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Abstract 

A tumor contains a diverse collection of somatic mutations that reflect its past evolu‑
tionary history and that range in scale from single nucleotide variants (SNVs) to large‑
scale copy‑number aberrations (CNAs). However, no current single‑cell DNA sequenc‑
ing (scDNA‑seq) technology produces accurate measurements of both SNVs and CNAs, 
complicating the inference of tumor phylogenies. We introduce a new evolutionary 
model, the constrained k-Dollo model, that uses SNVs as phylogenetic markers but con‑
strains losses of SNVs according to clusters of cells. We derive an algorithm, ConDoR, 
that infers phylogenies from targeted scDNA‑seq data using this model. We demon‑
strate the advantages of ConDoR on simulated and real scDNA‑seq data.

Keywords: Cancer, Intra‑tumor heterogeneity, Tumor phylogeny, Single‑cell DNA 
sequencing, Dollo model

Background
Cancer is an evolutionary process in which somatic mutations across all genomic 
scales―ranging from single nucleotide variants (SNVs) to large-scale copy number 
aberrations (CNAs)―accumulate in a population of cells. This process results in a 
heterogeneous tumor with subpopulations of cells, called clones, with distinct genomes. 
Reconstruction of the evolutionary history of cancer clones, known as a tumor phylog-
eny, from genomic sequencing data of the cells in a tumor is crucial for understanding 
cancer progression and developing effective therapies for treatment [1–4].

Early cancer sequencing projects performed bulk sequencing of tumor samples and 
thus measured somatic mutations from a mixture of thousands or millions of cells. 
Tumor phylogeny inference from this data is complicated since it requires deconvolution 
of the data, i.e., simultaneous inference of the tumor clones and their proportions in the 
mixture [5–11].
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Recent developments in single-cell DNA sequencing (scDNA-seq) allow paral-
lel sequencing of thousands of individual cells from a tumor   [2, 12–15], alleviating 
the need for such deconvolution. However, tumor phylogeny inference from this data 
remains challenging since current scDNA-seq technologies are error-prone and produce 
data with missing information. As such, phylogeny inference using scDNA-seq data 
involves correcting these errors and imputing the missing data under some evolutionary 
model [2, 16].

Multiple evolutionary models have been used to construct tumor phylogenies from 
scDNA-seq data. Early works [17–20] used SNVs as evolutionary markers, and relied on 
the infinite-sites model [21] which states that an SNV can be gained only once and never 
be subsequently lost in the phylogeny. While the same SNV occurring independently 
more than once is rare [22], loss of SNVs due to copy-number deletions is common in 
cancer  [23]. To account for these losses, other works  [24–27] use some variant of the 
k-Dollo model [28], in which a mutation can be gained at most once but may be lost at 
most k times during the course of the evolution, where k is a user-defined integer. Sev-
eral methods [29, 30] employ an even more permissive model, the finite-sites model [31], 
which allowed mutations to be gained and lost multiple times.

A major limitation of the aforementioned models and methods is that they do not 
utilize any information about CNAs, which can often also be derived from scDNA-
seq data. This limitation is addressed in methods such as SCARLET [32], BiTSC2 [33], 
and COMPASS  [34] which incorporate copy-number information during phylogeny 
inference. SCARLET introduced a novel loss-supported Dollo model that requires the 
copy-number profile of each cell and the copy-number phylogeny as input. BiTSC2 and 
COMPASS, on the other hand, construct a joint phylogeny with both SNV and CNA 
events. However, these methods rely heavily on accurate and simultaneous identifica-
tion of SNVs and CNAs on the same set of cells, which is challenging with the current 
scDNA-seq technologies [35].

Current scDNA-seq technologies fall into one of two classes with different capabili-
ties from measuring CNAs and SNVs. First, whole genome scDNA-seq technologies 
yield data with roughly uniform coverage of the whole genome but with low depth at 
any particular locus, making it suitable for detection of larger CNAs in single-cells but 
not SNVs [12, 14, 36]. In contrast, targeted scDNA-seq technologies sequence specific 
regions of the genome, typically comprising of cancer-related genes, with high depth 
allowing accurate identification of SNVs but not of CNAs [13, 15, 24, 37]. For example, 
the Mission Bio Tapestri platform [38, 39] performs high-coverage sequencing ( ∼ 50× 
coverage) of hundreds of amplicons from thousands of cells. While precise identification 
of CNAs in each cell using such targeted scDNA-seq data is challenging, clustering of 
cells based on their copy-number profiles is a much simpler task. However, no existing 
evolutionary model utilizes such clustering information.

Here, we introduce a new evolutionary model, the constrained k-Dollo model, and an 
algorithm ConDoR (Constrained Dollo Reconstruction) that computes phylogenetic 
trees from read count data using this model (Fig. 1). In the constrained k-Dollo model, 
an SNV occurs only once on the phylogeny but may be lost up to k times, as long as 
these losses conform to a given copy-number clustering of cells. The key idea underpin-
ning the constrained k-Dollo model is that, since loss of SNVs predominantly occurs due 
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to CNAs, we allow loss of an SNV only between cells that have distinct copy-number 
profiles. Importantly, the constrained k-Dollo model generalizes both the infinite-sites 
and the k-Dollo models. Additionally, we model the loss of single nucleotide polymor-
phisms (SNPs), i.e., germline variants present in normal cells, that can be informative 
during phylogeny inference, while most existing methods only focus on somatic variants 
(SNVs) [17, 20, 25, 32].

We show that ConDoR outperforms existing tumor phylogeny inference methods on 
simulated and real targeted scDNA-seq data, including Mission Bio Tapestri data from 
multiple regions of a pancreatic tumor and whole-exome sequencing of a metastatic 
colorectal cancer [37]. In both cases, ConDoR yields a more plausible phylogeny com-
pared to existing methods, and provides insights into the spatial evolution and meta-
static spread of these tumors.

Results
Constrained k‑Dollo model

We propose a new model, the constrained k-Dollo model, that integrates information 
about SNVs, SNPs and CNAs on the same set of cells during phylogeny inference. Our 
model incorporates CNAs via a clustering of cells, where all cells in the same cluster 
have the same copy-number profile (the copy number of all loci across the genome). In 
other words, each cluster corresponds to a copy-number clone. We will refer to this clus-
tering as the copy-number clustering.

Suppose we measure m SNVs and SNPs in n cells from a tumor. In the following, we 
collectively refer to SNVs and SNPs as mutations. We encode the presence or absence 
of mutations in the cells by an n×m binary mutation matrix A where ai,j = 1 if cell i 
contains mutation j and ai,j = 0 indicates the mutation j is absent in cell i. A phyloge-
netic tree T for the tumor is a rooted node-labeled tree which describes the evolutionary 

Fig. 1 Overview of the ConDoR algorithm. ConDoR takes as input: a a clustering of cells based on 
copy‑number profiles and b the observed variant and total read counts from scDNA‑seq data. ConDoR 
employs the constrained k‑Dollo model to construct the c constrained k‑Dollo phylogeny with mutation 
losses (dashed box) allowed only between cells from distinct copy‑number clusters and the d inferred 
mutation matrix
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history of the tumor. Each internal node v in the tree T represents an ancestral cell and 
is labeled by a vector av ∈ {0, 1}m indicating the presence/absence of each mutation 
j ∈ {1, . . . ,m} in that cell. The root r(T) of the tree T represents the normal cell. As such 
ar(T ),j = 0 if mutation j is an SNV, i.e., a somatic mutation, and ar(T ),j = 1 if mutation j is 
an SNP, i.e., a germline mutation. Each leaf of T corresponds to one of the n cells in the 
tumor. Our goal is to reconstruct a phylogenetic tree T for a given mutation matrix A 
under a given evolutionary model.

An edge (v, w) of a phylogeny T induces the gain of a mutation j if av,j = 0 and aw,j = 1 . 
On the other hand, a mutation j is said to be lost on edge (v, w) if av,j = 1 and aw,j = 0 . 
The simplest evolutionary model used in cancer genomics is the infinite-sites model 
which has two constraints [21]. Firstly, a mutation is allowed to be gained at most once 
in the phylogeny. This constraint stems from the infinite-sites assumption which posits 
that it is very unlikely for the same position in the genome to get mutated multiple times 
independently. Secondly, once a mutation is gained it cannot be subsequently lost. A 
phylogeny that satisfies these constraints is known as a perfect phylogeny [40].

While parallel mutations (i.e., the same mutation gained multiple times in the phy-
logeny) and back mutations (i.e., a mutation reverted back to reference state) are rare 
in cancer  [22], SNVs and SNPs are frequently lost due to copy-number aberrations. 
As such, more recent phylogeny inference methods  [25, 32] apply some variant of the 
Dollo model [28] for phylogeny inference, which allows loss of SNVs/SNPs. Specifically, 
under the Dollo model, a mutation is allowed to be gained at most once but can be lost 
multiple times in the phylogeny. The parameterized version of this model is the k-Dollo 
model, in which a mutation can only be lost at most k times in the phylogeny. However, 
a major limitation of Dollo models is that, although they allow loss of SNVs and SNPs, 
possibly due to CNAs, they do not incorporate any information about the copy-number 
states of the cells.

We introduce the constrained k-Dollo model that supplements the k-Dollo model with 
two additional constraints using the copy-number clustering of the cells. First, since 
reversal of mutations (back mutations) in cancer are rare [22, 23], we assume that SNVs 
and SNPs can only be lost due to overlapping CNAs. As such, we only allow such losses 
between cells that belong to distinct copy-number clusters. Second, we assume that each 
copy-number profile describing the copy number states over the entire genome arises 
only once in the phylogeny. As such, cells belonging to the same cluster form a con-
nected subtree in the phylogeny. Let p be the number of copy-number clones and σ be 
the copy-number clustering of the n cells. We formally define the constrained k-Dollo 
phylogeny for a mutation matrix A and copy-number clustering σ as follows.

Definition 1 (constrained k-Dollo phylogeny) A constrained k-Dollo phylogeny T has 
the following properties.

1 Each node v in T is labeled by av ∈ {0, 1}m and a copy number clone σ(v).
2 The root r(T) is labeled such that ar(T ),j = 0 if mutation j is an SNV and ar(T ),j = 1 if 

j is an SNP.
3 For each mutation j, there is at most one edge (v, w) in T such that av,j = 0 and 

aw,j = 1.
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4 For each mutation j, there are at most k edges (v, w) in T such that av,j = 1 and 
aw,j = 0.

5 For edge (v, w) in T such that av,j = 1 and aw,j = 0 for some mutation j, we have 
σ(v)  = σ(w).

6 For any copy number clone ℓ , the set of nodes labeled σ(v) = ℓ form a connected 
subtree of T.

We say that a n×m binary matrix A is a constrained k-Dollo phylogeny matrix for 
copy-number clustering σ if and only if there exists a constrained k-Dollo phylogeny T 
for A and σ , i.e., T has n leaves and for each leaf there is a unique index i ∈ {1, . . . , n} 
such that the leaf is labeled by the row ai of A and σ(i).

The constrained k-Dollo model generalizes the infinite sites model  [21] and the 
k-Dollo model  [28]. Specifically, when the number p of clusters is 1, the constrained 
k-Dollo model is equivalent to the infinite sites model. On the opposite extreme, when 
the number p of clusters is equal to the number n of cells, i.e., each cell is in a distinct 
cluster, the constrained k-Dollo model is equivalent to the k-Dollo model.

Constrained k–Dollo phylogeny problem for read count data

During a scDNA-seq experiment, we do not observe the mutation matrix A directly. 
Instead, we observe read counts for each mutation in each cell. Specifically, we obtain 
the variant read count matrix Q ∈ Z

n×m , where qi,j is the number of reads with the vari-
ant allele for mutation j in cell i, and the total read count matrix R ∈ Z

n×m , where ri,j is 
the total number of reads for mutation j in cell i. Considering that the cells and muta-
tions in each cell are sequenced independently, and given the tree, the cells evolve inde-
pendently, the likelihood of observing the variant read count matrix Q for given total 
read count matrix R and mutation matrix A can be written as follows.

We model the observed variant read counts qi,j using a beta-binomial, similar to previ-
ous work [32, 41, 42]. The “Methods” section provides the details about the read count 
model.

For given read count matrices Q and R, copy-number clustering σ of the cells and inte-
ger k, our goal is to construct a constrained k-Dollo phylogeny that maximizes the likeli-
hood described in Eq. 1. We refer to this as the Constrained k-Dollo phylogeny problem 
for read count data and pose it as follows.

Problem 1 (Constrained k-Dollo phylogeny problem for read count data (CkDP-RC)) 
Given a variant read count matrix Q, total read count matrix R, copy-number cluster-
ing σ and integer k, find mutation matrix A and phylogeny T such that (i) likelihood 
Pr(Q | R,A) is maximized and (ii) T is a constrained k-Dollo phylogeny for A and σ.

In the “Methods” section, we describe a combinatorial characterization of constrained 
k-Dollo phylogenies that we incorporate in an efficient mixed linear integer program 
(MILP) to solve the CkDP-RC problem. Our resulting method, ConDoR, is implemented 

(1)Pr(Q | R,A) =

n

i=1

m

j=1

Pr(qi,j | ri,j , ai,j).
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in Python 3 using Gurobi [43] (version 9.0.3) to solve the MILP. ConDoR is available at 
https:// github. com/ rapha el- group/ ConDoR.

Evaluation on simulated data

We compare ConDoR to SCARLET [32], SPhyR [25], SiFit [29] and SCITE [17] on sim-
ulated data. We generated simulated data with n ∈ {25, 50, 100} cells, m ∈ {25, 50, 100} 
mutations, p ∈ {3, 5} copy-number clusters, and maximum number of losses k ∈ {1, 2, 3} . 
We used a growing random network  [44] to generate a tree T with m+ p edges and 
assign mutations, copy number states, and cluster assignments to each tree, as described 
in the “Methods” section. Next, we assign n cells uniformly at random to one of the 
nodes in the tree. We simulate the sequencing data for each mutation in each cell using 
a beta-binomial read count model (details in the “Methods” section). We simulate 5 
instances for each combination of the varying simulation parameters. The precise input 
parameters used for each method are described in Additional file 1: Section C.

We compare the mutation matrix Â = [âi,j] and tumor phylogeny T̂  inferred by each 
method to the ground truth as follows. Following previous studies [25, 32], we evaluate 
the inferred mutation matrix Â against the ground-truth mutation matrix A by comput-
ing the normalized mutation matrix error ǫ(A, Â) between A and Â given by,

We evaluate the accuracy of the inferred tumor phylogeny T̂  compared to the ground-
truth tumor phylogeny T by computing the pairwise ancestral relation accuracy 
E(T , T̂ ) [25, 32]. Specifically, under the assumption that a mutation can be gained only 
once in the phylogeny, which is employed by all methods that we compare against in 
this study except SiFit, we compute the accuracy of inferring the correct relationship 
between all possible pairs of mutations from the inferred tumor phylogeny (details in 
the “Methods” section). When the pairwise ancestral relation accuracy E(T , T̂ ) is 1, the 
inferred tumor phylogeny T̂  and the ground-truth tumor phylogeny T are identical when 
restricted to the edges on which the mutations are gained. We exclude SiFit when com-
puting this metric because it uses the finite-sites model, which allows mutations to occur 
multiple times in the phylogeny as a consequence of which pairs of mutations may not 
have a unique relationship.

ConDoR outperforms all the other methods in terms of both the normalized muta-
tion matrix error (Fig.  2a) and the ancestral relationship accuracy (Fig.  2b) across 
all simulation parameters. For instance, on the largest simulated instances with 
n = 100 cells and m = 100 mutations, ConDoR achieves the lowest normalized muta-
tion matrix error (median ǫ(A, Â) = 0.002 ) and the highest pairwise ancestral rela-
tion accuracy (median E(T , T̂ ) = 0.986 ) compared to SCARLET ( ǫ(A, Â) = 0.008 , 
E(T , T̂ ) = 0.969 ), SCITE ( ǫ(A, Â) = 0.01 , E(T , T̂ ) = 0.975 ), SiFit ( ǫ(A, Â) = 0.05 ), 
and SPhyR ( ǫ(A, Â) = 0.02 , E(T , T̂ ) = 0.949 ). The superior performance of ConDoR 
comes with running times comparable to existing methods, although ConDoR does 
have a higher runtime on some of the large simulated instances with n = 100 cells and 
m = 100 mutations (Additional file 1: Fig. S5).

ǫ(A, Â) =
1

nm

n
∑

i=1

m
∑

j=1

|ai,j − âi,j|.

https://github.com/raphael-group/ConDoR
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Interestingly, ConDoR outperforms SCARLET even though SCARLET is given 
substantially more information about copy number aberrations including both the 
precise copy-number profile of each cell and the true copy-number tree as input. 
We believe that this advantage is due to ConDoR solving the underlying optimiza-
tion problem exactly while SCARLET employs various heuristics that are not guar-
anteed to yield an optimal solution. Using additional simulations, we also show that 
ConDoR is robust to noise in the copy number clustering and the read count model 
parameters (Additional file 1: Section D).

Multi‑region pancreatic ductal adenocarcinoma data

We used ConDoR to analyze targeted single-cell DNA sequencing (scDNA-seq) data 
from two regions of a pancreatic ductal adenocarcinoma (PDAC) tumor. Specifically, we 
sequenced two samples (S1 and S2) from distinct regions of the resected tumor using 
both conventional bulk whole exome sequencing and Mission Bio Tapestri single-cell 
sequencing (details in the “Methods” section). The scDNA-seq workflow was conducted 
using a targeted panel consisting of 596 amplicons (median length is 209 bps, Additional 
file 1: Fig. S6a) interrogating frequently mutated genes in PDAC. We obtained sequenc-
ing data from 2153 cells (1167 cells from the first sample and 986 cells from the second 
sample) with a median coverage of 67× per amplicon per cell.

We identified 7 mutations of interest―including somatic SNVs in BRCA2, TGFBR2, 
FGFR1  and germline SNPs in SPTA1, MGMT. These mutations were identified using 
matched bulk tumor and normal sequencing data and were present in the single-cell 
data with high confidence (details in “Methods” section). Due to the short length of 
amplicons and uneven distribution in coverage (Additional file  1: Fig. S6b), accurate 
copy-number calling using this data is challenging. Instead we clustered cells accord-
ing copy number profiles derived from normalized read counts using k-means cluster-
ing  [45] for number of clusters p ∈ {2, . . . , 8} . We select the best value for p using the 
Silhouette score  [46] (see “Methods” section for details). This analysis reveals 3 copy-
number clusters (Fig. 3a), which we label C0, C1, and C2, that contain 275, 1145, and 733 
cells, respectively.

Fig. 2 ConDoR outperforms existing methods in recovering the mutation matrix and the tumor phylogeny 
on simulated data. a Normalized mutation matrix error and b pairwise ancestral relation accuracy for each 
method compared to the simulated ground truth. Box plots show the median and the interquartile range 
(IQR), and the whiskers denote the lowest and highest values within 1.5 times the IQR from the first and third 
quartiles, respectively
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ConDoR produces a more plausible phylogeny of the PDAC tumor compared 
to existing methods and provides insights into the evolution of tumor. While most 
PDAC cases are driven by canonical gain-of-function KRAS mutations  [47], Con-
DoR reveals that the tumor analyzed here is driven by a truncal BRCA2 stop-gained 
mutation (p.Y600*), which likely inactivated the BRCA2 protein, a tumor suppressor 
essential for homologous recombination repair  [48]. The ConDoR phylogeny shows 
branched evolution of the tumor, with the trunk leading to two branches (Fig.  3b), 
the first characterized by two missense TGFBR2 mutations, TGFBR2_1 (p.A426G) 
and TGFBR_2 (p.M425I), which likely inactivated cell-intrinsic TGF-β signaling, 
and the second characterized by a missense mutation to FGFR1 (p.T50K). Although 
FGFR1 is involved in MAPK-ERK signaling [47], the particular point mutation’s sig-
nificance is yet to be characterized. ConDoR infers loss of two germline SNPs in 
MGMT, MGMT_1 and MGMT_2 (both contained in gene MGMT and amplicon 
AMPL257637), on the edge in the second branch distinguishing cells of cluster C2 
from cells of cluster C1. This suggests a loss of heterozygosity (LOH) in cluster C2 
cells, which is supported by lower normalized total read count of their amplicon 
(AMPL257637) in the cells from cluster C2 compared to the cells from cluster C1 
(Fig. 3c, p < 5.8× 10−33 with a one-sided Kolmogorov-Smirnov test). Lastly, the root 
of the ConDoR phylogeny is labeled by cluster C1, indicating that it contains the nor-
mal cells present in the data.

We compared the ConDoR phylogeny to the phylogenies produced by two other 
methods on this data: COMPASS  [34], which infers a comprehensive phylogeny 
with both SNV and CNA events, and SPhyR [25], which uses the k-Dollo model. We 
could not run SCARLET on this data because it was difficult to obtain reliable inte-
ger copy numbers and copy number trees from this targeted sequencing data. While 
COMPASS takes the read count matrices as input, SPhyR takes an observed muta-
tion matrix (Fig.  3d) obtained by discretizing read counts (details in the “Methods” 
section). COMPASS hypothesizes 8 loss of heterozygosity events (Additional file  1: 
Fig.  S7a) covering all genes in the study except SPTA1 (BRCA2, TGFBR2, FGFR1, 
MGMT). SPhyR (with k = 1 ) produces a phylogeny that contains loss of all the muta-
tions except FGFR1 (Additional file 1: Fig. S7b), which is highly unlikely. This dem-
onstrates that using permissive models, like the ones used in COMPASS and SPhyR, 
may lead to overfitting of the data resulting in overestimation of mutations with loss. 
ConDoR’s constrained k-Dollo model avoids overfitting by incorporating the copy-
number clustering to constrain where loss of mutations can occur in the phylogeny.

The phylogeny constructed by ConDoR also reveals a spatial clonal architecture of 
the PDAC tumor that agrees with previous histological analysis of the tumor. Spe-
cifically, the ConDoR phylogeny shows an enrichment of cells from sample S2 (743 
cells from S2 vs. 28 cells from S1) in the second branch of the phylogeny, charac-
terized by the edge with the mutation in FGFR1 (Fig. 3b). Such a spatial separation 
of the two clonal lineages conforms to histopathological results of this tumor (Fig. 5 
in [15]) that showed two populations of tumor cells with distinct morphologies that 
were well demarcated. Spatial structure in the clonal heterogeneity of tumors has also 
been observed in previous cancer studies and has several clinical implications such 
as resistance to therapy and recurrences  [49–52]. In summary, ConDoR leverages 
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copy-number clustering obtained from targeted scDNA-seq data to build a more 
plausible tumor phylogeny compared to existing methods and reveals the spatial 
structure of the intra-tumor heterogeneity.

Metastatic colorectal cancer data

We also analyzed a published targeted scDNA-seq dataset from a metastatic colorectal 
cancer patient CRC2  [37]. This dataset consists of 36 SNVs that were identified from a 
1000 gene panel in 186 cells: 145 from the primary tumor and 41 from a liver metasta-
sis. The original study built a phylogeny of the 186 cells using SCITE [17] and reported 
two distinct branches of metastatic cells on this phylogeny. This phylogeny suggests a 
polyclonal origin of the metastasis, i.e., the metastatic tumor was seeded by two distinct 
clones that migrated from the primary tumor (Additional file  1: Fig. S8a). To evalu-
ate the accuracy of the SCITE tree, the authors identified two bridge mutations, in the 
genes FHIT and ATP7B, that were present in the cells of the second metastatic branch 
(detected in 10/13 and 13/13 cells, respectively) but absent in the cells of the first meta-
static branch (detected in 1/15 and 1/15 cells, respectively).

Two subsequent analyses of this data―using the PhISCS  [20] and SCARLET [32] 
algorithms―yield a simpler explanation for the data; namely that the liver metasta-
sis resulted from monoclonal seeding; i.e., the metastatic tumor resulted from a single 
migration from the primary tumor. However, neither of these studies adequately explain 
the absence of the bridge mutations in cells of the second metastatic branch in the 
SCITE tree. PhISCS removed the bridge mutations from analysis in order to obtain a 
perfect phylogeny that supports monoclonal seeding. SCARLET, using a loss-supported 
Dollo model, found evidence for the loss of the FHIT mutation due to a deletion in some 
cells (Additional file 1: Fig. S8b) but concluded that the absence of the ATP7B mutation 
in all the cells from the second metastatic branch in the SCITE tree was due to simulta-
neous false negatives in all these cells, a highly unlikely scenario.

ConDoR produces a phylogeny that both supports monoclonal seeding of the metasta-
sis and provides a more plausible explanation for the absence of the bridge mutations in 
some of the metastatic cells compared to previous analyses. The ConDoR phylogeny was 
produced using the copy-number clustering from [32], which included 4 clusters: 120 
diploid cells (D), 33 aneuploid profile of primary tumor cells (P), and two distinct ane-
uploid profiles of metastatic tumor cells (M1 and M2 with 23 and 10 cells, respectively). 
The ConDoR tree contains a single branch containing all the metastatic cells, supporting 
the simpler hypothesis of monoclonal seeding of the liver metastasis, in agreement with 
the PhISCS and SCARLET analyses (Fig. 4a). Moreover, ConDoR infers the loss of both 
the bridge mutations, FHIT and ATP7B, leading to a phylogeny with a higher likelihood 
compared to SCARLET (log-likelihood − 8324.8 for ConDoR and − 8437.4 for SCAR-
LET). This demonstrates that the low resolution of the copy-number aberrations derived 
from targeted scDNA-seq data used by SCARLET may lead to misleading results, and 
ConDoR avoids these errors by only using the copy-number clusters.

We also find that the ConDoR tree is consistent with copy-number profiles obtained 
from whole-genome sequencing of 42 additional cells from the same patient. These cells 
were not used in the phylogenetic analyses. In addition to the bridge mutations, Con-
DoR infers the loss of SNVs in LRP1B, LINGO2_1, and NR4A3. These three SNVs lie 
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within regions with lower copy numbers in the WGS copy-number profiles from the 
original study (Fig.  4b). The copy-number profiles from WGS data also reveal that all 
metastatic cells share copy-number deletions in chromosomes 2, 3p, 4, 7, 9, 16, and 22 
relative to the cells in the primary tumor. These shared copy number profiles further 
corroborates the ConDoR tree (and the PhISCS and SCARLET trees) in which all meta-
static cells are in a single clade. In contrast, SCITE tree from the original study suggests 
that these CNAs occurred independently in the two distinct branches of the phylogeny 
with metastatic cells which is a less likely explanation. In summary, ConDoR integrates 
SNVs and copy-number clustering to build a tumor phylogeny that contains loss of SNVs 
that are supported by orthogonal copy-number data and supports a simpler monoclonal 
origin of the metastasis compared to the original study.

Conclusions
We introduced a new evolutionary model, the constrained k-Dollo model, a model for 
two-state phylogenetic characters, in which a character can be gained at most once and 
lost at most k times but where the losses are constrained according to a given clustering 
of the taxa. This model was inspired by the challenge of inferring a phylogenetic tree 
from targeted single-cell DNA sequencing data, where SNVs and SNPs are measured 
with high fidelity, but CNAs are poorly described. Specifically, our model relies on a 
clustering of cells based on their copy-number profiles as input, without requiring iden-
tification of precise CNAs in each cell. The constrained k-Dollo model generalizes both 
the infinite sites model and the k-Dollo model.

We developed an algorithm, ConDoR (Constrained Dollo Reconstruction), that 
infers the most parsimonious constrained k-Dollo phylogeny using a probabilistic 

Fig. 4 ConDoR infers a phylogeny that is consistent with the copy‑number clones in a metastatic colorectal 
cancer dataset. a The ConDoR phylogeny shows loss of bridge mutations FHIT and ATP7B and suggests 
monoclonal origin of the liver metastasis. b Losses inferred by ConDoR are supported by copy‑number 
profiles from whole genome sequencing data of 42 cells from the same patient in the original study [37] 
(heatmap showing copy‑number profiles adapted from [37]). Mutations LRP1B, LINGO2_1, and NR4A3 lie 
in regions (black boxes) that decrease in copy‑number between the clusters that label the vertices on the 
edge in the phylogeny where the corresponding mutation (bold text in (a)) is lost : P → M1 for LRP1B and 
LINGO2_1, and M1→ M2 for NR4A3
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model for the read counts in scDNA-seq data. On simulated data, ConDoR out-
performs state-of-the-art tumor phylogeny inference methods. On a multi-region 
targeted scDNA-seq data of pancreatic ductal adenocarcinoma tumor, ConDoR pro-
duced a more plausible phylogeny compared to existing methods, providing insights 
into the evolution and spatial clonal architecture of the tumor. On targeted scDNA-
seq data of metastatic colorectal cancer patient, ConDoR found a phylogeny that sup-
ports a simpler monoclonal origin of liver metastasis compared to polyclonal seeding 
proposed by the original study [37].

There are several limitations and directions for future research. First, ConDoR cur-
rently takes the read count matrices with the mutations and the copy-number cluster-
ing as input to build a constrained k-Dollo phylogeny. A future direction is to extend 
ConDoR to simultaneously perform variant calling, and inference of the copy-number 
clustering and the phylogeny, potentially improving the accuracy of the results. Sec-
ond, ConDoR and several existing methods [17, 20, 25, 29, 32] disregard the location 
of SNVs during phylogeny inference. However, since CNAs alter the copy-number 
of contiguous segments of the genome, the SNV locations can be used to model the 
likelihood of simultaneous loss of multiple adjacent SNVs. Lastly, while ConDoR only 
uses scDNA-seq data as input, the underlying constrained k-Dollo model is a general 
model for evolution of SNVs. We propose that this model can be used for phylogeny 
inference while integrating information from multiple sequencing technologies, pos-
sibly measuring different modalities of the cancer cells [19, 53].

Methods
Characterization of constrained k‑Dollo phylogenies

We derive a characterization of constrained k-Dollo phylogeny matrices by building 
on previous work on characterization of k-Dollo phylogeny matrices [25, 26]. Recall 
that in the k-Dollo model, a 0 entry in the mutation matrix A indicates that either the 
mutation did not occur in the cell or that the mutation occurred but then was subse-
quently lost in the cell. If we could distinguish these two cases, then we could replace 
the 0 entries resulting from losses by additional character states {2, . . . , k + 1} repre-
senting the k possible losses of a mutation in the k-Dollo phylogeny. This idea forms 
the basis of the following (extended) definition of k-completion of a mutation matrix 
A.

Definition 2 (El-Kebir 2018 [25]) A matrix B ∈ {0, . . . , k + 1}n×m is a k -comple-
tion of a mutation matrix A ∈ {0, 1}n×m provided: (1) bi,j = 1 if and only if ai,j = 1 ; (2) 
bi,j ∈ {0, . . . , k + 1} \ {1} if and only if ai,j = 0 ; (3) bi,j ≥ 1 if j is an SNP.

The following definition defines a subset of all possible k-completion matrices of a 
mutation matrix A.

Definition 3 (El-Kebir 2018 [25]) A matrix B ∈ {0, . . . , k + 1}n×m is a k -Dollo com-
pletion of mutation matrix A provided it is a k-completion of mutation matrix A such 
that there exists no two columns and three rows in B of the following forms:
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where i1, i
′
1, j1, j

′
1 ∈ I (1), i2, j2 ∈ I (2), i′′1 ∈ I (1) \ {i2} and j′′1 ∈ I (1) \ {j2} , and 

I (i) = {i, . . . , k + 1}.

According to this definition, the number of 3× 2 submatrices that are forbidden to 
exist in k-Dollo completion matrices is (k + 1)4 + 2k2(k + 1)2 + k4 . Ciccolella et  al.
[26] provided an alternate characterization of k-Dollo completion matrices, which we 
describe in Additional file 1: Section B.

k-Dollo completion matrices are useful in characterization of k-Dollo phylogeny 
matrices due to the following theorem.

Theorem  1 (El-Kebir 2018 [25]) A ∈ {0, 1}n×m is a k-Dollo phylogeny matrix if and 
only if there exists a k-Dollo completion B ∈ {0, . . . , k + 1}n×m of A.

Constrained k-Dollo phylogenies are a subset of k-Dollo phylogenies that satisfy 
some additional constraints. In particular, a constrained k-Dollo completion must be 
consistent with copy-number clustering σ , according to the following definition.

Definition 4 (Consistency) A k-Dollo completion B ∈ {0, . . . , k + 1}n×m of a mutation 
matrix A is consistent with a copy-number clustering σ with p clusters provided the fol-
lowing conditions are true for every mutation j.

1 There is at most one cluster ℓ such that for two distinct cells i, i′ ∈ σ−1(ℓ) , bi,j = 0 
and bi′,j = 1.

2 If there exists cell i such that σ(i) = ℓ and bi,j = s for s ∈ {2, . . . , k + 1} , then bi′,j = s 
for all i′ ∈ σ−1(ℓ).

Using this definition, we have the following characterization of constrained k-Dollo 
phylogeny matrices.

Theorem 2 A mutation matrix A is a constrained k-Dollo phylogeny matrix for copy-
number clustering σ if and only if there exists a k-Dollo completion B ∈ {0, . . . , k + 1}n×m 
of A that is consistent with σ.

We provide a proof of Theorem 2 in Additional file 1: Section A and show that given 
a k-Dollo completion B of mutation matrix A that is consistent with σ , we can find a 
constrained k-Dollo phylogeny for A and σ in O(nmk) time. In addition, we also show 
the following result on the complexity of the CkDP-RC problem (Problem 1).

Theorem 3 The CkDP-RC problem is NP-hard, even for k = 0.
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A proof of Theorem 3 is provided in Additional file 1: Section A.

ConDoR algorithm for constrained k‑Dollo model

We formulate a mixed integer linear program (MILP) to solve Problem 1 exactly. Specifi-
cally, for given read count matrices Q and R, copy-number clustering σ and integer k, the 
MILP finds a k-Dollo completion B that is consistent with σ and that maximizes the likeli-
hood Pr(Q | R,A) , where A is the mutation matrix corresponding to B.

The MILP is based on encoding the combinatorial characterization of constrained k-Dollo 
completion matrices described in the previous section. We introduce a binary variables ai,j for 
cell i and mutation j to represent the mutation matrix A. Further, we introduce binary vari-
ables cℓ,j,s for cluster ℓ , mutation j and state s ∈ {2, . . . , k + 1} to represent the presence of 
loss state s of mutation j in cluster ℓ . These binary variables are used to model the entries of 
the k-completion matrix B as follows: bi,j = 1 if ai,j = 1 ; bi,j = s if cℓ,j,s = 1 and σ(i) = ℓ for 
s ∈ {2, . . . , k + 1} ; and bi,j = 0 otherwise.

Since bi,j can only attain one value, we enforce the following constraints for all cells 
i ∈ {1, . . . , n} and all mutations j ∈ {1, . . . ,m}.

We also define variables xi,j for cell i and mutation j which indicates if bi,j ≥ 1 . As such, 
for all cells i ∈ {1, . . . , n} and all mutations j ∈ {1, . . . ,m} we enforce

Once we have modeled the k-completion matrix B, we need to enforce constraints for (i) 
consistency with the copy-number clustering σ , (ii) handling germline mutations and (iii) B 
to be a k-Dollo completion matrix. We describe the constraints for (i), (ii) and the objective 
function of the MILP in the following and refer to Additional file 1: Section B for (iii).

Handling germline mutations

 Here, we describe the constraints to handle germline mutations. Note that, if muta-
tion j is germline, it must either be present in cell i, i.e., ai,j = 1 , or it must have been lost, 
i.e., cσ(i),j,s = 1 for some s ∈ {2, . . . , k + 1} . As such, if G ⊆ {1, . . . ,m} is the set of germline 
mutations, we enforce the following constraints for all cells i ∈ {1, . . . , n} and germline 
mutations j ∈ G,

Consistency constraints

 We now describe the constraints to enforce consistency between the k-completion matrix 
B and the copy-number clustering σ . Note that Condition 2 of Definition 4 is satisfied by 
the way B is modeled, and we only need to introduce constraints to satisfy Condition 1 of 

ai,j +

k+1
∑

s=2

cσ(i),j,s ≤ 1.

xi,j = ai,j +

k+1
∑

s=2

cσ(i),j,s.

ai,j +

k+1
∑

s=2

cσ(i),j,s = 1.



Page 15 of 23Sashittal et al. Genome Biology          (2023) 24:272  

Definition 4. To that end, we introduce two set of continuous auxiliary variables. First, we 
introduce g (0)ℓ,j ∈ [0, 1] and enforce constraints so that g (0)ℓ,j = 1 if there exists at least one cell 
i ∈ σ−1(ℓ) such that bi,j = 0 for cluster ℓ and mutation j, and g (0)ℓ,j = 0 otherwise. Similarly, 
we introduce g (1)ℓ,j ∈ [0, 1] and enforce constraints so that g (1)ℓ,j = 1 if there exists at least one 
cell i ∈ σ−1(ℓ) such that bi,j = 1 for cluster ℓ and mutation j, and g (1)ℓ,j = 0 otherwise. We 
model these variables using the following constraints for all mutations j ∈ {1, . . . ,m} and 
clusters ℓ ∈ {1, . . . , p},

Next, we introduce continuous variables gℓ,j ∈ [0, 1] such that gℓ,j = 1 if and only if 
mutation j is gained in cluster ℓ and gℓ,j = 0 otherwise, for cluster ℓ and mutation j. 
Specifically, gℓ,j = 1 if there exists two distinct cells i, i′ ∈ σ−1(ℓ) such that bi,j = 0 and 
bi′,j = 1 . We use g (0)ℓ,j  and g (1)ℓ,j  to model gℓ,j for all mutations j ∈ {1, . . . ,m} and clusters 
ℓ ∈ {1, . . . , p} with the constraints,

Finally to enforce that each mutation can be gained in at most one cluster, we have the 
following constraint for all mutations j ∈ {1, . . . ,m},

Objective function

Recall that we want to maximize the likelihood function P(Q | R,A) (Eq. 1), where A is the 
mutation matrix and B is its k-Dollo completion consistent with copy-number clustering σ . 
After taking log on both sides in Eq. 1, we can linearize the log-likelihood to get the follow-
ing objective function.

This MILP has O(nm+ pmk) binary variables, O(m2k2 + pm) continuous variables, and 
O(nm2k2) constraints.

g
(0)
ℓ,j ≥ 1− xi,j , for all i ∈ σ−1(ℓ),

g
(0)
ℓ,j ≤ |σ−1(ℓ)| −

∑

i∈σ−1(ℓ)

xi,j ,

g
(1)
ℓ,j ≥ ai,j , for all i ∈ σ−1(ℓ),

g
(1)
ℓ,j ≤

∑

i∈σ−1(ℓ)

ai,j .

gℓ,j ≤g
(0)
ℓ,j ,

gℓ,j ≤g
(1)
ℓ,j ,

gℓ,j ≥g
(0)
ℓ,j + g

(1)
ℓ,j − 1.

p
∑

ℓ=1

gℓ,j ≤ 1.

max

n
∑

i=1

m
∑

j=1

(

ai,j log Pr(qi,j | ri,j , ai,j = 1)+

(1− ai,j) log Pr(qi,j | ri,j , ai,j = 0)
)

.
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Simulation details

In this section, we provide details about the simulations and the input files generated for 
each method.

Simulation of the phylogeny

We used a growing random network [44] to generate a tree T with m+ p edges. Specifi-
cally, starting from the root vertex, T is built by iteratively adding child nodes while choos-
ing the parent uniformly at random from the nodes in the tree in that iteration. The root 
node r(T) represents the normal cell and is assigned to cluster ℓ = 0 . The edges are then 
labeled by either the gain of a mutation j ∈ {1, . . . ,m} or change to cluster ℓ ∈ {1, . . . , p} . 
For each edge (v,w) ∈ E(T ) labeled with a change in cluster, we allow loss of the mutations 
gained along the path from the root r(T) to node v with probability � = 0.8 . We generate a 
copy-number profile for each node in the tree, as described below.

Simulation of copy‑number states

The SCARLET [32] algorithm requires the copy-number profile of each cell, as well as 
the copy-number tree as input. We simulate the copy-number tree as follows.

Each node of the tree is labeled by a copy-number between 0 and 8 for each muta-
tion j. We first initialize the root of the tree with a copy-number profile in which the 
copy-number for each position is picked uniformly at random between 0 and 8. We then 
label the remaining nodes as we traverse the tree in a breadth-first order. If the edge 
(π(w),w) does not contain loss of mutation j, the copy-number for node w is the same 
as the copy-number of π(w) . On the other hand, if the edge (π(w),w) induces the loss of 
mutation j, the copy-number at j for node π(w) is picked uniformly at random between 
1 and 8, while the copy-number of node w is picked uniformly at random between 0 and 
π(w)− 1 . This ensures that, (i) the copy-number profile only changes if there is a loss 
event on the edge and (ii) each loss of mutation is supported by decrement of copy-num-
ber. Let C ∈ {0, . . . , 8}n×m be the copy-number matrix such that ci,j is the copy-number 
at locus j in cell i. This copy-number matrix is used during simulation of the variant read 
counts which we describe in the next subsection.

Read count model

The total read count ri,j for each cell i and mutation j is modeled as Poisson variable with 
mean coverage cov = 50 , i.e.

We use beta-binomial model, similar to previous works [32, 41, 42] for the variant read 
count qi,j for each cell i and mutation j. Our model accounts for sequencing errors and 
allelic imbalance during sequencing as follows. For sequencing error, we set error rate 
ǫ = 0.001 which is similar to the error rates of most recent Illumina sequencing plat-
forms [54]. Specifically, we assume that the false positive rate αfp and the false negative 
rate αfn of observing a read with the variant allele is ǫ . When the mutation j is not present 
in cell i, i.e., ai,j = 0 , the number of copies of the variant allele is 0. When the mutation j is 
present in cell i, i.e., ai,j = 1 , we assume that the number of copies of the variant allele is 1. 

ri,j ∼ Poi(cov).
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As such, the value of ai,j indicates the number of variant allele. Given that the total copies 
of the locus for mutation j in cell i is ci,j , the true variant allele frequency, which we denote 
by yi,j , is given by yi,j = ai,j/ci,j . Due to sequencing errors αfp and ǫfn , the probability pi,j of 
producing a read containing the variant allele for mutation j in cell i is

The number of variant reads qi,j is given by

where, we set the dispersion parameter s = 15 in our simulations to simulate allelic 
imbalance. Finally, we spike-in missing entries in the variant read count matrix Q and 
total read count matrix R by setting qi,j = 0 and ri,j = 0 in ⌊dnm⌋ entries where d is the 
rate of missing entries in the data.

While ConDoR and SCARLET take the variant and total read counts as input, several 
methods (such as SPhyR, SCITE and SiFit) require an observed mutation matrix A′ as 
input. In the following section, we show how we obtained the observed mutation matrix 
from the simulated read counts.

Obtaining the observed mutation matrix from the read counts

Methods such as SPhyR, SCITE, and SiFit take an observed mutation matrix 
A′ ∈ {0, 1,−1}n×m as input. This observed mutation matrix A′ may contain missing 
entries (represented by −1 ) and errors (false positives and false negatives). The afore-
mentioned methods estimate the true binary mutation matrix A and build a tumor 
phylogeny while correcting the errors and imputing the missing entries in the observed 
mutation matrix A′ . We denote the estimated mutation matrix by Â.

We obtain A′ from the read count matrices Q and R as follows. We use three filtering 
parameters to discretize the read count matrices: (i) total read count threshold rt = 10 , 
(ii) variant read count threshold qt = 5 , and (iii) variant allele frequency threshold 
yt = 0.1 . We say that mutation j is present in cell i if and only if the total read count ri,j 
is greater than or equal to rt , the variant read count qi,j is greater than or equal to qt , and 
the observed variant allele frequency y′i,j = qi,j/ri,j is greater than or equal to yt . Spe-
cifically, we set a′i,j = 1 if (ri,j ≥ rt) ∧ (qi,j ≥ qt) ∧ (y′i,j ≥ yt) . For the remaining entries, 
we set a′i,j = 0 if ri,j ≥ 0 , indicating absence of mutation, and a′i,j = −1 , indicating miss-
ing entry, otherwise. The median false positive and false negative rates of the observed 
mutation matrices of the simulated instances are 0.0018 and 0.158, respectively (Addi-
tional file 1: Fig. S1). It is possible that using additional procedures to define a higher 
quality set of mutations could improve the performance of methods such as SPhyR, 
SCITE and SiFit.

Computation of pairwise ancestral relation accuracy

Here, we describe the computation of pairwise ancestral relation accuracy E(T , T̂ ) for two 
tumor phylogenies T and T̂  . Under the assumption that a mutation can be gained only once 

pi,j =
(

1− αfn
)ai,j

ci,j
+

(

1−
ai,j

ci,j

)

αfp.

πi,j ∼beta(pi,j , s),

qi,j ∼Binom(ri,j ,πi,j),



Page 18 of 23Sashittal et al. Genome Biology          (2023) 24:272 

in the phylogeny, any pair (j, j′) of mutations can be related in exactly one of the following 
four ways. 

1 Mutation j occurs along the path from the root to source node of edge on which 
mutation j′ occurs.

2 Mutation j′ occurs along the path from the root to source node of edge on which 
mutation j occurs.

3 Mutation j and j′ occur on the same edge of the phylogeny.
4 Mutation j and j′ occur on distinct branches of the phylogeny.

We compute the accuracy of inferring the correct relationship between all possible pairs of 
mutations from the inferred tumor phylogeny.

Generation and pre‑processing of the PDAC data

Here, we provide details regarding the generation and pre-processing of targeted sequenc-
ing data of pancreatic ductal adenocarcinoma tumor used in this study.

Bulk WES library preparation, sequencing, and variant calling

Genomic DNA was extracted from each tissue using the phenol-chloroform extraction 
protocol [55] or the QIAamp DNA Mini Kits (Qiagen) [56]. WES library preparation and 
sequencing were performed by the Integrated Genomics Operation at Memorial Sloan Ket-
tering Cancer (MSKCC, NY). Briefly, an Illumina HiSeq 2000, HiSeq 2500, HiSeq 4000, 
or NovaSeq 6000 platform was used to target sequencing coverages of > 250× for WES 
samples.

The raw FASTQ files were processed with the standard pipeline of the Bioinformat-
ics Core at MSKCC. Sequencing reads were analyzed in silico to assess quality, cover-
age, and aligned to the human reference genome (hg19) using BWA  [57]. After read 
de-duplication, base quality recalibration and multiple sequence realignment were 
completed with the PICARD Suite [58] and GATK v.3.1 [59]; somatic single-nucleotide 
variants and insertion-deletion mutations were detected using Mutect v.1.1.6 [60] and 
HaplotypeCaller v.2.4 [61]. This pipeline generated a set of mutations for every single 
sample. Then, all mutations of all samples of the same sequencing cohort were pooled 
as a single set. Each sample’s BAM file was used to compute “fillout” values (total 
depth, reference allele read counts, alternative allele read counts) for each mutation in 
the pooled list. Mutation with alternate read count less than 2 across all samples were 
removed to trim down false positives. The purpose was to rescue mutations that were 
detected with high confidence in one sample but with low confidence in another sam-
ple of the same patient/tumor. This generated the final output in mutational annotation 
format (MAF).

Single‑cell DNA sequencing (Tapestri) library preparation and variant calling

Single nuclei were extracted from snap frozen primary patient samples embedded 
in optimal cutting temperature (OCT) compound using the protocol developed by 
Zhang et al. [15].
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Nuclei were suspended in Mission Bio cell buffer at a maximum concentration of 
4000 nuclei/µ l, encapsulated in Tapestri microfluidics cartridge, lysed and barcoded. 
Barcoded samples were then put through targeted PCR amplification with a custom 
596-amplicon panel covering important PDAC mutational hotspots in our sample 
cohort (table with all the amplicons is available at https:// github. com/ rapha el- group/ 
ConDoR).

The 596-amplicon panel was designed based on curation of bulk whole exome/genome 
sequencing data of PDAC samples collected by the Iacobuzio lab. The goal was to cover 
as many PDAC-related SNVs within our patient cohort as possible within a 600-ampli-
con limit, which was deemed economically optimal. The genes/SNVs of interest were 
determined by querying several resources, such as cBioportal [62, 63] and openCRAVAT 
[64]. Particular interest was paid to genes in the TGFβ pathway as relevant mutations 
are currently being investigated as clinical biomarkers [65]. In addition to the SNVs, we 
added amplicons to cover as much exon region as possible for genes that are of par-
ticular interest for CNV analyses in PDAC: KRAS, TP53, SMAD4, CDKN2A, TGFBR1, 
TGFBR2, ACVR1B, ACVR2A, BMPR1A, BMPR1B, SMAD2, SMAD3, MYC, GATA6, 
BAP1, MUS81, and KAT5.

PCR products were removed from individual droplets, purified with Ampure XP beads 
and used as templates for PCR to incorporate Illumina i5/i7 indices. PCR products were 
purified again, quantified with an Agilent Bioanlyzer for quality control, and sequenced 
on an Illumina NovaSeq. The minimum total read depth was determined by same for-
mula as used in [15].

As described in [15], FASTQ files for single-nuclei DNA libraries were processed 
through Mission Bio’s Tapestri pipeline with default parameters to arrive at the out-
put H5 file, which mainly consists of two matrices: a cell-by-per-amplicon-read-count 
matrix X1 , and a cell-by-SNV matrix X2 . Briefly, the pipeline has the following steps. 

1 Adaptor sequences are trimmed and align the reads to the hg19 genome (UCSC).
2 The reads are assigned to individual cell barcodes, while filtering out the low-quality 

cell barcodes. For each of these barcodes, the number of forward reads aligned to 
each amplicon is used to form matrix X1.

3 Variant calling is performed to generate a gVCF (genomic variant call format) file 
from the BAM file for each cell.

4 The cells are jointly genotyped to form a cell-by-SNV matrix X2.

A more detailed documentation of the pipeline is available at: https:// suppo rt. missi 
onbio. com/ hc/ en- us/ categ ories/ 36000 25129 33- Tapes tri- Pipel ine. In respect of Mission 
Bio’s request, the pipeline code is not to be publicized because it contains proprietary 
information per industry standard. However, the pipeline used in the paper that dem-
onstrated this scDNA-seq library preparation technology [66] is publicly available as a 
Github repository at https:// github. com/ Abate Lab/ DAb- seq. Although we have not for-
mally tested that it performs identically as the Mission Bio pipeline, we believe it is suf-
ficient to replicate our results.

https://github.com/raphael-group/ConDoR
https://github.com/raphael-group/ConDoR
https://support.missionbio.com/hc/en-us/categories/360002512933-Tapestri-Pipeline
https://support.missionbio.com/hc/en-us/categories/360002512933-Tapestri-Pipeline
https://github.com/AbateLab/DAb-seq
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Variant calling

We detect 40 mutations in the bulk tumor sample with a variant allele frequency 
(VAF) of at least 0.05. Out of these 40 mutations, 34 mutations were also detected in 
the matched normal sample indicating that they were germline mutations. From the 
remaining 6 somatic mutations, we filter out mutations with low prevalence in the 
scDNA-seq data. Specifically, we only include mutations with variant allele frequency 
more than 0.1, read depth of more than 20 and variant read depth of more than 10 in 
at least 5% of the cells. We end up with 4 somatic mutations: chr3:30715617:C/G 
(TGFBR2_1), chr3:30715619:G/T (TGFBR2_2), chr8:38314915:G/T (FGFR1), 
and chr13:32907415:T/A (BRCA2).

Most phylogeny inference methods only consider somatic SNVs as input, and filter 
out all germline SNPs. However, germline SNPs that have undergone loss in a subset of 
cells are informative during phylogeny inference. We identify germline SNPs with puta-
tive loss by including SNPs with variant allele frequency less than 0.1, variant read depth 
more than 10, and total read depth less than 20 in at least 15% of the cells. We find 3 such 
SNPs: chr10:131506283:C/T (MGMT_1), chr10:131506192:C/T (MGMT_2), 
and chr1:158612236:A/G (SPTA1). In summary, we consider 3 germline SNPs and 
4 somatic SNVs in our analysis.

Copy‑number clustering

In this section, we describe the method to cluster the PDAC cells based on the total 
reads in each cell. Let A be the set of amplicons, G be the set of genes and A(g) denote 
the set of amplicons contained in gene g ∈ G . Let RA

i,a = [rAi,a] be the n× |A| read depth 
matrix that contains the number of reads in cell i and amplicon a. We start by normal-
izing the amplicon-level read depth matrix by the total reads in each cell. Specifically, we 
form matrix R̄A ∈ Z

n×|A| such that,

Next, we assume that all loci in the same gene have the same copy-number. As such, 
we compute the average normalized read depth as follows

This step helps nullify some noise in the amplicon-level total read count data. We 
focus on 30 genes with the highest number of amplicons and perform k-means cluster-
ing on the resulting matrix R̄G.

We use the Silhouette score to determine the number of copy-number clusters. Addi-
tional file 1: Fig. S9a shows the the Silhouette score for increasing number of clusters in 
the k-means clustering. We choose the clustering with the highest Silhouette score result-
ing in p = 3 clusters as the copy-number clustering σ . Additional file 1: Fig. S9b shows a 
t-SNE [67] where each point is a cell labeled by the cluster index from the copy-number 
clustering σ.

r̄Ai,a =
rAi,a

∑

a∈A rAi,a
.

r̄Gi,g =

∑

a∈A(g) r̄
A
i,a

|A(g)|
.



Page 21 of 23Sashittal et al. Genome Biology          (2023) 24:272  

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s13059‑ 023‑ 03106‑5.

Additional file 1. Figures, tables and text describing additional information such as proofs of theorems or additional 
results.

Additional file 2. Peer review history.

Acknowledgements
The authors would like the thank the reviewers for their helpful comments that led to several improvements in the 
paper. The authors are also grateful to the Single Cell Research Initiative (SCRI), Integrated Genomics Operations (IGO), 
and the bioinformatics core at MSKCC for their excellent technical support.

Review history
The review history is available as Additional file 2.

Peer review information
Tim Sands was the primary editor of this article and managed its editorial process and peer review in collaboration with 
the rest of the editorial team.

Authors’ contributions
P.S. and B.J.R. conceived the project. P.S. characterized the combinatorial structure of the problem, formulated the MILP, 
implemented ConDoR, and performed the experimental evaluation. H.Z. performed the sequencing experiments and 
designed the bioinformatics pipeline for the bulk and the single‑cell Tapestri data. All authors interpreted the results. 
C.A.I‑D. and B.J.R. provided supervision. All authors wrote the manuscript. All authors read and approved the manuscript.

Funding
This work was supported by NIH/NCI grants U24CA264027 and U24CA248453 awarded to B.J.R. and by NIH/NCI grants 
R35CA220508 and U2CCA233284 awarded to C.A.I‑D. C.A.I‑D. was also supported by Cycle for Survival for David Ruben‑
stein Center for Pancreatic Cancer Research at Memorial Sloan Kettering Cancer Center.

Availability of data and materials
ConDoR software, simulations, and processed real data are publicly available at https:// github. com/ rapha el‑ group/ 
ConDoR [68] under the MIT license. The results reported in the paper are fully reproducible with the data available in the 
Github repository. The original CRC data is available on NCBI Sequence Read Archive (https:// www. ncbi. nlm. nih. gov/ sra) 
under accession number SRP074289 [69]. The raw FASTQ files of PDAC data analyzed in the present study are not publicly 
available because they are part of a larger cohort to be published in the near future but are available from the correspond‑
ing author on reasonable request. Specifically, this data will be deposited in EGA along with a bigger cohort shortly after 
submission of our next publication. They will be available under restricted access, as required by the MSKCC Medical 
Donation Program Data Access Agreement (MSKCC MDP DAA). Readers interested in gaining access through EGA need 
to contact the data access committee (DAC) of this dataset and start an application. The DAC will try to respond within 2 
weeks but may take longer in special conditions. The MSKCC MDP DAA, to be provided by the DAC and include guidelines 
and restrictions on data usage, must be signed. Once the application is approved, an EGA account will be provided for 
data access. The time length of access to the data will be determined by the DAC on a case‑by‑case basis. Further informa‑
tion about EGA can be found at https:// ega‑ archi ve. org and “The European Genomephenome Archive of human data 
consented for biomedical research” (https:// www. nature. com/ ng/ journ al/ v47/ n7/ full/ ng. 3312. html).

Declarations

Ethics approval and consent to participate
Use of samples used in this study was approved by IRB review at Memorial Sloan Kettering Cancer Center under protocol 
#15‑149.

Consent for publication
All authors have consented to the publication of this work in Genome Biology.

Competing interests
The authors declare that they have no competing interests.

Received: 27 December 2022   Accepted: 7 November 2023

References
 1. Tabassum DP, Polyak K. Tumorigenesis: it takes a village. Nat Rev Cancer. 2015;15(8):473–83.
 2. Schwartz R, Schäffer AA. The evolution of tumour phylogenetics: principles and practice. Nat Rev Genet. 

2017;18(4):213–29.
 3. Amirouchene‑Angelozzi N, Swanton C, Bardelli A. Tumor evolution as a therapeutic target the impact of tumor evolu‑

tion in precision medicine. Cancer Discov. 2017;7(8):805–17.

https://doi.org/10.1186/s13059-023-03106-5
https://github.com/raphael-group/ConDoR
https://github.com/raphael-group/ConDoR
https://www.ncbi.nlm.nih.gov/sra
https://ega-archive.org
https://www.nature.com/ng/journal/v47/n7/full/ng.3312.html


Page 22 of 23Sashittal et al. Genome Biology          (2023) 24:272 

 4. Fittall MW, Van Loo P. Translating insights into tumor evolution to clinical practice: promises and challenges. Genome 
Med. 2019;11(1):1–14.

 5. Jiao W, Vembu S, Deshwar AG, Stein L, Morris Q. Inferring clonal evolution of tumors from single nucleotide somatic 
mutations. BMC Bioinforma. 2014;15(1):1–16.

 6. Popic V, Salari R, Hajirasouliha I, Kashef‑Haghighi D, West RB, Batzoglou S. Fast and scalable inference of multi‑sample 
cancer lineages. Genome Biol. 2015;16(1):1–17.

 7. Malikic S, McPherson AW, Donmez N, Sahinalp CS. Clonality inference in multiple tumor samples using phylogeny. Bioin‑
formatics. 2015;31(9):1349–56.

 8. El‑Kebir M, Oesper L, Acheson‑Field H, Raphael BJ. Reconstruction of clonal trees and tumor composition from multi‑
sample sequencing data. Bioinformatics. 2015;31(12):i62–70.

 9. Deshwar AG, Vembu S, Yung CK, Jang GH, Stein L, Morris Q. PhyloWGS: reconstructing subclonal composition and 
evolution from whole‑genome sequencing of tumors. Genome Biol. 2015;16(1):1–20.

 10. El‑Kebir M, Satas G, Oesper L, Raphael BJ. Inferring the mutational history of a tumor using multi‑state perfect phylogeny 
mixtures. Cell Syst. 2016;3(1):43–53.

 11. Eaton J, Wang J, Schwartz R. Deconvolution and phylogeny inference of structural variations in tumor genomic samples. 
Bioinformatics. 2018;34(13):i357–65.

 12. Laks E, McPherson A, Zahn H, Lai D, Steif A, Brimhall J, et al. Clonal decomposition and DNA replication states defined by 
scaled single‑cell genome sequencing. Cell. 2019;179(5):1207–21.

 13. Morita K, Wang F, Jahn K, Hu T, Tanaka T, Sasaki Y, et al. Clonal evolution of acute myeloid leukemia revealed by high‑
throughput single‑cell genomics. Nat Commun. 2020;11(1):1–17.

 14. Minussi DC, Nicholson MD, Ye H, Davis A, Wang K, Baker T, et al. Breast tumours maintain a reservoir of subclonal diversity 
during expansion. Nature. 2021;592(7853):302–8.

 15. Zhang H, Karnoub ER, Umeda S, Chaligné R, Masilionis I, McIntyre CA, et al. Application of high‑throughput single‑
nucleus DNA sequencing in pancreatic cancer. Nat Commun. 2023;14(1):749.

 16. Zafar H, Navin N, Nakhleh L, Chen K. Computational approaches for inferring tumor evolution from single‑cell genomic 
data. Curr Opin Syst Biol. 2018;7:16–25.

 17. Jahn K, Kuipers J, Beerenwinkel N. Tree inference for single‑cell data. Genome Biol. 2016;17(1):1–17.
 18. Ross EM, Markowetz F. OncoNEM: inferring tumor evolution from single‑cell sequencing data. Genome Biol. 

2016;17(1):1–14.
 19. Malikic S, Jahn K, Kuipers J, Sahinalp SC, Beerenwinkel N. Integrative inference of subclonal tumour evolution from 

single‑cell and bulk sequencing data. Nat Commun. 2019;10(1):1–12.
 20. Malikic S, Mehrabadi FR, Ciccolella S, Rahman MK, Ricketts C, Haghshenas E, et al. PhISCS: a combinatorial approach for 

subperfect tumor phylogeny reconstruction via integrative use of single‑cell and bulk sequencing data. Genome Res. 
2019;29(11):1860–77.

 21. Kimura M. The number of heterozygous nucleotide sites maintained in a finite population due to steady flux of muta‑
tions. Genetics. 1969;61(4):893.

 22. Demeulemeester J, Dentro SC, Gerstung M, Van Loo P. Biallelic mutations in cancer genomes reveal local mutational 
determinants. Nat Genet. 2022;54(2):128–33.

 23. Kuipers J, Jahn K, Raphael BJ, Beerenwinkel N. Single‑cell sequencing data reveal widespread recurrence and loss of 
mutational hits in the life histories of tumors. Genome Res. 2017;27(11):1885–94.

 24. McPherson A, Roth A, Laks E, Masud T, Bashashati A, Zhang AW, et al. Divergent modes of clonal spread and intraperito‑
neal mixing in high‑grade serous ovarian cancer. Nat Genet. 2016;48(7):758–67.

 25. El‑Kebir M. SPhyR: tumor phylogeny estimation from single‑cell sequencing data under loss and error. Bioinformatics. 
2018;34(17):i671–9.

 26. Ciccolella S, Soto Gomez M, Patterson MD, Della Vedova G, Hajirasouliha I, Bonizzoni P. gpps: an ILP‑based approach for 
inferring cancer progression with mutation losses from single cell data. BMC Bioinformatics. 2020;21(1):1–16.

 27. Ciccolella S, Ricketts C, Soto Gomez M, Patterson M, Silverbush D, Bonizzoni P, et al. Inferring cancer progression from 
single‑cell sequencing while allowing mutation losses. Bioinformatics. 2021;37(3):326–33.

 28. Farris JS. Phylogenetic analysis under Dollo’s Law. Syst Biol. 1977;26(1):77–88.
 29. Zafar H, Tzen A, Navin N, Chen K, Nakhleh L. SiFit: inferring tumor trees from single‑cell sequencing data under finite‑

sites models. Genome Biol. 2017;18(1):1–20.
 30. Zafar H, Navin N, Chen K, Nakhleh L. SiCloneFit: Bayesian inference of population structure, genotype, and phylogeny of 

tumor clones from single‑cell genome sequencing data. Genome Res. 2019;29(11):1847–59.
 31. Wagner WH. Problems in the classification of ferns. Recent Adv Bot. 1961;(1):841–4.
 32. Satas G, Zaccaria S, Mon G, Raphael BJ. Scarlet: single‑cell tumor phylogeny inference with copy‑number constrained 

mutation losses. Cell Syst. 2020;10(4):323–32.
 33. Chen Z, Gong F, Wan L, Ma L. BiTSC 2: Bayesian inference of tumor clonal tree by joint analysis of single‑cell SNV and 

CNA data. Brief Bioinforma. 2022;23(3):bbac092.
 34. Sollier E, Kuipers J, Takahashi K, Beerenwinkel N, Jahn K. COMPASS: joint copy number and mutation phylogeny recon‑

struction from amplicon single‑cell sequencing data. Nature Communications. 2023;14(1):4921.
 35. Lähnemann D, Köster J, Szczurek E, McCarthy DJ, Hicks SC, Robinson MD, et al. Eleven grand challenges in single‑cell 

data science. Genome Biol. 2020;21(1):1–35.
 36. Zaccaria S, Raphael BJ. Characterizing allele‑and haplotype‑specific copy numbers in single cells with CHISEL. Nat 

Biotechnol. 2021;39(2):207–14.
 37. Leung ML, Davis A, Gao R, Casasent A, Wang Y, Sei E, et al. Single‑cell DNA sequencing reveals a late‑dissemination 

model in metastatic colorectal cancer. Genome Res. 2017;27(8):1287–99.
 38. Lan F, Demaree B, Ahmed N, Abate AR. Single‑cell genome sequencing at ultra‑high‑throughput with microfluidic 

droplet barcoding. Nat Biotechnol. 2017;35(7):640–6.
 39. Pellegrino M, Sciambi A, Treusch S, Durruthy‑Durruthy R, Gokhale K, Jacob J, et al. High‑throughput single‑cell DNA 

sequencing of acute myeloid leukemia tumors with droplet microfluidics. Genome Res. 2018;28(9):1345–52.
 40. Gusfield D. Efficient algorithms for inferring evolutionary trees. Networks. 1991;21(1):19–28.



Page 23 of 23Sashittal et al. Genome Biology          (2023) 24:272  

 41. Singer J, Kuipers J, Jahn K, Beerenwinkel N. Single‑cell mutation identification via phylogenetic inference. Nat Commun. 
2018;9(1):1–8.

 42. Weber LL, Sashittal P, El‑Kebir M. doubletD: detecting doublets in single‑cell DNA sequencing data. Bioinformatics. 
2021;37(Supplement‑1):i214–21.

 43. Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual. 2020. http:// www. gurobi. com. Accessed 5 Mar 2021.
 44. Krapivsky PL, Redner S. Organization of growing random networks. Phys Rev E. 2001;63(6):066123.
 45. MacQueen J. Classification and analysis of multivariate observations. In: 5th Berkeley Symp. Math. Statist. Probability. 

University of California Press; 1967. p. 281–297.
 46. Rousseeuw PJ. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math. 

1987;20:53–65.
 47. Hayashi A, Hong J, Iacobuzio‑Donahue CA. The pancreatic cancer genome revisited. Nat Rev Gastroenterol Hepatol. 

2021;18(7):469–81.
 48. Greer JB, Whitcomb DC. Role of BRCA1 and BRCA2 mutations in pancreatic cancer. Gut. 2007;56(5):601–5.
 49. Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, et al. Intratumor heterogeneity and branched 

evolution revealed by multiregion sequencing. N Engl j Med. 2012;366:883–92.
 50. Zhang J, Fujimoto J, Zhang J, Wedge DC, Song X, Zhang J, et al. Intratumor heterogeneity in localized lung adenocarci‑

nomas delineated by multiregion sequencing. Science. 2014;346(6206):256–9.
 51. Hiley C, de Bruin EC, McGranahan N, Swanton C. Deciphering intratumor heterogeneity and temporal acquisition of 

driver events to refine precision medicine. Genome Biol. 2014;15(8):1–10.
 52. Stanta G, Bonin S. Overview on clinical relevance of intra‑tumor heterogeneity. Front Med. 2018;5:85.
 53. Sashittal P, Zaccaria S, El‑Kebir M. Parsimonious Clone Tree Integration in cancer. Algorithms Mol Biol. 2022;17(1):1–14.
 54. Stoler N, Nekrutenko A. Sequencing error profiles of Illumina sequencing instruments. NAR Genomics Bioinforma. 

2021;3(1):lqab019.
 55. Köchl S, Niederstätter H, Parson W. DNA extraction and quantitation of forensic samples using the phenol‑chloroform 

method and real‑time PCR. In: Carracedo A, editor. Forensic DNA Typing Protocols. Totowa: Humana Press; 2005. p. 
13–29. https:// doi. org/ 10. 1385/1‑ 59259‑ 867‑6: 013.

 56. Coyne SR, Craw PD, Norwood DA, Ulrich MP. Comparative analysis of the Schleicher and Schuell IsoCode Stix DNA isola‑
tion device and the Qiagen QIAamp DNA mini kit. J Clin Microbiol. 2004;42(10):4859–62.

 57. Li H, Durbin R. Fast and accurate short read alignment with Burrows‑Wheeler transform. Bioinformatics. 
2009;25(14):1754–60.

 58. "Picard toolkit." Broad Institute. Broad Institute, GitHub repository. 2019. Available from: https:// broad insti tute. github. io/ 
picard.

 59. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: a MapReduce 
framework for analyzing next‑generation DNA sequencing data. Genome Res. 2010;20(9):1297–303.

 60. Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, Sougnez C, et al. Sensitive detection of somatic point muta‑
tions in impure and heterogeneous cancer samples. Nat Biotechnol. 2013;31(3):213–9.

 61. Poplin R, Ruano‑Rubio V, DePristo MA, Fennell TJ, Carneiro MO, Van der Auwera GA, et al. Scaling accurate genetic variant 
discovery to tens of thousands of samples. BioRxiv. 2018;201178.

 62. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio Cancer Genomics Portal: an open platform for 
exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401–4. https:// doi. org/ 10. 1158/ 2159‑ 8290. 
CD‑ 12‑ 0095.

 63. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and 
clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):pl1–pl1. https:// doi. org/ 10. 1126/ scisi gnal. 20040 88.

 64. Pagel KA, Kim R, Moad K, Busby B, Zheng L, Tokheim C, et al. Integrated informatics analysis of cancer‑related variants. 
JCO Clin Cancer Informa. 2020;4:310–7. https:// doi. org/ 10. 1200/ CCI. 19. 00132.

 65. Hayashi A, Hong J, Iacobuzio‑Donahue CA. The pancreatic cancer genome revisited. Nat Rev Gastroenterol Hepatol. 
2021;18(7):469–81.

 66. Demaree B, Delley CL, Vasudevan HN, Peretz CAC, Ruff D, Smith CC, et al. Joint profiling of DNA and proteins in single 
cells to dissect genotype‑phenotype associations in leukemia. Nat Commun. 2021;12(1):1583.

 67. LJPvd M, Hinton G. Visualizing high‑dimensional data using t‑SNE. J Mach Learn Res. 2008;9(2579–2605):9.
 68. Sashittal P, Zhang H, Iacobuzio‑Donahue C, Raphael B. ConDoR: Tumor phylogeny inference with a copy‑number con‑

strained mutation loss model. Zenodo. 2023. https:// doi. org/ 10. 5281/ zenodo. 83502 64.
 69. Leung ML, Davis A, Gao R, Casasent A, Wang Y, Sei E, et al. Data from Single‑cell DNA sequencing reveals a late‑dissem‑

ination model in metastatic colorectal cancer. NCBI SRA. 2017. https:// www. ncbi. nlm. nih. gov/ sra/? term= SRP07 4289.  
Processed data from this study was accessed from https:// github. com/ rapha el‑ group/ scarl et. Accessed 5 Mar 2023.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://www.gurobi.com
https://doi.org/10.1385/1-59259-867-6:013
https://broadinstitute.github.io/picard
https://broadinstitute.github.io/picard
https://doi.org/10.1158/2159-8290.CD-12-0095
https://doi.org/10.1158/2159-8290.CD-12-0095
https://doi.org/10.1126/scisignal.2004088
https://doi.org/10.1200/CCI.19.00132
https://doi.org/10.5281/zenodo.8350264
https://www.ncbi.nlm.nih.gov/sra/?term=SRP074289
https://github.com/raphael-group/scarlet

	ConDoR: tumor phylogeny inference with a copy-number constrained mutation loss model
	Abstract 
	Background
	Results
	Constrained k-Dollo model
	Constrained k–Dollo phylogeny problem for read count data

	Evaluation on simulated data
	Multi-region pancreatic ductal adenocarcinoma data
	Metastatic colorectal cancer data

	Conclusions
	Methods
	Characterization of constrained k-Dollo phylogenies
	ConDoR algorithm for constrained k-Dollo model
	Handling germline mutations
	Consistency constraints
	Objective function

	Simulation details
	Simulation of the phylogeny
	Simulation of copy-number states
	Read count model
	Obtaining the observed mutation matrix from the read counts
	Computation of pairwise ancestral relation accuracy

	Generation and pre-processing of the PDAC data
	Bulk WES library preparation, sequencing, and variant calling
	Single-cell DNA sequencing (Tapestri) library preparation and variant calling
	Variant calling
	Copy-number clustering


	Anchor 28
	Acknowledgements
	References


