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Abstract 

The majority of disease‑associated variants identified through genome‑wide associa‑
tion studies are located outside of protein‑coding regions. Prioritizing candidate regu‑
latory variants and gene targets to identify potential biological mechanisms for further 
functional experiments can be challenging. To address this challenge, we developed 
FORGEdb (https:// forge db. cancer. gov/; https:// forge2. altiu sinst itute. org/ files/ forge db. 
html; and https:// doi. org/ 10. 5281/ zenodo. 10067 458), a standalone and web‑based tool 
that integrates multiple datasets, delivering information on associated regulatory ele‑
ments, transcription factor binding sites, and target genes for over 37 million variants. 
FORGEdb scores provide researchers with a quantitative assessment of the relative 
importance of each variant for targeted functional experiments.
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Background
Genome-wide association studies (GWAS) have been remarkably successful in identi-
fying genetic loci associated with many different diseases and traits [1]. As of the end 
of 2022, the GWAS catalog comprised > 232,000 distinct variants associated with > 3000 
diseases and traits [2]. Many loci identified from GWAS are intergenic, locating to non-
protein-coding regions of the genome [3]. Although the functional mechanisms of some 
variants have been reported [4], most genomic loci have not been carefully studied and 
little is known regarding target genes, pathways, or mechanisms of action. Multiple 
reports suggest that GWAS variants are overrepresented in sequences that regulate gene 
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expression [3, 5, 6]. Several studies have shown enrichment for GWAS variants in cell- 
and tissue-specific regulatory elements [3, 5, 7, 8].

To aid interpretation of GWAS variants in the context of gene regulation, researchers 
have used large-scale mapping data for enhancers and other regulatory elements from 
ENCODE [9], Roadmap Epigenomics [6], and BLUEPRINT [10]. Several webtools, such 
as HaploReg [11], RegulomeDB [12], and others (reviewed in [13]), have been developed 
to help researchers link these data to individual variants. However, these methods do 
not include high-dimensional ENCODE data from contemporary technologies, such as 
Hi-C [14], or expanded expression quantitative trait locus (eQTL) data from large con-
sortia, such as the Genotype-Tissue Expression Project (GTEx) [15] or the eQTLGen 
project [16]. Gathering relevant information from many different data sources and link-
ing the data to individual genetic variants can be challenging in terms of computational 
resources, data processing, quality control, and reproducibility.

Results
To address this issue and provide researchers with a state-of-the-art web tool for variant 
annotation that includes these updated resources, we developed FORGEdb (https:// forge 
db. cancer. gov/, Table 1). FORGEdb incorporates a range of datasets covering three broad 
areas relating to gene regulation: regulatory elements, transcription factor (TF) binding, 
and target genes. First, using genome-wide epigenomic track data from ENCODE [9], 
Roadmap Epigenomics [6], and BLUEPRINT [10] consortia, FORGEdb links SNPs with 
data for candidate regulatory elements (e.g., enhancers, promoters and other regula-
tory element classes). Specifically, FORGEdb annotates variants for overlap with DNase 
I hotspots, histone mark broadPeaks, and chromatin states across a wide range of cell 
and tissue types. Second, within these candidate regulatory elements, FORGEdb inte-
grates SNPs with transcription factor (TF) binding data via (a) overlap with TF motifs 
and (b) SNP-specific Contextual Analysis of TF Occupancy (CATO) scores, which pro-
vide a complementary line of evidence for TF binding computed from allele-specific TF 

Table 1 A comparison of features across FORGEdb, HaploReg and RegulomeDB

FORGEdb HaploReg RegulomeDB

Roadmap chromatin states Yes Yes Yes
TF motifs Yes Yes Yes
SNP scoring system Yes No Yes
Roadmap DNase‑seq Yes Yes No

Roadmap H3 histone mark data Yes Yes No

SiPhy cons No Yes No

caQTLs No No Yes
3D genomic data (ABC Hi‑C‑based data) Yes No No

CADD v1.6 data across different alleles Yes No No

GTEx v8 allele‑specific association data Yes No No

eQTLGen allele‑specific association data Yes No No

BLUEPRINT DNase‑seq Yes No No

Allele‑specific TF binding data (CATO) Yes No No

Zoonomia allele‑specific conservation data Yes No No

ENCODE4 regulatory element CRISPR sgRNAs Yes No No

https://forgedb.cancer.gov/
https://forgedb.cancer.gov/
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occupancy data measured by DNase I footprinting [17]. Third, FORGEdb links SNPs to 
target genes by providing (a) the overlap between SNPs and enhancer-to-promoter loop-
ing regions (or other looping regions) using Activity-By-Contact (ABC) data [18] and (b) 
allele-specific expression quantitative trait locus (eQTL) annotations using large-scale 
data from GTEx [15] and eQTLGen [16]. In addition, FORGEdb includes annotations 
from datasets that aid interpretation of protein-coding changes. Specifically, it includes 
allele-specific Combined Annotation Dependent Depletion (CADD) scores, which 
measure the deleteriousness of SNPs using experimental data and simulated muta-
tions [19]. Moreover, FORGEdb includes the latest sequence conservation data from the 
Zoonomia project [20] and ENCODE4 CRISPR (clustered regularly interspaced short 
palindromic repeats) regulatory element single guide RNA (sgRNA) sequences and 
other data [21]. By amalgamating these datasets into a single resource, FORGEdb offers 
an expanded set of annotations and a more comprehensive evaluation of individual vari-
ants beyond what is provided by other commonly used webtools (Table 1) [11–13].

To summarize the regulatory annotations and prioritize genetic variants for functional 
validation, we created a new scoring system for SNPs, combining all annotations relat-
ing to gene regulation into a single score called a FORGEdb score. Our objective was to 
create scores that were accessible and readily interpretable to researchers while empha-
sizing transparency. In order to ensure that no single annotation or dataset would domi-
nate or skew the scoring system, leading to bias, we adopted a points-based method that 
evaluates each distinct experimental or technological approach separately. FORGEdb 
scores are computed based on the presence or absence of 5 independent lines of evi-
dence for regulatory function:

1. DNase I hotspot, marking accessible chromatin (2 points)
2. Histone mark ChIP-seq broadPeak, denoting different regulatory states (2 points)
3. TF motif (1 point) and CATO score (1 point), marking potential TF binding
4. Activity-by-contact (ABC) interaction, indicating gene looping (2 points)
5. Expression quantitative trait locus (eQTL), demonstrating an association with gene 

expression (2 points)

These five lines of experimental evidence were chosen based on likelihood of provid-
ing an indication of biological function, availability of high-quality data across multiple 
tissues, and offering a distinct line of experimental information. To prioritize variants 
at a large scale for functional studies, it is critical to examine multiple different lines of 
experimental evidence to gain a comprehensive picture of potential biological mecha-
nisms. It is also important to include datasets that have employed an agnostic approach 
and are not targeted to a specific gene(s) or genomic region(s) or limited to a single tis-
sue type, which could introduce bias.

FORGEdb scores were calculated by summing the number of points across all lines 
of evidence present for each SNP, and range between 0 and 10. A score of 9 or 10 
suggests a large amount of evidence for functional impact, whereas 0 or 1 indicate 
a low amount of evidence. For example, there is evidence for eQTLs (for IRX3 and 
FTO), chromatin looping, TF motifs, DNase I hotspots, and histone mark broad-
Peaks for rs1421085, a SNP previously identified for obesity [22] (Fig.  1). Together, 
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these annotations provide strong evidence for a regulatory role for this SNP with a 
FORGEdb score of 9. This high FORGEdb score for rs1421085 is consistent with inde-
pendent experimental analyses that have demonstrated a regulatory role for this SNP, 
with IRX3 being a key target gene [4].

To assess the potential utility of FORGEdb scores across different traits/diseases 
analyzed by GWAS, we obtained summary statistics from published studies of 30 
traits/diseases (Methods) [2, 23–45] and evaluated the correlation between FORGEdb 
scores and the ranking of SNPs by association p-value in each GWAS. Specifically, we 
binned the SNPs according to their association -log10 p-value and estimated the mean 
FORGEdb score for each bin. Results revealed a significant positive correlation between 
mean FORGEdb score and ranked SNP bins across all 30 phenotypes, with more sig-
nificant p-values corresponding to higher FORGEdb scores (Fig. 2 and Additional file 1, 
median correlation = 0.845, range 0.55 to 0.98). Further, to evaluate FORGEdb scores in 
fine-mapping studies, which can identify sets of variants more likely to be functional, 
we compared FORGEdb scores for variants from statistically-derived 95% credible 
sets with reported top SNPs from the same published study [46]. We discovered a sig-
nificant overrepresentation of higher FORGEdb scores in the 95% credible sets (t-test 
p-value = 0.002). These findings demonstrate that FORGEdb scores correlate with 
GWAS associations and are significantly associated with GWAS 95% credible sets, and 
may therefore show utility for prioritizing SNPs across a wide range of human traits and 
diseases, from common traits such as brown hair color and height to complex diseases 
like schizophrenia and lung cancer.

To further assess the utility of FORGEdb scores in identifying potential functional 
variants, we examined the relationship between FORGEdb scores and expression-
modulating variants (emVars), which are candidate functional variants prioritized 

Fig. 1 Example FORGEdb results for rs1421085. For this SNP, there is evidence for eQTL associations (with 
IRX3 and FTO), chromatin looping (ABC interactions), overlap with significant TF motifs, and DNase I hotspot 
overlap, as well as overlap with histone mark broadPeaks. The only regulatory dataset that this SNP does not 
have evidence for is for CATO score (1 point). The resulting FORGEdb score for rs1421085 is therefore 9 = 2 
(eQTL) + 2 (ABC) + 1 (TF motif ) + 2 (DNase I hotspot) + 2 (histone mark ChIP‑seq). Independent experimental 
analyses by Claussnitzer et al. have demonstrated a regulatory role for this SNP in the control of white vs. 
beige adipocyte proliferation via IRX3/IRX5 [4]
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from massively parallel reporter assays (MPRAs). We used emVar data from Tewhey 
et  al. [47], who evaluated 39,487 variants using MPRAs, identifying 248 variants 
that had a high effect on gene expression. Comparing these 248 emVars with 37 

Fig. 2 FORGEdb score (average, y‑axis) versus GWAS ‑log10 (p‑value) (x‑axis) across 30 GWAS. Each colored 
point shows the FORGEdb score average across all GWAS SNPs at each p‑value cutoff. Each grey point 
shows the FORGEdb score average across background SNPs (same minor allele frequency). From top left to 
bottom right: venous thrombosis (cor = 0.87), hair color (cor = 0.89), melanoma (cor = 0.95), colon cancer 
(cor = 0.77), LDL (cor = 0.81), fasting insulin (cor = 0.55), prostate cancer (cor = 0.78), diastolic blood pressure 
(cor = 0.82), systolic blood pressure (cor = 0.80), neutrophil cell count (cor = 0.82), eosinophil cell count 
(cor = 0.81), lymphocyte cell count (cor = 0.82), monocyte cell count (cor = 0.84), white blood cell count 
(cor = 0.83), basophil cell count (cor = 0.85), estimated glomerular filtration rate (eGFR, cor = 0.79), major 
depressive disorder (MDD, cor = 0.59), autism (cor = 0.96), attention deficit hyperactivity disorder (ADHD, 
cor = 0.89), breast cancer (cor = 0.79), lung cancer (cor = 0.90), schizophrenia (cor = 0.98), rheumatoid 
arthritis (cor = 0.86), Alzheimer’s disease (cor = 0.86), type 2 diabetes (cor = 0.88), inflammatory bowel disease 
(IBD, cor = 0.85), body mass index (cor = 0.96), red blood cell count (cor = 0.77), height (cor = 0.86), and 
waist‑to‑hip ratio (cor = 0.90)



Page 6 of 13Breeze et al. Genome Biology            (2024) 25:3 

million  FORGEdb variants revealed a significant overrepresentation of emVars in 
higher FORGEdb scores (paired t-test p-value = 0.005, Fig.  3a, b). This suggests 
that variants with higher FORGEdb scores may more likely be functional and that 
FORGEdb scores are likely well-suited for prioritizing variants in MPRAs and other 
massively parallel experiments. Moreover, emVars exhibited significantly higher 
FORGEdb scores than 39,487 candidate MPRA variants from the same study (paired 
t-test p-value = 0.004), suggesting that FORGEdb scores add further information not 
present in previous variant prioritization methods. Additional comparisons with 
saturation mutagenesis MPRA data from Kircher et  al. [48] (Fig.  3c, paired t-test 
p-value = 0.00974) and RegulomeDB scores across both MPRA datasets (Fig.  3d, e) 

Fig. 3 Variants identified from massively parallel reporter assays (MPRAs) are overrepresented in top 
FORGEdb scores. Shown here are (A) the number of expression‑modulating variants (emVars) per 1000 SNPs 
(divisor, y‑axis) for each FORGEdb score bin (0–10) (x‑axis), (B) a histogram of FORGEdb scores for emVars 
(orange) and 37 million SNPs available in FORGEdb (blue), (C) a histogram of FORGEdb scores for p < 0.001 
MPRA variants from Kircher et al. (orange) and 37 million SNPs available in FORGEdb (blue), (D) a bar chart of 
FORGEdb scores (orange) and RegulomeDB (RDB) scores for p < 0.000001 emVars (blue), and (E) a bar chart 
of FORGEdb scores (orange) and RegulomeDB scores for p < 0.05 MPRA variants for which both a FORGEdb 
score and a RegulomeDB score is available from Kircher et al. (blue)
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further support these findings and indicate potential utility for FORGEdb scores in 
variant prioritization efforts for MPRAs and other massively parallel experiments.

Discussion
FORGEdb exhibits several strengths and limitations. Although FORGEdb contains data 
on TF motifs and CATO scores for allele-specific DNase-seq-based TF binding, it does 
not have data on chromatin accessibility quantitative trait loci (caQTL), which are a 
similar dataset present in RegulomeDB. Additionally, even though FORGEdb includes 
recent conservation scores from the Zoonomia project, it does not include information 
on sequence constraint from SiPhy, which is present in HaploReg. Despite these limi-
tations, FORGEdb remains a valuable resource for researchers seeking a comprehen-
sive and integrated platform to annotate SNPs and interpret functional elements in the 
genome, particularly within the context of gene regulation and allele-specific effects.

FORGEdb has several strengths. Leveraging many different annotations, as well as 
its own SNP scoring system, FORGEdb facilitates a comprehensive analysis of variants 
and their regulatory context. It utilizes different types of DNase-seq and histone mark 
data to provide a deeper understanding of genomic regulatory landscapes. An additional 
distinctive feature of FORGEdb is its integration of 3D genomic data, specifically ABC 
Hi-C-based data, which permits the exploration of complex chromatin interactions, as 
well as genome editing resources (CRISPR regulatory element sgRNAs). Furthermore, 
FORGEdb incorporates CADD scores, providing further information about the potential 
deleterious effects of variant alleles. CADD scores, along with CATO scores, and allele-
specific association data from GTEx and eQTLGen enable researchers to explore allele-
specific effects in the context of genomic functionality. Neither ABC nor CADD scores 
nor CRISPR sgRNAs are available in RegulomeDB or HaploReg. In addition, FORGEdb 
scores correspond with functional significance based on MPRA data and may potentially 
be more informative for evaluating functional significance than probability scores pro-
vided in RegulomeDB.

Conclusions
In summary, FORGEdb is a new web-based tool to aid the interpretation and prioriti-
zation of genetic variants for experimental analysis. FORGEdb includes a number of 
features from novel technologies not available in commonly used webtools, providing a 
more comprehensive analysis of potential regulatory function [11–13]. All of these fea-
tures are accessible via a simple, easy-to-use search engine that can be found at https:// 
forge db. cancer. gov/ and https:// forge2. altiu sinst itute. org/ files/ forge db. html. Annota-
tions from FORGEdb can be accessed from https:// ldlink. nih. gov/? tab= ldpro xy, https:// 
ldlink. nih. gov/? tab= ldass oc, https:// ldlink. nih. gov/? tab= ldmat rix, and https:// forge2. 
altiu sinst itute. org/ [5, 49, 50].

Methods
Databases used in FORGEdb

FORGEdb standalone first annotates variants for positional overlap with DNase I hot-
spots, histone mark broadPeaks, and chromatin states across a wide range of cell and 

https://forgedb.cancer.gov/
https://forgedb.cancer.gov/
https://forge2.altiusinstitute.org/files/forgedb.html
https://ldlink.nih.gov/?tab=ldproxy
https://ldlink.nih.gov/?tab=ldassoc
https://ldlink.nih.gov/?tab=ldassoc
https://ldlink.nih.gov/?tab=ldmatrix
https://forge2.altiusinstitute.org/
https://forge2.altiusinstitute.org/
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tissue types as implemented in FORGE2 [5]. Second, FORGEdb annotates variants 
for Activity-By-Contact (ABC) data (as implemented in Fulco et al.) [18], Contextual 
Analysis of TF Occupancy (CATO) scores as implemented by Maurano et  al. [17], 
CADD scores as implemented by Rentzsch et  al. [19], sequence conservation data 
from the Zoonomia project [20], TF motifs as implemented in FORGE2-TF (https:// 
forge2- tf. altiu sinst itute. org/ and https:// analy sisto ols. cancer. gov/ forge2- tf/#/ forge2- 
tf ), significant eQTLs from GTEx [15] and eQTLGen [16], ENCODE4 regulatory 
element CRISPR sgRNAs from the ENCODE4 multi-center study computed via Gui-
deScan2 [21, 51], and closest gene from RefSeq [52].

FORGEdb scores

For all variants, we generated a FORGEdb score to reflect the extent of experimental 
evidence supporting possible functional significance. The objective was to ensure that 
FORGEdb scores were accessible to a wide array of researchers while emphasizing 
transparency and interpretability. A points-based system was applied to encompass a 
broad spectrum of experimental evidence from diverse data sources and to limit bias 
toward any particular line of evidence.

In creating the FORGEdb scores, we focused on datasets covering major areas of regu-
latory genomics with high-quality data across multiple tissues, identifying five key types 
of experimental evidence:

1) Chromatin accessibility. Evidence of chromatin accessibility, which is important for 
gene regulation, was assessed based on positional overlap with DNase I hotspots 
from the Roadmap Epigenomics consortium, ENCODE and BLUEPRINT, as ana-
lyzed in FORGE2 [5, 6, 9, 10]

2) Histone marks. Evidence for positional overlap with histone marks was assessed 
using broadPeak ChIP-seq data from the consolidated Roadmap H3-all dataset, 
which covers the 5 main histone marks analyzed across the main Roadmap tissue set 
(H3K4me1, H3K4me3, H3K36me3, H3K9me3, H3K27me3) [6]

3) Activity-by-contact (ABC) 3D genomics interactions. Evidence of ABC 3D genomics 
interactions, predictive of target gene looping, was assessed using positional overlap 
with ABC regions [18]

4) Differential gene expression. Evidence of allelic associations with gene expression 
were assessed using expression quantitative trait locus (eQTL) data from GTEx and 
eQTLGen [15, 16]

5) Transcription factors. Evidence of potential alteration of transcription factor bind-
ing was assessed by positional overlap with transcription factor (TF) motifs from 
FORGE2-TF (https:// analy sisto ols. cancer. gov/ forge2- tf/#/ forge2- tf and https:// 
forge2- tf. altiu sinst itute. org/) and Contextual Analysis of TF Occupancy (CATO) 
scores [17], which provide a measure of allele-specific associations with TF binding 
for a wide array of TFs

Equal weights (2 points each) were assigned to each line of evidence to prevent bias 
originating from any one approach. Resulting points were then added to provide a final 

https://forge2-tf.altiusinstitute.org/
https://forge2-tf.altiusinstitute.org/
https://analysistools.cancer.gov/forge2-tf/#/forge2-tf
https://analysistools.cancer.gov/forge2-tf/#/forge2-tf
https://analysistools.cancer.gov/forge2-tf/#/forge2-tf
https://forge2-tf.altiusinstitute.org/
https://forge2-tf.altiusinstitute.org/
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FORGEdb score ranging from 0 to 10. When we applied this scoring system to 37 mil-
lion variants, we observed an approximately normal distribution (Fig.  3b). We further 
validated the scoring  system by assessing it against MPRA data, providing additional 
support for its alignment with functional significance.

Allele‑specific and regional data

FORGEdb provides a range of functional genomic annotations that can be catego-
rized as based on positional overlap (e.g., the variant is located in a genomic region 
demarcated by the annotation) or variant-level features (e.g., allelic differences at 
the locus are associated with a particular feature). Among the regional overlap fea-
tures, FORGEdb includes ABC data, CRISPR regulatory element sgRNAs, TF motifs, 
DNase I hotspots, and histone mark broadpeaks, offering insight into genomic con-
text. Variant-level features, such as GTEx and QTLGen eQTL datasets, CATO scores, 
Zoonomia PhyloP scores, and CADD scores, provide allele-specific information. Col-
lectively, these annotations in FORGEdb contribute to a comprehensive understand-
ing of allele-specific effects and regional genomic context for individual SNPs.

Accessing FORGEdb

FORGEdb is available via web browser (https:// forge db. cancer. gov/ and https:// 
forge2. altiu sinst itute. org/ files/ forge db. html). A programmatic interface to FORGEdb 
has been developed via CRAN package LDlinkR (https:// cran.r- proje ct. org/ web/ 
packa ges/ LDlin kR/ index. html), and API instructions are at https:// forge db. can-
cer. gov/ api- access. FORGEdb code is available under the MIT license from https:// 
github. com/ CBIIT/ nci- webto ols- dceg- forge db and https:// github. com/ charl esbre eze/ 
FORGE db. FORGEdb constituent databases can be downloaded from https:// github. 
com/ CBIIT/ nci- webto ols- dceg- forge db# build ing- and- hosti ng- the- api, and FORGEdb 
scores can be downloaded from Zenodo at https:// doi. org/ 10. 5281/ zenodo. 10067 458.

Example analysis

An example FORGEdb analysis is available at https:// forge db. cancer. gov/ explo re? 
rsid= rs122 03592, with a complementary example at https:// forge2. altiu sinst itute. 
org/ files/ rs1421/ summa ry. table. rs142 1085. html. A description of FORGEdb scores is 
available at https:// forge db. cancer. gov/ about/. A brief computational description of 
FORGEdb is available at https:// github. com/ CBIIT/ nci- webto ols- dceg- forge db.

Regenerating FORGEdb pages

To regenerate FORGEdb pages, we provide guidelines and code at https:// github. 
com/ CBIIT/ nci- webto ols- dceg- forge db. Updated information on web server instal-
lation is available at https:// github. com/ CBIIT/ nci- webto ols- dceg- forge db# build ing- 
and- hosti ng- the- api.

Integration with summary statistics

Although FORGEdb does include blood cis-eQTL data from a large consortium, 
eQTLGen, offering additional information beyond GTEx, the FORGEdb webtool does 

https://forgedb.cancer.gov/
https://forge2.altiusinstitute.org/files/forgedb.html
https://forge2.altiusinstitute.org/files/forgedb.html
https://cran.r-project.org/web/packages/LDlinkR/index.html
https://cran.r-project.org/web/packages/LDlinkR/index.html
https://forgedb.cancer.gov/api-access
https://forgedb.cancer.gov/api-access
https://github.com/CBIIT/nci-webtools-dceg-forgedb
https://github.com/CBIIT/nci-webtools-dceg-forgedb
https://github.com/charlesbreeze/FORGEdb
https://github.com/charlesbreeze/FORGEdb
https://github.com/CBIIT/nci-webtools-dceg-forgedb#building-and-hosting-the-api
https://github.com/CBIIT/nci-webtools-dceg-forgedb#building-and-hosting-the-api
https://doi.org/10.5281/zenodo.10067458
https://forgedb.cancer.gov/explore?rsid=rs12203592
https://forgedb.cancer.gov/explore?rsid=rs12203592
https://forge2.altiusinstitute.org/files/rs1421/summary.table.rs1421085.html
https://forge2.altiusinstitute.org/files/rs1421/summary.table.rs1421085.html
https://forgedb.cancer.gov/about/
https://github.com/CBIIT/nci-webtools-dceg-forgedb
https://github.com/CBIIT/nci-webtools-dceg-forgedb
https://github.com/CBIIT/nci-webtools-dceg-forgedb
https://github.com/CBIIT/nci-webtools-dceg-forgedb#building-and-hosting-the-api
https://github.com/CBIIT/nci-webtools-dceg-forgedb#building-and-hosting-the-api
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not currently conduct colocalization analyses and thus does not compute the pos-
terior probability of a variant affecting gene expression for a given GWAS. Regard-
ing applications for summary statistics, we recommend modeling analysis in R using 
FORGEdb scores computed across over 37 million variants, which are scaled between 
0 and 10 and are available for download at Zenodo at https:// doi. org/ 10. 5281/ zenodo. 
10067 458 (RSID.scores file), to facilitate integration and joint analysis of summary 
statistics and FORGEdb scores.

Analysis of MPRA and GWAS data

To validate the utility of FORGEdb scores, we analyzed MPRA emVar data and publicly 
available GWAS data. For analysis of MPRA emVar data, we downloaded the SNP infor-
mation from table S1 (39,478 ref/alt pairs tested by MPRA) and S2 (emVars) of Tewhey 
et al. [47]. We computed FORGEdb SNP scores for all 248 reported emVars and the other 
39,478 SNPs evaluated in the manuscript. We then compared the FORGEdb scores for the 
emVars with the other evaluated SNPs and 37 million SNPs available in FORGEdb.

For analysis of Kircher et al. MPRA data, we downloaded the hg38 MPRA information 
from https:// kirch erlab. bihea lth. org/ satMu tMPRA/ [48]. We then generated FORGEdb 
scores for variants with MPRA p < 0.001. We also integrated RegulomeDB scores with 
variants, which resulted in a reduced number of intersecting SNPs across all scores, 
so for this second  comparison, we focused on variants at p < 0.05. We then plotted 
FORGEdb scores for the first set of variants alongside scores of background SNPs avail-
able in FORGEdb, and then plotted FORGEdb scores and RegulomeDB scores for the 
second set of variants.

For analysis of GWAS data across 30 disease/traits, we downloaded GWAS summary 
statistics from OpenGWAS [24] and other sources [2, 23–45]. Ethnicities analyzed in 
these GWAS include African American/Afro-Caribbean, East Asian, and European. For 
each GWAS, we computed FORGEdb scores across all variants and then computed the 
average score at different p-value thresholds. Published 95% credible sets for a coronary 
heart disease GWAS were obtained from van der Harst et al. [46]. Plotting and statistical 
analyses were conducted in R [53].

Contact

For any questions or information contact c.breeze@ucl.ac.uk.
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minor allele frequency). FORGE2 SNP number requirements preclude background analysis for certain p‑value thresh‑
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