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Abstract 

Small regulatory RNAs pervade prokaryotes, with the best-studied family of these 
non-coding genes corresponding to trans-acting regulators that bind via base pairing 
to their message targets. Given the increasing frequency with which these genes are 
being identified, it is important that methods for illuminating their regulatory targets 
keep pace. Using a machine learning approach, we investigate thousands of interac-
tions between small RNAs and their targets, and we interrogate more than a hundred 
features indicative of these interactions. We present a new method, TargetRNA3, 
for predicting targets of small RNA regulators and show that it outperforms existing 
approaches. TargetRNA3 is available at https:// cs. welle sley. edu/ ~btjad en/ Targe tRNA3.
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Background
Small regulatory RNAs (sRNAs) are widespread in prokaryotes [1]. In Escherichia coli 
and Salmonella enterica serovar Typhimurium, for example, several hundred sRNAs 
have been characterized, comparable to the number of transcription factors [2]. The 
vast majority of sRNAs act as post-transcriptional regulators by base pairing with target 
mRNAs, thereby modulating the translation or stability of the targets [3]. The products 
of a sRNA gene normally interact with multiple mRNAs, enabling sRNAs to effect broad 
cellular responses. Altogether, more than half of genes in a genome may be subject to 
sRNA-mediated regulation [4].

While sRNAs are important components of the regulatory landscape, their annotation 
can be challenging, in part owing to their diversity in size and function and extent of con-
servation. For example, in some organisms, the action of sRNAs is heavily dependent on 
sRNA-binding proteins, such as Hfq, ProQ, and CsrA [5], whereas in other organisms, 
it is unclear that sRNA-binding proteins play a significant role [6]. Among prokaryotes, 
sRNAs and their targets of regulation have been characterized much more extensively 
in bacteria than in archaea [7, 8]. While the number of identified sRNAs in prokaryotes 
has exploded in recent years, thanks in part to advances in RNA-seq strategies, a major 
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challenge continues to be the effective elucidation of their functional roles and regula-
tory targets.

To help address this challenge, a number of experimental approaches have been devel-
oped for the purpose of large-scale target identification. MAPS (MS2 affinity purification 
coupled with RNA sequencing) fuses an MS2 tag to a sRNA followed by purification and 
sequencing to determine the targets of a sRNA [9]. RIL-seq (RNA interaction by ligation 
and sequencing) detects sRNA:target duplexes by co-immunoprecipitation with Hfq fol-
lowed by ligation and sequencing [10]. GRIL-seq (global small noncoding RNA target 
identification by ligation and sequencing), similar to RIL-seq, uses ligation and sequenc-
ing to identify sRNA:target interactions, and it does not require RNA-binding proteins 
in order to capture interactions [11]. Likewise, CLASH (UV-crosslinking, ligation, and 
sequencing of hybrids) uses cross-linking followed by ligation and sequencing to capture 
sRNA:target interactions [12]. All of these approaches can be applied in vivo to identify 
sRNA:target interactions globally. Overall, while these high-throughput experimental 
methods can be applied genome-wide and they have substantially increased the number 
of validated sRNA:target interactions, they do not scale with the exploding number of 
identified sRNAs throughout prokaryotes. Thus, computational approaches, which are 
more efficient than experimental methods, can be a useful first step in helping character-
ize targets of trans-acting regulatory RNAs in prokaryotes.

There are a number of existing computational tools for predicting RNA-RNA interac-
tions in different domains of life [13, 14] and in prokaryotes specifically [15]. For pre-
dicting targets of sRNA regulation throughout a prokaryotic genome, TargetRNA was 
the first such tool, utilizing the energy of hybridization between a sRNA and a target as 
well as a seed region of consecutive base pairs to identify regulatory interactions [16]. 
RNAup determines the thermodynamics of a sRNA and target interaction by combining 
their hybridization energy with the structural accessibility of the binding regions [17]. 
IntaRNA, which improves upon the execution time of the approach used by RNAup and 
also incorporates seed regions into its prediction calculations, is one of the more precise 
tools at estimating the interacting region and corresponding nucleotides that partici-
pate in hybridization between a sRNA and target [18]. CopraRNA is a leading tool that 
rigorously incorporates the conservation of sRNA:mRNA interactions across species 
to determine its predictions [19]. sTarPicker [20] and sRNARFTarget [21] both employ 
machine learning approaches to make predictions, with sTarPicker using an ensemble 
classifier based on the Tclass system [22] and sRNARFTarget using random forests as its 
machine learning foundation. SPOT uses an ensemble approach, combining several of 
the abovementioned tools to enhance predictive performance [23]. Each of these tools 
has its pros and cons. For instance, CopraRNA is one of the most accurate tools in iden-
tifying interactions; however, it is only able to make predictions for highly conserved 
sRNAs and targets, and it is prohibitively slow to run for large numbers of sRNAs. Alto-
gether, existing tools share many of the same challenges. In general, these tools consider 
only a few features predictive of sRNA:target interactions, often focusing on the thermo-
dynamics of hybridization between the two RNAs, and all have high false-positive rates. 
Additionally, existing approaches were designed and evaluated based on relatively small 
sets of sRNAs and interactions, so their effectiveness beyond a few model organisms is 
not well understood.
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In this study, we gathered a large set of experimentally determined sRNA:target inter-
actions, substantially larger than sets used to build and assess previous tools for predict-
ing sRNA targets. We then investigated a variety of features that may be predictive of 
interactions. Using this rich set of data on sRNAs and their targets, we trained a machine 
learning model to distinguish interactions from non-interactions. We show that our 
approach, TargetRNA3, identifies targets of sRNA action more accurately than existing 
approaches. At the same false-positive rate as other tools, TargetRNA3 identifies sig-
nificantly more true targets, and correspondingly, when identifying the same number 
of targets as other tools, TargetRNA3 has a significantly lower false-positive rate. Tar-
getRNA3 can be applied to all sRNAs, regardless of whether they are conserved, and it is 
dramatically faster than other leading tools. TargetRNA3 can be used via a web interface 
at https:// cs. welle sley. edu/ ~btjad en/ Targe tRNA3 [24].

Results
Features of target interactions

In order to evaluate features indicative of interactions between sRNAs and their regula-
tory targets, we compiled a set of 4386 sRNA:target interactions for which there is exper-
imental evidence. The 4386 interactions come from 77 sRNAs in 13 different genomes 
from 4 phyla (Additional file 1: Table S1). For the 77 sRNAs, we also looked at possible 
targets in their corresponding genomes for which we did not find experimental evidence 
of interaction. There are 325,162 pairs of sRNAs and possible targets in the 13 genomes 
without evidence of interaction. We consider these 325,162 pairs as non-interactions. 
Of course, some of these pairs that we label as non-interacting may indeed be regulatory 
interactions for which we have not yet found evidence. Thus, the false-positive rates we 
ultimately report may be over-estimates. Nonetheless, since most sRNAs have regula-
tory interactions with only a small percentage of all possible targets from their genome, 
we hypothesize that the number of false-negative labels is relatively modest.

For each of these 329,548 pairs of sRNAs and possible targets, we calculated values 
for 111 features that may be predictive of sRNA:target interactions. Most of the fea-
tures have been used in other studies to predict interactions, though a few are new to 
this study. For instance, 64 of the features correspond to trinucleotide frequency differ-
ences as used by sRNARFTarget, and 17 of the features correspond to properties of the 
IntaRNA-predicted hybridization as suggested by sInterBase [25]. The complete set of 
329,549 pairs of sRNAs and possible targets together with each of their 111 feature val-
ues is available in Additional file 1: Table S2, and details on the features are provided in 
Additional file 1: Table S3.

We then investigated combinations and subsets of the 111 features as well as the rela-
tionship of each feature with interactions and non-interactions (Additional file 1). For 
each feature, we used analysis of variance (ANOVA) to calculate its F-statistic and cor-
responding p-value demonstrating the feature’s relationship to whether interactions are 
evinced or not (Fig.  1) [26]. As Fig.  1 illustrates, some features are not informative in 
distinguishing interactions from non-interactions. For example, the existence of seed 
regions of length 8, 9, or 10 base pairs, which are used in several existing prediction 
tools and which correspond to consecutive base pairs in the sRNA and in the possible 
target that are perfectly complementary, does not contain substantial predictive power 

https://cs.wellesley.edu/~btjaden/TargetRNA3


Page 4 of 13Tjaden  Genome Biology          (2023) 24:276 

(p-values of 0.57, 0.031, and 0.43, respectively). In contrast, features related to homology 
appear to be important. Features capturing the conservation of a sRNA and its possible 
target have significant p-values as do the two features from CopraRNA, a tool which 
makes heavy use of homology in computing its p-value and false discovery rate. Simi-
larly, features relating to the binding energy of a sRNA and possible target tend to be 
significant.

Based on the significance of different features in distinguishing interactions from non-
interactions (Fig. 1) and the efficiency of calculating different features (Additional file 1: 
Table S3), we selected a subset of nine features that capture the key aspects of separating 
interactions from non-interactions and that can be computed rapidly. The nine features 
are shown in Additional file 1: Fig. S3 with their relationship to whether interactions are 
evinced or not based on ANOVA (Additional file 1: Fig. S3A) and based on correlation 
coefficient (Additional file 1: Fig. S3B).

Machine learning algorithms

Using our set of 329,548 pairs of sRNAs and possible targets, we explored 8 different 
machine learning algorithms and evaluated each algorithm for its ability to accurately 
identify sRNA:target interactions. Once trained, each algorithm reports a probabil-
ity that any sRNA and possible target genuinely interact. Figure  2 shows the receiver 
operating characteristic (ROC) curves for the eight machine learning algorithms, indi-
cating the trade-off between sensitivity (i.e., true-positive rate) and specificity (i.e., 

Fig. 1 Relationship of features to evinced interactions. The F-statistic and corresponding p-value, as 
calculated using analysis of variance, are shown for each feature except for the 64 trinucleotide frequency 
differences. Higher F-statistics and lower p-values (more darkly shaded regions in the figure) indicate how 
well the feature discriminates interactions from non-interactions. For comparison, the first row shows the 
F-statistic and p-value for the probabilities reported by TargetRNA3
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1.0 − false-positive rate) at different probability thresholds, and Additional file  1: 
Table S4 provides additional statistics, including area under the ROC curve, F1 score, 
and Matthews correlation coefficient, indicating each algorithm’s performance. Based on 
these results (Fig. 2 and Additional file 1: Table S4), we found that the gradient boosting 
algorithm was one of the best performing at any threshold and, particularly, at probabil-
ity thresholds corresponding to very low false-positive rates such as false-positive rates 
of 0.05 (the left-most region of Fig. 2). Given its robustness at different thresholds, its 
performance at low false-positive rates that are most relevant to target prediction, and 
its speed, we selected the gradient boosting algorithm for more careful investigation and 
as the basis for TargetRNA3.

After identifying gradient boosting as the best of the eight algorithms that we con-
sidered for target prediction, we examined how its performance compared to that 
of an automated machine learning (AutoML) system, namely auto-sklearn [27]. 
auto-sklearn is a popular AutoML system that uses meta-learning and Bayesian opti-
mization to determine the optimal learning algorithms and their associated hyper-
parameter optimizations in a combined search space. Thus, in contrast to a single 
machine learning algorithm such as gradient boosting, auto-sklearn explores a large 
set of algorithms and not just individually but in combinations as part of ensembles 
while simultaneously optimizing their parameters. Figure 3 shows the ROC curves 
for gradient boosting, which is used by TargetRNA3, and for both auto-sklearn [27] 

Fig. 2 ROC curves showing the performance of different machine learning algorithms. The performance of 8 
machine learning algorithms is illustrated by ROC curves. The abscissa axis corresponds to the false-positive 
rate, i.e., 1.0 − specificity. The ordinate axis corresponds to the true positive rate, i.e., the recall or sensitivity. 
Different thresholds for the values reported by an algorithm represent different points along the algorithm’s 
curve in the figure. The dotted line with unit slope indicates the performance of a naïve random algorithm. 
For each algorithm, the area under the curve (AUC) is indicated
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and auto-sklearn 2.0 [28]. While the AutoML approaches perform better than gra-
dient boosting at most probability thresholds, their performance is comparable to 
gradient boosting at thresholds corresponding to very low false-positive rates, which 
are our foci when predicting sRNA:target interactions.

Having examined different machine learning algorithms and their performance, 
we wanted to better understand the relative contribution of each feature toward dis-
tinguishing interactions, so we performed a SHAP (SHapley Additive exPlanations) 
analysis, which enables global measures of feature importance for a machine learn-
ing model [29]. Figure 4 illustrates the impact of different features on TargetRNA3’s 
predictions based on Shapley values. As indicated in Fig.  4, some features such as 
the energy of hybridization of the two interacting RNAs as determined by RNAplex 
(blue values in Fig. 4A for this feature correspond to large negative energies) and the 
number of sRNA:target homologs (red values in Fig. 4A for this feature correspond 
to large numbers of homologs) contribute more toward TargetRNA3’s predictions 
and some features such as whether the stop codon of a target’s upstream gene over-
laps the target’s start codon contribute little toward TargetRNA3’s predictions.

Fig. 3 ROC curves comparing the performance of TargetRNA3 with AutoML. The performance of TargetRNA3 
and two AutoML systems, Auto-Sklearn and Auto-Sklearn version 2.0, is illustrated by ROC curves. The 
abscissa axis corresponds to the false-positive rate, i.e., 1.0 − specificity. The ordinate axis corresponds to the 
true-positive rate, i.e., the recall or sensitivity. Different thresholds for the values reported by an algorithm 
represent different points along the algorithm’s curve in the figure. The dotted line with unit slope indicates 
the performance of a naïve random algorithm. For each algorithm, the area under the curve (AUC) is 
indicated
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Comparison with other target prediction methods

To assess how TargetRNA3 compares to other approaches for predicting sRNA:target 
interactions, we interrogated the performance of TargetRNA3, CopraRNA [19], 
RNAup [17], IntaRNA [18], RNAplex [30], and sRNARFTarget [21]. It is worth noting 
that CopraRNA has shown some of the best performance in the past at identifying 
target interactions [15], and sRNARFTarget is a recent approach for target predic-
tion that also employs machine learning and uses a set of features unique among the 
tools—namely the difference in frequency for each of the 64 trinucleotides between 
the sRNA sequence and a possible target sequence. Detailed scores reported by each 
of these 6 algorithms on all 329,548 pairs in our dataset are reported in Additional 
file 1: Table S2. Figure 5A illustrates the ROC curves for each of the six algorithms 
as well as the area under the curve (AUC) for each. While ROC curves show true-
positive rate and false-positive rate performance at different thresholds, we are par-
ticularly interested in low false-positive rates, so we considered the true-positive 
rate (i.e., sensitivity) of each of the six algorithms at a specific false positive rate of 
0.05 (Fig. 5B). We also probed the runtime, per sRNA, of each of the six algorithms 
(Fig. 5C). As shown in Fig. 5 and Additional file 1: Table S5, TargetRNA3 had the best 
performance overall and critically at low false-positive rates. TargetRNA3 has the 
added benefit of one of the fastest runtimes, which is not accidental, since we selected 
9 features out of 111 for TargetRNA3 where runtime of computing a feature was one 
of the considerations in selecting it.

Fig. 4 Contributions of features used by TargetRNA3. The results of SHAP analyses are shown indicating the 
contributions of features used by TargetRNA3 when making predictions. A For each of the nine features, the 
feature’s impact on the machine learning model’s output is shown by the distribution of the feature’s Shapley 
values. B For each of the nine features, the maximum absolute Shapley value over all interactions is indicated
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Discussion
Most existing tools for computational prediction of targets of sRNA regulation in 
prokaryotes were created and tested based on a relatively small number of sRNA:target 
interactions, often around 100 such interactions or fewer. With the recent application 
of experimental approaches toward global detection of sRNA:target interactions, such 
as RIL-seq, MAPS, and CLASH, a more extensive array of interactions has been cata-
loged. Here, we gather a dataset with more than 4000 experimentally determined inter-
actions and more than 300,000 putative non-interactions. For each of these interactions, 
we computed values for more than a hundred different features that may be predictive 

Fig. 5 Performance comparison of TargetRNA3 and existing tools for predicting targets of sRNA regulation. 
The performance of TargetRNA3 and five existing tools (CopraRNA, RNAup, IntaRNA, SRNARFTarget, and 
RNAplex) when predicting sRNA targets is shown. A ROC curves for the six tools are illustrated. The abscissa 
axis corresponds to the false-positive rate, i.e., 1.0 − specificity. The ordinate axis corresponds to the 
true-positive rate, i.e., the recall or sensitivity. Different thresholds for the values reported by a tool represent 
different points along the tool’s curve in the figure. The dotted line with unit slope indicates the performance 
of a naïve random tool. B A particular point along each curve in A, specifically the point at which each of the 
six curves intersects the vertical line corresponding to a false-positive rate of 0.05. B The sensitivity, i.e., recall 
or true-positive rate, is shown for the six tools when their specificity is 95%, i.e., their false-positive rate is 0.05. 
C The mean runtime in minutes per sRNA is shown for the six tools, with yellow error bars corresponding to 
the standard error
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of sRNA:target regulatory interactions. We hope this rich dataset will be a resource to 
the community for helping improve biocomputational examination of sRNA regulatory 
interactions.

As part of our investigations, we interrogated the features in the dataset, and we found 
that some features commonly used for target prediction, such as longer seed lengths, did 
not have substantial predictive power in discerning sRNA:target interactions. In con-
trast, other features, such as the conservation of the sRNA and target and thermody-
namics of their interaction, had highly significant predictive power. Thus, we were able 
to identify a subset of features that together are effective at distinguishing interactions 
from non-interactions. Using this subset of features with our large dataset of interac-
tions, we explored eight popular machine learning algorithms to understand how well 
interactions could be predicted. We also explored a more advanced autoML approach 
that creates an ensemble of different machine learning algorithms while simultaneously 
optimizing their parameters. Ultimately, we found predictive performance was relatively 
robust with respect to the choice of machine learning algorithm. Thus, we chose one 
of the best performing and most efficient algorithms, gradient boosting, and we used 
this as the foundation for our new method, TargetRNA3, for predicting targets of sRNA 
regulation.

After training TargetRNA3’s machine learning model on the large dataset of interac-
tions, we assessed TargetRNA3’s ability to accurately predict sRNA targets by comparing 
TargetRNA3’s performance with that of other leading tools. TargetRNA3 outperformed 
the existing tools, consistently achieving lower false-positive rates. Additionally, while 
some existing tools have limitations such as only working with sRNAs for which multi-
ple homologs can be identified or requiring hours to execute on a single sRNA thereby 
constraining searches with large numbers of sRNAs, TargetRNA3 does not have these 
limitations.

One of the challenges with our approach, however, is that the large dataset on which 
our machine learning model is trained contains many interactions that were observed 
through global methods, such as RIL-seq, CLASH, and GRIL-seq, which capture sRNA 
interactions with other RNAs but not necessarily functional regulation. Some stud-
ies have reported good but not perfect relationships between the interactions identi-
fied by these global methods and regulatory effects [10, 12, 31]. Thus, it is important 
to note that some predictions from our model may correspond to interactions that are 
non-functional.

TargetRNA3 has other limitations, though these are not necessarily unique to Tar-
getRNA3 but common among sRNA target prediction tools. For example, while Tar-
getRNA3’s false-positive rate is lower than other tools, it is still substantial. As increasing 
numbers of interactions are characterized experimentally, our ability to distinguish inter-
actions from non-interactions will improve and false-positive rates for computational 
target prediction should decrease. But, presently, computational approaches such as Tar-
getRNA3 continue to suffer from significant false-positive rates. Also, it is difficult to 
assess how effective TargetRNA3 and other tools are at predicting interactions through-
out the range of disparate prokaryotes. Most existing tools were created and assessed 
on data from one or two genomes. TargetRNA3 is trained on data from 13 genomes. 
Such few genomes are not representative of the diversity across prokaryotes. Further, the 



Page 10 of 13Tjaden  Genome Biology          (2023) 24:276 

4000+ interactions used to construct TargetRNA3 may be enriched for sRNAs that rely 
on ribosome-binding proteins such as Hfq and ProQ or may be enriched for highly con-
served sRNAs or may have other biases that are not indicative of sRNA action across the 
range of prokaryotes. In archaea in particular, relatively few interactions have been char-
acterized experimentally, mostly by differential expression with sRNA deletion mutants 
or pulse expression rather than by capturing direct interactions such as with RIL-seq 
[32–34]. Thus, it is beneficial for computational tools to use increasingly large and 
diverse sets of interactions to improve their precision and broaden their applicability.

Conclusions
Computational approaches for characterizing biological phenomena such as RNA inter-
actions are generally more accurate when designed and evaluated on large and diverse 
sets of data. Thus, to help advance the state of computational prediction of sRNA regula-
tory targets in prokaryotes, we gathered a large set of sRNA:target interactions and com-
puted values for a constellation of features indicative of regulatory interactions. Using 
this rich dataset, we trained a machine learning model to distinguish interactions from 
non-interactions. Based on this machine learning model, we built a tool, TargetRNA3, 
to predict targets of sRNA regulation. We found that TargetRNA3 consistently outper-
forms the existing tools. To enable ease of use and broad applicability, we designed a 
user-friendly web interface for executing TargetRNA3 that normally returns results in a 
matter of seconds. We hope that our machine learning analysis based on a large dataset 
of interactions will be a useful resource to the community of scientists studying RNA 
regulation in prokaryotes.

Methods
TargetRNA3 is implemented in Python and makes heavy use of the scikit-learn [35] 
library to execute supervised classification machine learning algorithms. To generate our 
dataset of interactions (Additional file 1: Table S2), we combined data from sInterBase 
[25], sRNARFTarget [21], and sRNATarBase 3.0 [36] and retained only those interac-
tions for which there was experimental evidence and for which the sRNA had multiple 
targets. The dataset was split into training data corresponding to 65 sRNAs and testing 
data corresponding to 12 sRNAs such that none of the genomes for the 12 testing sRNAs 
were represented in the training data. The training data were further split using five-fold 
cross-validation into training data and validation data, where training data were used 
to train the machine learning models and validation data were used to tune hyperpa-
rameters and evaluate different machine learning algorithms. Once the gradient boost-
ing algorithm was selected and hyperparameters were tuned, testing data were used to 
assess TargetRNA3’s performance in comparison with existing tools for predicting tar-
gets of sRNA regulation.

Since the dataset contains highly imbalanced classes, i.e., 4385 (1%) interactions and 
325,162 (99%) non-interactions, we experimented with mitigating the imbalance using 
random undersampling and the synthetic minority over-sampling technique (SMOTE) 
[37, 38]. We observed the best performance when randomly undersampling the non-
interactions where the class imbalance is 25% interactions and 75% non-interactions, and 
consequently, we used this distribution of data going forward. When initially comparing 
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eight different supervised classification algorithms from sklearn [35], namely gradient 
boosting, logistic regression, random forests, neural networks, k-nearest neighbors, sup-
port vector machines, Gaussian-naïve Bayes, and quadratic discriminant analysis, we 
used default parameter settings. After selecting gradient boosting as the best performing 
of these algorithms, based on tuning hyperparameters, we required a minimum of five 
samples per leaf node rather than the default value of 1 sample, which helps alleviate 
overfitting. When comparing to auto-sklearn [28], we used default parameter settings 
except that we increased the memory available for auto-sklearn from 3 to 12 Gb. Further, 
since auto-sklearn runs for a user-specified length of time while constantly exploring the 
search space of machine learning algorithms and their optimal hyperparameter values, 
we ran auto-sklearn for 300s on each execution.

For comparative genomics analyses, we use all prokaryotic genomes in RefSeq labeled 
as “reference genomes” or “representative genomes,” of which there are 4265 such bacte-
rial genomes and 279 such archaeal genomes [39]. When executing CopraRNA version 
2.1.2 [19], RNAup version 2.6.1 [30], IntaRNA version 2.3.1 [40], and RNAplex version 
2.5.0 [41], we used default parameter settings and searched for target interactions from 
200 nucleotides upstream to 100 nucleotides downstream of the start of the target. 
When executing sRNARFTarget [21], we used default parameter settings and searched 
for targets using the complete target sequence, consistent with how the sRNARFTar-
get system was designed [21]. When searching for homologs, we used BLAST + version 
2.13.0 [42] and only retained hits with an E-value less than or equal to 0.01.

As input, TargetRNA3 requires a genome with gene annotations and a sRNA sequence. 
As output, TargetRNA3 produces a ranked list of targets, including a predicted struc-
ture and energy of the sRNA:target interaction, a probability as determined from the 
machine learning model that there is a regulatory interaction between the sRNA and 
target, and a corresponding p-value. TargetRNA3’s p-values are determined from the 
cumulative distribution function of a log-normal distribution fit to the interaction prob-
abilities. TargetRNA3 also outputs plots indicating regions of the sRNA that participate 
in target interactions and regions of the sRNA that are conserved in other genomes.
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