeneity of guide abundance in the template oligo 
pool. Specific oligo sequences and motifs can affect yields and many groups order oligo 
templates in both orientations, but we have not found data that supports this. To con-
firm the utility of ordering oligos in both orientations, we compared the abundance of 
oligos in each pool using a single stranded DNA library preparation kit. Using a linear 
least-squares regression model, we observed a weak correlation between the represen-
tation of guide sequences derived from different strand synthesis pools (Fig.  1E). This 
suggests that ordering oligo templates in both orientations will reduce final library bias. 
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Additionally, we observed a non-overlapping subset of guides missing from oligos syn-
thesized in either orientation (Fig. 1F), indicating reduced dropouts is another benefit or 
ordering oligos in both orientations.

To test the improved cloning strategy, we cloned two genome-wide guide libraries 
using our improved protocol. Since a Tm-dependent guide bias was still present with a 
37˚C elution, we performed insert gel electrophoresis on ice and reduced the elution 
temperature to 4˚C. Using oligo pools ordered in both orientations, we recloned the V2 
CRISPRi and CRISPRa libraries which respectively contain 103,074 and 101,250 ele-
ments (5 sgRNA/gene; guide sequences can be found in Additional File 2) [18]. After 
sequencing the cloned libraries, we repeated the Mann–Whitney U test comparing the 
melting temperature of the lowest 5% represented CRISPRi guides (n = 5151) against the 
highest 5% represented guides (n = 5151) and observed a ρ statistic of 0.547 (Fig. 1G), 
compared to a ρ statistic of 0.027 for 752-guide library prepared with a 37˚C elution 
(Fig. 1D). The ρ statistic values indicate that the lowest 5% most represented guides and 
the highest 5% represented guides shared a similar underlying distribution, which was 
not the case in the 752-guide library that used insert templates synthesized in a single 
orientation and a 37˚C insert elution temperature.

When compared to the legacy libraries, both of our libraries show a more uniform dis-
tribution (Fig. 2A, B) with fewer dropouts. This result was not due to undersequencing 
as each sample was sequenced to a depth of 500–2000-fold coverage (Additional file 3). 
Skew ratios are used to quantitatively compare library uniformity. They are calculated by 
calculating the ratio of the abundance of guide pairs at different percentiles, with lower 
ratios indicating more uniform libraries. In a 100,000-element library, a 90/10 skew ratio 
compares the abundance of the 10,000th top and bottom elements. Our libraries have 
a 90/10 skew ratio under 2, outperforming the legacy libraries. The uniformity is more 
evident when comparing skew ratios at the extremes of the distribution (Fig. 2C), where 
the difference between the top 1% and 99% guides is under 4. Even more impressive, the 
legacy library was cloned as seven smaller subpools, compared to a single large pool for 
our library. The skew in the legacy libraries is impacted by a few subpools with larger 
variance (Tables S1-S4). However, the our newly cloned libraries had lower skew ratios 
than any individual subpool and demonstrate the benefit of cloning the entire library in 
a single reaction. Furthermore, when compared to publicly available CRISPR libraries, 
the LGR libraries were of higher quality across 90/10, 95/5, 98/2, 99/1, and 99.5/0.5 skew 
ratios (Fig. 2D, Additional file 4). The improvements we have made in our library clon-
ing protocol (Additional file 5) are easy for users to adopt and will consequently result in 
high quality libraries with more uniform distributions.

Lower skew library performs well at lower cell coverage

Previous work suggested libraries with 90/10 skew ratios below 2 could be screened at 
100-fold cell coverage [22]. To test this, we performed a genome-wide CRISPRi survival 
screen in the chronic myeloid leukemia cell line K562s expressing dCas9-KRAB trans-
duced and maintained at 100 or 1000-fold guide library coverage (Fig.  3A, Additional 
file 1: Fig. S6A). Cells were infected at a rate of 20.2–23.7% to minimize cells undergo-
ing multiple transductions. We compared the essential genes identified in our 1000-fold 
screen to those previously identified [18]. The original study used the expanded library 
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of 10 guides per gene, so we extracted data from the top 5 guides for each gene and 
analyzed the data with the ScreenProcessing pipeline (refer to “Methods: Computational 
analysis of screens”) for a direct comparison between the original study and our library. 
Essential genes are identified by the gamma score, which represents the growth enrich-
ment  (log2 enrichment) determined by sgRNA read counts between the untreated sam-
ple and T0. In Fig. 3B, the volcano plots for each screen shows the essential genes on the 
left side of the volcano plots (labeled as gene hits). The original study identified 1883 
essential genes, whereas our new library screen identified 1817 essential genes (Fig. 3B). 
Additionally, a precision-recall analysis was performed using the Bayesian Analysis of 
Gene Essentiality 2 (BAGEL2) [23, 24] to determine the discrimination of essential genes 

Fig. 2 New optimizations in the cloning protocol improve genome‑wide guide libraries. A Histograms of the 
CRISPRi V2 legacy library (blue) compared to the optimized CRISPRi V2 LGR library (orange) show that the LGR 
library has a tighter distribution of sgRNAs. B Similarly, the CRISPRa V2 LGR library (orange) shows a tighter 
distribution than the CRISPRa V2 legacy library (blue). C Skew ratio table comparing CRISPRi V2 and CRISPRa 
V2 LGR libraries to the legacy libraries. D Skew ratios of publicly available CRISPR libraries (Addgene catalog 
numbers available in Additional file 4) at the 90/10, 95/5, 98/2, 99/1, and 99.5/0.5 percentiles compared to the 
CRISPRi and CRISPRa LGR libraires
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Fig. 3 The optimized LGR library performs similarly to the existing legacy library, even at lower cell coverage. 
A Schematic of the CRISPRi V2 survival screen in K562 cells performed with the LGR library at 100‑ or 
1000‑fold cell coverage. B Comparison of the 1000‑fold cell coverage screen performed by Horlbeck et. al 
(2016) [18] using the CRISPRi V2 legacy library (left) versus the 1000‑fold (middle) and 100‑fold (right) cell 
coverage screens performed using the CRISPRi V2 LGR library. C Precision‑recall analysis of the essential genes 
identified in each library using BAGEL2 [25, 26] to measure screening quality between the legacy library and 
the LGR library. The area under the curve (AUC) for each library were as follows: legacy (Horlbeck et. al 2016) 
[18] 0.920, LGR 1000‑fold 0.937, and LGR 100‑fold 0.949. D A diagram illustrating the amount of overlap in 
essential genes identified in each screen. E A point comparison of the phenotype score of overlapping hits 
between the CRISPRi V2 LGR 100 and 1000‑fold screens
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for each library (Fig. 3C). The original study had an area under of the curve (AUC) of 
0.920 and our new library had an AUC of 0.937 in the precision-recall plot. Between the 
1000-fold screens, there is an overlap of 1366 essential genes (Fig. 3D). Some discrepan-
cies in essential genes identified by each screen were expected due to differences in user 
handling, reagents, and cell doublings (~ 8 doublings in our screen compared to ~ 10).

There was greater overlap between our 1000 and 100-fold screens (Fig.  3D). This is 
expected since the same library and cell doublings were used compared to the legacy 
screen. Additionally, the legacy screen was performed years earlier in a different lab and 
parental K562 line. The 100-fold screen identified 1489 essential genes (Fig. 3B). The 100-
fold screen had an AUC of 0.949 for the precision-recall analysis performed on essen-
tial genes identified, making the 100 × screening quality equivalent to the 1000 × screen 
(Fig.  3C). To compare the quality of the 100 and 1000-fold screens, we compared the 
phenotype scores for common gene hits. The pairwise comparison plot of the phenotype 
scores for gene hits shows a coefficient of determination of 0.900 (r2) using a linear least-
squares regression (Fig. 3E). This demonstrates that our new library generates very simi-
lar gene-level results between 1000 and 100-fold coverage survival screens. While there 
was not perfect overlap between all three screens, the unique hits in each screen tended 
to fall near the cutoff populated by weaker and/or less significant hits (labeled in orange 
in Additional file 1: Fig. S7A). When plotting the phenotype score for unique gene hits 
in the legacy screen against the values in the LGR screen (Additional file 1: Fig. S7B), we 
see similar trends. 

The strong correlation between the 100 and 1000-fold screens suggested we might be 
able to screen libraries at even lower coverages. To test this, we performed transduc-
tions at 200, 100, 50, and 10-fold coverage in technical duplicate using both the LGR 
and legacy libraries and examined guide dropouts and uniformity. The percent infec-
tion for these samples ranged from 11.5-22.8% and cells were treated with puromycin 
for 5  days until transduced cells accounted for approximately 90% of cells (Additional 
file 1: Fig. S6B). T0 samples were collected at this point and processed for NGS (Fig. 4A). 
The LGR library maintained lower skew ratios at all tested coverages (Fig. 4B, Additional 
file 1: Table S5). Furthermore, the 50 and 100-fold samples showed similar skew ratios 
to the 200-fold sample. In contrast, the legacy library skew ratio was worse at 100 and 
even worse at 50-fold (Fig. 4B, Additional file 1: Table S5). A major challenge running 
screens at lower cell coverage is guide RNA dropout. Our new library showed similar 
rates of guide dropouts between 200 down to 50-fold while the legacy library showed 
increased dropouts from 200 down to 50-fold (Fig. 4C, Additional file 1: Table S5). Fur-
thermore, the number of guide dropouts with our library at 50-fold coverage is an order 
of magnitude less than the legacy library at 200-fold coverage. Notably, the majority 
(~ 94.62%) of sgRNA sequences that dropped out from our library began with a polyG 
sequence (Additional file 1: Table S6). These are due to a technical artifact of sequencing 
on the 2-color NextSeq 550 (see technical note in protocol). As expected, resequencing 
the plasmid libraries on the HiSeq 4000, a system not susceptible to polyG sequences 
at the beginning of the read resulted in dropout of only two guides and a lower skew 
ratio for our new CRISPRi library (Additional file 1: Table S7). This means the true num-
ber of dropouts in the 50-fold samples could be as low as 6–7 guides out of > 100,000 
in the library. In contrast, sgRNA sequences that began with the polyG sequence 
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only accounted for a minority of the dropouts in the legacy library (Additional file  1: 
Table S6). The low skew ratio and sgRNA dropout number for our library suggests this 
library can be used in screens with as little as 50-fold cell coverage, ~ 5 million cells for a 
100,000-element library.

Genome‑wide CRISPR drug screen yields more hits with new library

To determine whether a high-quality screen can be performed at low coverage, we per-
formed a drug survival screen on K562s, a chronic myeloid leukemia (CML) cell line, 

Fig. 4 Transduction titration comparisons between the CRISPRi V2 LGR and the legacy libraries. A Schematic 
of the transduction experiments performed using the LGR and legacy libraries at 10, 50, 100, and 200‑fold 
cell coverage. Each library at each coverage had a biological replicate. B Skew ratios for the LGR and legacy 
libraries transduced at 10, 50, 100, and 200‑fold cell coverage. C sgRNA dropouts for the LGR and legacy 
libraries at 10, 50, 100, and 200‑fold cell coverage
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Fig. 5 The CRISPRi V2 LGR library identifies more bonafide hits in a 100‑fold cell coverage K562 dasatinib 
survival screen. A Schematic of the dasatinib survival screen performed using the LGR and legacy libraries 
at 100‑fold cell coverage. B Precision‑recall analysis of the essential genes identified in each library using 
BAGEL2 [23, 24] to measure screening quality. The area under the curve (AUC) for each library were as 
followed: LGR 0.936 and legacy 0.911. C Comparison of essential gene hits (T0 versus DMSO samples) 
identified in the LGR (right) versus the legacy (left) libraries. D Comparison of dasatinib treatment hits 
(dasatinib treatment versus DMSO control samples) identified in the LGR (right) versus the legacy (left) 
libraries. E MAGeCK‑VISPR was used to determine the number of gene hits identified in each library at false 
discovery rates (FDR) ranging from 0.25 to 0.001. Hits were categorized as positive (increased survival) or 
negative (decreased survival)
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using dasatinib at 100-fold coverage (Fig.  5A). Dasatinib is a broad-spectrum tyrosine 
kinase inhibitor (TKI) that is approved for the treatment of CML [27–31]. However, 
there is no cure for CML as 40% of cases of clinical TKI failure occur in the setting of 
sustained BCR-ABL1 inhibition [32]. Identification of genes and biological pathways 
that are synthetically lethal in the context of CML treated with dasatinib or other TKIs 
could result in new CML therapies [33]. Given the performance of the LGR library at 
lower coverages, we hypothesized that a 100-fold coverage screen could be performed to 
comprehensively identify genes related to dasatinib resistance and sensitivity and dem-
onstrate that lower coverage screens in other disease-relevant or otherwise complex sys-
tems could be performed with our improved library.

The dasatinib survival screens were performed at 100-fold cell coverage for both CRIS-
PRi libraries (LGR and legacy) in parallel (Fig.  5A, Additional file  1: Fig. S6C). Each 
library was transduced once in K562s and then split to create technical replicates. The 
LGR and legacy libraries had 20% and 18% infection levels, respectively. The samples 
were treated with puromycin for 5  days (until approximately 90% enrichment), and 
7 days after infection, the T0 samples were collected for each library. Each library had 
four technical replicates, two treated with 0.75  nM of dasatinib (single dose) and two 
treated with 0.01% DMSO (vehicle control) for 72 h (Additional file 1: Fig. S6C). After 
72 h, the samples were grown in media without drug for 6 days. Dasatinib reduced cell 
viability as expected and after removal of drug, culture recovery was similar between 
the treated samples (Additional file  1: Fig. S8A). The LGR and legacy library samples 
(T0, DMSO, and dasatinib) clustered by library in the quality control heat map (Addi-
tional file 1: Fig. S8B). The PCA plots showed a separation of the libraries in PC1 (due to 
differences in guide abundance between the two libraries) whereas PC2 and PC3 were 
driven by biological conditions (Additional file 1: Fig. S8C). PC2 illustrates the effect of 
cell growth for 8 days after T0 and PC3 reflects the dasatinib treatment (Additional file 1: 
Fig. S8C). Treating the DMSO vehicle as the control arm in the survival screen, essen-
tial genes were identified for each library and a precision-recall analysis was performed 
using BAGEL2 [23, 24] to compare the discrimination of essential genes between the 
libraries (Fig. 5B). The LGR library had an AUC of 0.936 and the legacy library had an 
AUC of 0.911. In addition to having a higher quality library, more essential genes were 
identified with the LGR library (1787) than the legacy library (1616) (Fig. 5C). Dasatinib-
specific gene hits were identified by ScreenProcessing (scored as rho), which represents 
the growth enrichment between the treated sample (dasatinib) and the untreated sample 
(DMSO) (Fig. 5D). Similar numbers of genes were identified by both libraries. Next, we 
used MAGeCK-VISPR [34, 35] to identify screen hits at various FDRs (Fig. 5E). At the 
highest FDR of 0.25, the legacy and LGR libraries had similar numbers of total gene hits 
(708 and 734, respectively). However, as stringency increased, the LGR library yielded 
more gene hits for both positive (increased cell survival) and negative (decreased cell 
survival) categories. At the most stringent FDR used (0.001), the LGR CRISPRi library 
had a total of 105 gene hits whereas the legacy library had 53.

The dasatinib gene hits for each library at FDRs of 0.25 and 0.001 were analyzed across 
the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) data-
bases to evaluate common biological pathways based on the hits generated [36–39]. The 
mediator complex (GO ID: 0016592) and the oxidative phosphorylation pathway (KEGG 
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ID: hsa00190) were identified among the most significantly enriched annotations for the 
hit lists from both libraries (Additional file 1: Fig. S9). The mediator complex and the 
oxidative phosphorylation pathway have been shown to be potential drug targets to syn-
ergize with tyrosine kinase inhibitor treatments in CML. TKIs primarily target differen-
tiated cells and fail to eliminate leukemic stem cells (LSCs) [40, 41]. However, inhibiting 
mitochondrial oxidative phosphorylation in combination with TKI treatment eliminates 
LSCs [42]. In a genome-wide CRISPR knockout screen, disruption of components of the 
mediator complex provided resistance against TKI treatment [43].

In agreement with these two studies, we observe depletion of guides targeting the com-
ponents of the oxidative phosphorylation pathway and enrichment of guides targeting 
the mediator complex in the dasatinib screen. Our new library generated more hits for 
the mediator complex and the oxidative phosphorylation pathway at an FDR of 0.25 and 
0.001 (Fig. 6A). Additionally, the p-values of enrichment in both gene categories at both 
FDRs were markedly lower for the LGR library. Of the 40 genes annotated to be part of 
the mediator complex in the GO database, the screen with our library identified 7 of 
those genes (including all 4 of the legacy library hits) at an FDR of 0.001 (Fig. 6A). Addi-
tionally, our 100 × screen identified a similar number of components of the mediator 
complex (7 vs 10) to the previous CRISPR knockout screen performed at 250 × coverage 
[43]. Examining the individual guide abundance in the unique hits (Fig. 6B), we observe 
that silencing mediator components results in a growth defect and bottleneck for these 
guides. However, knockdown of these components promotes resistance to dasatinib 
treatment. The uniform abundance of individual guides in the LGR screen results in less 
variability after the treatment bottleneck. The screen sensitivity is improved because the 
read count differences between guides for a given gene can be more confidently identi-
fied as significant when there are fewer outliers and dropouts. Although the prior study 
used a CRISPR knockout library, several studies have shown strong correlation between 
CRISPR knockout and CRISPRi screens [44, 45]. When data from the previous study 
was filtered with the same 0.001 FDR with our screen, only one hit passed the cutoff. 
This further demonstrates the increased quality of screens performed with a less biased 
library. Additionally, another reason for differences between the CRISPRn screen and 
our CRISPRi-based results could be due to much higher rates of chromosome loss in 
CRISPRn editing [46] that can cause confounding effects in screens [47]. The combina-
tion of our survival screen, transduction titration experiments, and drug perturbation 
screen demonstrate the feasibility of screening at much lower cell coverages with our 
improved library.

Discussion
In this work, we demonstrate that genome-wide CRISPR screens can be performed at 
smaller scale if high-quality libraries with high uniformity are used. We have developed 
an improved guide library cloning method that can be applied to applications beyond 
CRISPR that include any library cloned from oligo pools. This includes, but is not lim-
ited to shRNA, peptide, and barcode libraries. Through a combination of using forward 
and reverse oligo templates, optimizing insert amplification, and minimizing tempera-
ture during insert preparation steps, we have generated very uniform libraries that allow 
lower cell coverage screens. This has several practical benefits for screening.



Page 13 of 20Heo et al. Genome Biology           (2024) 25:25  

First, starting with the same number of cells and same library size, one can screen 
10–20 times more samples. These could be technical replicates, biological replicates, 
additional perturbations, additional cell lines or clones, or isogenic controls [48]. For 
example, while only two technical replicates were compared in analysis outlined for 

Fig. 6 The top positive and negative gene hits in the dasatinib survival screens were investigated at 
0.25 and 0.001 FDRs. A The list of gene hits determined by the LGR and legacy libraries for the Mediator 
Complex (top) and Oxidative Phosphorylation pathway (bottom). The Mediator Complex has a total of 40 
genes associated with the cellular component and the Oxidative Phosphorylation pathway has 162. B Line 
plots of the normalized sgRNA counts for the LGR unique gene hits MED8, MED12, and MED31 for the LGR 
(left‑side panel) and legacy (right‑side panel) library samples at an FDR of 0.001. The gene phenotype score 
determined by MAGeCK is annotated on each subplot in the upper left‑hand corner



Page 14 of 20Heo et al. Genome Biology           (2024) 25:25 

the 100 × survival screen, we had four replicates, which used 5-fold less cells than 
the duplicate 1000 × screen. Including all four replicates resulted in more essential 
genes hits (Additional file 1: Fig. S10A). These additional hits are likely real because 
the precision-recall AUC values were indistinguishable (two replicates = 0.949; four 
replicates = 0.945) (Additional file 1: Fig. S10B). Second, if the same number of cells 
are used, a 2 million element library could be screened instead of a library containing 
100,000 elements. This enables experiments with larger libraries such as tiling screens 
to identify regulatory regions in non-coding sequences or synthetic combinatorial 
libraries. Third, due to the large number of cells that must be maintained in higher 
coverage screens, researchers often must split cells every day for several weeks. With 
lower cell coverage, cultures can be passaged at lower density while still maintaining 
adequate coverage and split every 2 or 3 days (Additional file 1: Table S8). Fourth, the 
majority of CRISPR screens have been performed in transformed cell lines because 
their cultures can easily be scaled up. This has been adequate for certain areas of biol-
ogy such as cancer research, but many other interesting screening models such as 
differentiated iPSC cells, primary tissues, and difficult to transduce cells have been 
challenging to approach with genome-wide CRISPR screens [7, 8, 49]. The optimized 
CRISPRi and CRISPRa libraries described in this work provide a resource that make 
these models more tractable for genetic screens. Lastly, new compact dual-guide 
libraries [50] have reduced the number of elements to as few as one per gene. This 
allows lower usage of cells in single-gene screens as well as the ability to perform 
combinatorial screens. However, this precludes the calculation of p-values to filter 
hits. In single gene screens with our library at 50 × cell coverage minimizes the num-
ber of cells to similar levels as the dual-guide library, especially when factoring in the 
number of cells transduced with recombined lentiviral particles rates (~ 30%) of the 
dual guide systems.

Conclusion
The optimizations developed here can be used to clone even more compact libraries, 
such as multi-guide Cas9 and Cas12a sgRNA constructs [50, 51]. With these multi-guide 
libraries, it is conceivable to have a guide library containing a single element per gene. A 
20,000-guide library at 50-fold cell coverage only requires 1 million cells which can be 
propagated in a single 100-mm dish or multi-well plate. With automation, this can ena-
ble genome-wide guide screens of large panels of drugs or cellular genetic backgrounds, 
something unconceivable with existing libraries.

Methods
Cell lines

K562 cells acquired from the European Collection of Authenticated Cell Cultures 
(ECCAC) were cultured according to standard protocols and transfected with lentivirus 
containing the dCas9-KRAB construct. Cells were then sorted using a BD FACS Aria 
based off BFP signal. The pooled cell line was utilized for the essential gene drop-out 
screens, transduction experiments, and dasatinib screens. Cell lines were maintained in 
shaking cultures at 100 rpm at a concentration of 500,000 cells/mL for experiments. The 
parental cell line was authenticated by STR profiling.
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Plasmid vectors

The lentiviral expression vectors used in pooled CRISPR screen experimentations are 
available on Addgene under the following name: pLGR1002 (188320).

LGR guide library cloning

A detailed protocol is in the supplemental materials (Additional file  5). Key points 
include synthesizing insert oligo pools in both forward and reverse complement orienta-
tions, minimizing over amplification of the insert, and performing gel electrophoresis 
size selection and extraction at low temperatures. To confirm sgRNA library represen-
tation and distribution, the plasmid DNA was sequenced (see “NGS sample prep and 
sequencing”).

Plasmid library virus production and titers

Guide library virus was prepared using protocols from the Weissman Lab [52] with 
Lenti-X 293 T (Takara Bio, 632180). Virus titers were performed with polybrene (Mil-
lipore Sigma, TR-1003-G) in the K562 cell lines. Multiplicity of infection (MOI) and per-
cent infection were determined by BFP signal using flow cytometry.

Essential gene drop‑out screens

K562 cells containing dCas9 machinery were infected at ~ 25%, targeting a 100- or 1000-
fold cell coverage. After 2 days, transductants were selected with puromycin for 3 days 
until approximately 90% of the culture was BFP positive. The cultures were maintained 
at 500,000 cells/mL density for 7 days. Cell pellets were collected and frozen before DNA 
extraction. A schematic of the screen timeline is illustrated in Additional file 1: Fig. S6A.

Dasatinib screens

Dasatinib (Millipore Sigma, SML2589) was diluted with DMSO to final concentration of 
4 µM. Drug dosage for K562s was determined by performing a drug titration and a cell 
viability curve was generated. Approximately 10 million K562s with the dCas9-KRAB 
constructs were infected with either the LGR or legacy CRISPRi V2 libraries containing 
the top 5 guides (resulting in approximately 100-fold cell coverage). Puromycin treat-
ment lasted for 5 days (until approximately 90% enrichment). Seven days after infection, 
the  T0 samples were collected for each library. A single dose of 0.75  nM of dasatinib 
(determined from the titration experiment) was used as the drug selective pressure and 
0.01% DMSO was used as a vehicle control. Treatment for 72 h was followed by 6 days of 
recovery. A schematic of the screen timeline is illustrated in Additional file 1: Fig. S6C. 
The LGR and legacy screens experienced similar cell death and recovery growth (Addi-
tional file 1: Fig. S8A).

Genomic DNA processing

Genomic DNA was extracted using Macherey–Nagel Nucleospin Blood kits. The 
10 × cell pellets were processed with the Mini kit (740951), the 50 × and 100 × pel-
lets with the L kit (740954), and the 200 × and 1000 × pellets with the XL kit (740950). 
All pellets were processed according to the kit-specific protocols and quantified by 
Nanodrop.
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NGS sample prep and sequencing

Oligo pool NGS libraries were constructed with the Claret Bioscience SRSLY PicoPlus 
kit (K250B-24) according to manufacturer instructions with 20–25  ng oligo template 
and PCR amplification using the NEBNext Ultra II Q5 Master Mix (M0544). Oligo pool 
NGS libraries were prepared using 10 PCR cycles and an 8-bp dual index primer set 
with the sequence AAT GAT ACG GCG ACC ACC GAG ATC TACACnnnnnnnnACA CTC 
TTT CCC TAC ACG ACG CTC TTC CGA TCT and CAA GCA GAA GAC GGC ATA CGA 
GAT nnnnnnnnGTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCT using the fol-
lowing PCR conditions: denaturation at 98˚C for 30 s, 10 cycles of denaturation at 98˚C 
for 10 s, annealing and extension at 65˚C for 75 s, and final extension at 65˚C for 5 min. 
The indexed libraries were purified with the 1 × of the DNA purification magnetic beads 
(Omega Biotek: Mag-Bind® Total Pure NGS, M1378) and eluted with the TE buffer. The 
oligo pool libraries were pooled and sequenced on a NextSeq 550 with 90 cycles.

Following DNA extraction of cell pellets, screening samples were prepared for NGS 
sequencing by a single PCR amplification; 24 cycles of PCR were performed using NEB-
Next Ultra II Q5 Master Mix (M0544). PCR primer sequences are provided in the sup-
plemental information (Additional file 6). The forward primers (5’ PCR primers) used 
in the NGS library preparation for gDNA samples contained a 6-bp index sample bar-
code: AAT GAT ACG GCG ACC ACC GAG ATC TAC ACG ATC GGA AGA GCA CAC GTC 
TGA ACT CCA GTC ACnnnnnnGCA CAA AAG GAA ACT CAC CCT. For sgRNA libraries 
cloned into the pLGR1002 vector, the following reverse primer was used:

CAA GCA GAA GAC GGC ATA CGA GAT ATG CTG TTT CCA GCT TAG CTCTT. Leg-
acy libraries used the following reverse primer: CAA GCA GAA GAC GGC ATA CGA 
GAT CGA CTC GGT GCC ACT TTT TC. Due to different Tm of the reverse primers, the 
LGR PCR samples were amplified with an annealing temperature of 62.6˚C, while the 
legacy samples were amplified with an annealing temperature of 65˚C. All PCRs were 
conducted in 100 µL volumes with 10 µg of DNA per reaction. All PCRs had the follow-
ing cycling conditions: a hot start at 98˚C for 30 s, 24 cycles of denaturation at 98˚C for 
10 s then annealing for 75 s at the appropriate annealing temperature, a final elongation 
at 65˚C for 5  min, with a final 4˚C hold. After PCR, aliquots of each set of reactions 
were pooled. The legacy samples were purified using 0.65 × and then 1 × doubled-sided 
SPRI beads while the LGR samples using 0.65 × and then 1.2 × double-sided SPRI beads. 
The purified and pooled LGR and legacy samples were quantified on the TapeStation 
using the High Sensitivity Kit before being sequenced on the NextSeq 550 with a cus-
tom sequencing primer (GTG TGT TTT GAG ACT ATA AGT ATC CCT TGG AGA ACC 
ACC TTG TTGG) that was spiked in with the standard Illumina sequencing primer (6 µL 
of the 100 µM custom sequencing primer was added). PhiX control library was spiked 
in at 10% PhiX to increase base diversity for the single-end 20 cycles sequencing runs. 
Note that the first several cycles of sequencing on the NextSeq 550 are used to identify 
clusters. Because G-bases are dark in two-color sequencing systems, guides that con-
tain begin with a polyG sequence are difficult or impossible to identify. This issue will 
also be present on the MiniSeq platform. Two-colored patterned flow cell systems such 
as the NovaSeq and NextSeq 1000/2000 should not be affected by this. An alternative 
method to address this issue with the NextSeq 500/550 is to use a staggered sequencing 
approach.
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Computational analysis of screens

Read counts were processed using an iteration of ScreenProcessing (https:// github. 
com/ ucsf- lgr/ Scree nProc essing) developed by the Weissman Lab. ScreenProcessing [5, 
53] analyzes pooled CRISPR screens by comparing the sgRNAs targeting each gene of 
interest with the entire set of sgRNAs targeting all genes. sgRNAs are ranked according 
to their enrichment score, which is the comparison of phenotype distributions of sgR-
NAs targeting each gene of interest with the non-targeting control (NTC) sgRNAs that 
are not predicted to bind the genome [18]. The NTCs serve as a reliable null distribu-
tion. Genes are ranked according to the phenotype scores and p-values derived from the 
sgRNA rankings. The gene phenotype score is the average of the absolute value of  log2 
enrichment score of the top 3 sgRNAs targeting the gene [53]. The p-value for a gene 
is calculated using the Mann–Whitney U test (MW test) by comparing all 5 sgRNAs 
to the NTCs. A gene is considered a hit for a false discovery rate (FDR) of < 0.05. The 
gene scores are visualized in a volcano plot, where the phenotype effect size is on the 
x-axis and the p-value is on the y-axis. Statistical precision and recall of essential and 
non-essential genes set for libraries were calculated for genes ranked by growth pheno-
type using BAGEL2 [24]. The area under the curve (AUC) values were calculated using 
scikit-learn [54].

Quality control plots as well as gene hit analysis were performed with MAGeCK-Vispr 
[34, 35]. MAGeCK-Vispr uses the negative binomial p-value to perform sgRNA ranking 
and the expectation maximization (EM) algorithm to perform gene ranking with adjust-
able FDR cutoffs. Gene Onology (GO) and KEGG pathway analysis for the dasatinib 
screens were performed with clusterProfiler [25, 26, 55, 56] and DAVID [57, 58].
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