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Abstract 

Long‑read RNA sequencing has emerged as a powerful tool for transcript discov‑
ery, even in well‑annotated organisms. However, assessing the accuracy of different 
methods in identifying annotated and novel transcripts remains a challenge. Here, we 
present SQANTI‑SIM, a versatile tool that wraps around popular long‑read simulators 
to allow precise management of transcript novelty based on the structural categories 
defined by SQANTI3. By selectively excluding specific transcripts from the reference 
dataset, SQANTI‑SIM effectively emulates scenarios involving unannotated transcripts. 
Furthermore, the tool provides customizable features and supports the simula‑
tion of additional types of data, representing the first multi‑omics simulation tool 
for the lrRNA‑seq field.

Keywords: Long‑read transcriptomics, Transcriptome reconstruction, Isoform 
discovery, SQANTI, Transcript simulation

Background
Third-generation or long-read sequencing (TGS/LRS) technologies such as Pacific Bio-
sciences (PacBio) and Oxford Nanopore (ONT) have revolutionized the field of tran-
scriptomics by providing full-length transcripts through single-molecule sequencing 
spanning kilobase-long reads [1–4]. Transcriptome analysis using long reads (lrRNA-
seq) offers several advantages over short-read sequencing, including the identification of 
alternative isoforms and the analysis of allele-specific expression, and has led to the dis-
covery of numerous novel transcripts even in well-annotated organisms [5, 6]. However, 
despite recent improvements in TGS technologies, the quality of lrRNA-seq data is com-
promised by the presence of RNA degradation, library preparation biases, sequencing 
errors, and mapping artifacts that may result in false transcript models being called from 
these data. Presently, one of the major challenges in lrRNA-seq data analysis is accu-
rately identifying novel transcripts and distinguishing them from technology artifacts.

Several software tools have been developed for transcript model reconstruction 
from long reads, which differ, among other features, in their capacity for calling new 

*Correspondence:   
ana.conesa@csic.es

1 Institute for Integrative Systems 
Biology, Spanish National 
Research Council, Catedrátic 
Agustín Escardino Benlloch, 
Paterna 46980, Spain
2 Department of Applied 
Statistics, Operations Research 
and Quality, Universitat 
Politècnica de València, Camino 
de Vera, Valencia 46022, Spain

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-023-03127-0&domain=pdf
http://orcid.org/0000-0001-9597-311X


Page 2 of 20Mestre‑Tomás et al. Genome Biology          (2023) 24:286 

transcripts. Methods such as TAMA [7], Bambu [8], IsoQuant [9], FLAIR [10], and 
TALON [11] use the reference annotation to guide transcript calls and are constrained 
by the existing information. Other approaches such as IsoSeq [12] and LyRic [13] are 
reference-free and may identify a large number of novel transcripts. Finally, strategies 
such as StringTie2 [14, 15] assemble together short and long reads resulting in transcript 
models that may not be fully supported by the long reads. A number of studies have 
benchmarked lrRNA-seq technologies and tools for accurate isoform identification [2, 
4, 7, 16–18] using different combinations of experimental and in silico datasets. Among 
them, the Long-read RNA-Seq Genome Annotation Assessment Project (LRGASP), a 
community-oriented assessment [16], stands as the most comprehensive effort to date 
for evaluating lrRNA-seq methods.

LRGASP included three sequencing platforms, four library preparation methods, and 
fourteen software tools and used SQANTI3 [19] as quality control tool to guide evalua-
tions of over 50 competing analysis pipelines [16]. SQANTI3 combines annotations and 
orthogonal data (i.e., Illumina, CAGE and Quant-seq) to evaluate transcript models and 
proposes a LRS transcript classification scheme based on their comparison to the ref-
erence transcriptome. Hence, full-splice-match (FSM) are LRS transcripts that match a 
reference transcript at all splice junctions. Incomplete-splice-match (ISM) transcripts 
miss one or more junctions at 3′ or 5′ end positions, representing either RNA degrada-
tion or alternative processing. Novel-in-catalog (NIC) are transcripts with novel com-
binations of splice sites, while novel-not-in-catalog (NNC) represent transcript models 
with at least one novel donor or acceptor site. Other categories are antisense, fusion, 
intergenic, and genic-genomic [20]. Using this scheme the LRGASP project found large 
discrepancies among lrRNA-seq methods. Especially, the number and identity of tran-
scripts in the novel SQANTI3 structural categories (other than FSM), as well as the level 
of support by orthogonal data, greatly differed. Remarkably, LRGASP results revealed 
that many NIC transcripts and a non-neglectable number of NNC, including those iden-
tified by a few pipelines, could be validated by targeted PCR amplification [16]. Moreo-
ver, several lrRNA-seq studies show that many novel combinations of splice junctions, 
transcription start (TSS), and termination sites (TTS), as well as alternative TSS and 
TTS (i.e., ISM and NIC categories), are likely to be present in RNA samples [17, 19]. 
These results reflect the grand challenge of the novel transcript discovery from long 
reads.

Ground-truth strategies used to benchmark RNA-seq include the utilization of spike-
ins, experimental validation, and in silico simulation. Spike-ins or sequins are known 
synthetic RNA molecules added during the library preparation step that can easily 
evaluate experimental, sequencing, and mapping biases. However, these kits contain a 
reduced set of transcripts and have limitations for assessing the complexity of the novel 
discoveries. Similarly, experimental validation, although highly informative, is costly 
in time and resources. Data simulation, where the ground truth is decided by the user, 
is a cost-effective alternative [21, 22]. Simulation algorithms have been developed for 
PacBio and ONT long-read genomic sequencing [22–25], and also methods specifically 
designed to simulate lrRNA-seq data are available. Existing tools such as NanoSim [26], 
IsoSeqSim [27], and PBSIM3 [25] simulate ONT and PacBio transcriptome reads from a 
reference transcriptome. Unfortunately, these methods do not incorporate a mechanism 
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to simulate novel transcripts, limiting their utility to fully benchmark the lrRNA-seq 
technology. A few studies have attempted to incorporate novel transcript simulation 
by introducing other-species transcripts in the reference annotation [16] or eliminat-
ing complete chromosomes from the reference GTF when reconstructing transcript 
models [8]. However, these approaches do not take into account the different types of 
novel transcripts that arise when evaluating lrRNA-seq data and therefore fail to reveal 
how experimental and computational algorithms deal with the accurate identification of 
novel TTS, TSS, splice junctions, and their combinations. Moreover, none of the existing 
data simulation approaches is able to jointly simulate orthogonal datasets that might be 
used when defining LRS transcript models, a strategy adopted by some popular lrRNA-
seq algorithms [10, 14] and recommended by LRGASP [16]. Therefore, the current 
lrRNA-seq data simulation landscape is insufficient to simulate the complexity and pos-
sibilities of the LRS transcriptome data.

Here, we present SQANTI-SIM, an open-source tool designed to enable PacBio and 
ONT long-read transcriptome data simulation with precise control over the presence 
of novel transcripts featuring diverse novelty types. Basically, SQANTI-SIM evaluates 
a user-provided reference GTF to identify transcripts that, when removed from the 
annotation, become one of the novel SQANTI3 categories. Building on the capabilities 
of NanoSim, PBSIM3, and IsoSeqSim to simulate long reads from the provided GTF, 
SQANTI-SIM returns simulated reads and a reduced GTF depleted of transcripts simu-
lated to be novel. Moreover, SQANTI-SIM creates matching Illumina and CAGE data 
for the synthetic LRS dataset capturing the noisy relationships between data types. By 
faithfully reproducing LRS transcriptome datasets, SQANTI-SIM provides research-
ers with a powerful tool for assessing the ability of long-read transcript reconstruction 
methods to accurately detect known and new transcripts. We apply SQANTI-SIM to 
different lrRNA-seq algorithms to demonstrate the utility of our tool to reveal distinct 
abilities for detecting different types of true novel transcripts.

Results
Overview of SQANTI‑SIM workflow

SQANTI-SIM is a lrRNA-seq simulation environment that generates Nanopore dRNA 
and cDNA reads as well as PacBio cDNA reads with precise control of transcript novelty 
based on SQANTI3 structural categories [19, 20]. It also simulates orthogonal data sup-
porting both known and novel transcripts.

SQANTI-SIM requires as input data the reference genome and the GTF file with tran-
scriptome annotation for the organism under analysis. Users can define various param-
eters to control the novelty component of the simulated reads, such as the number, 
SQANTI3 structural category, and expression levels of the transcripts they wish to simu-
late. Optionally, long-read, short-read, and CAGE peak datasets can be provided to esti-
mate read properties and simulate supporting orthogonal data. SQANTI-SIM returns 
the simulated long-reads, a reduced GTF file without the simulated novel transcripts, 
and the orthogonal datasets. Moreover, it includes functions to generate a comprehen-
sive report that evaluates the performance of the transcript reconstruction algorithm 
when applied to the simulated data.
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The workflow of SQANTI-SIM usage (Fig. 1) consists of the following steps:

1. Transcripts annotated in the reference GTF are classified according to their potential 
SQANTI3 structural category when compared to other transcripts of the same gene.

2. Based on this classification, a user-defined number of transcripts classified as ISM, 
NIC, NNC, or other novel structural categories are removed from the annotation 
resulting in a “reduced” GTF file. Additionally, SQANTI-SIM assigns transcript 
expression values by offering three computation modes. The equal mode assigns the 
same expression value to all simulated transcripts. The custom mode allows the user 
to define different expression values for novel and known transcripts by customizing 
the parameters of two negative binomial distributions. Lastly, the sample mode uti-
lizes inverse transform sampling from an empirical raw counts distribution.

3. Long reads are simulated using either NanoSim, PBSIM3, or IsoSeqSim operating on 
the complete GTF annotation file. Moreover, SQANTI-SIM can optionally simulate 
matching short reads and CAGE-peak data taking parameters from suitable refer-
ence datasets.

Fig. 1 Flowchart of the SQANTI‑SIM pipeline. The first three steps simulate reads and accompanying datasets 
according to the user’s specifications. Simulated data is then used by the transcriptome reconstruction 
algorithm to predict transcripts. The last SQANTI‑SIM module assesses performance by comparison to the 
simulated ground truth and provides a comprehensive evaluation report
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4. The transcriptome reconstruction algorithm utilizes the simulated reads and the 
“reduced” reference annotation generated by SQANTI-SIM to predict transcript 
models. If the transcriptome reconstruction algorithm permits, the simulated 
orthogonal data may be also incorporated into the transcript model prediction.

5. The performance of the method is assessed for each novel structural category using 
the SQANTI-SIM evaluation function that identifies true and false novel transcripts 
based on the simulated ground truth. Transcripts missing in the reduced GTF should 
be identified as true novel, and any novel transcript that was not simulated will result 
in a false call. A full performance evaluation report is provided.

Validation of the SQANTI‑SIM simulation approach

We demonstrate the reliability of the SQANTI-SIM framework by simulating cDNA 
ONT and cDNA PacBio long-read datasets with the sample mode. These simulations 
were based on the human WTC11 cell line lrRNA-seq data from the LRGASP project 
[16]. Furthermore, as Illumina and CAGE-seq datasets are available for the same cell 
line, SQANTI-SIM was tasked with simulating the corresponding Illumina and CAGE-
peak data (detailed in the Methods section). We conducted an assessment of SQANTI-
SIM’s ability to accurately simulate the desired transcript types and to faithfully mirror 
the empirical distributions of the sample data.

Since a notable feature of SQANTI-SIM is its ability to simulate novel transcripts, our 
initial assessment focused on the tool’s accuracy in effectively recreating various types 
of novel transcripts. The transcript number of each simulated SQANTI3 structural cat-
egory and their assigned reads are provided in Additional file 1: Table S1. The simulation 
of novel transcript categories involves the coordinated elimination and retention of spe-
cific transcript annotations to establish the novelty status, a task that might prove chal-
lenging for genes with many transcripts. For this validation, we requested 43000 FSM 
and 1000 transcripts of each novel SQANTI3 category to be simulated. To verify the 
correct simulation of novelty, we ran SQANTI3 analysis on the reduced GTF and con-
firmed that all structural categories were simulated in the requested amounts (Fig. 2a), 
while still preserving the number of transcripts per gene of the real dataset (Fig. 2b). This 
result reveals that SQANTI-SIM is able to control the transcript novelty during simula-
tion while maintaining the complexity of the reference transcriptome.

To assess the accuracy of expression value simulation, we employed minimap2 to map 
reads and then compared the number of primary alignments obtained with the num-
ber of simulated reads for each transcript. We found a high correlation between the 
simulated and the mapped data for both read simulators, although NanoSim produced 
more noisy reads (lower mappability) than PBSIM3, as expected given the differences 
in error models between the two sequencing platforms (Fig. 2c). For this validation, the 
simulation of novel transcripts included the utilization of the –diff_exp option available 
within the sample mode. This option permits users to define the bias between expression 
levels of novel and known transcripts. Larger values result in novel transcripts having 
lower expression. We confirmed that SQANTI-SIM successfully simulated lower expres-
sion values for novel transcripts (Fig. 2c) and achieved the intended difference in overall 
expression value distributions between known and novel transcript models (Fig. 2d).
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In addition to long-read data simulation, SQANTI-SIM simulates matching orthogo-
nal data in the form of short reads and CAGE peaks, providing a multi-omic simulation 
dataset where supporting data can effectively be used for transcript model inference. 
SQANTI-SIM utilizes Polyester for short-read data simulation and provides the algo-
rithm with the same transcript expression level distributions as for the long reads to 
obtain a compatible dataset. We validated this strategy by confirming that short reads 
simulated at an increasing sequencing depth increasingly supported long-read transcript 
model splice junctions, with junctions in known transcripts being more frequently sup-
ported than those in novel transcripts, as expected due to their lower simulated expres-
sion values (Fig. 2e).

Finally, SQANTI-SIM simulates matching CAGE peaks from short reads by applying a 
logistic regression model. Users may use the SQANTI-SIM-included pre-trained model 
obtained with the WTC11 cell line data or provide their own sample-specific CAGE-
peak dataset. Moreover, users can specify the desired proportion of CAGE peaks that 
overlap a transcription start site (TSS) to be simulated or obtain this value from their 
data. SQANTI-SIM employs inverse transform sampling to determine the length and 
genomic position of each CAGE peak, based on empirical bivariate distributions. Using 
the WTC11 dataset, we confirmed that SQANTI-SIM CAGE-peak simulation faithfully 

Fig. 2 Validation of SQANTI‑SIM approach. a Simulated transcripts for each novel SQANTI3 structural 
category out of 1000 requested for each type (red line). b Comparison of the distribution of expressed 
isoforms per gene in real human WTC11 cell line data and simulated data. c Scatter plot comparing simulated 
transcript reads and mapped raw counts, using triangles for transcripts where simulated reads equal or 
exceed mapped counts, and circles otherwise. d Quantile‑quantile (Q‑Q) plot comparing the expression 
levels, represented as log raw counts, between known and novel transcripts. e Proportion of simulated 
transcripts with all splice junctions (SJ) covered by sample‑specific short‑read (SR) data at different simulated 
sequencing depths. f Bivariate distribution of CAGE peak length and distance to the closest transcript 
transcription start site (TSS) for CAGE peaks supporting a TSS and those not supporting any TSS in real WTC11 
and simulated data
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recapitulates empirical data both for CAGE peaks that support and do not support tran-
script TSS (Fig. 2f ).

Application to benchmark transcriptome reconstruction methods

In order to demonstrate the utility of SQANTI-SIM as a benchmarking tool, we simu-
lated cDNA ONT and PacBio datasets containing FSM, ISM, NIC, and NNC transcripts 
(Additional file 1: Table S2) and used these data to analyze the performance of widely 
used transcriptome reconstruction algorithms. We selected two reference-based meth-
ods―FLAIR (with and without short-reads data usage) and TALON― and the 
PacBio-official reference-free IsoSeq approach alone and in combination with SQANTI3 
Rules filter [19], making a total of five different transcript reconstruction pipelines 
(TALON, FLAIR, FLAIR+Illumina, IsoSeq, and IsoSeq+SQ3Rules) for evaluation. As 
IsoSeq is not compatible with Nanopore data, this method was only applied to the simu-
lated cDNA PacBio dataset.

The predicted transcriptomes obtained with the different analysis pipelines exhibited 
a large variation in the number of detected transcripts, the ratio between true posi-
tives (TP) and false positives (FP), and the distribution of structural categories, despite 
being derived from the same datasets (Fig.  3a). TALON and FLAIR reference-guided 
approaches predominantly yielded known FSM transcript models, except for TALON 
processing ONT data that included an important fraction of Antisense transcripts. In 
contrast, the reference-free IsoSeq pipeline identified over 60% novel transcripts, and 
this percentage was substantially reduced after applying the SQANTI3 Rules filter. These 
results reveal distinct strategies employed by lrRNA-seq reconstruction algorithms to 
manage the novelty of transcript models.

SQANTI-SIM provides evaluation metrics at both gene and isoform levels. While 
gene-level predictions demonstrated strong performance on the PacBio dataset, the 
accuracy of transcript model estimates was comparatively lower (Fig. 3b). At the tran-
script level, reference-guided pipelines exhibited diminished accuracy and sensitivity in 
identifying novel transcript models in comparison to those already annotated. The ref-
erence-free IsoSeq demonstrated high sensitivity and low precision both for known and 
novel transcripts, IsoSeq+SQ3Rules substantially increased precision and F1 score and 
FLAIR+Illumina, combining long and short reads, had the highest F1 scores for gene, 
known, and novel transcript predictions. Overall, the ONT predictions displayed poorer 
precision and sensitivity, both for known and novel transcripts in all tested methods 
(Fig. 3b).

Since SQANTI-SIM simulates the SQANTI3 transcript structural categories in a con-
trolled manner, we can evaluate how different analysis pipelines handle the various types 
of transcript novelty (Fig. 3c and Additional file 2: Fig. S1). We found that FLAIR solely 
using long reads had remarkably lower sensitivity and precision for NNC and a slightly 
worse precision for ISM compared to NIC transcripts, all of which were greatly recov-
ered when short reads were added to the prediction. This suggests that FLAIR improves 
novel transcript estimates when using short reads data through an improved calling of 
novel splice-sites and transcript ends. TALON, on the contrary, using cDNA PacBio 
simulations, struggled more with the correct identification of ISM than with other nov-
elty types. Finally, IsoSeq showed a high sensitivity for all the evaluated novel transcript 
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types, but particularly low precision for ISM, indicating a large number of false positives 
in this category. This low precision of IsoSeq was notably increased after applying the 
SQANTI3 Rules filter, especially for the NIC and NNC transcripts. Overall, SQANTI-
SIM reveals that the ISM category exhibits the poorest performance across all analysis 
methods and sequencing platforms (Fig. 3c), highlighting the challenges that lrRNA-seq 
faces to accurately define TSS and/or TTS.

Given the availability of simulated orthogonal data from SQANTI-SIM, we are able 
to assess the degree to which these data support transcript model predictions for each 

Fig. 3 Benchmark of isoform identification pipelines. a Distribution of SQANTI3 structural categories and the 
number of detected true (TP) and false positive (FP) transcripts. b Performance of analysis pipelines in the 
detection of known and novel simulated transcripts. c Performance based on different types of simulated 
novelty (ISM, NIC, and NNC). d TP, FN, and FP transcripts for each pipeline and structural category, with and 
without support from both SJ short‑read coverage (min_cov> 1) and TSS with CAGE peak support
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structural category (Fig. 3d). Our observations indicate that, in general, transcript mod-
els predicted from ONT data exhibit less orthogonal support compared to those pre-
dicted using PacBio reads. As expected, TP transcripts received substantial support 
from Illumina and CAGE-peak data across all structural categories. Remarkably, FN 
transcripts also displayed consistently high orthogonal support. This suggests that the 
inability of prediction tools to identify these transcripts is not linked to a reduced likeli-
hood of being corroborated by additional data. Conversely, FP transcripts were predom-
inantly found among those lacking orthogonal support, particularly evident in TALON 
and IsoSeq predictions and specifically within the ISM category. This implies that incor-
porating additional data support into these methods would lead to a reduction in FP 
rates, a characteristic demonstrated effectively by the IsoSeq+SQ3Rules pipeline, which 
implements filtering based on external data. Nevertheless, it’s worth noting that numer-
ous FP ISM calls did possess both CAGE-peak and Illumina support. This underscores 
once again the challenge presented by this type of transcript for accurate identification 
in human lrRNA-seq datasets.

Finally, our controlled simulation approach allowed us to investigate the factors driv-
ing differences in the detection of transcripts by the evaluated pipelines. We compared 
the expression level, transcript length, and number of exons of TP, FP, and, FN tran-
scripts in each structural category detected by each pipeline. We observed that for many 
pipelines, FN transcripts were longer (Additional file 2: Fig. S2a) and had a higher exon 
count (Additional file 2: Fig. S2b) compared to those that were successfully identified, 
especially considering the NIC category, suggesting that accurately detecting lengthy 
transcripts could still pose challenges for certain lrRNA-seq methods. Interestingly, this 
pattern did not hold true for TALON when applied to ONT data. In this case, FN tran-
scripts were notably shorter than true positive (TP) ones, revealing a distinct behavior of 
this tool on the Nanopore platform. However, a more consistent pattern emerged when 
examining expression levels (Additional file  2: Fig. S2c). TP transcripts consistently 
exhibited higher expression levels compared to FN transcripts, particularly in the case of 
Nanopore data. This finding underscores the significance of expression levels as a crucial 
factor when generating transcript models with all the examined analysis methods.

Discussion
The long-read RNA-seq technology has significantly enhanced our ability to profile tran-
scriptome complexity and has facilitated the study of isoform diversity across a broad 
spectrum of organisms. This advancement has led to the unearthing of thousands of 
novel isoforms, even within extensively studied species [28–30]. However, benchmark-
ing studies of lrRNA-seq have shown notable discrepancies in the identification of novel 
transcript models among different sequencing platforms and analysis methods [2, 7, 
16–18]. This disparity underscores the intricate challenge of accurately identifying novel 
transcripts from long-read sequencing data. As the adoption of lrRNA-seq for transcrip-
tome analysis continues to expand and the number of reported isoforms dramatically 
increases, it becomes imperative to have access to tools capable of facilitating the precise 
assessment of novel transcript calls.

SQANTI-SIM has been developed as an effective tool to offer a reliable frame-
work for simulating novel transcripts in a controlled manner. By making use of the 
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structural category classification of SQANTI3 and real transcript models from the 
reference annotation, SQANTI-SIM generates simulated transcriptome annotation 
files where both known and different types of novel isoforms are defined and employs 
well-established long-read simulators (NanoSim, PBSIM3, and IsoSeqSim) to simu-
late reads. This approach offers several advantages. Firstly, the simulated novel tran-
scripts correspond to authentic transcript structures, rendering them more credible 
compared to alternatives that generate synthetic or artificially constructed transcripts 
through exon merging or transcript alignment across diverse species. Artificial tran-
scripts, aside from possibly introducing unrealistic novel events, might lack validation 
from orthogonal data, frequently employed to support transcript predictions. In line 
with this notion, SQANTI-SIM incorporates the simulation of short-read and CAGE-
peak data tailored to the simulated long-read dataset. These datasets can serve a dual 
purpose: to evaluate the potential validation by orthogonal data for the newly pre-
dicted transcripts or to directly aid in transcript reconstruction methods that accept 
this form of supplementary information. As far as our knowledge extends, SQANTI-
SIM represents the first multi-omics simulation strategy designed for lrRNA-seq 
studies.

Secondly, SQANTI-SIM operates at the level of the definition of transcript models 
rather than on the read simulation task, for which established algorithms are used. 
This ensures a unified framework for simulating novel transcripts for both Nanop-
ore and PacBio data, offers users the flexibility to choose their preferred read simu-
lation algorithm, and facilitates the integration of new long-read simulators as they 
become available. Finally, SQANTI-SIM grants precise control over the quantity and 
expression levels of diverse novel transcripts categorized according to the widely-
accepted SQANTI3 structural categories. This empowers users to assess how differ-
ent reconstruction methods perform in identifying transcripts with novel splice sites, 
alternate transcription termination sites (TTS) or transcription start sites (TSS), 
or those that are intergenic. Additionally, by regulating the expression level of each 
known or novel transcript type, users can explore the boundaries of novel transcript 
detection, particularly when these transcripts are expressed at low levels. Moreover, 
due to SQANTI-SIM’s ability to maintain transcriptome complexity while simulating 
the reduced reference, the evaluation of novel transcript detection can be conducted 
within the accurate context of transcriptome diversity.

The SQANTI-SIM framework may have some limitations. It relies on the existence 
of a reliable reference annotation where known and novel transcripts can be defined. 
While this is likely a common requirement for any simulation strategy, it restricts 
application to well-annotated species, and users working with poorly annotated 
organisms may require to use well-characterized related species to construct their 
simulated datasets. Furthermore, the accuracy of the long-read simulation is reflec-
tive of the underlying algorithms used for simulating sequencing errors and library 
construction artifacts. This accuracy can vary depending on the chosen simulation 
tool. Lastly, the simulation of orthogonal data is contingent upon the presence of cor-
responding datasets. While this is often the case for short reads, CAGE data might 
not be available for many species. Nevertheless, this does not preclude the utilization 
of SQANTI-SIM’s novelty simulation, which does not necessitate any complementary 
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dataset. Alternatively, users can consider using the pre-computed models of human 
Illumina and CAGE peak provided by SQANTI-SIM for a different approach.

To showcase the utility of SQANTI-SIM, we employed the tool to simulate ONT 
and PacBio cDNA data. We then evaluated various long-read RNA-seq reconstruction 
algorithms, which vary in their utilization of reference annotation and reliance on addi-
tional information. Our findings reveal significant disparities among these methods in 
accurately defining novel transcripts, with superior performance observed with simu-
lated PacBio reads over ONT reads. SQANTI-SIM highlighted the interplay of sensi-
tivity and precision across different SQANTI3 structural categories and analysis tools. 
For instance, while IsoSeq exhibited high sensitivity in detecting all transcript types, 
its precision was notably lower for ISM compared to other novel transcripts. Similarly, 
TALON’s accuracy was poorer for ISM than for other categories. These results suggest 
extra challenges in distinguishing these novel isoforms from partial sequences. Moreo-
ver, the SQANTI-SIM framework illuminated the substantial advantages of integrating 
orthogonal data into transcript model definitions. For example, FLAIR struggled to iden-
tify NNC transcripts without short-read support, but accuracy significantly improved 
with the inclusion of Illumina reads, as these may help in the precise delimitation of 
novel transcript and exon boundaries. Similarly, by enforcing CAGE and Illumina sup-
port through SQANTI3 Rules filtering, IsoSeq reduced false positives for ISM and NIC, 
resulting in a remarkable enhancement in performance for these transcript types. Fur-
thermore, SQANTI-SIM’s ability to precisely control transcript novelty, structure, and 
expression level facilitates investigating potential factors contributing to inaccurate tran-
script identification. Our analysis revealed that transcript expression level constitutes a 
primary source of both false negatives and false positive, revealing present limitations of 
lrRNA-seq technologies for accurately defining transcripts expressed at low levels.

In conclusion, the discovery of novel transcripts through LRS remains a challeng-
ing task. We demonstrate that SQANTI-SIM stands as an essential and cost-effective 
resource for benchmarking lrRNA-seq technologies and analysis tools, addressing an 
important gap in the long-read sequencing field.

Conclusion
SQANTI-SIM enables the simulation of realistic novel transcripts based on the refer-
ence annotation. The tool accurately simulates various types of novelty using SQANTI’s 
structural categories as well as orthogonal data types, while leveraging state-of-the-art 
algorithms for simulating PacBio and ONT reads. SQANTI-SIM is an essential tool for 
the benchmarking of lrRNA-seq methods for new transcript detection.

Methods
SQANTI‑SIM pipeline

The SQANTI-SIM pipeline is implemented in Python and makes use of R Core Team 
[31] for specific functionalities such as short-read simulation and evaluating recon-
structed transcriptomes. SQANTI-SIM is a wrapper script (sqanti-sim.py) consisting of 
distinct modules that perform tasks in the following order: (i) the classif stage screens 
the provided reference GTF, classifying annotated transcripts based on their potential 
SQANTI3 structural category compared to other transcripts of the same gene; (ii) the 
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design generates a reduced GTF annotation file, excluding novel isoforms according 
to user-specified novelty types and amounts; (iii) the sim step runs NanoSim, PBSIM3 
or IsoSeqSim to simulate reads based on the complete reference annotation, using the 
expression value distributions provided by the user; and the (iv) eval module assesses 
the accuracy of the long-read reconstructed transcriptome by running SQANTI3 for the 
predicted transcripts using the reduced GTF and an additional transcript index file con-
taining the structural annotation of the simulated novel transcripts. For convenience, the 
classif, design and sim modules can be run in a single command called full-sim, facilitat-
ing full dataset simulation. We also provide pre-trained models and characterized data-
sets generated using the WTC11 human cell line that can be directly used without the 
need for additional training or user-provided files.

All results presented in this manuscript were generated using version 0.2 of SQANTI-
SIM. For a more detailed explanation of SQANTI-SIM, please refer to our GitHub 
repository: https:// github. com/ Cones aLab/ SQANTI- SIM.

SQANTI‑SIM classification

The classif module categorizes reference transcripts using the same classification algo-
rithm as in the latest SQANTI3 version (v5.1.2. at the time of writing this work), pro-
viding consistent transcript structural classification across SQANTI3-based tools. Each 
transcript is assigned a structural category when compared to other transcripts of the 
same gene. We exclude self-comparisons which would always result in FSM.

SQANTI-SIM classif generates an index file containing reference transcript identifiers, 
their potential structural categories with the corresponding associated transcript, the 
associated gene, and other structural features such as length and number of exons. The 
classification of transcripts into potential SQANTI3 categories is the basis for the selec-
tion of novel transcripts for simulation according to user preferences. The resulting file is 
utilized as input for the subsequent SQANTI-SIM modules.

SQANTI‑SIM novelty selection

SQANTI-SIM design performs two main tasks: generating a reduced transcriptome ref-
erence annotation and setting expression levels. Reference transcripts are classified as 
“novel” or “known” based on user-defined requests for each structural category. “Novel” 
transcripts are removed from the annotation, resulting in a reduced GTF file, while 
retaining the associated reference gene/transcript information to preserve the previously 
assigned structural category. Transcripts chosen for removal, simulated as novel, main-
tain their assigned structural category by preserving the associated reference transcript 
within the reduced annotation. Meanwhile, the transcripts not deleted will be simulated 
as known and thus classified as FSM. By default, SQANTI-SIM design targets only tran-
scripts with a minimum length of 200 bp to avoid simulating small RNAs.

After selecting transcripts for simulation, expression values are assigned. SQANTI-
SIM provides three alternatives to setting expression values. In the equal mode, the 
same expression value is assigned to all simulated transcripts, regardless of their novelty 
type. The custom mode allows for the customization of separate negative binomial dis-
tributions for known and novel transcripts, to introduce differences in expression levels 
between the two transcript types. The sample mode obtains expression values from a 

https://github.com/ConesaLab/SQANTI-SIM
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real expression distribution profiled from an existing long-read RNA-seq sample. Mini-
map2 [32] is used to obtain primary alignments to the reference transcriptome that is 
generated from the genome fasta file and the reference GTF using the gffread tool [33]. 
Inverse transform sampling is applied to simulate values from the empirical distribution. 
Minimap2 is run with different presets for Pacific Biosciences (PacBio) reads (“-x map-
pb”) and for Oxford Nanopore Technologies (ONT) reads (“-x map-ont”). To maintain 
the possibility for different expression levels between known and novel transcripts while 
using the sample mode, the –diff_exp parameter is used in the random sampling process 
to control the bias between the expression distributions of novel and known transcripts. 
The –diff_exp parameter influences the odds of assigning high expression values to these 
two types of transcripts, with higher values resulting in a stronger bias towards known 
over novel transcripts. Additionally, relying on the primary long-read alignments, 
SQANTI-SIM roughly estimates the number of transcripts expressed for each gene. The 
–iso_complex parameter forces SQANTI-SIM to simulate the diversity of transcripts 
observed, reproducing the isoform complexity of the sample.

Pre-computed empirical cumulative distribution functions (ECDFs) of expression 
values are provided by default for cDNA and dRNA ONT samples and a cDNA PacBio 
sample from the WTC11 cell line.

SQANTI‑SIM simulation

The SQANTI-SIM sim tool simulates reads from transcripts that were selected at the 
design stage. For long-read simulation, NanoSim, PBSIM3, or IsoSeqSim are used as 
detailed in Additional file 3: Section 1. Users can either provide their own training data 
or used SQANTI-SIM pre-trained models created using the human WTC11 cell line 
data from the LRGASP project.

NanoSim v3.1.0 is employed for simulating cDNA and dRNA ONT reads. The execu-
tion of NanoSim includes the options “-b guppy –no_model_ir” and controls the number 
of simulated reads by disabling the simulation of randomly unaligned reads. SQANTI-
SIM simulates cDNA PacBio reads using either PBSIM3 v3.0.0 (–pbsim) or IsoSe-
qSim v0.2 (–isoseqsim). PBSIM3 is set to simulate the generation of CLR by multi-pass 
sequencing using the error models constructed from the provided PacBio reads, and ccs 
[34] is executed with default parameters to generate HiFi reads. For IsoSeqSim, normal 
mode is employed, utilizing the 5′ end and 3′ end completeness information from the 
provided pre-trained PacBio Sequel model, along with the user-defined error rates.

Additionally, SQANTI-SIM simulates matching complementary data such as short-
read Illumina data and CAGE-peak data. Illumina RNA-seq reads are simulated using 
the Polyester R package [35], and expression values are assigned using the same TPMs 
as for long-read data, resulting in two FASTA files with paired-end reads of 100 nt in 
length. These simulated reads are generated using an error model uniformly distributed 
at an error rate of 0.5%.

When used in sample mode, SQANTI-SIM provides a data-driven approach for sim-
ulating CAGE-peak orthogonal data based on short-read expression (Additional file 2: 
Fig. S3). SQANTI-SIM starts by estimating CAGE-peak length and determining the dis-
tance from each CAGE-peak center to the nearest transcript TSS using the user-pro-
vided CAGE-peal BED file. This results in two separate empirical bivariate distributions 



Page 14 of 20Mestre‑Tomás et al. Genome Biology          (2023) 24:286 

(one for length and another for distance) for CAGE peaks that either overlap or do not 
overlap a transcript TSS.

To predict the presence or absence of a CAGE-peak supporting a given transcript TSS, 
SQANTI-SIM fits a logistic regression model. The first step involves computing the TSS 
ratio SQANTI3 metric and the proportion of TSS coverage using BEDTools. The TSS 
ratio is the ratio of short-read coverage 100bp downstream and upstream of the TSS 
defined in the SQANTI3 software [19]. The proportion of TSS coverage is computed by 
considering a 20-bp window downstream of the TSS and dividing by the total number of 
reads. These values, along with information on the presence or absence of a CAGE peak 
supporting each transcript TSS ( Yi for each transcript i = 1, ..., n , where n represents the 
total number of transcripts), are used to build the logistic regression model as follows:

where πi is the probability of having a CAGE peak overlapping the transcript TSSi posi-
tion, and πi is linked to the linear predictor by the logit link function. The linear predic-
tor consists of an intercept term β0 and coefficients β1 and β2 , which correspond to the 
log-transformed TSS ratio X (1)

i
 and the log-transformed proportion of TSS short-read 

coverage X (2)
i

 , respectively.
The user can specify the proportion of CAGE peaks that should not align with any 

TSS or take this from the empirical data. Using the fitted logistic regression model and 
random sampling from the empirical cumulative distribution functions (ECDFs) of the 
bivariate distribution, SQANTI-SIM generates a BED file with the simulated CAGE 
peaks. SQANTI-SIM includes pre-trained models for CAGE-peak simulation obtained 
with the LRAGSP human WTC11 cell line data. This model achieved 81.2% accuracy in 
a 10-fold cross-validation

SQANTI‑SIM performance evaluation

The SQANTI-SIM eval module is used to assess the accuracy of the transcriptome 
reconstruction pipeline employed for identifying simulated transcripts. The evaluated 
transcriptome reconstruction algorithm should predict transcript models using the sim-
ulated data and the reduced reference annotation generated by SQANTI-SIM.

The eval step runs SQANTI3 to determine the structural categories of the recon-
structed transcripts, utilizing the reduced annotation. Subsequently, SQANTI-SIM 
evaluates the accuracy of the reconstruction methods by comparing splice junctions 
and 3′/5′ transcript ends of the reconstructed transcript models with those present in 
the simulated transcripts. The potential structural categories and structural features of 
these simulated transcripts are stored in the SQANTI-SIM index file. SQANTI-SIM 
reports various statistics related to the accuracy of the retrieved data. Transcripts that 
were removed from the reference annotation should be identified as novel, and any new 
transcript not simulated by this controlled procedure is considered a false call. Sensitiv-
ity (Sn) and precision (Pr) are calculated at the isoform level for both novel and known 
transcripts and for each structural category separately:

(1)
Yi ∼ Ber(πi), i = 1, ..., n,

logit(πi) = log
πi

1− πi

= β0 + β1X
(1)
i

+ β2X
(2)
i

,
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where true positive (TP) represents the reconstructed transcript models that match the 
simulated reference transcript at all splice junctions and have 3′/5′ ends within 50 nt 
from the annotated TSS and transcription termination site (TTS), false positive (FP) are 
transcripts that were detected but not simulated, and false negative (FN) indicates tran-
scripts that were simulated but not identified according to the criteria for TP.

SQANTI-SIM also provides  F1 scores as a summary measure of accuracy:

The evaluation report also includes metrics to evaluate partial matches. Partial true 
positives (PTP) are transcript models that match a reference transcript at all splice 
junctions but have a 3′/5′ end located more than 50 nts away from the TSS and/or 
TTS. Consequently, SQANTI-SIM calculates the positive detection rate (positive 
detection rate (PDR)) and false detection rate (false discovery rate (FDR)) as follows:

For comprehensive characterization of the TP, FN, and FP calls, the SQANTI-SIM 
report included additional plots describing other structural features. These include 
transcript length, number of exons, number of simulated reads, and the number of 
transcripts with canonical or non-canonical junctions. Furthermore, provided with 
simulated orthogonal data, SQANTI-SIM eval generates descriptive plots, including 
visualizations of SJ coverage for TP and FP transcripts using short-read data, as well 
as the TSS support by CAGE peaks.

For an example, of the SQANTI-SIM evaluation report, we refer to https:// github. 
com/ Cones aLab/ SQANTI- SIM/ blob/ main/ examp le/ examp le_ SQANTI- SIM_ report. 
html.

Real data characterization and dataset simulation

Pre‑trained models and empirical distributions for WTC11 in SQANTI‑SIM

SQANTI-SIM includes the default pre-trained models and empirical distributions 
utilized by the long-read simulators (NanoSim, PBSIM3, and IsoSeqSim), although 
users have also the option to define custom distributions. For the long-read simulator 
models, PBSIM3’s default choice is a quality score model derived from PacBio RS II 
reads provided by PBSIM3 developers. By default, IsoSeqSim is used with the error 
rates recommended in the IsoSeqSim GitHub repository, which are based on PacBio 
Sequel data (substitution 1.731%, deletion 1.090%, and insertion 2.204%). For Nano-
Sim, we provide specific profiles and pre-trained models for cDNA-ONT (ENCODE 
accession ENCFF338WQL) and dRNA-ONT (ENCODE accession ENCFF155CFF) 
reads acquired from the human WTC11 cell line sequencing data generated by the 
LRGASP project [16] (see Additional file 3: Section 2.1). The average error rates for 

(2)Pr =
TP

TP+ FP
Sn =

TP

TP+ FN
,

(3)F1 score =
2

sensitivity−1
+ precision−1

=
TP

TP+
1
2 (FP+ FN)

.

(4)PDR =
TP+ PTP

TP+ FN
FDR =

FP

TP+ PTP+ FP
.

https://github.com/ConesaLab/SQANTI-SIM/blob/main/example/example_SQANTI-SIM_report.html
https://github.com/ConesaLab/SQANTI-SIM/blob/main/example/example_SQANTI-SIM_report.html
https://github.com/ConesaLab/SQANTI-SIM/blob/main/example/example_SQANTI-SIM_report.html
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these pre-trained models are 8.1% for cDNA (mismatch 2.8%, insertion 1.9% and 
deletion 3.5%) and 12.2% for dRNA (mismatch 3.6%, insertion 3% and deletion 5.7%).

For expression value assignment at the design stage, SQANTI-SIM offers default 
empirical distributions of raw counts for various read types. Raw data associated with 
these distributions can be accessed through the ENCODE database, including cDNA-
PacBio (accession ENCFF338WQL), cDNA-ONT (accession ENCFF263YFG), and 
dRNA-ONT (accession ENCFF155CFF). To obtain these empirical expression distri-
butions, reads were mapped to the reference transcriptome using minimap2 v2.26 (see 
Additional file 3: Section 2.2), and primary alignments were computed as raw counts.

Additionally, SQANTI-SIM provides pre-trained models for simulating CAGE peaks. 
To create the models and profiles for CAGE-peak data, SQANTI-SIM requires long-
read-defined transcript models and sample-specific short-read and CAGE peak data. 
SQANTI-SIM uses data from the WTC11 cell line available at the ENCODE database, 
with cDNA-ONT reads under experiment accession ENCSR539ZXJ, PacBio under 
accession ENCSR507JOF, short reads under ENCSR673UKZ, and CAGE peaks from 
GEO accession GSE185917. Transcript models were generated using IsoSeq v4.0.0 and 
FLAIR v2.0.0 [10], with assistance from matched short-read data (see Additional file 3: 
Section 2.3.1). Short reads were aligned using STAR v2.7.10b [36] to obtain TSS cover-
age and the TSS ratio of reconstructed transcript models. Downloaded CAGE-peak calls 
from GEO were filtered to include only peaks found in at least 2 replicates, resulting in 
139,285 CAGE peaks. CAGE peak data and model fitting were characterized using the 
supplementary script sqanti-sim.py in train mode (see Additional file 3: Section 2.3.2).

PacBio and ONT datasets simulation

SQANTI-SIM validation datasets
For validating the SQANTI-SIM pipeline, we simulated cDNA ONT and PacBio reads 

including transcript models for all the SQANTI3 structural categories. A total of 50,000 
isoforms were simulated, with 1000 assigned to each novel structural category (Addi-
tional file 1: Table S1). The simulation was executed using SQANTI-SIM in full-sim sam-
ple mode with default –long_count parameter. We used the –iso_complex parameter to 
validate the simulation of the number of simulated transcripts per gene (see Additional 
file 3: Section 3). Short-read data was simulated with various sample sizes (20M, 40M, 
and 60M short reads) using Polyester. The 20M short-read dataset was used to simulate 
CAGE-peak data.

Data simulation for pipeline benchmarking
The utility of SQANTI-SIM as a benchmarking tool was demonstrated by assessing 

the performance of different transcriptome reconstruction algorithms and pipelines. For 
this assessment, we simulated a cDNA ONT and PacBio dataset consisting of known 
isoforms (FSM) and novel transcripts falling into the three main SQANTI3 structural 
categories (ISM, NIC, and NNC) (see Additional file 3: Section 4.1).

Datasets were simulated using the GENCODE H. sapiens (GRCh38.p13) refer-
ence genome and GENCODE annotation v43. For both the PacBio and ONT datasets, 
SQANTI-SIM was executed in –full-sim sample mode, generating 50,000 different iso-
forms, out of which 15,000 were novel (5000 ISM, 5000 NIC, and 5000 NNC). To simu-
late the ONT dataset, we used the parameters “–ont –illumina –long_count 20000000 
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–short_count 40000000 –read_type cDNA”, which resulted in the simulation of 20 mil-
lion ONT long reads and 40 million Illumina reads. For the PacBio dataset, we used the 
parameters “–pb –pbsim –illumina –long_count 4000000 –short_count 40000000” to 
simulate 4 million PacBio reads with PBSIM3 and 40 million Illumina reads. We set the 
option “–iso_complex” to approximate the isoform complexity of the profiled real data, 
and “–diff_exp 2” to simulate a bias of lower expression for novel transcripts compared 
to known transcripts. We used the default provided pre-trained models and ECDFs from 
the WTC11 cell line in the simulation.

Long‑read‑defined transcriptome reconstruction methods

The performance of IsoSeq, IsoSeq+SQ3Rules filter, FLAIR, FLAIR+Illumina, and 
TALON was evaluated with the simulated datasets described in the previous section.

As IsoSeq [12] is designed to identify isoforms from reads sequenced on the PacBio 
sequencing platform, only the PacBio simulated data was processed with IsoSeq. The 
simulated HiFi reads were clustered using the isoseq cluster2 mode. Then, reads were 
mapped to the reference genome using pbmm2 v1.12.0 with the ISOSEQ preset. Finally, 
the alignments were collapsed using isoseq collapse with –do-not-collapse-extra-5exons 
option.

For the IsoSeq+SQ3Rules pipeline, the SQANTI3 v5.1.2 Rules filter was applied to the 
IsoSeq transcript models with the following parameters: Isoforms flagged for intraprim-
ing or RT-Switching were discarded. FSM and ISM isoforms were required to have TSS 
support either from CAGE-peak overlap, having a TSS ratio of 1.5, or close proximity 
to annotated TSS (< 50 bp). Additionally, other structural categories also required all 
splice-junctions to be supported by at least 2 short-reads or to be canonical junctions.

FLAIR [10] was applied to process both the ONT and PacBio datasets. Since FLAIR 
supports short-read splice data, it was run in two modes: (1) using only long reads and 
the “reduced” GTF (FLAIR pipeline) and (2) using long reads, the “reduced” GTF, and 
short-read splice sites for correction (FLAIR+Illumina pipeline). Short reads were 
mapped using STAR, and splice junctions with fewer than 3 supporting short reads were 
filtered from the resulting SJ.out.tab file. FLAIR was executed in the 123 mode, which 
performs alignment, correction, and collapse in a single step, using the “–check_splice” 
parameter. Additionally, splice junction data was provided using the “–short_reads” 
parameter when incorporating short-read simulated data.

Finally, TALON [11] was run on the ONT and PacBio mapped reads, guided by the 
“reduced” GTF. For the TALON pipeline, a database with the “reduced” GTF was gen-
erated using “talon_initialize_database” with the default settings. Then, the reads were 
mapped to the reference genome using minimap2 (-ax splice:hq -uf –MD), and “talon_
label_reads” was used with the default settings to flag reads for internal priming. Next, 
the “talon” script was run to annotate the reads and novel transcript models were fil-
tered using “talon_filter_transcripts”. Finally, the reconstructed transcriptome was built 
using “talon_create_GTF”.

Code details for all pipelines are provided at the Additional file 3: Section 4.2.
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