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Abstract 

Background: The Critical Assessment of Genome Interpretation (CAGI) aims to advance 
the state-of-the-art for computational prediction of genetic variant impact, particularly 
where relevant to disease. The five complete editions of the CAGI community experi-
ment comprised 50 challenges, in which participants made blind predictions of pheno-
types from genetic data, and these were evaluated by independent assessors.

Results: Performance was particularly strong for clinical pathogenic variants, includ-
ing some difficult-to-diagnose cases, and extends to interpretation of cancer-related 
variants. Missense variant interpretation methods were able to estimate biochemi-
cal effects with increasing accuracy. Assessment of methods for regulatory variants 
and complex trait disease risk was less definitive and indicates performance potentially 
suitable for auxiliary use in the clinic.

Conclusions: Results show that while current methods are imperfect, they have major 
utility for research and clinical applications. Emerging methods and increasingly large, 
robust datasets for training and assessment promise further progress ahead.

Background
Rapidly accumulating data on individual human genomes hold the promise of revolu-
tionizing our understanding and treatment of human disease [1, 2]. Effectively leverag-
ing these data requires reliable methods for interpreting the impact of genetic variation. 
The DNA of unrelated individuals differs at millions of positions [3], most of which 
make negligible contribution to disease risk and phenotypes. Therefore, interpreta-
tion approaches must be able to identify the small number of variants with phenotypic 
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significance, including those causing rare disease such as cystic fibrosis [4], those con-
tributing to increased risk of cancer [5] or acting as cancer drivers [6], those contribut-
ing to complex traits such as type II diabetes [7], and those affecting the response of 
individuals to drugs such as warfarin [8]. Identifying the relationship between variants 
and phenotype can also lead to new biological insights and new therapeutic strategies. 
Until recently, interpretation of the role of specific variants has either been acquired by 
empirical observations in the clinic, thus slowly accumulating robust knowledge [9], or 
by meticulous and often indirect in vitro experiments whose interpretation may be chal-
lenging. Computational methods offer a third and potentially powerful approach, and 
over one hundred have been developed [10], but their power, reliability, and clinical util-
ity have not been established. Some computational approaches aim to directly relate 
sequence variation to disease or other organismal phenotypes; for example, using evo-
lutionary conservation [11]. Other methods suggest impact on disease only secondarily, 
as they aim to relate genetic variants to functional properties such as effects on protein 
stability [12], intermolecular interactions [13], splicing [14], expression [15], or chroma-
tin organization [16].

The Critical Assessment of Genome Interpretation (CAGI) is an organization that 
conducts community experiments to assess the state-of-the-art in computational inter-
pretation of genetic variants. CAGI experiments are modeled on the protocols devel-
oped in the Critical Assessment of Structure Prediction (CASP) program, [17] adapted 
to the genomics domain. The process is designed to assess the accuracy of computa-
tional methods, highlight methodological innovation and reveal bottlenecks, guide 
future research, contribute to the development of new guidelines for clinical practice, 
and provide a forum for the dissemination of research results. Participants are periodi-
cally provided with sets of genetic data and asked to relate these to unpublished phe-
notypes. Independent assessors evaluate the anonymized predictions, promoting a high 
level of rigor and objectivity. Assessment outcomes together with invited papers from 
participants have been published in special issues of the journal Human Mutation [18, 
19]. Since CAGI has stewardship of genetic data from human research participants, an 
essential part of the organizational structure is its Ethics Forum composed of ethicists 
and researchers, together with patient advocates. Further details are available at https:// 
genom einte rpret ation. org/.

Over a period of a decade, CAGI has conducted five rounds of challenges, 50 in all, 
attracting 738 submissions worldwide (Fig. 1, Additional file 1: Table S1, and Additional 
file 1). Challenge datasets have come from studies of variant impact on protein stability 
[20, 21] and functional phenotypes such as enzyme activity [22, 23], cell growth [24], 
and whole-organism fitness [25], with examples relevant to rare monogenic disease [26], 
cancer [27], and complex traits [28, 29]. Variants in these datasets have included those 
affecting protein function, gene expression, and splicing and have comprised single base 
changes, short insertions or deletions (indels), as well as structural variation. Genomic 
scale has ranged from single nucleotides to complete genomes, with inclusion of some 
complementary multiomic and clinical information (Fig. 1).

In this work, we analyze the first decade of CAGI challenges in a consistent clini-
cally relevant framework, and we identify emergent themes and unifying principles 
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across the range of genome variation interpretation. Results are presented from three 
perspectives to provide (i) the clinical community with an assessment of the useful-
ness and limitations of computational methods, (ii) the biomedical research commu-
nity with information on the current state-of-the-art for predicting variant impact on 
a range of biochemical and cellular phenotypes, and (iii) the developers of computa-
tional methods with data on method performance with the aim of spurring further 

Fig. 1 CAGI timeline, participation, and range of challenges. A Stages in a round of CAGI, typically extending 
over 2 years. Each round includes a set of challenges with similar timelines. B Number of participating 
unique groups (in blue) and submissions (in orange) across CAGI rounds. C Scale of the genetic data (top) 
and phenotypic characterization (bottom) of CAGI challenges. Some challenges belong to more than one 
category and are included more than once. D CAGI challenges, listed by round. Coloring is by scale of genetic 
data and phenotypic characterization according to C. See Supplemental Table 1 for more details
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innovation. This latter perspective is particularly important because of the recent suc-
cesses of artificial intelligence approaches in related fields [30, 31]. For each theme, 
specific examples of performance are provided, based on particular ranking criteria. 
As always in CAGI, these should not be interpreted as identifying winners and los-
ers––other criteria might result in different selections. Further, these selections were 
made by authors of this paper, some of whom have been CAGI participants, rather 
than by independent assessors. However, the examples shown are consistent with the 
assessors’ earlier rankings.

Results
Biochemical effect predictions for missense variants are strongly correlated 

with the experimental data, but individual predicted effect size accuracy is limited

The pathogenicity of missense variants implicated in monogenic disease and cancer is 
often supported by in  vitro experiments that measure effects on protein activity, cell 
growth, or various biochemical properties [32]. Thirteen CAGI challenges have assessed 
the ability of computational methods to estimate these functional effects using datasets 
from both high- and low-throughput experimental assays, and ten of these have been 
reanalyzed here.

Figure 2 shows selected results for two challenges, each with a different type of bio-
chemical effect. In the NAGLU challenge [22], participants were asked to estimate 

(See figure on next page.)
Fig. 2 Predicting the effect of missense variants on protein properties: Results for two example CAGI 
challenges. Each required estimation of continuous phenotype values, enzyme activity in a cellular extract for 
NAGLU and intracellular protein abundance for PTEN, for a set of missense variants. Selection of methods is 
based on the average ranking over four metrics for each participating method: Pearson’s correlation, Kendall’s 
tau, ROC AUC, and truncated ROC AUC; see “Methods” for definitions. A Relationship between observed and 
predicted values for the selected method in each challenge. “Benign” variants are yellow and “pathogenic” 
are purple (see text). The diagonal line represents exact agreement between predicted and observed values. 
Dashed lines show the thresholds for pathogenicity for observed (horizontal) and predicted biochemical 
values (vertical). For NAGLU, below the pathogenicity threshold, there are 12 true positives (lower left 
quadrant) and three false positives (upper left quadrant), suggesting a clinically useful performance. Bars 
below each plot show the boundaries for accuracy meeting the threshold for Supporting (green), Moderate 
(blue), and Strong (red) clinical evidence, with 95% confidence intervals. B Two measures of overall 
agreement between computational and experimental results, for the two selected performing methods 
and positive and negative controls, with 95% confidence intervals. An older method, PolyPhen-2, provides a 
negative control against which to measure progress over the course of the CAGI experiments. Estimated best 
possible performance is based on experimental uncertainty and provides an empirical upper limit positive 
control. The color code for the selected methods is shown in panel C. C ROC curves for the selected methods 
with positive and negative controls, using estimated pathogenicity thresholds. D Truncated ROC curves 
showing performance in the high true positive region, most relevant for identifying clinically diagnostic 
variants. The true positive rate and false positive rate thresholds for the Supporting, Moderate, and Strong 
evidential support are shown for one selected method. E Estimated probability of pathogenicity (left y-axis) 
and positive local likelihood ratio (right y-axis) as a function of one selected method’s score. Predictions 
with probabilities over the red, blue, and green thresholds provide Strong, Moderate, and Supporting 
clinical evidence, respectively. Solid lines show smoothed trends. Prior probabilities of pathogenicity are 
the estimated probability that any missense variant in these genes will be pathogenic. For NAGLU, the 
probabilities of pathogenicity reach that needed for a clinical diagnosis of “likely pathogenic.” For predicted 
enzyme activity less than 0.11, the probability provides Strong evidence, below 0.17 Moderate evidence, 
and below 0.42, Supporting evidence. The percent of variants encountered in the clinic expected to meet 
each threshold are also shown. Performance for PTEN shows that the results are consistent with providing 
Moderate and Supporting evidence levels for some variants



Page 5 of 46The Critical Assessment of Genome Interpretation Consortium  Genome Biology           (2024) 25:53  

Fig. 2 (See legend on previous page.)
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the relative enzyme activity of 163 rare missense variants in N-acetyl-glucosamini-
dase found in the ExAC database [33]. In the PTEN challenge [20], participants were 
asked to estimate the effects of a set of 3716 variants in the phosphatase and tensin 
homolog on the protein’s stability as measured by relative intracellular protein abun-
dance in a high-throughput assay [34]. For both challenges, the relationship between 
estimated and observed phenotype values shows high scatter (Fig.  2A). There is 
modest improvement with respect to a well-established older method, PolyPhen-2 
[35], which we consider a baseline. This is a trend consistently seen in other mis-
sense challenges (Additional file 2: Table S2). How much of this improvement is due 
to the availability of larger and more reliable training sets rather than methodologi-
cal improvements is unknown. Consistent with the scatter plots, there is moderate 
agreement between predicted and experimental values as measured by Pearson’s cor-
relation and Kendall’s tau (Fig. 2B).

Over all ten analyzed missense functional challenges (Additional file  3: Table  S3, 
Additional file 1: Figures S1-S6), Pearson’s correlation for the selected methods ranges 
between 0.24 and 0.84 (average correlation r = 0.55) and Kendall’s tau ranges between 
0.17 and 0.63 ( τ  = 0.40), both showing strong statistical significance over the random 
model ( r = 0, τ  = 0). The PolyPhen-2 baseline achieves r = 0.36 and τ  = 0.23. Direct 
agreement between observed and predicted values is measured by R2 , which is 1 for 
a perfect method and 0 for a control method that assigns the mean of the experimen-
tal data for every variant. For NAGLU, the highest R2 achieved is 0.16, but for PTEN 
it is only − 0.09. Over the ten biochemical challenges, the highest R2 value ranges 
between − 0.94 and 0.40, with an average of − 0.19. The relatively poorer performance 
shown by this criterion compared with Pearson’s and Kendall’s correlation metrics sug-
gests that the methods are often not well calibrated to the experimental value, reflecting 
the fact that they are rarely designed for predictions of continuous values and scales of 
this kind. Overall, performance is far above random but modest in terms of absolute 
accuracy.

Diversity of methods

A diverse set of methods was used to address the biochemical effect challenges, varying 
in the type of training data, input features, and statistical framework. Most were trained 
on pathogenic versus presumed benign variants [10, 36]. At first glance, a binary clas-
sification approach appears ill-suited to challenges which require prediction across a full 
range of phenotype values. In practice, function and pathogenicity are related [37], and 
so these methods performed as well as the few trained specifically to identify alteration 
of function [38].

Many methods are based on measures that reflect the evolutionary fitness of substitu-
tions and population dynamics, rather than pathogenicity or functional properties. The 
relationship between fitness, pathogenicity, and function is complex, perhaps limiting 
performance. To partly address this, some methods also exploit functional roles of spe-
cific sequence positions, particularly by utilizing UniProtKB annotations and predicted 
structural and functional properties [38–41].
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Current methods typically address the effect of single variants in isolation from pos-
sible epistatic factors although many apparently monogenic diseases are influenced by 
modifier variants. For example, severity of cystic fibrosis is affected by several genes 
beyond CFTR [4], and studies of loss of function variants in general populations revealed 
cases where a strong disease phenotype is expected but not observed, implying the pres-
ence of compensating variants [42].

Despite the broad range of algorithms, training data, features, and the learning 
setting, there is a strong correlation between results of the leading methods (Pear-
son’s correlation ranges from 0.6 to 0.9), almost always stronger than the correlation 
between specific methods and experiment (Additional file  1: Figure S8). The level of 
inter-method correlation is largely unrelated to the level of correlation with experi-
ment, which varies widely from about 0.24 (CALM1) to 0.6 (NAGLU). Why correlation 
between methods is stronger than with experiment is unclear, though it may be affected 
by the relatedness of functional disruption, evolutionary conservation, and pathogenic-
ity as well as common training data and experimental bias. The assessor for the NAGLU 
challenge identified 10 variants where experiment disagrees strongly with predicted 
values for all methods [22]. When these are removed, the correlation between the lead-
ing methods’ results and experiment increases from 0.6 to 0.73 (Additional file 1: Fig-
ure S8), although it is still lower than the correlation between the two leading methods 
(0.82), of which, surprisingly, one is supervised [40] and the other is not [43]. It could 
be that these 10 variants are cases where the computational methods systematically fail, 
or it could be that most are some form of experimental artifact. In situations like this, 
follow-up experiments are needed.

Structure‑informed approaches

Some methods use only biophysical input features, and in some cases are trained on the 
effect of amino acid substitutions on protein stability, rather than pathogenicity or func-
tional impact. Benchmarking suggests that a large fraction of rare disease-causing and 
cancer driver missense mutations act through destabilization [44, 45], so there is appar-
ently considerable potential for these approaches. These methods have been effective on 
challenges directly related to stability, being selected as first and second for the PTEN 
and TMPT protein abundance challenges and first for the Frataxin change of free energy 
of folding challenge. They have been among top performers in a few other challenges, 
sometimes in combination with sequence feature methods, for example, cancer driv-
ers in CDKN2A and rescue mutations in TP53 [21]. Generally, however, these methods, 
along with the structure-based machine learning methods, have not been as successful 
as expected compared to the methods that are primarily sequence-based. Three factors 
may improve their performance in future. First, better combination with the sequence 
methods will likely mitigate the problem of false negatives; that is, pathogenic variants 
that are not stability related. Second, until recently, use of structure has been restricted 
by low experimental structural coverage of the human proteome (only about 20% of 
residues). Because of recent dramatic improvements in the accuracy of computed pro-
tein structures [46], variants in essentially all residues in ordered structural regions are 
now amenable to this approach. Third, better estimation of the effect of missense muta-
tions on stability [47] should improve accuracy. An advantage of biophysical and related 
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methods is that they can sometime provide greater insight into underlying molecular 
mechanisms (Additional file 1: Figure S13).

Domain-level information had the potential to deliver improved performance in other 
instances, such as CBS, where the heme-binding domain present in humans was absent 
from the yeast ortholog, and RAD50, for which assessment showed that restricting pre-
dictions of deleteriousness to the specific domain involved in DNA repair would have 
substantially improved the accuracy of several methods.

Computational methods can substantially enhance clinical interpretation of missense 

variants

The most direct test of the clinical usefulness of computational methods is to assess their 
ability to correctly assign pathogenic or benign status for clinically relevant variants. 
CAGI challenges have addressed this for rare disease variant annotations and for ger-
mline variants related to cancer risk.

Results for predicting the biochemical effects of missense mutations inform clinical 

applications

For some biochemical challenges, it is possible to relate the results to clinical utility of 
the methods. For NAGLU, some rare variants in the gene cause recessive Sanfilippo B 
disease. Disease strongly correlates with variants conferring less than 15% enzyme activ-
ity [22], allowing variants in the study to be classified as pathogenic or benign on that 
basis (purple and yellow circles in Fig. 2A). Figure 2A shows that 12 out of the 15 vari-
ants with less than 15% predicted activity using the selected method also have less than 
15% experimental activity, suggesting high positive predictive value and clinical useful-
ness for assigning pathogenicity. On the other hand, 28 of the 40 variants with measured 
activity below 15% are predicted to have higher activity so there are also false negatives. 
For PTEN, information on the relationship to disease is less well established, but data 
fall into low and high abundance distributions [20], and the assessor suggested a patho-
genicity threshold at the distribution intersection.

Performance in correctly classifying variants as pathogenic is often represented by 
ROC curves (Fig. 2C), showing the tradeoff between true positive (y-axis) and false posi-
tive (x-axis) rates as a function of the threshold used to discretize the phenotype value 
returned by a prediction method, and summarized by the area under that curve (AUC). 
The selected methods return AUCs greater than 0.8 for both challenges. Over all reana-
lyzed biochemical effect challenges, the top AUC ranges from 0.68 to 1.0, with an aver-
age of AUC = 0.83, and with high statistical significance over a random model ( AUC = 
0.5). The PolyPhen-2 baseline has AUC = 0.74 , see Additional file 3: Table S3. However, 
all models fall well short of the empirical limit ( AUC = 0.98) estimated from variability 
in experimental outputs. Because the experimental uncertainties are based on technical 
replicates, the experimental AUCs are likely overestimated, so it is difficult to judge how 
much further improvement might be possible. The full ROC curve areas provide a useful 
metric to measure the ability of the methods to separate pathogenic from other vari-
ants. In a clinical setting though, the left portion of the curve is often the most relevant; 
that is, the fraction of pathogenic variants identified without incurring too high a level 
of false positives, where the level of tolerated false positives is application dependent. 
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Figure 2D uses truncated ROC curves to show the performance in this region, with the 
selected methods’ AUCs reaching 0.55 for NAGLU and 0.47 for PTEN. The smaller value 
for the PTEN truncated ROC curve AUC reflects the higher fraction of false positives at 
the left of the PTEN scatter plot, particularly those variants predicted to have near-zero 
protein abundance but with high observed values.

For use in the clinic, the quantity of most interest is the probability that a variant is 
diagnostic of disease (i.e., can be considered pathogenic), given the available evidence. In 
addition to the information provided by a computational method, initial evidence is also 
provided by knowledge of how likely any variant in a particular gene is to be diagnostic 
of the disease of interest [48]. For example, for NAGLU, about 25% of the rare missense 
variants in ExAC were found to have less than 15% enzyme activity, [49] suggesting that 
there is an approximately 25% prior probability that any rare missense variant found in 
the gene will be pathogenic (a prior odds of pathogenicity of 1:3). To obtain the desired 
posterior probability of pathogenicity, which is also the local positive predictive value at 
the score s returned by a method, one can use a standard Bayesian odds formulation [50]

where the local positive likelihood ratio, lr+ , is the slope of the ROC curve at the score 
value s ; see “Methods” for a formal discussion.

Figure  2E shows lr+ and the posterior probability of pathogenicity for NAGLU and 
PTEN. For NAGLU, at low predicted enzyme activities lr+ rises sharply to about 15. 
The corresponding posterior probability is 0.8. For PTEN, lr+ reaches a value of about 
6. Using a pathogenicity prior of 0.21 (Additional file  1), the corresponding posterior 
probability of pathogenicity is 0.6. ACMG/AMP sequence variant interpretation guide-
lines recommend a probability of pathogenicity of ≥ 0.99 to label a variant “pathogenic” 
and ≥ 0.90 to label one “likely pathogenic”, the thresholds for clinical action [32, 51, 52]. 
So for these and other biochemical challenges, the computational evidence alone is not 
sufficiently strong to classify the variants other than as variant of uncertain significance.

However, the clinical guidelines integrate multiple lines of evidence to contribute to 
meeting an overall probability of pathogenicity threshold, so that it is not necessary (or 
indeed possible) for computational methods alone to provide a pathogenicity assign-
ment. The guidelines provide rules that classify each type of evidence as Very Strong, 
Strong, Moderate, and Supporting [32]. For example, a null mutation in a gene where 
other such mutations are known to cause disease is considered Very Strong evidence, 
while at the other extreme, a computational assignment of pathogenicity for a missense 
mutation is currently considered only Supporting. Although these guidelines were origi-
nally defined in terms of evidence types, Tavtigian et al. [52] have shown that the rules 
can be approximated using a Bayesian framework, with each threshold corresponding 
to reaching a specific positive likelihood ratio; e.g., lr+ = 2.08 for Supporting evidence 
when the prior probability is 0.1 (Methods). The resulting thresholds for each level of 
evidence are shown below the scatter plots in Fig. 2A and in the posterior probability of 
pathogenicity plots in Fig. 2E. For NAGLU, for the selected method, predicted enzyme 
activities lower than 0.11 correspond to Strong evidence, below 0.17 to Moderate, and 
below 0.42 to Supporting. These thresholds correspond to approximately 31% of rare 
variants in this gene providing Supporting evidence, 12% Moderate, and 6% Strong. The 

posterior odds of pathogenicity = lr+ × prior odds of pathogenicity,
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top-performing methods for the ten biochemical missense challenges all reach Sup-
porting, and sometimes Moderate and Strong evidential support (Additional file 1: Fig-
ures S1-S6, Additional file 2: Table S2 and Additional file 3: Table S3). These results are 
encouraging in that they suggest this framework can supply a means of quantitatively 
evaluating the clinical relevance of computational predictions and that under appropri-
ate circumstances, computational evidence can be given more weight than at present. 
The next section explores these properties further.

Identifying rare disease variants

The ClinVar [9] and HGMD [53] databases provide an extensive source of rare dis-
ease-associated variants against which to test computational methods. A limitation is 
that most methods have used some or all of these data in training, making it difficult 
to perform unbiased assessments. The prospective “Annotate All Missense” challenge 
assessed the accuracy of those predictions on all missense variants that were annotated 
as pathogenic or benign in ClinVar and HGMD after May 2018 when predictions were 
recorded, through December 2020, so avoiding training contamination. All predictions 
directly submitted for the challenge as well as all precomputed predictions deposited in 
the dbNSFP database [54] before May 2018 (dbNSFP v3.5) were evaluated, predictions 
from a total of 26 groups.

All selected methods, including PolyPhen-2, achieved high AUCs, ranging from 0.85 
to 0.92 for separating “pathogenic” from “benign” variants, and only slightly lower val-
ues (maximum AUC 0.88) when “likely pathogenic” and “likely benign” are included 
(Fig. 3A). The two metapredictors, REVEL [55] and Meta-LR [56], tools that incorporate 
predictions from multiple other methods, perform slightly better than primary meth-
ods, although VEST3 and VEST4 [39] outperformed Meta-LR. There is a substantial 
improvement over the performance of PolyPhen-2, especially in the left part of the ROC 
curve (Fig. 3B), though as with the biochemical effect challenges, some of that may be 

Fig. 3 Performance of computational methods in correctly identifying pathogenic variants in the two 
principal rare disease variant databases, HGMD and ClinVar. The left panels show data for variants labeled 
as “pathogenetic” in ClinVar and “DM” in HGMD together with “benign” in ClinVar. The right panels add 
variants labeled as “likely pathogenic” and “likely benign” in ClinVar as well as “DM?” in HGMD. Meta and 
single method examples were selected on the basis of the average ranking of each method for the ROC 
and truncated ROC AUCs. See Additional file 1 for more details and selection criteria. A ROC curves for the 
selected metapredictors and single methods, together with a baseline provided by PolyPhen-2. Particularly 
for pathogenic variants alone, impressively high ROC areas are obtained, above 0.9, and there is a substantial 
improvement over the older method’s performance. B Blowup of the left-hand portion of the ROC curves, 
most relevant to high confident identification of pathogenic variants. Clinical thresholds for Supporting, 
Moderate, and Strong clinical evidence are shown. C Local positive likelihood ratio as a function of the 
confidence score returned by REVEL. Very high values (> 100) are obtained for the most confident pathogenic 
assignments. D Local posterior probability of pathogenicity; that is, probability that a variant is pathogenic 
as a function of the REVEL score for the two prior probability scenarios. For a prior probability of 0.1, typical 
of a single candidate gene situation (solid line) and database pathogenic and benign variants (left panel) 
the highest-scoring variants reach posterior probability above 0.9, strong enough evidence for a clinical 
assignment of “likely pathogenic.” In both panels, variants with a score greater than 0.45 provide Supporting 
clinical evidence (green threshold), and scores greater than 0.8 provide Strong evidence (red threshold). The 
estimated % of variants encountered in a clinical setting expected to meet each threshold are also shown. For 
example, about 14% of variants provide Supporting evidence. Dotted lines show results obtained with a prior 
probability of 0.01

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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due to the availability of larger and more reliable training sets. Additional file 4: Table S4 
shows slightly higher performance on ClinVar pathogenic variants than HGMD; how-
ever, these resources use different criteria for assigning pathogenicity.

The lower panels in Fig. 3 show positive likelihood ratios and posterior probability 
of pathogenicity for a selected metapredictor, REVEL [55]. With a prior probability 
of pathogenicity of 0.1 (approximating the prior when examining possible pathogenic 
variants in one or a few genes in a diagnostic setting; see “Methods”) 14, 10, and 4% 
of variants reach the Supporting, Moderate, and Strong evidence thresholds, respec-
tively. With the much smaller prior of 0.01, representative of screening for possible 
secondary variants, about 6% of variants will provide Supporting evidence and 2% 
reach Moderate. These estimates are not exact since there may be significant differ-
ences between the distribution and properties of variants in these databases and those 
encountered in the clinic. For example, some genes have only benign variant assign-
ments in the databases, and these might be excluded from consideration in the clinic. 
Performing the analysis on only genes with both pathogenic and benign assignments 
slightly reduced performance—highest AUC on the confident set of variants is 0.89 
instead of 0.92. The selected methods also change slightly; see Additional file 1: Figure 
S9. In spite of this and other possible caveats, the overall performance of the computa-
tional methods is encouraging and, as with biochemical effect challenges, suggests that 
the computational methods can provide greater benefit in the clinic than recognized 
by the current standards.

Identifying germline cancer risk variants

About a quarter of CAGI experiments have involved genes implicated in cancer (Fig. 1) 
and have included variants in BRCA1, BRAC2, PTEN, TPMT, NSMCE2 (coding for 
SUMO-ligase), CHEK2, the MRN complex (RAD50, MRE11, and NBS1), FXN, NPM-
ALK, CDKN2A, and TP53. An additional challenge addressed breast cancer pharma-
cogenomics. From a cancer perspective, the most informative of these is a challenge 
provided and assessed by members of the ENIGMA consortium [27], using a total of 
321 germline BRCA1/BRCA2 missense and in-frame indel variants. Performance on 
this challenge was impressively high, with four groups providing submissions that gave 
AUCs greater than 0.9 and two with AUCs exceeding 0.97. In the other BRCA1/BRCA2 
variant challenge, the highest AUC is 0.88 on a total of 10 missense variants. The strong 
results may reflect the fact these are highly studied genes. More and larger scale chal-
lenges with a variety of genes are required in order to draw firm conclusions. Further 
details of cancer challenges are provided in Additional file 1: Figure S10 and Additional 
file 5: Table S5.

Assessing methods that estimate the effect of variants on expression and splicing 

is difficult, but results show these can contribute to variant interpretation

Variants that regulate the abundance and isoforms of mRNA either through altered 
splicing or through altered rates of transcription play a significant role in disease, 
particularly complex traits. CAGI has included four challenges using data from 
high-throughput assays of artificial gene constructs, two for splicing and two for 
expression. For all four, evaluation of the results is limited by a combination of small 



Page 13 of 46The Critical Assessment of Genome Interpretation Consortium  Genome Biology           (2024) 25:53  

effect sizes (changes larger than twofold in splicing or expression are rare in these 
challenges) and experimental uncertainty, but some interesting properties can be 
identified.

Splicing

The CAGI splicing challenges used data from high-throughput minigene reporter 
assays [57].

The MaPSy challenge asked participants to identify which of a set of 797 exonic single-
nucleotide HGMD disease variants affect splicing and by how much. Two experimental 
assays were available, one in  vitro on a cell extract and the other by transfection into 
a cell line. Only variants that produced a statistically robust change of at least 1.5-fold 
were considered splicing changes. Figure 4 summarizes the results. The top-performing 
groups achieved moderately high AUCs of 0.84 and 0.79 and the highest lr+ is about 6. 
Notably, very few variants qualify as significant splicing changes, and there are inconsist-
ences between the two assays, with a number of variants appearing to have a fold change 
substantially greater than 1.5 in one assay but not the other. Additionally, the experi-
mental noise significantly overlaps with many splicing differences. For these reasons, it is 
unclear what maximum AUC could be achieved by a perfect method.

The Vex-Seq challenge required participants to predict the extent of splicing change 
introduced by 1098 variants in the vicinity of known alternatively spliced exons [57]. 
Additional file  1: Figure S11 shows that performance was rather weak for identifica-
tion of variants that increase splicing (top AUC = 0.71), but that may be because many 
points classified as positive are experimental noise. There are more variants that show a 

Fig. 4 Performance of computational methods in identifying variants that affect splicing in the MaPSy 
challenge. Methods were selected based on the average ranking over three metrics: Pearson’s correlation, 
Kendall’s tau, and ROC AUC. Scatter plots, Kendell’s tau, and Pearson’s correlation results are shown for in vivo 
(A, D) and in vitro assays (B, E) separately. The small number of purple points in the scatter plots represent 
splicing fold changes greater than 1.5-fold. The ROC curve (C) shows performance in variant classification for 
the two selected methods. The maximum local positive likelihood ratio ( lr+ , F) may be large enough for use 
as auxiliary information, see “ Discussion” (solid line is smoothed fit to the data)
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statistically robust decrease in splicing, and prediction performance is correspondingly 
stronger (top AUC = 0.78). The assessor noted additional nuances in performance [57].

The selected high-performing method for both challenges (MMSplice [58]) decom-
poses the sequence surrounding alternatively spliced exons into distinct regions and 
evaluates each region using separate neural networks [58]. More detailed splicing results 
are provided in Additional file 6: Table S6.

Transcription

Several CAGI challenges have assessed the ability of computational methods to identify 
single base changes that affect the expression level of specific genes. The CAGI4 eQTL 
challenge assessed whether methods could find causative variants in a set of eQTL loci, 
using a massively parallel reporter assay [59]. Because of linkage disequilibrium and 
sparse sampling, variants associated with an expression difference in an eQTL screen 
are usually not those directly causing the observed expression change. Rather, a nearby 
variant will be. The challenge had two parts. Participants were asked to predict whether 
insertion of the section of genomic DNA around each variant position into the experi-
mental construct produced any expression. Additional file 1: Figure S12A shows that the 
top-performing methods were effective at this—the largest AUC is 0.81. The second part 
of the challenge required participants to predict which variants affect expression levels. 
Here the results are much less impressive (Additional file 1: Figure S12B). The scatter 
plot shows a weak relationship between observed and predicted expression change and 
Pearson’s or Kendall’s correlation are also small. The best AUC is only 0.66 and the maxi-
mum lr+ is about 5. Most of the experimental expression changes are small (less than 
twofold) and may be largely experimental noise, partly accounting for the apparent poor 
performance. But as the scatter plot shows, a subset of the variants with largest effects 
could not be identified by the top-performing method. A combination of experimental 
and computational factors contributed to poor performance, and more challenges of this 
sort are needed.

The CAGI5 regulation saturation mutagenesis challenge examined the impact on 
expression of every possible base pair variant within five disease-associated human 
enhancers and nine disease-associated promoters [60]. As shown in Fig. 5, performance 
is stronger in promoters than enhancers and stronger for decreases in expression com-
pared with increases. Fewer variants show experimental increases and these tend to be 
less well distinguished from noise. Performance for small expression changes is hard to 
evaluate because of overlap with experimental noise. Nevertheless, the highest AUC for 
promoter impact prediction is 0.81 while the highest AUC for enhancer impact predic-
tion is 0.79, relatively respectable values. In addition, the scatter plots show that large 
decreases in expression are well predicted, suggesting the methods are quite informative 
for the most significant effects.

The CAGI splicing and expression challenges are not as directly mappable to disease 
and clinical relevance as in some other challenge areas. Variants have been a mixture of 
common and rare and the use of artificial constructs in high-throughput experiments 
limits relevance of challenge performance in the whole-genome context. Nevertheless, 
the results do have potential applications. In complex trait disease genome-wide associa-
tion studies (GWAS), the variants found to be associated with a phenotype are usually 
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not those causing the effect. Identifying the functional variants is not straightforward, 
and current regulatory prediction methods can provide hypotheses as to possible effects 
on expression or splicing.

CAGI participants identified diagnostic variants that were not found by clinical laboratories

A major goal of CAGI is to test the performance of computational methods under as 
close to clinical conditions as possible. In the area of rare disease diagnosis, four chal-
lenges have addressed this by requiring participants to identify diagnostic variants in sets 
of clinical data. The Johns Hopkins and intellectual disability (ID) challenges employed 
diagnostic panels, covering a limited set of candidate genes in particular disease areas. 
As compared with genome-wide data, diagnostic panels inherently restrict the search to 
only variants belonging to a known set of relevant genes.

For a number of genetically undiagnosed cases in the Johns Hopkins panel, CAGI par-
ticipants found high-confidence deleterious variants in genes associated with a different 
disease from that reported, suggesting physicians may have misdiagnosed the symptoms 

Fig. 5 Performance on the regulation saturation expression challenge. The two left columns show 
performance in predicting increased (left) and decreased (right) expression in a set of enhancers (purple 
points represent variants that significantly change expression). The right pair of columns show equivalent 
results for promoters. The scatter plots (A) show strong performance in identifying decreases in expression 
(purple points), but weaker results for expression increases. Performance on promoters is stronger than 
on enhancers. Overlap of changed and non-changed experimental expression points suggests that 
experimental uncertainty reduces the apparent performance of the computational methods. Panel B 
shows correlation coefficients for selected methods. Panel C shows ROC curves for predicting under and 
overexpression. Panel D shows local lr+ , where the solid lines are smoothed fits to the data
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[61]. However, because of the clinical operating procedures of the diagnostic labora-
tory, it has not been possible to further investigate these cases. In the ID panel, some 
plausible calls were made on novel variants that had not been reported to the patient 
partly because the majority of standard computational methods returned assignments of 
“benign” [62].

The two SickKids challenges (SickKids4 and SickKids5) were based on whole-genome 
sequence data for children with rare diseases from the Hospital for Sick Children in 
Toronto. These are all cases that were undiagnosed by the state-of-the-art SickKids pipe-
line [26], and so were particularly challenging compared with those normally encountered 
in the clinic. In the SickKids4 challenge, variants proposed by challenge participants were 
deemed diagnostic by the referring physicians for two of the cases in part due to match-
ing detailed phenotypes. This was the first instance of the CAGI community directly con-
tributing in the clinic. In SickKids5, two of the highest confidence nominated diagnostic 
variants provided correct genome-patient matches. While not meeting ACMG/AMP 
criteria for pathogenicity [32], these were considered interesting candidates for further 
investigation, again potentially resolving previously intractable cases.

These clinical challenges required participants to develop full analysis pipelines, 
including quality assessment for variant calls, proper inclusion of known pathogenetic 
variants from databases such as HGMD [53] and ClinVar [9], and an evaluation scheme 
for weighing the evidence. The SickKids challenges also required compilation of a set 
of candidate genes. Varying success in addressing these factors will have influenced the 
results, so it is not possible to effectively compare the core computational methods. 
Overall, current approaches have limitations in this setting––they tend to ignore or 
fail to reliably evaluate synonymous and noncoding variants; if the relevant gene is not 
known its variants will usually not be examined; and data for epigenetic causes are not 
available. Nevertheless, the CAGI results for these challenges again make it clear that 
current state-of-the-art computational approaches can make valuable contributions in 
real clinical settings.

Complex trait interpretation is often complicated by confounders in the data

Many common human diseases, such as Alzheimer’s disease, asthma, and type II diabe-
tes, are complex traits and as with monogenic disorders, genetic information should in 
principle be useful for both diagnosis and prognosis. Individual response to drugs (phar-
macogenomics) also often has a complex trait component. Complex traits have relatively 
small contributions from each of many variants, collectively affecting a broad range of 
molecular mechanisms, including gene expression, splicing, and multiple aspects of pro-
tein function. Environmental factors also play a substantial role so that phenotype predic-
tion based on genetic information alone has inherently limited accuracy. Also, most CAGI 
complex trait challenges have been based on exome data, whereas at many GWAS risk 
loci lie outside coding regions [63]. To some extent, the status of relevant common vari-
ants not present in the exome data can be imputed on the basis of linkage disequilibrium, 
but this places an unclear limit on achievable accuracy. Limited or no availability of train-
ing data also restricted method performance and phenotypes tend to be less precise than 
for other types of disease. Altogether, these factors make this a difficult CAGI area. Nev-
ertheless, these challenges have been informative and have drawn new investigators into 
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the rapidly developing area of Polygenic Risk Score (PRS) estimation [64]. One challenge, 
CAGI4 Crohn’s, has yielded apparently robust conclusions on the performance of methods 
in this area.

Crohn’s disease (CAGI4)

Participants were provided with exome data for 111 individuals and asked to identify the 64 
who had been diagnosed with Crohn’s disease. A variety of computational approaches were 
used, including clustering by genotypes, analysis of variants in pathways related to the dis-
ease, and evaluation of SNPs in known disease-associated loci. The highest-scoring method 
(AUC 0.72; Fig. 6A) used the latter approach together with conventional machine learn-
ing, and trained on data from an earlier GWAS [65]. Fig. 6B shows case and control score 
distributions for that method. A perfect method would have no distribution overlap. These 
results are far from that, but there is clear signal at the extremes, and as Fig. 6C shows, 
that translates into a positive likelihood ratio with an approximately 20-fold range (0.3 to 
6), only a little lower than that obtained for the biochemical effect and clinical missense 

Fig. 6 Identifying which of a set of individuals are most at risk for Crohn’s disease, given exome data. 
Examples were selected on the basis of ranking by ROC AUC. A ROC curves for two selected methods. 
Statistically significant but relatively low ROC areas are obtained. B Distributions of disease prediction scores 
for individuals with the disease (red) and without (green) for the method with the highest AUC (kernel 
density representation of the data). C Local positive likelihood ratio ( lr+ ) as a function of prediction score 
for the method with the highest AUC. D Relative risk of disease  (log2 scale), compared to that in the general 
population as a function of prediction score. Individuals with the lowest risk scores have approximately 1/3 
the average population risk, while those with the highest scores have risk exceeding fourfold the average, a 
12-fold total range. Depending on the disease, identifying individuals with higher than threefold the average 
risk may be sufficient for clinical action
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challenges. With a prior probability of disease of 1.3% [66], relative risk (see “Methods”) 
also has a range of about 20-fold (Fig. 6D), with the highest-risk individuals having sixfold 
higher risk compared to that estimated for the population average. For some complex trait 
diseases, for example coronary heart disease [67], this is discriminatory enough to support 
clinical action, and for many diseases would provide a valuable additional factor to more 
standard risk measures such as age and sex. Newer PRS methods, which aim to incorporate 
many weak contributions from SNPs, were not evaluated in this CAGI challenge.

Other complex trait CAGI challenges (Additional file 1) revealed batch effects (CAGI2 
Crohn’s and bipolar disorder) and population structure effects (CAGI3 Crohn’s) in the data, 
leaked clinical data (Warfarin and VET challenges), or discrepancies between self-reported 
traits and those predicted from genetic data (PGP challenges), thereby complicating assess-
ment. Performance in matching genomes and disease phenotypes, an additional compo-
nent in some challenges, was poor. Additional complex trait challenge results are provided 
in Additional file 7: Table S7.

The CAGI Ethics Forum has guided responsible data governance

Data used in CAGI challenges are diverse in terms of sensitivity (e.g., with respect to par-
ticipant reidentification risk, potential for stigmatization, potential impact of pre-publica-
tion data disclosure), collected under a broad variety of participant consent understandings 
and protection frameworks, and analyzed by predictors with varying degrees of familiarity 
with local and international biomedical regulations. This heterogeneity calls for a nuanced 
approach to data access and the tailored vetting of CAGI experiments. The CAGI Ethics 
Forum was launched in 2015 to proactively address these concerns. Incorporating input 
from bioethicists, researchers, clinicians, and patient advocates, it has developed poli-
cies for responsible data governance (e.g., assisting in revision of the general CAGI data 
use agreement, to safeguard human data and also protect all CAGI participants, including 
data providers for unpublished data), cautioned against overinterpretation of findings (e.g., 
highlighting the contribution of social and environmental risk factors to disease, and the 
potential negative consequences, such as stigma, of associating particular disease variants 
with a specific population), and provided input on a variety of guidelines and procedures, 
including CAGI’s participant vetting process (e.g., how to identify a bona fide researcher) 
and a system of tiered access conditions for datasets, depending on their sensitivity. Future 
directions include investigating the scalability of current user validation and data access 
models, exploring implications for family members of unexpected challenge findings, dis-
cussing policies to ensure proper credit attribution for constituent primary methods used 
by metapredictors, and identifying additional means of ensuring accountability options 
with respect to responsible data sharing.

Discussion
Over CAGI’s first decade, five rounds of CAGI challenges have provided a picture of the 
current state-of-the-art in interpreting the impact of genetic variants on a range of phe-
notypes and provided a basis for the development of improved methods as well as for 
more calibrated use in clinical settings.

A key finding is that for most missense challenges it is possible to relate phenotype 
values to a pathogenicity threshold, and so deduce potential performance in a clinical 
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setting, particularly for rare Mendelian diseases. The results suggest that such computa-
tional methods are generally more reliable than recognized in the current clinical guide-
lines [32]. Several challenges have directly assessed the usefulness of variant impact 
prediction  under clinical conditions, highlighting the fact that successful application 
in the clinic requires integration of the computational methods into a comprehensive 
pipeline.

Computational challenges and methods for identifying the effects of splicing and reg-
ulatory variants have been less well represented and issues with data availability have 
limited insights. Nevertheless, the results suggest potential for providing evidence for 
informing pathogenicity and offering mechanistic insights.

CAGI relies on the same factors as other critical assessment community experiments: 
a willingness of the relevant research groups to participate, clearly defined metrics for 
success, the availability of large enough and accurate enough sets of experimental data 
to provide a gold standard, and independent objective assessment of the predictions. 
Participation in CAGI has been strong in most areas and a vibrant and interactive com-
munity has developed. New researchers have been attracted to the field and new collab-
orations have resulted in the development of creative algorithms with broad applicability 
[68–70].

The biggest obstacle to clear assessment has been and continues to be data diversity 
and quality, a key difference between CAGI and related community endeavors. Other 
initiatives, such as CASP [71], deal primarily with one type of data (protein structure) 
and the data are usually of high quality and directly relevant to the goals of the computa-
tional methods. By contrast, CAGI deals with many different settings, including studies 
of biochemical effects with a broad range of phenotypes, the pathogenicity of variants 
both germline and somatic, clinical phenotypes, and statistical relationships. Also, while 
genome variant calling is reliable, it does have limits [72]. For example, in the SickKids 
challenges, some variants suggested as diagnostic by CAGI participants had been found 
to be incorrect calls and so eliminated in the clinical pipeline, using sequence valida-
tion data CAGI participants did not have access to. Adapting available data to form suit-
able challenges is difficult and compromises are sometimes needed to devise a challenge 
where the results can be objectively assessed. For example, in one of the SickKids and 
in the Johns Hopkins clinical challenges, assessment hinged on requiring participants 
to match genomes to phenotypes. But that makes it much harder to identify diagnostic 
variants than in the real-life situation. Conversely, challenge providers have sometimes 
benefited from the detailed scrutiny of their data by CAGI participants prior to its pub-
lication. In some cases, interpretation of clinical challenge results is also complicated by 
there being no conclusive diagnoses. Numerical assessments can also have limitations, 
as clinicians may often use other considerations while evaluating patients. CAGI partici-
pants have similarly sometimes used unanticipated information to improve performance 
on challenges. For example, in a PGP challenge requiring matching of full genome 
sequences to extensive phenotype profiles, a participant made use of information in the 
PGP project blog [73]. Though these sometimes subvert the intended challenge, in some 
ways this reflects what happens in a clinical setting—all relevant information is used, 
however obscure.
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Experimental biotechnology platforms have become widely available [74] and the 
genomic data collection in the clinic has greatly increased. While the next generation 
of computational tools should benefit from these developments, they also pose new 
challenges. Deeper characterization of experimental approaches is needed to address 
data uncertainty and biases. Potential circularity between computation-assisted variant 
annotation and method assessment also needs to be considered. CAGI has committed to 
employing a diversity of evaluation metrics rather than any single primary performance 
indicator, and new assessment metrics may need to be introduced [75–77]. Future 
rounds of CAGI will address these issues by using assessment methods that mitigate 
or eliminate problems with data, by developing and promoting practices and standards 
for application of methods, by working with experimental groups to provide sufficiently 
large and high-quality datasets, and by effectively following up on disagreements at the 
intersection of high-throughput functional experiments, genetic association studies, and 
outputs of computational prediction methods. CAGI also plans to increase evaluation of 
the combinatorial effect of variants, either in single-molecule biochemical assays or in 
clinical applications with whole-genome studies for both rare and complex phenotypes.

Conclusions
Results from the first decade of CAGI have highlighted current abilities and limitations 
of computational methods in genome interpretation and indicate future research direc-
tions. The current performance levels for missense variation in Mendelian disorders, 
combined with rapidly accumulating data and a recent breakthrough in protein struc-
ture prediction [71], suggest that upcoming methods should consistently achieve Strong 
and potentially Very Strong clinical evidence levels. Progress is also expected in method 
performance for other types of genome variation and complex disorders, assisted by 
improvements in experimental and statistical methodologies, as well as new clinical 
standards [78]. CAGI’s independent assessment rigorously ascertains the performance 
characteristics of computational methods for variant interpretation; this assessment 
approach therefore offers a model framework for evaluating clinical validity of diag-
nostics and screening. Genomic science has been tremendously advanced by policies 
ensuring rapid release of data, and to help promote the development and assessment 
of analytical methods these must be crafted to support portions of the datasets being 
incorporated into evaluations like CAGI. These developments will enable computational 
approaches to further narrow the gap between basic and clinical research, advancing our 
understanding over the entire breadth of genome variation.

Methods
We describe different evaluation scenarios considered in the Critical Assessment of 
Genome Interpretation (CAGI), motivate the selection of performance measures, and 
discuss ways to interpret the results.

Terminology and notation

Let x, y ∈ X × Y be a realization of an input–output random vector (X ,Y ) . The input 
space X  may describe variants, gene panels, exomes, or genomes in different CAGI sce-
narios. Similarly, the output space Y can describe discrete or continuous targets; e.g., it can 
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be a binary set {pathogenic, benign} when the task is to predict variant pathogenicity, or a 
continuous set [0,∞) representing a percent of enzymatic activity of the wildtype protein 
(a mutated molecule can have increased activity compared to the wildtype) or a cell growth 
rate relative to that with the wildtype gene.

Let s : X → R be a predictor that assigns a real-valued score to each input and f : X → Y 
be a predictor that maps inputs into elements of the desired output space; i.e., f  is real-val-
ued when predicting a continuous output and discrete when predicting a discrete output. 
When predicting binary outcomes (e.g., Y = {0, 1} ), s(x) is often a soft prediction score 
between 0 and 1, whereas f (x) can be obtained by discretizing s(x) based on some decision 
threshold τ . Scores s(x) can also be discretized based on a set of thresholds {τ j}mj=1

 , as dis-

cussed later. In a binary classification scenario, f (x) = 1 (pathogenic prediction) when 
s(x) ≥ τ and f (x) = 0 (benign prediction) otherwise. We shall sometimes denote a discre-
tized binary model as fτ (x) to emphasize that the predictor was obtained by thresholding a 
soft scoring function s(x) at τ . The target variable Y  can similarly be obtained by discretizing 
the continuous space Y using a set of thresholds {τ ′k} , that are different from {τ j} used for the 
scoring function. In one such case, discretizing the continuous space Y of functional impact 
of an amino acid variant into {damaging, nondamaging} transforms a regression problem 
into classification, which may provide additional insights during assessment. With a minor 
abuse of notation, we will refer to both continuous and the derived discrete space as Y . The 
exact nature of the target variable Y  and the output space will be clear from the context.

Finally, let D = {(xi, yi)}ni=1 be a test set containing n input–output pairs on which the pre-
dictors are evaluated. Ideally, this data set is representative of the underlying data distribution 
and non-overlapping with the training data for each evaluated predictor. Similarly, we assume 
the quality of the measurement of the ground truth values {yi}ni=1 is high enough to ensure 
reliable evaluation. While we took multiple steps to ensure reliable experiments and blind 
assessments, it is difficult to guarantee complete enforcement of either of these criteria. For 
example, an in vitro assay may be an imperfect model of an in vivo impact or there might be 
uncertainty in collecting experimental read-outs. Additionally, the notion of a representative 
test set may be ambiguous and cause difficulties when evaluating a model that was developed 
with application objectives different from those used to assess its performance in CAGI.

Evaluation for continuous targets

Evaluating the prediction of continuous outputs is performed using three primary meas-
ures ( R2 , Pearson’s correlation coefficient, and Kendall’s tau) and two secondary measures 
(root mean square error and Spearman’s correlation coefficient). R2 is defined as the differ-
ence between the variance of the experimental values and the mean-squared error of the 
predictor, normalized by the variance of the experimental values. It is also referred to as the 
fraction of variance of the target that is explained by the model. R2 ∈ (−∞, 1] is estimated 
on the test set D as

where y = 1
n

∑n
i=1yi is the mean of the target values in D (observe that each value yi may 

itself be an average over technical or biological replicates, if available in the experimental 

(1)R2 = 1−
∑n

i=1

(
f (xi)− yi

)2
∑n

i=1

(
yi − y

)2 ,
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data). The R2 values above 0 indicate that the predictor is better than the trivial predic-
tor—one that always outputs the mean of the target variable—and values close to 1 are 
desired. The values below 0 correspond to models with inferior performance to the triv-
ial predictor. Maximizing the R2 metric requires calibration of output scores; that is, a 
high correlation between predictions and target values as well as the proper scaling of 
the prediction outputs. For example, a predictor outputting a linear transformation of 
the target such as f (X) = 10 · Y  or a monotonic nonlinear transformation of the target 
such as f (X) = logY  may have a high correlation, but a low R2 . R2 , therefore, can be seen 
as the strictest metric used in CAGI. However, this metric can adversely impact meth-
ods outputting discretized prediction values. Such methods are preferred by some tool 
developers as they simplify interpretation by clinicians, experimental scientists, or other 
users.

In some cases, it may be useful to also report the root mean square error (RMSE), esti-
mated here as

RMSE can offer a useful interpretation of the performance and is provided as a secondary 
measure in CAGI evaluations.

The correlation coefficient between the prediction f (X) and target Y  is defined as a nor-
malized covariance between the prediction output and the target variable. Pearson’s corre-
lation coefficient −1 ≤ r ≤ 1 is estimated on D as

where fi = f (xi) and f = 1
n

∑n
i=1fi is the mean of the predictions. Pearson’s correlation 

coefficient does not depend on the scale of the prediction, but it is affected by the extent 
of a linear relationship between predictions and the target. That is, a predictor outputting 
a linear transformation of the target such as f (X) = 10 · Y  will have a perfect correla-
tion. However, a monotonic nonlinear transformation of the target such as f (X) = logY  
may have a relatively low r . Although not our main metric, we also explored Spearman’s 
rank correlation as a secondary metric. Spearman’s correlation is defined as Pearson’s 
correlation on the rankings.

We also computed Kendall’s tau, which is the probability of a concordant pair of predic-
tion-target points linearly scaled to the [−1, 1] interval instead of [0, 1]. Assuming that all 
prediction and target values are distinct, a pair of points 

(
f (xi), yi

)
 and (f (xj), yj) is concord-

ant if either ( f (xi) > f (xj) and yi > yj ) or ( f (xi) < f (xj) and yi < yj ). Otherwise, a pair of 
points is discordant. Kendall’s tau was estimated on D as

It ranges between −1 and 1, with 1, indicating that all pairs are concordant, 0 indicating 
half of the concordant pairs (e.g., a random ordering) and −1 indicating that all pairs are 

(2)RMSE =
√

1

n

∑n

i=1

(
f (xi

)
− yi)

2
.

(3)
r =

∑n
i=1(fi − f )(yi − y)√

∑n
i=1

(
fi − f

)2∑n
i=1

(
yi − y

)2
,

(4)τ =
2

n(n− 1)

∑n−1

i=1

∑n

j=i+1
sign(f (xi)− f (xj)) · sign(yi − yj).
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discordant. A predictor outputting a linear transformation of the target f (X) = 10 · Y  and 
a monotonic nonlinear transformation of the target f (X) = logY  will both have a perfect 
tau of 1. Compared to Pearson’s correlation, Kendall’s tau can be seen as less sensitive to 
the scale but more sensitive to the ordering of predictions. Equation 4 is defined under the 
assumption that both the predictions and the outputs are unique. However, this assump-
tion is not satisfied by all biological datasets and predictors. To address this issue, we use 
Kendall’s tau-b, a widely accepted correction for ties,

where β(n) = n(n− 1)/2 , ui (vi) is the size of the i th group of ties in the predictions 
(outputs) and T  ( S) is the number of such groups in the predictions (outputs) [79].

Evaluation for binary targets

Evaluating binary outputs is performed using standard protocols in binary classification 
[80]. We compute the Receiver Operating Characteristic (ROC) curve, which is a 2D plot 
of the true positive rate γ = P(fτ (X) = 1|Y = 1) as a function of the false positive rate 
η = P(fτ (X) = 1|Y = 0) , where τ is varied over the entire range of prediction scores. The 
area under the ROC curve can be mathematically expressed as AUC =

∫ 1
0γdη and is the 

probability that a randomly selected positive example x+ will be assigned a higher score 
than a randomly selected negative example x− by the model [81]. That is, assuming no ties 
in prediction scores AUC = P(s(X+) > s(X−)) . In the presence of ties, AUC is given by 
P(s(X+) > s(X−))+ 1

2P(s(X+) = s(X−)) [82]. The AUC is estimated on the test set D 
using the standard numerical computation that allows for ties [83]. Although AUC does 
not serve as a metric that directly translates into clinical decisions, it is useful in that it 
shows the degree of separation of the examples from the two groups of data points (posi-
tive vs. negative). Another useful property of the AUC is its insensitivity to class imbalance.

Though AUC is a useful measure for capturing the overall performance of a classifier’s 
score function, it has limitations when applied to a decision-making setting such as the 
one encountered in the clinic. Typically, clinically relevant score thresholds that deter-
mine the variants satisfying Supporting, Moderate or Strong evidence [32] lie in a region 
of low false positive rate (FPR). A measure well-suited to capture clinical significance 
of a predictor ought to be sensitive to the variations in the classifier’s performance in 
the low FPR region (when predicting pathogenicity). However, the contribution of the 
low FPR region to AUC is relatively small. This is because it not only represents a small 
fraction of the entire curve, but also because the TPR values in that region are relatively 
small. Thus, AUC is not sensitive enough to the variation in a predictor’s performance 
in the low FPR region. To mitigate this problem, we also provide area under the ROC 
curve truncated to the [0, 0.2] FPR interval. What constitutes low FPR is not well defined; 
however, it appears that the [0, 0.2] FPR interval combined with the [0, 1] TPR interval is 
a reasonable choice in CAGI applications; see Figs. 2 and 3. We normalize the truncated 
AUC to span the entire [0, 1] range by dividing the observed value by 0.2, the maximum 
possible area below the ROC truncated at FPR = 0.2.

(5)τb =
∑n−1

i=1

∑n
j=i+1sign(f (xi)− f (xj)) · sign(yi − yj)√(

β(n)−
∑T

i=1β(ui)
)(

β(n)−
∑S

i=1β(vi)
) ,
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CAGI evaluation of binary classifiers also involves calculation of the Matthews cor-
relation coefficient [84]. The Matthews correlation coefficient ( MCC ) was computed as 
Pearson’s correlation coefficient between binary predictions and target values on the test 
set D . Efficient MCC estimation was carried out from the confusion matrix [84].

Evaluation for clinical significance

Current guidelines from the American College for Medical Genetics and Genom-
ics (ACMG) and Association for Molecular Pathology (AMP) established a qualita-
tive framework for combining evidence in support of or against variant pathogenicity 
for clinical use [32]. These guidelines point to five different levels of pathogenicity and 
(effectively) nine distinct types of evidence in support of or against variant pathogenicity. 
The five pathogenicity levels involve classifications into pathogenic, likely pathogenic, 
variant of uncertain significance (VUS), likely benign, and benign variants, whereas the 
nine levels of evidential support are grouped into Very Strong, Strong, Moderate, and 
Supporting for either pathogenicity or benignity, as well as indeterminate evidence that 
supports neither pathogenicity nor benignity.

Richards et al. [32] have manually categorized different types of evidence and also listed 
twenty rules for combining evidence for a variant to be classified into one of the five patho-
genicity-benignity groups. For example, variants that accumulate one Very Strong and one 
Strong line of evidence of pathogenicity lead to the classification of the variant as patho-
genic; variants that accumulate one Strong and two Supporting lines of evidence lead to 
the classification of the variant as likely pathogenic, etc. [32] The guidelines allow for the 
use of computational evidence such that a computational prediction of pathogenicity can 
be considered as the weakest (Supporting) line of evidence. Thus, combined with other 
evidence, these methods can presently contribute to a pathogenicity assertion for a vari-
ant, but in a restricted and arbitrary way [50]. Since Supporting evidence is qualitatively 
the smallest unit of contributory evidence in the ACMG/AMP guidelines, we refer to any 
computational model that reaches the prediction quality equivalent of Supporting evi-
dence and higher as a model that provides contributory evidence in the clinic.

Numerically, a variant that is classified as pathogenic should have at least a 99% prob-
ability of being pathogenic given all available evidence, whereas a variant that is likely 
pathogenic should have at least a 90% probability of being pathogenic given the evidence 
[32, 52]. Variants that cross the 90% probability threshold for pathogenicity are consid-
ered clinically actionable [32]. Analogously, variants with sufficient support for benig-
nity will typically be ruled out from being diagnostic in a clinical laboratory. Note that, 
though the guidelines provide a probabilistic interpretation of the pathogenicity asser-
tions, they do not provide any general quantitative interpretation of the evidence. Con-
sequently, any framework designed to express the evidence levels quantitatively, must tie 
such quantitative evidential support to the pathogenicity probabilities, mediated by the 
ACMG/AMP rules for combining evidence.

The possibility of incorporating computational methods into clinical decision mak-
ing in a properly calibrated manner presents interesting opportunities and unique 
challenges. In particular, since the evidence levels are only described qualitatively, it 
is not obvious how to determine what values of a predictor’s output score qualify as 
providing a given level of evidence. Thus, to apply a computational line of evidence in 
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the clinic in a principled manner, and consistent with the guidelines, there is a need 
for a framework that assigns a quantitative interpretation to each evidence level.

Tavtigian et al. [52] proposed such a framework to provide numerical support for 
each type of evidential strength for its use in ACMG/AMP guidelines for or against 
variant pathogenicity. This approach is based on the relationship between prior and 
posterior odds of pathogenicity as well as on independence of all lines of evidential 
support for a given variant. We briefly review this approach.

Let E be a random variable indicating evidence that can be used in support of or 
against variant pathogenicity. The positive likelihood ratio ( LR+ ) given concrete evi-
dence e is defined as

or equivalently

where the first term on the right corresponds to the posterior odds of pathogenicity 
given the evidence and the second term on the right corresponds to the reciprocal of the 
prior odds of pathogenicity. The prior odds of pathogenicity depend solely on the class 
prior P(Y = 1) ; that is, the fraction of pathogenic variants in the selected reference set. 
The expression for LR+ also allows for an easy interpretation as the increase in odds of 
pathogenicity given evidence e compared to the situation when no evidence whatsoever 
is available. The likelihood ratio of 2, for example, states that a variant with evidence e is 
expected to have twice as large odds of being pathogenic than a variant picked uniformly 
at random from a reference set. As CAGI only considers computational evidence, we will 
later replace the posterior probability P(Y = 1|E = e) by P

(
Y = 1|f (X) = 1

)
 for discre-

tized predictors or by P(Y = 1|s(X) = s) for the predictors that output a soft numerical 
score s . The probability P

(
Y = 1|f (X) = 1

)
 is the positive predictive value (or precision) 

of a binary classifier, whereas the probability P(Y = 1|s(X) = s) can be seen as the local 
positive predictive value, defined here in a manner analogous to the local false discovery 
rate [85].

It can be shown [86] that the positive likelihood ratio can also be stated as

thus clarifying that LR+ can be seen as the ratio of the true positive rate and false posi-
tive rate when P(E = e|Y = 1) is replaced by P

(
f (X) = 1|Y = 1

)
 and P(E = e|Y = 0) by 

P
(
f (X) = 1|Y = 0

)
.

Tavtigian et al. [52] give an expression relating the posterior P(Y = 1|E = e) to LR+ 
and the prior P(Y = 1) as

(6)LR+ =
posterior odds of pathogenicity

prior odds of pathogenicity

(7)LR+(e) =
P(Y = 1|E = e)

1− P(Y = 1|E = e)
·
1− P(Y = 1)

P(Y = 1)
,

(8)LR+(e) =
P(E = e|Y = 1)

P(E = e|Y = 0)

(9)P(Y = 1|E = e) =
LR+(e)P(Y = 1)(

LR+(e)− 1
)
P(Y = 1)+ 1
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which itself is obtained from Eq. 7. They also present a framework that allows for assign-
ing probabilistic interpretations to different types of evidential strength (Supporting, 
Moderate, Strong, and Very Strong) and combining them in a manner consistent with 
the rules listed in Richards et al. [32] and the probabilistic interpretation of likely patho-
genic and pathogenic classes. Their formulation is given in terms of the positive likeli-
hood ratio LR+ in an exponential form. We restate this model using a notion of the total 
(or combined) positive likelihood ratio LR+

T , based on all available evidence, ET , of a vari-
ant that is expressed as a product of LR+ factors from different strengths of evidence as

where nsu, nmo, nst , and nvs are the counts of Supporting (su), Moderate (mo), Strong (st), 
and Very Strong (vs) lines of evidence present in ET , and c is the LR+ value assigned to a 
single line of Very Strong evidence. It is easy to show that 8

√
c,  4
√
c , and 2

√
c correspond to 

the LR+ for a single line of Supporting, Moderate, and Strong line of evidence, respec-
tively. In other words, the model from Eq. 10 enforces that if a Very Strong piece of evi-
dence increases LR+

T by a multiplicative factor of c , then a Supporting, Moderate, or a 
Strong piece of evidence increases LR+

T by a factor of 8
√
c , 4
√
c , and 2

√
c , respectively. For 

a reasonable consistency with Richards et al. [32] this model also explicitly encodes that 
one line of Very Strong evidence is equal to the two lines of Strong evidence, four lines of 
Moderate evidence, and eight lines of Supporting evidence.

The appropriate value of c , however, depends on the class prior. It is the smallest number 
for which the LR+

T values computed for the qualitative criteria from the likely pathogenic 
class in Richards et al. [32] reach P(Y = 1|ET = e) values of at least 0.9 and, similarly, for 
those in the pathogenic class, reach a P(Y = 1|ET = e) value of at least 0.99. The depend-
ence on the class prior is due to the conversion between LR+

T and P(Y = 1|ET = e) gov-
erned by Eq. 9. If the class prior is small, a larger value of LR+

T will be required to achieve 
the same posterior level, thereby requiring a larger value of c (Additional file  1: Figure 
S14).

Tavtigian et al. [52] also proposed that two rules from Richards et al. [32] be revised; 
that is, one of the rules was proposed to be “demoted” from pathogenic to likely patho-
genic, whereas another rule was proposed to be “promoted” from the likely pathogenic 
to pathogenic. For a class prior of 0.1 that was selected based on the experience from 
the clinic, the value c = 350 was found to be suitable. This, in turn, suggests that the 
Supporting, Moderate, and Strong lines of evidence should require the likelihood ratio 
values of 8

√
c = 2.08 , 4

√
c = 4.32 , and 2

√
c = 18.7 , respectively. However, note again that 

for different priors, these values will be different; see next section and Additional file 1: 
Figure S14. Moreover, while the level of posterior for the combined evidence (Eq. 13) is 
required to be at least 0.9 to satisfy the likely pathogenic rule and 0.99 for pathogenic, 
this does not mean that the posterior level for a single line of evidence is the same for all 
values of c . This is a consequence of the fact that the framework provides intuitive inter-
pretation only at the level of the combined posterior.

When drawing evidence from a pathogenicity predictor, it is necessary to further 
clarify what evidence is in the first place. At least two options are available: (i) the evi-
dence is the score s(x) ; that is, a raw prediction of pathogenicity, or (ii) the evidence 

(10)LR+
T = c

nsu
8 + nmo

4 + nst
2 + nvs

1 ,
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is a discretized prediction fτ (x) , obtained by thresholding s(x) . These approaches, 
referred to here as local and global, respectively, lead to different interpretations because 
all evaluation metrics hold only on average, either over all variants with a score s(x) or 
all variants satisfying fτ (x) = 1 ; i.e., having a score above τ . When both s(x) and fτ (x) 
are available, this leads to difficulties in interpreting the results of the global approach 
because all scores s(x) that map into fτ (x) = 1 will be treated identically. Unfortunately, 
this implies that scores s greater than but still close to τ most likely do not meet the 
levels of evidential strength for the interval. At the same time, scores close to the high 
end of the range almost certainly make the levels of evidential strength above the desig-
nated level. This means that a clinician seeing a variant with score slightly above τ would 
have to interpret this prediction as contributory to pathogenicity, yet this interpretation 
would almost certainly be incorrect. Based on the recommendations from the ClinGen’s 
Sequence Variant Interpretation group, [50] we focus on the local view as well as local 
performance criteria to define levels of evidential strength and assess whether methods 
achieve these levels. In the end, however, we also provide global estimates to understand 
the performance of each tool more comprehensively.

We define the local positive likelihood ratio as

where p
(
s|Y = y

)
 , for y ∈ {0, 1} are class-conditional densities.

We obtain an estimate of the local positive likelihood ratio l̂r
+ from the test data as 

described in the section titled “Computing clinically relevant measures.” Now, the threshold 
to determine the variants with Supporting level of evidence is given as the minimum score 
above which all variants achieve local positive likelihood ratio value greater than or equal to 
8
√
c ; i.e.,

though we note that Pejaver et al. [50] incorporated an additional factor based on the 
confidence interval for l̂r

+
(s) to result in more stringent recommendations for score 

thresholding. Similarly, the thresholds for variants with Moderate, Strong, and Very 
Strong evidence are given by τmo = min

{
τ : ∀s ≥ τ , l̂r

+
(s) ≥ 4

√
c
}

 , 

τst = min
{
τ : ∀s ≥ τ , l̂r

+
(s) ≥ 2

√
c
}

 and τvs = min
{
τ : ∀s ≥ τ , l̂r

+
(s) ≥ c

}
.

Once the threshold set {τsu, τmo, τst, τvs} is determined, we can compute either 
the global LR+ (e.g., s ≥ τsu ) or the LR+ corresponding to an interval of scores (e.g., 
τsu ≤ s < τmo ) by computing the true positive rate and false positive rate for a given set 
of scores. A global positive predictive value can be similarly estimated once the class 
prior is known.

In all CAGI evaluations, a predictor is considered to provide contributory evidence 
in a clinical setting if it reaches any one of the evidence levels according to the ACMG/
AMP guidelines, and according to the model by Tavtigian et al. [52] and recommenda-
tions by Pejaver et al. [50]. Among predictors that reach the desired levels of evidential 
support, the ones that reach higher levels are generally considered favorably. However, 

(11)lr+(s) =
p(s|Y = 1)

p(s|Y = 0)
,

(12)τsu = min
{
τ : ∀s ≥ τ , l̂r

+
(s) ≥ 8

√
c
}
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we have not considered any criterion to rank the predictors that reach the same levels of 
evidential support.

Selection of class priors for variant pathogenicity

Different clinical scenarios require the use of different class priors of variant pathogenic-
ity. We generally distinguish between two clinical situations.

In the first setting, a clinician is presented with a proband with specific phenotypic 
expression and the objective is to find variants responsible for the clinical phenotype. In 
certain monogenic disorders with Mendelian inheritance patterns, the fraction of rare 
variants found to be pathogenic can be as high as 25%, as in the case of the NAGLU chal-
lenge. Similarly, Tavtigian et al. [52] report an experience-based prior of 10% based on 
their work with BRCA genes, which we adopted in this work.

The second setting reflects situations such as screening for potential secondary vari-
ants. Here we have used an estimate by Pejaver et al. [40] that up to 1.5% of missense 
variants in an apparently healthy individual could be disease-causing.

Overall, prior probability of pathogenicity was set to 1 and 10% to demonstrate the dis-
tinction in the level of evidential support necessary. These resulted in c = 8511 and c = 351 , 
respectively (note that c = 351 was selected instead of c = 350 to avoid rounding errors in 
finding a c that best models ACMG/AMP rules). In each functional missense challenge, the 
level of prior probability observed for each gene based on experimental data was further 
considered. For large class priors such as 50% or above, the Tavtigian et al. [52] framework 
holds only when an additional rule from Richards et al. [32] is removed; that is, we ignored 
that two Supporting lines of evidence for benignity assert a likely benign variant.

Performance measures for clinical application

Diagnostic odds ratio

The diagnostic odds ratio ( DOR ) is commonly used in biomedical sciences to measure 
the increase in odds of pathogenicity in the presence of evidence e compared to the odds 
of pathogenicity in the absence of e ; [86] that is,

The difference between Eq. 7 and Eq. 13 is that the prior odds, those governed by the 
prior P(Y = 1) and used in Eq.  7, are replaced by the odds governed by the probabil-
ity P(Y = 1|E �= e) ; that is, odds of pathogenicity when the evidence e was not the one 
that was observed. The quantity P(Y = 0|E �= e) = 1− P(Y = 1|E �= e) is referred to as 
the negative predictive value when the observed evidence is f (X) = 0 . DOR ∈ [0,∞) can 
also be expressed as

where LR+(e) is defined in Eq. 8 and

(13)DOR(e) =
P(Y = 1|E = e)

1− P(Y = 1|E = e)
·
1− P(Y = 1|E �= e)

P(Y = 1|E �= e)
.

(14)DOR(e) =
LR+(e)

LR−(e)
,

(15)LR−(e) =
P(E �= e|Y = 1)

P(E �= e|Y = 0)
.
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In contrast to typical studies of variant risk assessment [87] and polygenic risk scores 
[64], DOR was calculated without adjustments for usual confounders such as race and 
ethnicity that are generally not available in CAGI challenges and, technically, produce 
conditional odds ratios [86]. However, the DOR values estimated in our experiments 
have an identical interpretation as the results of logistic regression run with a single 
independent variable (co-variate) at a time. Glas et  al. [86] give a broader coverage of 
diagnostic odds ratios that further connect some of the quantities discussed here (e.g., 
AUC vs. DOR).

We only consider DOR with the computational evidence of the “global” type; that is, when 
s(x) ≥ τ . Consequently, DOR at τ can be expressed as

Unlike positive likelihood ratio, DOR does not have a “local” version. This is because 
one cannot define a local negative likelihood ratio.

Percent of variants predicted as pathogenic

In addition to finding whether a method reaches Supporting, Moderate, or Strong levels 
of evidence, it is important to also quantify the proportion of variants in the reference 
set for which a given evidence level is reached. To this end, for a given score threshold 
τ , we define the percent of variants in the reference set that the method assigns a score 
as high as or higher than τ , and refer to it as “probability of pathogenic (positive) predic-
tions,” or PPP. Mathematically, it can be expressed as the following probability

The probability (equivalently, percent) of variants reaching a given level of evidence 
can now be quantified as PPP(τ ) , where τ is the score threshold at which a variant is 
declared to meet the desired evidential support.

Posterior probability of pathogenicity

Given a method, the posterior probability of pathogenicity or the absolute risk for a vari-
ant is defined as the probability that the variant is pathogenic based on the score it is 
assigned by the method. It is expressed as

We also refer to this quantity as a local positive predictive value or local precision.

Relative risk

Given a method, the relative risk (RR) of pathogenicity of a variant is defined as the pos-
terior probability of pathogenicity (based on the score assigned by the method) relative 
to the prior probability of pathogenicity. It is expressed as the following ratio

(16)DOR(τ ) =
LR+(τ )

LR−(τ )
=

P(s(X) ≥ τ |Y = 1)

P(s(X) ≥ τ |Y = 0)

P(s(X) < τ |Y = 0)

P(s(X) < τ |Y = 1)
.

(17)PPP(τ ) = P(s(X) ≥ τ ).

(18)ρ(s) = P(Y = 1|s(X) = s).
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The prior probability of pathogenicity can also be interpreted as the average of the 
posterior probability over all variants in the reference set; that is

where the last step follows since p(s|Y = 1) is a density function and its integral over 
R is 1. Observe that our definition of relative risk is an extension of the “global” version 
used in clinical applications where the denominator would be P(Y = 1|s(X) �= s) , which 
effectively equals P(Y = 1) for all predictors outputting continuous scores.

Computing clinically relevant measures

We show here how the measures for evaluation of binary targets and clinically relevant 
measures are computed from the test data D . It is necessary to be cautious when making 
decisions on a reference (target) population based on the measures computed on the test 
set D . Some of the measures computed on D accurately represent the corresponding val-
ues on the target population. However, other measures are biased because the test data 
set for many challenges is not representative of the target population. In particular, the 
proportions of positives (e.g., pathogenic variants) in the test set αD = PD(Y = 1) may 
be vastly different from that in the target population α = P(Y = 1) . Consequently, the 
class-prior dependent measures, when estimated directly from the test set, are incor-
rectly calibrated to the test set class priors.

Fortunately, the class-prior dependent measures can be corrected using an esti-
mate of the target population’s class priors if known or if estimated using a principled 
approach [88, 89]. The correction is derived under the assumption that the reference 
population and the test set are distributionally identical, except for the differences in 
class priors. To elaborate, the target distribution of inputs p(x) can be expressed in 
terms of the class-conditional distributions, p

(
x|Y = y

)
 for y ∈ {0, 1} , and the class 

priors as follows

We assume that the test set distribution of inputs might have different class priors, but 
the same class-conditional distributions as the target population. Precisely,

It is easy to see that any of the clinical and non-clinical measures that only depend 
on the class-conditional distributions, but not class priors, when computed on the 

(19)RR(s) =
P(Y = 1|s(X) = s)

P(Y = 1)
.

(20)

E[P(Y = 1|s(x) = s)] =
∫

X

P(Y = 1|s(x) = s)p(x)dx

=
∫

R

P(Y = 1|s)p(s)ds

=
∫

R

p(s|Y = 1)P(Y = 1)ds

= P(Y = 1),

(21)p(x) = α · p(x|Y = 1)+ (1− α) · p(x|Y = 0).

(22)
pD(x) = αDpD(x|Y = 1)+ (1− αD)pD(x|Y = 0)

= αDp(x|Y = 1)+ (1− αD)p(x|Y = 0).



Page 31 of 46The Critical Assessment of Genome Interpretation Consortium  Genome Biology           (2024) 25:53  

test set is an unbiased estimate of the measure on the target population. However, if a 
measure also depends on the class priors, it needs to be corrected to reflect the refer-
ence population’s class prior. All the class-prior independent measures used in this 
paper can be expressed in terms of class-conditional derived quantities such as the 
true positive rate (TPR), the false positive rate (FPR), and the local positive likelihood 
ratio lr+(s) . The class-prior dependent measures additionally have the class-prior in 
their expressions.

TPR, FPR, and lr+(s)

Formally, TPR is defined as the proportion of positive inputs that are correctly predicted 
to be positive. Mathematically,

where s(x) is a continuous score function of a classifier and τ is a threshold such that an 
input scoring above τ is predicted to be positive. Similarly, FPR is defined as the propor-
tion of negative inputs that are incorrectly predicted to be positive. Mathematically,

TPR and FPR can be computed from the test data as the proportion of positive and 
negative test inputs scoring ≥ τ , respectively. That is,

where D+ and D− are the subsets of points in the test set D labeled as positive and nega-
tive, respectively.

Some of the clinically relevant measures used in our study are “local” in nature in the 
sense that they are derived from a local neighborhood around a score value instead of the 
entire range of scores above (or below) the threshold. Such measures can be expressed in 
terms of the local positive likelihood ratio lr+(s) . To compute lr+(s) , we exploit its rela-
tionship to the posterior probability at score s ; that is,

Similarly, the test data posterior probability can be expressed as

(23)TPR(τ ) = P(s(x) ≥ τ |Y = 1),

(24)FPR(τ ) = P(s(x) ≥ τ |Y = 0).

(25)
T̂PR(τ ) =

∑
x∈D+ I[s(x) ≥ τ ]

|D+|

F̂PR(τ ) =
∑

x∈D− I[s(x) ≥ τ ]

|D−|
,

(26)

P(Y = 1|s(X) = s) =
p(s(X) = s|Y = 1)P(Y = 1)

p(s(X) = s)

=
p(s(X) = s|Y = 1)P(Y = 1)

p(s(X) = s|Y = 1)P(Y = 1)+ p(s(X) = s|Y = 0)P(Y = 0)

=
lr+(s)P(Y = 1)

lr+(s)P(Y = 1)+ P(Y = 0)

=
lr+(s)P(Y = 1)(

lr+(s)− 1
)
P(Y = 1)+ 1

.
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Note that since lr+(s) only depends on the class-conditional distribution, it does not 
change when defined on the target population. Unlike the target population’s posterior, 
the test data posterior can be estimated from the test data as described below. Once the 
test posterior is estimated, the equation above can be inverted to estimate lr+ as

where the P̂D(Y = 1|s(X) = s) is an estimate of the test data posterior and PD(Y = 1) 
is the proportion of positives in the test data, which may differ from the true prior for 
a randomly picked variant in the gene of interest or another reference sample. Note 
that though the formula above expresses l̂r

+
(s) in terms of the prior odds, suggesting a 

dependence on the class prior, l̂r
+
(s) is class-prior independent, as discussed earlier. In 

theory, PD(Y = 1|s(X) = s) is the proportion of pathogenic variants among all variants 
in D having a score s . Therefore, estimating the local posterior efficiently would require 
observing the same score many times in the set of variants with known labels. This is 
unlikely since we only have scores for a finite set of variants and thus the posterior can-
not be estimated without making further assumptions. However, assuming that the 
posterior is a smooth function of the score—similar scores correspond to similar local 
posterior values—we estimate the posterior as the proportion of pathogenic variants in a 
small window around the score; that is, [s − ǫ, s + ǫ] , where ǫ was selected to be 5% of the 
range of the predictor’s outputs, with the range considered to be an interval between the 
5th and 95th percentile of predicted values on the dataset, selected as such to minimize 
the influence of outliers. In addition, for stable estimates, we required that at least 10% 
of the variants, up to a maximum of 50 variants, from the data set are within a window; 
therefore, the final window size was dependent on score s and data set D.

Measures that do not require correction

Among the measures considered in this paper, TPR, FPR, ROC curve, AUC, LR+ , LR− , 
DOR, and lr+ do not require correction. Class-prior independence of TPR, FPR, and  lr+ 
is obvious from their definitions as discussed earlier. ROC curve is obtained by plotting 
TPR against FPR and consequently, it is also class-prior independent. By extension AUC, 
being the area under the ROC curve, is also class-prior independent. The global posi-
tive likelihood ratio LR+ , formulated with the evidence of the type s(x) ≥ τ , is given by 
TPR(τ)/FPR(τ) . Similarly, the global LR− is given by (1− TPR(τ))/(1− FPR(τ)) . Since 
DOR is the ratio of LR+ and LR− , it is by extension class-prior independent.

Measures that require correction

Among the measures considered in this paper, probability of pathogenic predictions 
(PPP), positive predictive value (PPV), posterior probability ( ρ ), and relative risk ( RR ), 
being class-prior dependent, require corrections to be properly applied to the target 
population. To show that the measures are indeed class-prior dependent, we re-formu-
late them by separating the class-prior from the class-conditional dependent terms.

(27)PD(Y = 1|s(X) = s) =
lr+(s)PD(Y = 1)(

lr+(s)− 1
)
PD(Y = 1)+ 1

.

(28)l̂r
+
(s) =

P̂D(Y = 1|s(X) = s)

1− P̂D(Y = 1|s(X) = s)
·
1− PD(Y = 1)

PD(Y = 1)
,
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where the derivation is the same as that for Eq. 26.

We use the expressions above to correctly calculate class-prior dependent metrics 
on the target domain by first computing the class-conditional dependent terms (TPR, 
FPR, or lr+ ) using the test data D and then using an estimate of the class prior of the 
target distribution in the corresponding expression.

Statistical significance and confidence interval estimation

All p-values and confidence intervals in CAGI evaluations were estimated using boot-
strapping with 1000 iterations [90].
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Availability of data and materials
The code used for the analyses in this paper is available on GitHub (https:// github. com/ genom einte rpret ation/ CAGI50) 
and zenodo (doi.org/10.5281/zenodo.8436229)   [91] under an MIT Open Source license.

Data availability:
The answer keys for all reanalyzed CAGI challenges are available on the CAGI website. Access requires registration includ-
ing acceptance of a data use agreement. The CAGI website is an archival venue that has been in operation longer than 
resources such as Zenodo. Papers containing publicly available answer keys are also referenced in the table.

Challenges CAGI Year Data source type DOI

NAGLU CAGI 4 Publication https:// doi. org/ 10. 1371/ journ al. pone. 02000 08

PTEN/TPMT CAGI 5 Publication https:// doi. org/ 10. 1038/ s41588- 018- 0122-z

Annotate All Missense CAGI 5 CAGI  website*,**

CALM1 CAGI 5 Publication https:// doi. org/ 10. 15252/ msb. 20177 908

GAA CAGI 5 CAGI website

CBS CAGI 1 & 2 CAGI website

SUMO-ligase CAGI 4 CAGI website

PCM1 CAGI 5 Publication https:// doi. org/ 10. 1038/ s41467- 020- 19637-5

L-PYK CAGI 4 CAGI website

p53 rescue CAGI 2 Data file (training set)
CAGI website (answer key)

https:// doi. org/ 10. 24432/ C5T89H

Frataxin CAGI 5 Publication https:// doi. org/ 10. 1002/ humu. 23843

p16 CAGI 3 Publication https:// doi. org/ 10. 1002/ humu. 22550

ENIGMA CAGI 5 CAGI website

BRCA CAGI 3 CAGI website

Vex-Seq CAGI 5 CAGI website

eQTL CAGI 4 Publication https:// doi. org/ 10. 1002/ humu. 23197

MaPSy CAGI 5 Publication https:// doi. org/ 10. 1186/ s13059- 019- 1653-z

Regulation-Satutation CAGI 5 CAGI website

Crohn’s CAGI 4 Publication***

CAGI website (answer key)
https:// doi. org/ 10. 1097/ MIB. 00000 00000 001235 
(pediatric IBD cohort). https:// doi. org/ 10. 1016/j. 
ebiom. 2016. 08. 037 (healthy controls)
https:// portal. popgen. de

SickKids CAGI 4 & 5 Publication*** https:// doi. org/ 10. 1002/ humu. 23874

*  The CAGI website URL is https:// genom einte rpret ation. org
**  A subset of variants used in the Annotate All Missense challenge were obtained from the a proprietary 
version of the HGMD, database. These variants (those in HGMD 2020.4 but not HGMD 2019) are 
excluded from the answer key on the CAGI website but can be obtained under the HGMD Professional 
license (https:// www. hgmd. cf. ac. uk).
***  The full patient data for the Crohn’s and SickKids challenges are not maintained on the CAGI website 
because of patient privacy issues. However, approved users may obtain these from the authors of the 
corresponding publications in the above table.
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