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Abstract 

Background:  Genomic DNA reference materials are widely recognized as essential 
for ensuring data quality in omics research. However, relying solely on reference data-
sets to evaluate the accuracy of variant calling results is incomplete, as they are limited 
to benchmark regions. Therefore, it is important to develop DNA reference materi-
als that enable the assessment of variant detection performance across the entire 
genome.

Results:  We established a DNA reference material suite from four immortalized 
cell lines derived from a family of parents and monozygotic twins. Comprehen-
sive reference datasets of 4.2 million small variants and 15,000 structural variants 
were integrated and certified for evaluating the reliability of germline variant calls 
inside the benchmark regions. Importantly, the genetic built-in-truth of the Quartet 
family design enables estimation of the precision of variant calls outside the bench-
mark regions. Using the Quartet reference materials along with study samples, batch 
effects are objectively monitored and alleviated by training a machine learning model 
with the Quartet reference datasets to remove potential artifact calls. Moreover, 
the matched RNA and protein reference materials and datasets from the Quartet pro-
ject enables cross-omics validation of variant calls from multiomics data.

Conclusions:  The Quartet DNA reference materials and reference datasets pro-
vide a unique resource for objectively assessing the quality of germline variant calls 
throughout the whole-genome regions and improving the reliability of large-scale 
genomic profiling.
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Background
The detection of germline variants from high-throughput DNA sequencing (DNA-seq) 
is vital for biomedical research and molecular diagnostics of rare [1] and complex [2] 
genetic diseases. Well-characterized genomic reference materials can be used to bench-
mark measurement procedures, calibrate measuring systems and determine flagging cri-
teria, and thereby support reliable application of genomic sequencing in basic research 
and clinical practice [3, 4].

Genome in a Bottle (GIAB) and other efforts have established various whole-genome 
reference materials and defined benchmark calls and regions to benchmark germline 
small variants (SNVs and indels) [5–8] and structural variants (SVs) [9–11]. However, 
all these efforts on genomic reference materials only evaluated variants identified inside 
the benchmark regions. Benchmark regions are partial of whole-genome region that are 
well-characterized and validated. When evaluating the performance of variant calling 
results using reference datasets based on standalone reference material, only variants 
within these benchmark regions can be assessed. However, the full extent of sequences 
generated and analyzed for a test genome is greater than what is defined by the bound-
aries of the benchmark regions. A substantial portion of variants detected outside the 
benchmark regions are overlooked, including many medically relevant variants [12]. 
Moreover, benchmark calls and regions are generally integrated from various sequenc-
ing technologies and bioinformatic pipelines, and thus biased toward easy-to-detect 
genomic contexts. Using variant calling performance inside the benchmark regions 
as a proxy will overestimate the overall performance of DNA assays or bioinformatic 
pipelines on the whole-genome region. Moreover, ignoring variants outside the bench-
mark regions will militate against objective understanding of the limitations of existing 
sequencing technologies, and thus hindering further method development.

Furthermore, in many practical applications of omics technologies, especially in large 
cohort studies, samples are often inevitably processed by multiple sequencing platforms 
at multiple centers over a relatively long period of time [13]. These large-scale projects 
usually suffer from batch effects due to the inconsistency of experimental conditions and 
sequencing machines [14, 15]. In DNA sequencing, batch effects are largely overlooked, 
but their widespread existence could lead to incorrectly taking batch-specific artifacts as 
real biological findings. Genomic reference materials are effective tools to identify and 
mitigate batch effects in DNA-seq [16]. Genomic reference materials can be sequenced 
along with test samples in every batch to determine whether batch effects exist. Accord-
ing to the properties of true positives and false positives detected from genomic refer-
ence materials, proper thresholds can be selected to remove batch-specific artifacts for 
each batch [17].

To address these challenges in DNA-seq and beyond, we established four DNA ref-
erence materials from Epstein-Barr virus (EBV)-immortalized lymphoblastoid cell lines 
of a Chinese Quartet family, including the biological parents and monozygotic twin 
daughters. The Quartet was recruited from the Fudan Taizhou cohort in Central China, 
possessing genetic features of both Northern and Southern Chinese populations [18]. 
We extensively sequenced the whole genomes of the Quartet reference samples using 
multiple short-read and long-read sequencing platforms. We integrated both small var-
iant and structural variant benchmark sets for each of the Quartet reference samples 
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for evaluating variant calling accuracy inside the benchmark regions. The genomes of 
the monozygotic twins are almost identical [19], and the expected number of germline 
de novo variants is fewer than 30 per generation and fewer than 1000 somatic muta-
tions are introduced from cell culture [20]. The number of Mendelian violations in the 
detected variants is far more than the expected numbers of germline de novo variants 
and somatic mutations, indicating that most of the violations are sequencing or calling 
errors. Pedigree information of the Quartet members not only helped improve the spec-
ificity of benchmark sets by eliminating additional false positive variants with apparently 
high quality, but also facilitated the estimation of false positive rates of variants called 
outside the benchmark regions. The diverse sequencing data from the Quartet DNA 
reference materials also allowed us to identify batch effects present in whole-genome 
sequencing (WGS). The Quartet pedigree information was further used to develop a 
machine learning-based batch-specific filtration strategy to remove false positives and 
improve cross-batch reproducibility.

This study is part of the Quartet Project that aims for quality control and data integra-
tion of multiomic profiling (http://​chine​se-​quart​et.​org/). Apart from the DNA reference 
materials, the Quartet Project also established matched RNA, protein and metabolite 
reference materials from the same culturing of the immortalized Quartet cell lines. 
Benchmark sets defined for the DNA reference materials facilitate evaluation of variant 
calling accuracy from RNA and protein data according to the principles of the central 
dogma. Accompanying papers on the overall project findings [21], transcriptomics [22], 
proteomics [23], metabolomics [24], batch effect monitoring and correction [25], and 
the Quartet Data Portal [26] can be found elsewhere.

Results
Study design with monozygotic twins and data generation

We established four immortalized lymphoblastoid cell lines of a Chinese Quartet fam-
ily, including father (F7), mother (M8), and monozygotic twin daughters (D5 and D6) 
(Fig.  1a). The Quartet DNA reference materials are genomic DNA (gDNA) extracted 
from each immortalized lymphoblastoid cell line in large single batches. They have been 
certified by China’s State Administration for Market Regulation as the First Class of 
National Reference Materials and are extensively being utilized for proficiency testing 
and method validation. The certified reference material numbers are GBW09900 (D5), 
GBW09901 (D6), GBW09902 (F7), and GBW09903 (M8).

To unbiasedly characterize germline small variants and SV benchmark calls, we 
sequenced all four Quartet genomes on four short-read (Illumina HiSeq and NovaSeq, 
MGI MGISEQ-2000, and DNBSEQ-T7 (30-60x coverage)) and three long-read (Oxford 
Nanopore Technologies (ONT) (100× coverage), Pacific Biosciences (PacBio) Sequel 
(80× coverage), and PacBio Sequel II (30× coverage)) sequencing platforms at seven 
centers. We then used four orthogonal technologies, including linked read sequencing 
(10× Genomics (30× coverage)), SNP array (the Axiom Precision Medicine Research 
Array (PMRA)), optical sequencing (BioNano), and PacBio circular consensus sequenc-
ing (CCS) reads (50× coverage) to validate and refine the benchmark calls (Fig. 1a and 
Additional file 2: Table S1).

http://chinese-quartet.org/
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A total of 108 germline small variants call sets were obtained from 27 short-read WGS 
libraries of each Quartet genome using the widely adopted GATK best practices (BWA-
MEM and HaplotypeCaller (HC)) (Fig. 1b and Additional file 3: Table S2). A total of 120 
germline SV call sets were obtained from three long-read WGS libraries of each Quartet 
genome with 11 combinations from three aligners (NGMLR [27], minimap2 [28], and 
pbmm2) and five callers (Sniffles [27], NanoSV [29], cuteSV [30], SVIM [31], and pbsv) 
(Fig. 1c and Additional file 4: Table S3 and Additional file 5: Table S4).

Variants call sets of the monozygotic twins are expected to be the same, because the 
twins share the identical genome from their parents. When investigating the consistency 
of call sets from different sequencing platforms, variant calling methods, and Quartet 
samples (Additional file 1: Fig. S1), we observed that SNVs, small indels (<50 bp), large 
insertions, or large deletions (≥50 bp), were clustered distinctly based on the identity 
of the Quartet samples, and the monozygotic twins were grouped together as expected. 

Fig. 1  Study design with monozygotic twins and data generation. a Overview of the study design. Briefly, 
DNA reference materials were constructed from immortalized cell lines of a Chinese Quartet with father (F7), 
mother (M8), and monozygotic twin daughters (D5 and D6). They were sequenced by four short- and three 
long-read platforms at seven labs. Small variant and structural variant benchmark calls were integrated from 
massive sequencing datasets. Performance of a test dataset can be evaluated by comparing with benchmark 
calls or genetic built-in truth within the Quartet family. b Schematic overview of short-read sequencing 
datasets. Three replicates for each of the Quartet DNA reference materials were sequenced in nine batches, 
by both PCR and PCR-free libraries on four sequencing platforms at six labs, resulting in 108 WGS libraries. c 
Schematic overview of long-read sequencing datasets. One replicate for each of the Quartet DNA reference 
materials was sequenced per batch by PacBio Sequel, PacBio Sequel II, and ONT. Eleven combinations of 
three mappers and five callers were used to detect structural variants, resulting in 120 variant calling datasets
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However, for large duplications, inversions, or translocations (≥50 bp), the call sets did 
not cluster by the identity of the Quartet samples, but revealed strong clustering by bio-
informatic pipelines, indicating lack of reliability of or consistency in bioinformatic pipe-
lines for these three types of SVs. Thus, these three types of SVs were not included in the 
benchmark sets.

Determining small variant benchmark calls and regions

To define germline variant benchmark calls, we first selected reproducible variants 
among call sets for each of the Quartet samples. Because the number of Mendelian vio-
lations was much higher than the expected number of de novo mutations or somatic 
mutations arising from cell culture, all Mendelian violations were assumed to be errors 
[20]. Thus, we excluded Mendelian violations from the benchmark calls, even when they 
were reproducible among call sets.

We generated one small variant benchmark dataset by integrating 108 call sets (27 call 
sets per sample) of all four Quartet samples based on short-read WGS. At the individual 
sample level, we obtained a total of 6 million variants of 27 call sets at the beginning, and 
an average of ~4.6 million consensus variants after voting (see “ Methods”) across tripli-
cates in a batch, sequencing labs, and library preparation methods (PCR-free and PCR) 
(Fig.  2). To check Mendelian consistency of the remaining variants, genotypes should 
be confidently detected in all four Quartet samples for each variant. We then removed 
a total of 412,054 variant positions with no-call or conflict genotypes among the 27 call 

Fig. 2  Integration workflow of Quartet small variant and structural variant benchmark calls. This workflow 
depicted the integration process to obtain small variant benchmark calls from 108 original GVCF call 
sets. Numbers in the boxes represented remaining small variants after each data processing step in the 
grey dotted boxes. Approximately 6 million small variants were discovered in 27 call sets for each Quartet 
reference sample. About 1.5 million small variants were removed by the voting process (“ Methods”). We 
merged the four consensus call sets corresponding to the four Quartet samples, and discarded variants that 
did not reach agreement across 27 replicates in any Quartet sample. Only Mendelian consistent variants, 
which were shared by twins and following Mendelian inheritance laws and validated by PMRA and PacBio 
CCS datasets, were kept as small variant benchmark calls
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sets of any Quartet sample. Compared with irreproducible variants filtered during the 
voting process, these removed variants showed higher variant allele frequency (VAF), 
read depth, mapping quality, and genotype quality (Additional file 1: Fig. S2). Therefore, 
they could not be removed by simply increasing variant filtration thresholds.

We identified 5,708,723 small variant positions with reproducible genotype calls 
among all four Quartet samples. These remaining variants were further examined for 
Mendelian consistency in the Quartet family, and 7329 (0.13%) of them were identified 
as Mendelian violations. We manually inspected 4761 variants located in the callable 
regions (see “Methods”) with high mapping quality. Of the 3221 validated small variants, 
1034 overlapped with large deletions. They were mistakenly considered as Mendelian 
discordant by Mendelian analysis software VBT [32], which was based on the hypoth-
esis that variants always passed on diploid. Comparing with the variants detected in the 
matched blood samples of the Quartet family members, we found 95 pre-twinning ger-
mline de novo variants shared by the twins (homozygous reference in the parents and 
heterozygous or homozygous alternative in the twins), one postzygotic germline de novo 
variant specifically found in Quartet-D5, 1532 somatic variants (also found in blood), 
and 556 variants probably accumulated from cell culture (not found in blood) (Addi-
tional file 6: Table S5). Finally, we kept the Mendelian violations confirmed by manual 
curation into the initial catalog of benchmark calls. This process resulted in about 4.2 
million well-supported small variants for each Quartet sample.

Previous studies show that PacBio CCS reads yield a higher variant calling accuracy 
compared with short-read NGS, especially when calling variants in the repetitive regions 
of the genome. When comparing with the variants based on 50× coverage of PacBio 
CCS reads, we found that 98.7% of SNVs and 95.0% of small indels in our benchmark 
dataset can be validated (Additional file 2: Table S6). The 89.7% unvalidated ones were 
found to be located in the repetitive regions of the genome, especially segmental dupli-
cations (41.6%) and centromere regions (27.9%).

We also validated the small variant benchmark dataset using 16 replicates of PMRA 
SNP array. We obtained 793,024 Mendelian consistent probes in the benchmark regions 
that were well-supported by most replicates from the 902,394 clinically related probes 
assayed on the PMRA array. Of those reliable probes, 99.99% homozygotic references, 
98.6% SNVs, 95.7% small insertions, and 96.2% small deletions were the same with the 
NGS consensus variants (Additional file 2: Table S7). Among the 2845 discordant vari-
ants, 2704 were detected by the PMRA array but were absent from NGS. We manually 
inspected the read alignment and found that the remaining 141 calls were either missed 
by NGS or genotyped differently from the PMRA array, and only seven were obvious 
false positive in the NGS consensus calls due to misalignment of NGS reads. The seven 
obvious false positives were later removed from the small variant benchmark calls. Con-
sequently, the two validation processes removed 61,532 SNVs and 61,152 indels from the 
benchmark call sets.

To enable the identification of false positive and false negative variants, we defined 
benchmark regions for small variants (Additional file 1: Fig. S3). These benchmark 
regions were derived by integrating callable regions, which are regions where short 
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reads can be accurately mapped to the human reference genome with high mapping 
quality. Within the benchmark regions, we excluded high-confidence large dele-
tions and insertions integrated from long reads, as well as their flanking regions 
(50bp). The benchmark regions were defined as high-confidence variant regions and 
homozygotic reference regions within the consensus callable regions, as determined 
by all Quartet samples. These regions covered approximately 87.8% of the GRCh38 
reference genome (~2.66 G; chr1-22, X). Consensus and Mendelian consistent vari-
ants outside the benchmark regions were not included in the final benchmark call 
sets (Table 1).

We further compared the small variants benchmark calls with high-confidence call 
sets from two accompanying studies [33, 34] (Additional file  1: Fig. S4). These two 
high-confidence call sets provide orthogonal confirmation of our calls (FDU), since 
Pan et  al. (NCTR) [33] integrated high-confidence calls from four mappers (Bow-
tie2, BWA, ISAAC, and Stampy) and eight callers (FreeBayes, GATK-HC, GATK-HC 
(sentieon), RTG, ISAAC, Samtools, SNVer, and Varscan), and Jia et al. (XJTU) [34]. 
constructed haplotype-resolved high-confidence calls by combining short-read and 
long-read technologies. We compared variants in the intersect of the three high-con-
fidence regions of the three studies and found that 99.9% SNVs and 99.2% indels in 
our FDU callset could be confirmed by either the NCTR callset or the XJTU callset.

Table 1  Summary of quartet small variant and structural variant benchmark calls and regions

a All small variants benchmark calls are located in small variants high-confidence region, and false positive variants detected 
by orthogonal validation have been removed
b sINS and sDEL stand for short insertion and deletion with size less than 50 bp
c Block Substitutions are variants with length change between REF and ALT. It is not simple addition or removal of bases, for 
example, ATT -> CTTT​
d Structural variant benchmark calls include variants not located in benchmark regions
e INS and DEL stand for long insertion and deletion with size over or equal to 50 bp

Quartet-D5 Quartet-D6 Quartet-F7 Quartet-M8

Small Variant Bench-
mark Calls

Total variants a 4,122,817 4,122,817 4,097,306 4,123,162

SNV 3,558,056 3,558,056 3,527,544 3,557,613

sINS b 274,854 274,854 273,186 276,426

sDEL b 281,212 281,212 278,427 280,765

Block substitutions c 8695 8695 8149 8258

Het/Hom ratio 1.37 1.37 1.30 1.35

SNV Ti/Tv 2.08 2.08 2.07 2.07

Benchmark region, 
chr1-22, X(bp)

2,658,688,832 2,658,688,832 2,658,688,832 2,658,688,832

Structural Variants 
Benchmark Calls

Total variants d 15,005 15,005 15,098 14,893

INS e < 1kb 7216 7216 7353 7161

INS ≥ 1kb 734 734 755 717

DEL e< 1kb 6352 6352 6287 6324

DEL ≥ 1kb 703 703 703 691

Het/Hom ratio 1.43 1.43 1.45 1.57

Longest INS (bp) 12,450 12,450 12,450 12,450

Longest DEL (bp) 117,310 117,310 435,343 494,712

Affected bases (bp) 7,796,176 7,796,176 8,821,558 8,550,650

Benchmark region, 
chr1-22 (bp)

2,622,728,511 2,622,728,511 2,591,967,148 2,596,140,552
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Determining structural variant benchmark calls and regions

A similar strategy was used to determine SV benchmark calls by integrating the 120 
call sets obtained from the long-read WGS data (Fig. 3, “ Methods”). For each indi-
vidual in the Quartet family, the tool Jasmine was used to merge SV callsets from dif-
ferent sequencing platforms and SV calling pipelines based on the variant breakpoint 
and length [35]. This left about 90,000 isolated SVs of each Quartet sample. Then, SVs 
supported by the same pipeline from at least two sequencing platforms or by at least 
six pipelines from the same platform were determined as consensus SVs. Large SVs 
over 10 Mb and the ones located in centromeres, peri-centromere, and gap regions 
of the reference genome were excluded. The remaining 31,659 SVs were then re-gen-
otyped in a pedigree using three genotypers (Sniffles [27], SVjedi [36], and LRcaller 
[37]) with the reads of PacBio Sequel and ONT. Consensus genotypes (23,891) from 
at least six of the ten genotype call sets were then determined as the consensus geno-
type calls for each of the Quartet samples. SVs with conflict genotypes had higher 
VAF (0.12–0.25 and 0.75-1.0) compared with discordant variants among replicates 
(0.12), but not as high as VAFs at peaks near 0.5 (heterozygous) or 1.0 (homozygous), 
respectively (Additional file 1: Fig. S5).

Fig. 3  Integration workflow of structural variant benchmark calls. This workflow depicts the integration 
process to obtain structural variant benchmark calls from 120 call sets. Numbers in the box represented 
remaining structural variants after each data processing step in the grey dotted boxes. Briefly, approximately 
90,000 structural variants were discovered in 30 call sets of each Quartet reference sample. We first 
kept structural variants supported by at least two sequencing platforms or at least six pipelines from 
one sequencing platforms, then removed SVs with length over 10 Mb or located on centromeric or 
pericentromeric regions and gaps. INSs and DELs were extracted for the construction of structural variants 
benchmark calls. Sniffles was used to report structural variants sequences, and structural variants that failed 
in reporting sequences were filtered. Iris was applied to refine variant sequences. After obtaining consensus 
of structural variants in multiple data sets, we merged four catalogs of reproducible variants of each Quartet 
reference sample and obtained 31,659 SVs in total. Three genotypers were used to determine genotypes of 
these SVs, and only SVs with consensus genotypes in at least six of all ten genotype call sets were kept for 
Mendelian analysis. The final structural variant benchmark calls were shared by twins and followed Mendelian 
inheritance laws with parents
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After obtaining consensus genotyped SVs, we then removed Mendelian violated SVs. 
Of the 194 Mendelian violated SVs, we found that two de novo heterozygous variants 
shared by the twins, and four individual-specific heterozygous variants from one of 
the twins, which probably were somatic or arose from cell culturing (Additional file 2: 
Table  S8). Following manual curation, we observed that the remaining 188 SVs were 
incorrectly genotyped. Most of them (91.7%) were located in regions of simple repeats 
over 100 bp or segmental duplications, or clustered with other variants. Finally, ~15,000 
benchmark SVs were kept into the benchmark call set for each Quartet sample (Table 1). 
Consistent with prior studies, we observed three peaks near 300 bp, 2.1 kb and 6 kb, 
likely reflecting the activities of Alu elements, SVA elements, and full-length LINE1 ele-
ments in the human genome (Additional file 1: Fig. S6).

Validating based on Illumina short reads, 10X Genomics linked read, BioNano optical 
mapping, and whole-genome assemblies using PacBio CCS and PacBio CLR data, we 
found that our SV benchmark callset is of high quality (Additional file 2: Table S9). The 
overall validation rates of insertions and deletions were 95.24 and 95.78% by at least one 
technology. Although we integrated short-read SV validation callset using 15 SV callers, 
the validation rates by short-reads (48.7% INS and 76.0% DEL) were much lower than 
long-read assemblies (90.7% INS and 92.6% DEL). BioNano only validated 3.2% INS and 
1.8% DEL over 1 kb, due to its low resolution (kb) by specific restriction enzyme cut sites 
and failure to accurately determine breakpoints [38]. We also validated our SV bench-
mark callset with Jia et al. [34] and found that 97.1% INS and 91.9% DEL were confirmed.

We also compared our SV benchmark calls to the SVs identified by GRC [39], HGSVC 
[40], and HX1 [41] with different groups of samples. The validation rates were 91.3, 77.8, 
and 54.7%, respectively. The high validation rate of GRC was because a Chinese sample 
was included, and the SVs were also detected from long-read data. Note that such com-
parison based on a limited number of samples will only detect the common SVs that are 
shared in different samples.

To define SV benchmark regions, we used ~100x PacBio Sequel CLR reads to estab-
lish haploid de novo assemblies for the parents F7 and M8 (2.94–2.99 Gb), and diploid 
de novo assemblies for the twins D5 and D6 (2.87–2.88 Gb). We then mapped de novo 
assemblies to the GRCh38 reference genome, and ~2.74~2.78 Gb callable regions were 
retained which were supported by reads larger than 50 kb and with mapping quality 
greater than 5. Regions of assembly-specific SVs, centromeres, and gaps were excluded 
from callable regions (Additional file  1: Fig. S7). The Quartet SV benchmark regions 
cover ~2.62 Gb of the reference genome (GRCh38; chr1-22) and contains ~12,705 
(75.7–83.6%) SVs of the benchmark calls. Only SVs inside the benchmark regions are 
considered when we evaluate variant calling performance of test sets based on bench-
mark sets with precision and recall.

Applications of the Chinese Quartet genomic reference materials

Evaluating variant calling performance by pedigree information and benchmark sets

We used the whole-genome variant callsets derived from various library preparation 
methods, sequencing platforms, and bioinformatic tools to demonstrate the usability 
of the Quartet DNA reference materials in evaluation of variant calling performance. 
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Each callset was evaluated based on the F1 score in the benchmark regions and the 
Mendelian consistent rate (MCR) on the whole genome.

Four mappers (Bowtie2, BWA, ISAAC, and Stampy) and eight germline variant call-
ers (HaplotypeCaller (GATK version and Sentieon version), RTG, ISAAC, Varscan, 
FreeBayes, Samtools, and SNVer) were compared based on ~30× Illumina short-read 
replicates from three sequencing centers (Detailed information can be found in our 
companion study [33]) (Fig. 4a). Callers had greater impact on variant calling accu-
racy compared with mappers. SNV calling performance was high and similar (F1 
score 0.978±0.012, MCR 0.944±0.017) among different callers, while indels calling 
performance was lower and varied (F1 score 0.732±0.158, MCR 0.695±0.094). RTG, 

Fig. 4  Evaluating variant calling performance by pedigree information and benchmark sets. F1 score 
and MCR rate of different a mappers and callers for detecting small variants using Illumina short reads; b 
sequencing platforms and library preparation methods for detecting small variants; c callers for detecting SVs 
using Illumina short reads; and d sequencing platforms, combination of mappers and callers for detecting 
SVs using long-read data
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Sentieon, and HaplotypeCaller showed higher F1 scores for indel calling, with Sam-
tools and SNVer performing the worst.

To investigate the small variant calling performance of different sequencing platforms, 
we called small variants using the same pipeline (Sentieon) for short-read data and Deep-
Variant for PacBio CCS reads (Fig. 4b). Illumina platforms, MGI platforms, and PacBio 
CCS had similar performance, with no obvious differences. Sequencing platforms had 
smaller impact on variant calling accuracy compared with library preparation methods. 
PCR-free libraries were superior to PCR libraries for detecting Indels, with higher F1 
scores (0.983±0.005 vs 0.958±0.016) and MCR rates (0.921±0.050 vs 0.873±0.094).

For investigating SV calling performance, we compared 15 common callers using 
short-read data (Fig. 4c). Different callers had various SV calling performance, with F1 
scores ranging from 0 to 0.891 and MCR rates ranging from 0 to 0.645. Detection of 
DEL by short reads was slightly accurate than INS. Only Manta exhibited relatively high 
F1 score and MCR rate for both INSs and DELs compared to other callers. The MCR of 
INSs called by DELLY, GRIDSS, and MELT was much higher than F1 score evaluated 
by benchmark calls, because they detected fewer variants and had lower recall rates. 
We observed that most callers achieved high performance of DEL results, except for 
CNVnator, inGAP, and svaba. inGAP identified many more DELs (60,151) than bench-
mark calls, but had low precision and recall at the same time, indicating its low accuracy.

We also investigated SV calling performance of long-read sequencing platforms and 
bioinformatic pipelines, by retrospectively evaluating the performance of structural vari-
ants call sets used in this study to establish the benchmark sets (Fig. 4d). Generally, more 
SVs were detected from long reads (7726±3,203) than short reads (4922±9,604), and 
present sequencing technologies and algorithms display higher performance for DEL 
detection than INSs. Combination of mappers and callers should be carefully chosen 
according to sequencing platforms, since different combinations had F1 scores ranging 
from 0.374 to 0.856 and MCR rates ranging from 0.119 to 0.437. NGMLR with cuteSV 
showed high performance detecting both DELs and INSs on all three long-read sequenc-
ing platforms. Pbmm2 with pbsv, which was specifically developed for the PacBio plat-
form, performed better on PacBio Sequel II than Sequel. Notably, DELs detected by 
pbmm2/sniffles had low F1 score but high MCR. Compared with the median het/homo 
ratio 2.2:1 in 30 call sets, het/homo ratio of pbmm2/sniffles was 0.02:1, which resulted in 
~98% SVs of all four individuals with 1/1 genotypes, indicating that the genotypes of the 
pipeline were unreliable.

We found that an average of 9% SNVs, 40% indels, 33% DELs, and 20% INSs were 
located outside the benchmark regions, which could not be evaluated by benchmark 
sets. The F1 scores for variants inside the benchmark regions might not reflect the accu-
racy outside the benchmark regions (Additional file 1: Fig. S8a). As expected, the error 
rates were significantly higher outside of the benchmark regions. Moreover, the Quartet 
family design identified more false positive variant candidates compared to twins and 
trios and enabled a more precise measurement of error rates (Additional file 1: Fig. S8b).

Identifying and mitigating batch effects in genomic sequencing

To identify batch effects in WGS using the Quartet DNA reference materials, we per-
formed principal component analysis (PCA) on genotype calls detected from various 
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short-read sequencing platforms. Compared with RNA sequencing, DNA sequencing 
revealed a much smaller level of batch effect [22]. In the scatterplot of the first two 
eigenvectors, the monozygotic twin daughters were clustered together and located 
in the middle between the two parents in PC1 and above the parents in PC2, as 
expected (Additional file 1: Fig. S9). We observed a clear batch effect from the third 
and the fourth eigenvectors (Fig. 5a–d). The sequencing platforms played an impor-
tant role in leading to such detectable batch effects. Large insertions exhibited the 
lowest reproducibility across the sequencing platforms compared with other variant 
types, because obvious batch effects were observed even from the first two eigenvec-
tors. Variants called outside the benchmark regions showed larger batch effects than 

Fig. 5  Quartet DNA reference materials can be used to identify and mitigate batch effects in DNA 
sequencing. The scatterplots of the third and the fourth eigenvectors generated from PCA show batch effects 
in a SNVs, b small indels, c large deletions, and d large insertions. e Reproducibility of variants called on the 
whole-genome region before and after filtration. f Precision of variants called inside the benchmark regions 
before and after filtration. g Recall of variants called inside the benchmark regions before and after filtration
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variants called inside the benchmark regions, as expected, because more variants out-
side the benchmark regions could not reach agreement among call sets (Additional 
file 1: Fig. S10).

Batch effects can be mitigated by removing false positive variants in each batch due to 
different variant quality metrics such as quality scores, read depth, and mapping qual-
ity scores. Pedigree information of the Quartet DNA reference materials can be used to 
select proper thresholds of those variant quality metrics for each batch to filter potential 
artifacts. We trained a one-class SVM (support vector machines) classifier using vari-
ant quality metrics of Mendelian consistent variants (reliable variants) from one of the 
three replicates for each batch (Additional file 2: Table S10, batches 5, 6, and 7). Then the 
trained models were applied on the other two replicates to filter potential false positives 
for each batch. The efficiency of batch-specific filtration method was assessed by preci-
sion, recall, and cross-batch reproducibility (Fig. 5e–g). After filtration, the cross-batch 
reproducibility was greatly improved. The precision compared with the benchmark calls 
increased, while the recall rates decreased, indicating that false positives were greatly 
reduced with inevitably sacrificing a small number of true variants.

Evaluating variants called from mRNA and protein

Apart from DNA reference materials, we also established RNA, protein, and metabolite 
reference materials from the same large batch of B-lymphoblastoid cell lines. Multiomic 
reference materials from the same resources of Quartet cell lines provide possibilities 
for cross-validating biological findings from one type of omics dataset by other levels of 
omics datasets, supporting quality assessment of a wide range of new technologies and 
bioinformatics algorithms.

We illustrated a cross-omics validation of variants detected using the Quartet genom-
ics, transcriptomics, and proteomics datasets. As shown in Fig. 6a, an average of 15,580 
RNA variants and 18 missense single-amino acid variants were detected in RNA-seq 
and LC-MS/MS-based proteomics of Quartet D5, respectively. We compared the vari-
ants called by GATK HaplotypeCaller and DeepVariant [42] in the intersected genomic 
regions of benchmark regions developed in this study, CDS regions, and regions with a 
minimum of 3× coverage. On average, GATK detected 16,305 SNVs and 1338 Indels, 
while DeepVariant detected 13,181 SNVs and 334 Indels in these intersected regions. 
DeepVariant called fewer variants, but yielded higher precision and recall than GATK for 
both SNVs and Indels (Fig. 6b). About 8.3% RNA variants from DeepVariant and 25.9% 
from GATK in RNA-seq could not be validated by DNA small variant benchmark calls. 
When comparing false positives against known RNA editing sites in REDIportal [43], 
we observed that DeepVariant disregarded RNA editing event (17 out of 1100), whereas 
GATK detected more RNA editing events (562 out of 4234) (Fig. 6c). This indicates that 
RNA editing does not have a significant contribution to the high level of inconsistency 
observed between variants identified from DNA and RNA sequencing datasets. Instead, 
the discrepancy is primarily attributed to technical artifacts. Figure 6d shows that a spe-
cific SNV benchmark call can be validated by both RNA and protein sequencing data. A 
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missense SNV (chr17:74,866,471 T>C) caused a single-amino acid mutation, changing 
from glutamic acid to arginine.

These preliminary cross-omics validation results implicated that current applications 
for variant detection from RNA sequencing and LC-MS/MS-based proteomics remain 
a challenge. The Quartet multiomics reference materials and datasets enable objective 

Fig. 6  Evaluating variant calling accuracy from RNA and protein data by benchmark variants constructed 
from DNA data. a Schematic of central dogma and the number of variants detected in the Quartet DNA-seq, 
RNA-seq, and LC-MS/MS-based proteomics datasets. b Validation of Quartet RNA variants using DNA 
reference datasets. True positive (TP) means RNA variants validated in DNA reference datasets, whereas 
false positive (FP) means the RNA variants not included in the DNA reference datasets. c Composition of 
RNA variant types in false positive (RNA_FP) and true positive RNA (RNA_TP) variant calls. d A T-to-C variant 
(located in chr17: 74866471) detected by both DNA-seq and RNA-seq is visualized in IGV. The corresponding 
Glu-to-Arg variant was also detected by LC-MS/MS-based proteomics
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quality assessment of these emerging bioinformatics algorithms from cross-omics 
validations.

Discussion
One primary challenge of germline variants performance assessment by a single refer-
ence sample is that the benchmark sets focus on evaluating the performance of easily 
detected variants and genomic regions, but ignore difficult variants outside the bench-
mark regions. Here, we established four DNA reference materials from a Chinese 
Quartet with parents and monozygotic twins. We constructed high-quality germline 
benchmark calls, including SNVs, small indels, large insertions and deletions for each 
Quartet reference sample based on extensive short-read and long-read sequencing. The 
quality of the benchmark calls was improved through a series of data-filtering proce-
dures including consensus voting of replicates, pedigree information, and orthogonal 
technologies.

We demonstrated that the use of the Quartet DNA reference materials together helps 
make a comprehensive performance assessment of variants across the whole genome. 
There are two aspects of “truth” related to the Quartet DNA reference materials. One 
aspect is related to the benchmark calls, where only highly confident variants were kept. 
Precision and recall are commonly used metrics to evaluate variant calling performance 
within benchmark regions. The benchmark regions currently cover 85.5–87.7% of the 
human reference genome, encompassing 92.3–93.6% of gene regions, 91.5–93.4% of 
exon regions, 92.2–94.4% of CDS regions, and 92.9–94.4% of regions containing medi-
cally relevant variants in ClinVar (Table 2). Another aspect is the genetic built-in truth 
of the monozygotic twins and their parents. The Mendelian concordance rate of vari-
ants among the Quartet members can be used to estimate the accuracy of the fraction 
of variants that are not included in the benchmark regions. Compared to other stud-
ies focusing on easy-to-detect variants in benchmark regions alone, difficult variants 
outside the benchmark regions not only reflect major discordances among different 
sequencing platforms and labs, but also help guide future development and optimization 
of sequencing technologies.

Table 2  Coverage of quartet benchmark regions on coding region and clinically related genes

1 The benchmark regions of the four Quartet reference samples are the same
2 Genomic regions of gene, exon and CDS (coding sequences) are extracted from gencode v43
3 Genomic regions of variants of ClinVar are extracted from ClinVar v2023-06-17

Class Total bases 
(bp)

Small variant 
benchmark 
regions of 
Quartet1 v1.1 
(%)

SV benchmark 
regions of 
Quartet D5&D6 
v1.1 (%)

SV benchmark 
regions of 
Quartet-F7 v1.1 
(%)

SV benchmark 
regions of 
Quartet-M8 v1.1 
(%)

GRCh38  
(chr1-22, X)

3,031,042,417 87.7 86.5 85.5 85.7

Gene 1,776,904,532 93.6 93.4 92.5 92.3

Exon 156,255,092 93.4 93.0 91.5 91.7

CDS 35,744,776 94.4 93.6 92.2 92.4

ClinVar 6,247,973 94.4 93.6 92.9 92.9
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There are also drawbacks only using pedigree information instead of benchmark sets 
for performance assessment. For example, systematic sequencing or mapping errors, 
such as heterozygotic or homozygotic variants called on all Quartet samples, which are 
Mendelian consistent, will be mistakenly considered as true variants. In some cases, 
Mendelian concordance rate is low due to sequencing failure of one or more Quartet ref-
erence samples. Comparison with the benchmark calls can help identify which sample 
exhibits bad variant calling performance. Notably, pedigree information can be used to 
evaluate Mendelian concordance, but it cannot help determine false negatives. There-
fore, benchmark sets are necessary to identify false negatives and measure recall rate, 
while the pedigree information provides additional tool for the assessment of variant 
calling accuracy outside the benchmark regions.

As part of the Quartet Project, the main objective of our study is to provide the scien-
tific community with genomic DNA reference materials that can be used to assess and 
improve the accuracy of germline variant calling. However, we acknowledge that the ini-
tial version of the small variant and structural benchmark sets for Quartet DNA refer-
ence materials does not include complex variants and genomic regions. This limitation 
arises from the challenges associated with mapping short reads to repetitive genomic 
regions and the potential mapping errors that can occur when calling structural variants 
solely through mapping approaches. In our companion study [34], we addressed these 
limitations by generating haplotype-resolved whole-genome assemblies for the monozy-
gotic twin daughters. Decoding the complete genome of a diploid sample, compared to 
the complete hydatidiform mole (CHM13), presents more challenges. Nevertheless, we 
achieved high quality in the assemblies, with 76% of the chromosomal arms being gap-
free from telomere to centromere. The updated benchmark regions increased to cover 
92.43% of the GRCh38, including more complex variants and regions, through the inte-
gration of short reads, long reads, and haplotype assemblies. In our analysis, we compare 
benchmark sets integrated from three different sources: (1) multiple technical replicates 
generated from various platforms, laboratories, and batches analyzed using GATK best 
practices (as described in our study); (2) three batches of datasets called from multiple 
pipelines [33] ; and (3) haplotype assemblies [34] (Additional file 1: Fig S4). Our findings 
revealed that while benchmark variants integrated from variants called from short reads 
and long reads by mapping approaches may miss complex variants, there is high consist-
ency in the benchmark variants within the overlapping benchmark regions, with 99.99% 
agreement for SNVs, 99.51% for indels, 91.5% for large deletions, and 97.1% for large 
insertions.

To evaluate and monitor the performance of the data generation processes, sequenc-
ing all the Quartet genomes is not cheap, especially for long-read sequencing. If one is 
only interested in variants or regions in the benchmark calls and regions, we recom-
mend sequencing one of the Quartet samples and making quality assessment using 
benchmark sets by precision and recall. If the aim is to improve current technologies 
in some challenging genomic regions, we recommend sequencing all four Quartet sam-
ples to estimate performance on those difficult regions. Since a new technology is often 
accompanied by advantages beyond what current technologies can offer, the Quartet 
based Mendelian concordance rate is independent of the benchmark calls and can pro-
vide a more objective evaluation.
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To monitor and improve data quality across different sequencing centers in large-scale 
studies, we recommend sequencing all the Quartet DNA reference materials per batch. 
In an automated library preparation setup, 96 samples are routinely handled in a batch. 
Although including four quality control samples per batch increases experimental cost 
by ~5%, it can benefit the study tremendously by identifying and mitigating batch effects 
for the sake of discovering genuine biomarkers for precision medicine.

The Quartet DNA and other types of omics reference materials are publicly available 
to the community by requesting through the Quartet Data Portal website (http://​chine​
se-​quart​et.​org/). We encourage researchers to upload and share Quartet sequencing 
data, thereby hoping the rich collections of diverse datasets and analysis for the Quartet 
samples will enable optimization of the benchmark sets and regions.

Conclusions
In summary, the Quartet DNA reference materials and datasets are essential resources 
for objective and comprehensive evaluation of the quality of sequencing and bioinfor-
matic methods, which will greatly improve the quality control awareness of the sequenc-
ing community and help overcome barriers to the translation of findings from genomic 
studies into clinical practices.

Methods
Establishing DNA reference materials

The Chinese Quartet DNA reference materials were extracted from four immortalized 
B-lymphoblastoid cell lines transfected by Epstein-Barr virus, including father (F7), 
mother (M8) and monozygotic twin daughters (D5/D6). We extracted two batches of 
DNA on August 6, 2016 and October 28, 2017 from two large expansions of the cell 
lines. We diluted DNA to 220 ng/µL and made >1000 aliquots for each DNA sample. 
Each vial contains 10 µg of DNA in TE buffer (10 mM TRIS, pH 8.0; 1 mM EDTA, pH 
8.0). The Quartet DNA is stored at −80°C for long-term preservation, or at 4°C for 
short-term preservation. We checked the integrity of DNA (DIN) by Agilent 4200 and 
the distribution of DNA fragment length by Agilent 2200. The Quartet DNA is stable 
for at least 3 years at −80°C and for 3 weeks at 4°C during the entire duration of quality 
monitoring. This study focuses on germline variant calling quality control. Two batches 
(Lot 20160806 and Lot 20171028) of DNA reference materials were extracted from large 
expansion of cell lines, with 1000 tubes (10 µg, 220 ng/µL) for each Quartet reference 
sample at each batch. DNA reference materials are stable and in good quality. The peak 
size of DNA fragments is over 60 kb. The stability has been monitored monthly for 3 
years, with DNA integrity number (DIN) over 8.5.

Library preparation and whole‑genome sequencing

Short‑read sequencing

Twelve tubes of Quartet DNA reference materials, with three replicates for each of 
the four Quartet sample types, were sequenced per batch. DNA reference materials 
were from Lot 20160806. We obtained datasets from four sequencing platforms in six 
sequencing labs by PCR and PCR-free library protocols, resulting in 27 replicates per 
sample and 108 libraries in total:

http://chinese-quartet.org/
http://chinese-quartet.org/
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(1)	 ~50× paired-end, whole-genome sequencing with 2×100 bp reads of ~250 bp 
insert size from MGI MGISEQ-2000 with PCR library kit, performed at BGI.

(2)	 ~30× paired-end, whole-genome sequencing with 2×150 bp reads of ~300 bp 
insert size from Illumina HiSeq XTen with TruSeq Nano library kit, performed at 
ARD and NVG.

(3)	 ~30× paired-end, whole-genome sequencing with 2×150 bp reads of ~400 bp 
insert size from Illumina HiSeq XTen with TruSeq Nano library kit, performed at 
WUX.

(4)	 ~30–60× paired-end, whole-genome sequencing with 2×150 bp reads of ~300–
400 bp insert size from Illumina NovaSeq6000 with PCR-free library kit, sequenced 
at ARD, BRG, and WUX.

(5)	 ~35× paired-end, whole-genome sequencing with 2×150 bp reads of ~380 bp 
insert size from MGI DNBSEQ-T7 with PCR-free library kit.

Long‑read sequencing

To establish structural variant benchmark calls, the four Quartet DNA reference materials, 
one replicate for each sample, were sequenced on three long-read platforms, resulting in 
three libraries per sample and 12 libraries in total:

(1)	 ~100×, whole-genome sequencing with 11–14 kb mean read length and 20–25 
kb N50 read length from Oxford Nanopore Technologies (ONT). DNA reference 
materials were from Lot 20171028.

(2)	 ~100×, whole-genome sequencing with 8–11 kb mean read length and 13–18 kb 
N50 read length from PacBio Sequel (CLR). DNA reference materials were from 
Lot 20160806.

(3)	 ~30×, whole-genome sequencing with 16–18 kb mean read length and 26–28 kb 
N50 read length from PacBio Sequel II (CLR). DNA reference materials were from 
Lot 20160806.

We also generated sequencing datasets from BioNano, 10x Genomics, and PacBio CCS 
reads to validate benchmark calls:

(1)	 BioNano Genomics: ~200X for D5, ~300X for D6, F7 and M8 BioNano Genomics 
data with average fragment length 260~300 kb. DNA reference materials were from 
Lot 20160806.

(2)	 10x Genomics: ~30X Genomics data with average fragment length ~150 kb. DNA 
reference materials were from Lot 20160806.

(3)	 ~50×, whole-genome sequencing with 13–14 kb mean read length and 13–14 kb 
N50 read length from PacBio Sequel II (CCS HiFi reads). DNA reference materials 
were from Lot 20160806.



Page 19 of 31Ren et al. Genome Biology          (2023) 24:270 	

Reads mapping and variant calling for short‑read sequencing for developing benchmark 

variants

Sequences were mapped to GRCh38 (https://​gdc.​cancer.​gov/​about-​data/​gdc-​data-​
proce​ssing/​gdc-​refer​ence-​files). We used Sentieon Genomics software (https://​www.​
senti​eon.​com/) to analyze short-read WGS datasets from raw fastq files to GVCF 
files. This workflow was derived from recommended germline small variant calling 
pipeline by the Broad Institute (https://​gatk.​broad​insti​tute.​org/​hc/​en-​us/​artic​les/​
36003​55359​32-​Germl​ine-​short-​varia​nt-​disco​very-​SNPs-​Indels-), including read map-
ping by BWA-MEM, duplicate removing, indel realignments, base quality score recal-
ibration (BQSR), and variant calling by HaplotyperCaller in GVCF mode. Then we 
performed joint variant calling using Sentieon GVCFtyper to merge all 108 GVCF 
files. We used default settings for all processes.

Different from regular VCFs, GVCF files have records and extra information for 
all genomic sites. A site is recorded as a variant call, homozygotic reference, or with 
no reads covered. In a regular VCF, we cannot distinguish a site with no information 
from a homozygotic reference. GVCF files enable us avoid mistaking no-call sites as 
homozygotic references and facilitate representation of complex variants as well.

To keep as many variants as possible and not to remove any potential true vari-
ants with low qualities, we did not filter variants from the original GVCF call sets by 
empirical variant quality or machine learning-based variant quality score recalibra-
tion (VQSR).

Reads mapping and variant calling for long‑read sequencing for developing benchmark 

variants

We used three mappers (NGMLR, minimap2, and pbmm2) and five callers (cuteSV, 
NanoSV, Sniffles, pbsv, and SVIM) to call structural variants, resulting in 11 combina-
tions. Reads were mapped to human genome version hg38 (GCA 000001405.15) from 
UCSC Genome Brower (http://​hgdow​nload.​soe.​ucsc.​edu/​golde​nPath/​hg38/​chrom​
osomes/).

PacBio Sequel-based call sets were generated as follows:

(1)	 Reads were aligned with NGMLR v.0.2.7 with -x pacbio parameter, minimap2 
v.2.17-r941 with -x map-pb –MD -Y parameters and pbmm2 v.1.0.0 with –sort –
median-filter –sample parameters separately.

(2)	 Structural variant calling was performed using cuteSV v.1.0.4 with –genotype 
parameter, NanoSV v1.2.4 with per chromosome pattern and an ancillary file con-
taining random positions in hg38, Sniffles v.1.0.11 with default parameter, and 
SVIM v.1.2.0 with –minimum_depth 10 parameter based on BAM files created by 
NGMLR v.0.2.7 and minimap2 v.2.17-r941 separately. Additionally, Sniffles v.1.0.11 
was also run on pbmm2 v.1.0.0 and pbsv v.2.2.1 was run on pbmm2 v.1.0.0 and 
NGMLR v.0.2.7. The pbsv discover stage was run with –tandem-repeats parameter 
using tandem repeat annotation file human_GRCh38_no_alt_analysis_set.trf.bed 
(https://​github.​com/​Pacif​icBio​scien​ces/​pbsv/​tree/​master/​annot​ations). The pbsv 
discover and call stages were both run on the full genome.

https://gdc.cancer.gov/about-data/gdc-data-processing/gdc-reference-files
https://gdc.cancer.gov/about-data/gdc-data-processing/gdc-reference-files
https://www.sentieon.com/
https://www.sentieon.com/
https://gatk.broadinstitute.org/hc/en-us/articles/360035535932-Germline-short-variant-discovery-SNPs-Indels
https://gatk.broadinstitute.org/hc/en-us/articles/360035535932-Germline-short-variant-discovery-SNPs-Indels
http://hgdownload.soe.ucsc.edu/goldenPath/hg38/chromosomes/
http://hgdownload.soe.ucsc.edu/goldenPath/hg38/chromosomes/
https://github.com/PacificBiosciences/pbsv/tree/master/annotations
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PacBio Sequel II-based call sets were generated as follows:

(1)	 Reads were aligned with NGMLR v.0.2.7 with -x pacbio parameter, minimap2 
v.2.17-r941 with -x map-pb –MD -Y parameters and pbmm2 v.1.0.0 with –sort –
median-filter –sample parameters separately.

(2)	 Structural variant calling was performed using cuteSV v.1.0.4 with -s 3 –genotype 
parameters, NanoSV v1.2.4 with per chromosome pattern and an ancillary file con-
taining random positions in hg38, Sniffles v.1.0.11 with -s 3 parameter and SVIM 
v.1.2.0 with –minimum_depth 3 parameter based on BAM files created by NGMLR 
v.0.2.7 and minimap2 v.2.17-r941 separately. Additionally, Sniffles v.1.0.11 with -s 
3 was also run on pbmm2 v.1.0.0 and pbsv v.2.2.1 was run on pbmm2 v.1.0.0 and 
NGMLR v.0.2.7. The pbsv discover stage was consistent with PacBio Sequal-based 
process.

Nanopore-based call sets were generated as follows:

(1)	 Reads were aligned with NGMLR v.0.2.7 with -x ont parameter and minimap2 
v.2.17-r941 with -x map-ont –MD -Y parameters.

(2)	 SVs were called using cuteSV v.1.0.4 with –genotype parameter, NanoSV v1.2.4 
with per chromosome pattern and an ancillary file containing random positions in 
hg38, Sniffles v.1.0.11 with default parameter and SVIM v.1.2.0 with –minimum_
depth 10 parameter based on BAM files created by NGMLR v.0.2.7 and minimap2 
v.2.17-r941 separately.

In addition to the parameters of mappers and callers mentioned above, the others 
are default.

Detecting structural variants from Illumina‑based short‑read sequencing

Illumina NovaSeq WGS short-read sequencing with ~40× 2×150 bp and 420 bp 
insert size was performed at ARD and used to call structural variants. The reads were 
mapped to the GRCh38.d1.vd1 reference genome by Sentieon BWA. According to 
previous studies [44], 15 algorithms with relatively high precision and/or recall were 
selected for structural variants discovery, including Breakdancer [45], CNVnator [46], 
DELLY [47], GRIDSS [48], inGAP-sv [49], LUMPY [50], Manta [51], MELT [52], Pin-
del [53], softSV [54], SvABA [55], Svseq2 [56], tardis [57], TIDDIT [58], and Wham 
[59]. Consequently, 15 Illumina-based call sets were generated for each Quartet refer-
ence sample. Structural variants were filtered based on the number of reads support-
ing structural variants (RSS), types, and lengths. For several algorithms, RSS value 
was not available and other values such as quality scores were used to simulate RSS. 
Only five types of structural variants were retained (INSs, DELs, DUPs, INVs, and 
BNDs). Structural variants under 50 bp were removed except for BNDs. The filtered 
output file for each algorithm was converted to a VCF format with SVMETHOD, 
END, SVTYPE, and SVLEN tags in the information field. All 15 call sets for each indi-
vidual in Quartet were merged into a single call set based on the same type and with 
breakpoints distance of 1 kb using SURVIVOR v.1.0.7.
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Detecting small variants and structural variants from 10x Genomics linked reads

Small variants and structural variants were called by longranger-2.2.2 (https://​suppo​
rt.​10xge​nomics.​com/​genome-​exome/​softw​are/​downl​oads/​latest) with default param-
eters from 10x Genomics linked read data sets. Small variants were from phased_
variants.vcf.gz. Structural variants ≥ 50bp were from dels.vcf.gz and large_svs.vcf.gz 
were retained.

Detecting structural variants from BioNano

The structural variants were called by BioNano Solve v3.1 (bnxinstall.com/solve/
Solve3.1_08232017) with default parameters.

Detecting small variants and structural variants from PacBio CCS reads

The small variants were called by DeepVariant (https://​github.​com/​google/​deepv​ari-
ant) with default parameters. The structural variants were called by pbsv (https://​
github.​com/​Pacif​icBio​scien​ces/​pbsv) with default parameters.

Detecting structural variants from PacBio assembly alignments

The complete diploid assembly was reconstructed based on trio binning of canu v1.8 
from PacBio Sequel CLR data (~100X) of twins and Illumina NovaSeq ~40× 2×150bp 
WGS short-read sequencing data with 420 bp insert size performed at ARD for the 
two parents. Trios are formed by twins D5 and D6 and their parents respectively. 
Each trio is then assembled independently. The assembly was performed with canu -p 
prefix -d prefix genomeSize=3.1g -pacbio-raw pacbio.fasta.gz -haplotypeF7 F7.NGS.
fastq.gz -haplotypeM8 M8.NGS.fastq.gz. The diploid assembly results of parents were 
generated by FALCON v0.4 with default parameters based on ~100x PacBio Sequel 
CLR sequencing data.

Two methods of assembly alignment were used, including MUMmer v4.0.0beta2 and 
minimap2 v.2.17-r941. MUMmer assembly alignments were performed with the com-
mands nucmer -maxmatch -l 100 -c 500 ref.fa –prefix haplotype.contigs.fasta. Minimap2 
assembly alignments were performed with the commands minimap2 -cx asm5 -t12 –cs 
ref.fa haplotype.contigs.fasta. Three assembly-based callers were used including Assem-
blytics V1.2.1, SVMU V0.4, and Paftools (https://​github.​com/​lh3/​minim​ap2/​tree/​mas-
ter/​misc). Assemblytics was run with the parameters unique_length_required=10000 
min_size=20 max_size=1000000 by MUMmer alignment. Results were transformed 
into VCF format using SURVIVOR. SVMU was run with default parameters by MUM-
mer alignment. Paftools was run with default parameters to identify structural variants 
from the CS tags generated by Minimap2 alignment. Results of SVMU and Paftools were 
transformed into VCF format using a custom script. Structural variants of two contigs of 
the twins were merged into a single call set, and then structural variants shared between 
twins are used to validate structural variant benchmark calls.

Preprocessing and filtering of structural variants call set from long‑read sequencing

Due to considerable diversity in the number, type, and size of structural variants and 
the format of VCF files created by different caller algorithms, it was difficult to merge 

https://support.10xgenomics.com/genome-exome/software/downloads/latest
https://support.10xgenomics.com/genome-exome/software/downloads/latest
https://github.com/google/deepvariant
https://github.com/google/deepvariant
https://github.com/PacificBiosciences/pbsv
https://github.com/PacificBiosciences/pbsv
https://github.com/lh3/minimap2/tree/master/misc
https://github.com/lh3/minimap2/tree/master/misc
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the original VCF files directly for downstream analysis. In order to unify the standard 
and facilitate the analysis, structural variants call sets were preprocessed as follows:

(1)	 Only five types of structural variants (INS, DEL, DUP, INV, and BND) were retained 
for each call set. For Sniffles, complex structural variant types were excluded. For 
SVIM, DUP_INT, and DUP:TANDEM were converted to DUPs. For pbsv, CNVs 
were filtered.

(2)	 All structural variants under 50 bp were removed except for BNDs.
(3)	 All structural variants call sets were filtered if they do not meet the minimum num-

ber of supporting reads. For ~100X PacBio Sequel and ONT sequencing datasets, 
structural variants call sets from cuteSV and Sniffles were filtered with tag RE ≥10. 
SVIMs were filtered with tag SUPPORT ≥10. Structural variants called by NanoSV 
were filtered with tag DV ≥10. For pbsv, structural variants were filtered based on 
read depth of variant allele ≥3 of tag AD. The parameter median-filter in pbmm2 
v.1.0.0 only aligns the subread closest to the median subread length per ZMW and 
significantly reduces the number of reads supporting structural variants, thus a 
lower filtering threshold should be used. Otherwise, pbsv will lose too many true 
variants. For ~30X PacBio Sequal II, heuristically, the minimum number of reads 
supporting structural variants in all call sets from cuteSV, Sniffles, SVIM, and 
NanoSV was adjusted to three. The filtering threshold of pbsv was the same as that 
of PacBio Sequel for the parameter –median-filter.

(4)	 All structural variants call sets were assigned a unique ID based on sequencing 
platform, sample name, pipelines, serial number, and structural variant type for 
backtracking easily.

Integration of small variant benchmark calls

The construction process of high-confidence variant calling can be divided into three 
steps. Firstly, select the variants that are reproducibly detected in multiple datasets. Sec-
ondly, retain the variants that adhere to Mendelian inheritance patterns in Quartet fam-
ily. Lastly, keep the variants within callable regions.

GVCF files of 108 libraries were merged by joint variant calling process for each chro-
mosome separately (chr1-22, X), with samples in columns and variants in rows. This pro-
cess was run for each chromosome. Since variants detected in only one or a few datasets 
have a higher probability of being false positives, we kept variants that are consistently 
detected in multiple datasets. We first integrated the three technical replicates generated 
in each batch, and variants supported by at least two out of three replicates proceed to 
the next round of integration. For example, if a variant in a specific batch had genotypes 
of [“0/1”, “1/1”, “0/1”] across the three technical replicates, after integrating the repli-
cates, the genotype detected for that batch at the locus was determined as “0/1.” We next 
integrated the voting results across nine batches. Genotypes supported by at least four 
out of five PCR library preparation batches were considered as the integration result for 
PCR libraries, while genotypes supported by at least three out of four PCR-free library 
preparation batches were considered as the integration result for PCR-free libraries. For 
example, after integrating the technical replicates, the genotype results for the five PCR 
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library preparation batches were [“0/1”, “1/1”, “1/1”, “1/1”, “1/1”]. After batch integration, 
the resulting genotype for PCR libraries was “1/1.” We lastly integrated the voting results 
across library preparation methods. If the consistent genotype voting results were the 
same in both PCR and PCR-free results, the variant is considered “reproducible.” The 
GVCF files of the 27 technical replicates for each Quartet sample were merged into one 
VCF result for each of four Quartet samples. Each variant was annotated with voting 
status. “Conflict” refers to genotypes that did not pass the voting integration across tech-
nical replicates, batches, and library preparation methods. “./.” indicates no call in most 
replicates. If a variant’s genotype was determined through the above voting process in 
the 27 replicates, it was annotated as the integrated genotype.

The four integrated VCF files were merged, excluding any loci annotated as “Conflict” 
in any of the Quartet samples, and loci voted as “0/0” or “./.” in all four Quartet samples. 
A total of 31,155 small variant positions overlapping deletions were removed in all four 
Quartet samples, which represented with “*” in gvcf files, because downstream analy-
sis tools cannot deal with * allele. Mendelian inheritance status of remaining sites was 
checked by VBT [32] with the parameter “-no-call explicit.” We split Quartet into two 
“trios” (D5-F7-M8 and D6-F7-M8), and performed Mendelian analysis by VBT sepa-
rately. Only variants shared between twins and Mendelian consistent with parents were 
retained.

Lastly, we retained the variants in the callable regions as high-confidence variants. 
Callable regions are characterized by having sufficient coverage and quality of sequenc-
ing reads, enabling reliable variant detection. Callable regions are typically defined by 
specific criteria, such as a minimum read depth and mapping quality. By focusing on 
callable regions, researchers can ensure that their variant calling analysis is performed 
on regions of the genome with reliable data, enhancing the accuracy and confidence of 
the results. We described the way we defined callable regions for Quartet samples in the 
“Methods” section “Defining benchmark regions.”

Integration of structural variant benchmark calls

The benchmark structural variants were constructed based on all 120 long-read 
sequencing structural variants call sets described above, only including chr1-22:

(1)	 Structural variant callers with different detection algorithms lead to the same 
variant being called with different breakpoints and lengths. Moreover, due to the 
scoring systems of aligners and different clustering methods of callers, some large 
structural variant events were split into several smaller INSs/DELs in a local region. 
These redundant variants inflated the number of structural variants and hindered 
subsequent merging calls between different callers for the same sample. Jasmine 
v.1.0.1 (https://​github.​com/​mkirs​che/​Jasmi​ne) uses an improved minimum span-
ning forest algorithm to merge different variants within a single caller or between 
callers. Each variant was represented by a breakpoint (start, length) in two-dimen-
sional space. The distance between the two variants was equal to the Euclidean 
distance (default) by their breakpoints. When the distance between variant break-
points met the max_dist value (default value 1000, Euclidean distance: [(start1-

https://github.com/mkirsche/Jasmine
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start2) ^2+ (length1-length2) ^2]1/2 ≤1000), these close variants with the same 
variant type were clustered into a single structural variant event.

(2)	 We used Jasmine with –allow_intrasample, --keep_var_ids and –ignore_strand 
parameters to merge structural variants between callsets for each sample.

(3)	 The integrated structural variants set of each individual sample was subsequently 
filtered to retain structural variants supported by at least two long-read sequencing 
platforms or at least six call sets in a single technology.

(4)	 The four integrated structural variant sets in Quartet were merged into one call set 
by Jasmine with –keep_var_ids and –ignore_strand parameters.

(5)	 Structural variants were excluded if their size is over 10 Mb and in low-confidence 
regions, including centromeres, pericentromeric region, and gaps in hg38 reference 
genome.

(6)	 Structural variants frequently occur on repeats, which seriously hinders accuracy 
of detecting breakpoints and sequences on the alternative allele. Structural vari-
ants with explicit sequences were also helpful for subsequent genotyping. There-
fore, we used Iris v1.0.1 to report alternative allele sequences of INSs and DELs. It 
extracted breakpoints by racon or falcon_sense to get consensus sequences. Then 
NGMLR or minimap2 was used to re-align these sequences of the breakpoints to 
the reference genome for refining the variant breakpoints and sequences. The read 
names of supporting structural variants and allele sequences were obtained by Snif-
fles with -n -1 -s 2 –Ivcf parameters. We refined INSs and DELs by Iris with max_
out_length=1000000, --also_deletions and –pacbio parameters. In addition, the 
minimap2 bam files from PacBio Sequel II of each Quartet sample were adopted for 
reporting sequence and refining breakpoints, because PacBio Sequel II sequencing 
datasets had lower mismatch rates.

(7)	 We re-genotyped merged structural variants from two long-read sequencing plat-
forms (PacBio Sequel and ONT) by three long-read genotypers (LRcaller v0.1.2, 
Sniffles v1.0.11 and SVJedi v1.1.0) with default parameters. The bam files from 
NGMLR and minimap2 of PacBio Sequel and ONT were used by Sniffles and 
LRcaller. The fasta files of PacBio Sequel and ONT were used by SVJdei. Thus, for 
each Quartet sample, a total of 10 genotyping call sets were produced, four from 
LRcaller, four from Sniffles, and two from SVJedi. SVs were considered successfully 
and concordantly genotyped if at least six of the ten genotypes were the same.

(8)	 The structural variants successfully genotyped as heterozygous variants or homozy-
gous variants in at least one of four Quartet samples were retained as input of Men-
delian analysis. We retained structural variants that were shared by twin daughters 
and Mendelian consistent with parents, using bcftools v.1.9-224-g96ef00a.

Defining benchmark regions of small variants

First, we obtained callable regions from bam files using GATK V3.8-1 CallableLoci for 
each of the 108 short-read libraries, with –maxDepth 300 –maxFractionOfReadsWith-
LowMAPQ 0.1 –maxLowMAPQ 1 –minBaseQuality 20 –minMappingQuality 20 –
minDepth 10 –minDepthForLowMAPQ 10 parameters.
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We next selected consensus callable bed regions for each Quartet reference sample, if 
bed regions were denoted as callable (1) at least 2/3 replicates in one batch, (2) at least 
4/5 batches by PCR library preparation and 3/4 batches by PCR-free, and (3) both PCR 
and PCR-free library preparation methods. Then we kept regions callable in all Quartet 
samples.

We obtained reproducible invariant genomic positions by the same voting process. We 
then converted reproducible invariant genomic positions and high-confidence small var-
iant positions to bed region, and kept regions where all Quartet samples had concordant 
voting results.

Benchmark regions include positions of small variants benchmark calls and invariant 
homozygotic reference positions in consensus callable regions mention above. Thus, we 
got regions which were callable and had consistent calling results among replicates and 
all Quartet samples.

Defining benchmark regions of structural variants

When evaluating analysis methods using structural variant benchmark calls, structural 
variants were limited in the benchmark regions, which could assess the accuracy of gen-
otyping about INSs and DELs.

The process for constructing benchmark regions was as follows:

(1)	 We first identified callable regions covered by exactly one contig from output of 
Paftools based on trio binning genome assembly of Canu, as described in PacBio 
assembly-based structural variant detection. By default, Paftools used assembly-to-
reference alignment longer than 10 kb to generate callable regions.

(2)	 For each individual in twins, we got the union of the regions from each parental 
haplotype. Then we obtained the intersection of callable regions between twins.

(3)	 We compared the benchmark calls and PacBio-based assembly structural variants 
from Paftools in twins through Jasmine with –keep_var_ids and –ignore_strand 
parameters, and then retained assembly-specific structural variants.

(4)	 We applied svanalyzer widen command to extend the repetitive genomic coordi-
nates surrounding assembly-specific structural variants, and then added 50 bp on 
each side of these regions.

(5)	 Based on the regions obtained in step 2, we removed the regions in step 4. Finally, 
we constructed the benchmark regions for benchmark set in twins.

(6)	 The process for constructing benchmark regions in parent was similar to that of 
twins except for step 2, because there were no biological replicates of the parents.

Validation of small variants benchmark calls by PMRA

We performed 16 replicates for each Quartet reference material on the Applied Biosys-
tem™ Axiom™ Precision Medicine Research Array (PMRA). Genotypes were called by 
Axiom Analysis Suite v4.0.1.

We selected genotype calls using the following criteria: (1) less than two replicates 
with missing calls; and (2) more than 80% genotype calls are the same.
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The PMRA probes were annotated by hg19, but the reference datasets were mapped 
based on GRCh38. To avoid converting errors, we only compared variants annotated in 
dbSNP by dbSNP RefSNP ID.

Validation of structural variant benchmark calls by independent technologies

We validated the structural variant benchmark calls using four Illumina short reads, 10× 
Genomics linked reads, PacBio CLR long reads, and BioNano Genomics optical map-
ping. The structural variant datasets corresponding to each technology were generated 
through the data generation section above. In each technology, the shared structural 
variants between twins were used for validation of benchmark call structural variants 
in twins. The structural variants benchmark calls in parents were separately validated by 
the corresponding structural variant datasets. The validation process used Jasmine with 
–keep_var_ids and –ignore strand parameters.

We also randomly selected 40 structural variants including 20 insertions and 20 dele-
tions that have not been validated by other technologies and manually checked their 
accuracy through IGV.

In addition, the datasets from three other independent researches based on long-read 
sequencing were employed to validate our benchmark calls using Jasmine with –keep_
var_ids and –ignore strand parameters.

Training batch‑specific machine learning models

Variant quality metrics of Mendelian concordant variants from one D5 replicate for each 
batch (Additional file 2: Table S10, Batches 5, 6, and7 with three replicates) were used 
to train one-class SVM classifier (https://​scikit-​learn.​org/​stable/​modul​es/​svm.​html#). 
For small variants, variant quality, depth, BaseQRankSum, QualByDepth, FisherStrand, 
SrandOddsRatio, RMSMappingQuality, MappingQualityRnakSunTest, ReadPosRank-
SumTestg, genotype quality, and membership of dbSNP were used. For structural vari-
ants, variant quality, genotype quality, and the raw counts of paired reads supporting 
alternate allele were used. The three trained models were applied for each batch respec-
tively to classify high-quality variants and low-quality variants.

Variant calling from RNA‑seq

Sequences were mapped to GRCh38. We used Sentieon Genomics software to analyze 
short-read RNA datasets from raw fastq files to VCF files. This workflow was derived 
from recommended RNA-seq short variant discovery pipeline by the Broad Institute 
(https://​gatk.​broad​insti​tute.​org/​hc/​en-​us/​artic​les/​36003​55311​92-​RNA-​seq-​short-​varia​
nt-​disco​very-​SNPs-​Indels-), including read mapping by BWA-MEM, duplicates remov-
ing, split reads at junction, base quality score recalibration (BQSR), and variant calling 
by HaplotyperCaller. Additionally, we employed DeepVaraint with RNA-seq models 
to call variants (https://​github.​com/​google/​deepv​ariant/​blob/​r1.5/​docs/​deepv​ariant-​
rnaseq-​case-​study.​md).

Variant detection from LC‑MS/MS proteomics

XML file contained peptide identification results generated by an open-source search 
engine X!Tandem. The software needs to input the Mascot Generic Format (MGF) file, 

https://scikit-learn.org/stable/modules/svm.html#
https://gatk.broadinstitute.org/hc/en-us/articles/360035531192-RNA-seq-short-variant-discovery-SNPs-Indels
https://gatk.broadinstitute.org/hc/en-us/articles/360035531192-RNA-seq-short-variant-discovery-SNPs-Indels
https://github.com/google/deepvariant/blob/r1.5/docs/deepvariant-rnaseq-case-study.md
https://github.com/google/deepvariant/blob/r1.5/docs/deepvariant-rnaseq-case-study.md
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which is the most common format for MS/MS data encoding in the form of a peak list. 
Then PGA R packages (v1.18.1) were used to identify variant peptides from the XML 
file.

We constructed custom protein databases from RNA-seq datasets containing SNVs 
and Indels, then searched the database to detect variant peptides and their correspond-
ing variant’s locations on the genome from LC-MS/MS datasets.

Reproducibility

The Jaccard Index represents the concordance of variant detection between two 
sequencing datasets by measuring the proportion of shared variants detected by both 
datasets relative to the total number of variants detected by both datasets. Shared vari-
ants are defined as variants with the same position and variant sequence, where the 
“CHROM,” “POS,” “REF,” and “ALT” and “GT” fields in the VCF file must be identical. 
The Jaccard Index ranges from 0 to 1, with values closer to 1 indicating a higher level of 
consistency in the variants detected by the two datasets. The formula for calculating the 
Jaccard Index is as follows:

Precision and recall

Precision is the fraction of called variants in the test dataset that are true, and recall is 
the fraction of true variants that are called in the test dataset. True positives (TP) are 
true variants detected in the test dataset. False negatives (FN) are variants in the refer-
ence dataset failed to be detected in the test dataset. False positives (FP) are variants 
called in the test dataset but not included in the reference dataset. Precision and recall 
are defined as below:

For small variants, we compared variants with benchmark small variants using hap.
py with “vcfeval” as the comparation engine (https://​github.​com/​Illum​ina/​hap.​py). For 
structural variants, we merged and compared variants in different callsets using Jasmine 
with parameters max_dist=1000 –keep_var_ids –ignore_strand. When considering the 
genotype of structural variants, an additional parameter –output_genotypes needs to be 
used. When comparing with small variant benchmark calls and structural variant bench-
mark calls, genotypes of the variants were considered.

Mendelian violation rate of Quartet family

Mendelian violation rate is the number of variants not following Mendelian inherit-
ance laws divided by the total number of variants called among the four Quartet sam-
ples. Mendelian violated variants are the variants not shared by the twins or following 

J (A,B) =
|A ∩ B|

|A ∪ B|
=

|A ∩ B|

|A| + |B| − |A ∩ B|

Presicion =
TP

TP + FP

Recall =
TP

TP + FN

https://github.com/Illumina/hap.py
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Mendelian inheritance laws with parents. When calculating Mendelian violation of 
small variants, variants on large deletions defined by structural variants benchmark calls 
were not included, because VBT (https://​github.​com/​sbg/​VBT-​TrioA​nalys​is) takes these 
true variants as Mendelian violations. For structural variants, Mendelian analysis was 
only done for Quartet-D5, because we could not distinguish homozygotic references and 
no-call sites. We did not consider genotype information; therefore ,Mendelian discord-
ant variants are variants not shared by Quartet twins or specifically identified in twins 
but not in parents.
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