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Background
Cell type-specific cis-regulatory programs allow specialized gene expression and cellular 
functions in eukaryotic organisms during development and differentiation [1–3]. Muta-
tions in cis-regulatory elements (CREs), though having no impact on protein sequences, 
contribute to various diseases by disrupting the normal functionality of their target 
genes [4–9]. Decoding how CREs regulate gene expression coordinately in different cell 
types may reveal the mechanisms of cell identity maintenance and hint at the origins of 
developmental defects and human diseases.

However, linking candidate CREs (cCREs) to genes remains a substantial challenge. 
Experimental assays such as Hi-C [10], capture Hi-C [11], and ChIA-PET [12] have been 
deployed for cCRE-gene mapping, yet they measure physical proximities between ele-
ments and genes instead of direct regulatory activities. Systematic evaluation of activities of 
enhancers, a major type of CREs, becomes possible with CRISPR perturbation tools most 
recently [13–15], but only a subset of enhancers can be evaluated due to the great number 
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of candidate enhancers in the genome [16, 17]. Meanwhile, the evaluations are restricted to 
the cell types examined in the studies.

Computational-based data-driven methods have been proposed for enhancer regulation 
prediction [18–22], but their performance and generalization ability are subject to limited 
data on bona fide enhancer-gene interactions, the varying number of candidate enhancers 
for different genes, and the complex nature of enhancer-gene regulation [7, 23–25]. Lack of 
native context during modeling is another drawback commonly seen due to a trade-off for 
computational feasibility. A typical case is the binary classification task where a sequence 
pair of enhancer and promoter is given as input [18–20], which may only recover regulation 
relationships mediated by conserved transcription factors universally present.

Interestingly, modeling studies on gene expression prediction from local genome 
sequences showed that cCRE-gene interactions were implied in the designed neural net-
work architecture [26–28], suggesting an alternative approach for enhancer activity mod-
eling. However, since different cell types in the same organism share the same reference 
genome, the sequence-based models such as Basenji2 [26] and Enformer [27], which take 
reference genome as input, cannot predict the activities of cell type-specific cis-regulatory 
sequences in cell types unseen by the model. While GraphReg [28] introduced a model 
architecture that can be generalized to new cell types, the model’s dependency on 3D 
genomic data narrows its applicability, as such data is not readily available.

To model cCRE-gene interactions and discover universal cis-regulatory patterns across 
cell types, we developed a hierarchical deep learning model based on the self-attention 
mechanism. The model named CREaTor (Cis-Regulatory Element auto Translator) uti-
lizes cCREs in open chromatin regions identified by Encyclopedia of DNA Elements 
(ENCODE) together with ChIP-seqs of transcription factors and histone modifications 
[16, 29] to predict the expression level of target genes. In the design, attention blocks serve 
as key components for accurate expression prediction, which is achieved by learning rela-
tionships between input cCREs and genes, as well as cCREs and cCREs, during training. 
Therefore, leveraging attention mechanisms and training on richly labeled data generated 
through standardized experiments, we are able to model element interactions with a zero-
shot setting. In other words, the model can present cCRE-gene interactions without requir-
ing training on such data. Moreover, since CREaTor uses cCRE landscape and ChIP-seq 
profiles as input, which differ between cell types, it can model CRE-gene interactions in 
new cell types without additional training. Using dispersed elements instead of the entire 
genomic context flanking each gene also greatly reduces computational costs for modeling. 
Testing on a held-out cell line, we show that CREaTor can effectively model the interactions 
between cis-regulatory sequences and target genes for accurate gene expression predic-
tion. Further analysis indicates that CREaTor learns higher-order genome organization and 
cross-cell type regulatory mechanisms, which might explain its exceptional performance in 
cell types unseen by the model.

Results
CREaTor predicts cell type‑specific gene expression in unseen cell types

CREaTor consists of two transformer models at different resolutions (Fig. 1a and Addi-
tional file  1: Fig. S1). Transformer is a deep learning architecture that has been dem-
onstrated as a powerful tool for natural language processing [30–32], computer vision 
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[33, 34], and biological modeling [27, 35, 36]. A core component of a transformer is 
the self-attention module, which extracts sequence-level information by modeling the 
interactions between elements at different positions in the sequence [30]. In CREaTor, 
the lower-level transformer (element encoder) learns the latent representation for each 
cCRE from the DNA sequence and chromatin states of the element itself, while the 

Fig. 1 Accurate gene expression prediction with CREaTor. a Schema of CREaTor. The model predicts target 
gene expression from the flanking cCREs with a hierarchical transformer structure. Localization of cCREs 
was obtained from ENCODE consortium. A combination of genomic sequences, chromatin accessibility, 
and a collection (3–13 types) of ChIP-seq profiles was used as input features for each cCRE. b Visualization 
of data split strategy: we trained our model on gene expression of 19 autosomes from 19 different cell lines 
and tissues respectively. Genes on chr16 from the 19 cell lines and tissues were used for parameter tuning 
(validation), while genes on chr8, 9 were used for model evaluation (in-cell type test chromosomes). Genes 
from all autosomes in K562 (cross-cell type test chromosomes) were detailly evaluated to demonstrate 
the model’s ability on cross-cell type gene expression and regulation modeling (Additional file 1: Fig. S2). 
c Pearson r between observed and predicted expression of genes. Left: Pearson r between observed and 
predicted expressions of genes on cross-cell type test chromosomes. Right: Pearson r between observed 
and predicted expressions of genes on in-cell type test chromosomes. Green and blue dots indicate chr8 
and 9 respectively. See Additional file 2: Table S3 for results with different random seeds. d Clustering map of 
predicted and observed expression of K562 specific genes (calculated with RSME; see the “Methods” section) 
in different cell types. The leftmost column is the predicted value, which is clustered with the K562 observed 
gene expression data using the hierarchical clustering method. Expression values were transformed with 
log1p. Observed gene expression profiles from different sources (with different experiment IDs on ENCODE) 
for the same cell type are calculated independently
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upper-level transformer (regulation encoder) predicts gene expression from a collection 
of cCRE latent representations flanking the target gene. Self-attention extracted from 
the regulation encoder is used to interpret the cCRE-gene and cCRE-cCRE interactions.

We trained CREaTor on 19 human tissues and cell lines whose annotated cCRE infor-
mation was available in SCREEN Registry [16] (Additional file 2: Table S1). In each cell 
type, chr16 was left out for validation, chr8 and 9 were left out for testing (in-cell type 
test chromosomes), and all other autosomes were used for training (Fig.  1b and Addi-
tional file  1: Fig. S2). By training the model with data from multiple cell types jointly, 
we expected the model to learn general rules guiding gene regulation across cell types. 
Next, we evaluated CREaTor’s performance on autosomes of the K562 cell line (cross-cell 
type test chromosomes), which were unseen by the model, to demonstrate the general-
izability of our method (Fig. 1b and Additional file 1: Fig. S2). For the in-cell type test 
chromosomes, CREaTor reached a mean correlation of 0.850 and 0.818 (Pearson r) for 
chr8 and 9 respectively (Fig. 1c and Additional file 2: Table S2). While for the cross-cell 
type test chromosomes, the correlations between observed and predicted gene expres-
sion on different chromosomes ranged from 0.756 to 0.936, with a mean correlation of 
0.902 (Pearson r) (Fig. 1c and Additional file 2: Table S3). Notably, the predictive accu-
racy of K562 chr8 and 9 (0.839 and 0.810 respectively, Pearson r) was comparable to that 
of in-cell type test chromosomes, suggesting that CREaTor can predict gene expression 
efficiently from cCREs in new cell types.

However, the performance gap between chr8/9 and other chromosomes in K562 is 
non-trivial. We reasoned that the presence of housekeeping genes and several hemat-
opoietic cell types in training data alleviated the challenge for expression prediction on 
chromosomes other than 8 and 9. To assess the generalizability of CREaTor more rig-
orously, we next examined if CREaTor could make cell type-specific predictions. With 
gene differential expression (GDE) analysis on paired data between K562 and each of the 
19 cell types used for model training respectively, we identified 410 genes that were dif-
ferentially expressed in the K562 cell line (see the “Methods” section). For a number of 
these genes, including hematopoietic regulators KLF1 and TAL1 and hemoglobin subu-
nit protein HBE1, CREaTor made a prediction on rival with experimental quantifications 
(Additional file 1: Fig. S3). In addition, single-linkage clustering analysis demonstrated 
that the prediction on K562 differentially expressed genes was more similar to observed 
K562 expression compared to other cell types (Pearson r = 0.68, Fig. 1d).

To further demonstrate that the accurate prediction of K562 expression is not attrib-
uted to the similarity between K562 and training cell types, we compared the predicted 
expressions with 122 observed expression profiles of 20 distinct cell types. These profiles 
included 12 profiles from 3 independent K562 RNA-seq experiments that our model had 
not previously encountered. We visualized all expression profiles with Uniform Mani-
fold Approximation and Projection (UMAP) in a 2-dimensional space. For different 
chromosome subsets, predicted expression consistently exhibits high similarity to K562, 
as opposed to other cell types, including those sharing hematopoietic origins with K562 
(Additional file  1: Fig. S4). Also, we conducted leave-one-chromosome-out and leave-
one-cell type-out experiments to confirm that CREaTor’s superior performance was not 
limited to chr8-9 and K562, respectively (Additional file 1: Fig. S5 and Additional file 2: 
Table S4a-b).
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It has been reported that histone modifications and DNA openness proximal to gene 
transcription start sites (TSS) are significantly correlated with active transcription [37]. 
To demonstrate that distal information contributes to model performance, we compared 
models trained with cCREs up to 2 kb, 5 kb, 10 kb, 100 kb, or 1 Mb away from the TSS 
of target genes. Performance improved with increasing candidate window sizes (Addi-
tional file 1: Fig. S6), suggesting that CREaTor predicts gene expression from both prox-
imal and distal cCREs. Also, this result indicates that distal cCREs are substantial for 
accurate expression prediction, supporting the importance of long-range cis-regulatory 
interactions in gene regulation. But meanwhile, it is worth noting that the model trained 
with cCREs up to 2 kb away from target genes performed significantly better than ran-
dom guesses, consistent with the knowledge that the proximal functional genomes and 
cCREs are closely related to gene expression.

Self‑attention reveals functional cCREs in unseen cell types

Attention weights between cCREs and target genes extracted from CREaTor (see the 
“Methods” section) may be exploited to interpret the importance of each cCRE to genes. 
To test this hypothesis, we benchmarked CREaTor against 3 CRISPR-based experi-
mental-validated K562 enhancer-target gene datasets [13–15]. To be noted, criteria for 
candidate enhancers vary in each study and few enhancer-target gene pairs tested were 
shared among studies (Additional file 1: Fig. S7 and Additional file 3: Table S5). Thus, 
we combined the experimental results and identified 1859 putative enhancers related to 
328 genes that were tested by both the experimental approaches and CREaTor across 
the K562 genome. CREaTor prioritizes positive enhancer-gene pairs to negative ones 
with larger attention scores (auROC = 0.834, auPRC = 0.620; Fig. 2a, b), and the perfor-
mance is further improved when we adjusted the attention scores with enhancer-gene 
genomic distances (auROC = 0.843, auPRC = 0.667; Fig. 2a, b). In addition, we compared 
the scores derived from the attention weights of CREaTor with a quantitative analysis of 
enhancer effects as described in a previous study [13]. In this study, the enhancer effect 
on gene expression was defined as the change in gene expression upon enhancer knock-
down using CRISPR perturbation. Consequently, the quantitative effect is inversely 
related to the enhancer activity. In line with this understanding, we observed a negative 
correlation, with a Spearman ρ of  -0.269, between the CREaTor scores and the quantita-
tive observations (Fig. 2c), implying that CREaTor captures quantitative effects of cCREs 
to genes.

We also compared CREaTor with 4 methods previously used for cCRE-gene inter-
action modeling: (1) predictions based solely on genomic distances between cCREs 
and genes; (2) predictions based on cCRE H3K27ac signals and cCRE-gene distances 
(approximate version of the Activity-by-Contact (ABC) score [13]). These model-free 
approaches can estimate activities of cCREs spanning varying ranges without prior 
knowledge of cis-regulatory programs in any cell types, or cell types with H3K27ac quan-
tifications, which align well with the setting of CREaTor. Evaluated on a comprehensive 
set of metrics, CREaTor outperforms both methods at different distance groups (Fig. 2a, 
b and Additional file 1: Fig. S8). In addition, we compared CREaTor to 2 state-of-the-art 
deep learning approaches, (3) Enformer [27] and (4) GraphReg [28]. Both Enformer and 
GraphReg, trained with supervised gene expression prediction tasks, support zero-shot 
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cCRE-gene interaction prediction. However, Enformer’s architecture limits it from long-
range enhancer-gene interaction prediction, as the released Enformer model can only 
predict interactions up to 200  kb. Additionally, it cannot generalize to new cell types 
as it solely relies on genomic sequences for predictions. To simulate prediction tasks in 

Fig. 2 Attention matrix of CREaTor implies cCRE-gene interactions. a, b auROC (a) and auPRC (b) of CREaTor 
outperform its counterparts on cCRE-gene pair classification. Attention (attn., yellow): normalized attention 
weights (genes to cCREs) in CREaTor. Adjusted attention (adj. attn., red): attention scores/log10 (distance). 
H3K27ac/dist (blue): approximate of the ABC score. Distance quantifies relative genomic distances between 
genes and cCREs. H3K27ac value of a cCRE is calculated as the sum of H3K27ac peak values of the element. 
Labels (positive/negative) of cCRE-gene pairs were collected from 3 independent CRISPR perturbation 
experiments [13–15]. c Attention scores derived from attention weights are significantly correlated with the 
effect of enhancer on gene expression quantified by Fulco et al. [13]. As the quantification measures the 
change of target gene expression upon enhancer knock-down using CRISPR perturbation, the quantitative 
effect values are inversely related to enhancer activities. d, e auPRC (d) and auROC (e) of CREaTor and its 
counterparts on the classification of cCRE-gene pairs collected from a Pol-II mediated ChIA-PET experiment. 
The performance is evaluated for each gene and each distance group separately. Groups with < 10 samples 
were filtered out. Center line, median; box limits, upper and lower quartiles; whiskers, 1.5 × interquartile 
range; points, outliers. f MYC locus showing predicted and previously reported regulators in K562 cells. For 
CREaTor (red) and H3K27ac/distance (gray), peaks on the tracks represent the scores of different cCRE regions. 
Enhancers track (red squares) denotes reported active regulators of MYC. Representative DNase, H3K4me3, 
H3K27ac, and CTCF tracks, as well as ChIA-PET interactions in K562, are also annotated
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new cell types, we adopted the cell-type-agnostic setting of Enformer (see the “Meth-
ods” section). As expected, predicting enhancer-gene interactions in new cell types 
with Enformer is not favorable (Fig.  2a, b and Additional file  1: Fig. S8). GraphReg, 
on the other hand, predicts CAGE signals from 1D epigenomic data and 3D genomic 
structures, allowing it to generalize to new cell types. However, its dependency on 3D 
genomic structures and CAGE profiles narrows its applicability. To evaluate GraphReg, 
we trained an enhanced GraphReg model using 9 cell types and 16 types of epigenomic 
profiles from scratch and derived feature importance to estimate enhancer activities in 
K562 as suggested by the original study (see the “Methods” section). Our results show 
that CREaTor greatly outperforms GraphReg (Fig. 2a, b and Additional file 1: Fig. S8), 
suggesting the superiority of CREaTor’s design.

Next, cCRE-gene interactions discovered by CREaTor were further benchmarked 
against a genome-wide Pol II-mediated ChIA-PET dataset [38]. Compared with CRISPR 
perturbation studies, ChIA-PET covers a broader range of genes and regulators, thus 
capturing more comprehensive interactions between genes and regulators. We recov-
ered 6,132,740 cCRE-gene pairs (both positive and negative) across the K562 genome 
from ChIA-PET. To benchmark CREaTor and its counterparts, for each gene, we cal-
culated auROC and auPRC of the corresponding cCRE-gene pairs stratified by their 
relative genomic distances. Among all, CREaTor shows the highest median auROC and 
auPRC for gene collections at all distance groups and greatly outperforms Enformer and 
GraphReg (Fig. 2d, e). Strikingly, CREaTor performs substantially better at groups span-
ning longer ranges.

Since ChIA-PET captures physical proximities between genomic regions, false posi-
tives exist when active CRE-gene pairs are recovered from ChIA-PET. To benchmark 
our method more comprehensively, we calculated the precision and specificity scores 
for different methods considering that these metrics are less impacted by false positives. 
Consistently, CREaTor outperforms other methods (Additional file 1: Fig. S9), indicat-
ing that CREaTor can capture cCRE-gene interactions efficiently from genomic features 
flanking target genes in unseen cell types.

Lastly, we examined if our model recovered regulators of the oncogenic gene MYC 
(chr8: 127,735,434–127,742,951). cCREs of MYC disperse along genomic sequences to 
as far as 2 Mb downstream MYC TSS and active MYC regulators in K562 were iden-
tified by previous studies with various approaches [39–41]. Therefore, we examined if 
CREaTor could pinpoint these regulators accurately. The result indicates that CREaTor 
prioritizes positive MYC cCREs with larger attention scores and captures active cCREs 
missed by other predictive approaches (Fig. 2f ). In addition, 2 groups of sharp peaks are 
observed 2 Mb downstream MYC TSS (Fig. 2f ), in concordance with the existence of 2 
distal super-enhancer regions of MYC. Since MYC is in both in- and cross-cell type test 
sets, we believe that CREaTor has learned general rules guiding cCRE-gene interactions 
in different cell types, rendering it an efficient tool for cCRE activity modeling in unseen 
cell types.

CREaTor captures chromatin domain boundaries in unseen cell types

Three-dimensional (3D) chromatin folding allows physical interactions between distal 
cCRE and genes and the information can also guide gene regulation modeling [13, 28, 
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42]. Without incorporating 3D chromatin folding information in our model, we were 
curious to see if CREaTor captured the topological structure of the genome, considering 
that CREaTor precisely recovers cCRE-gene interactions even of long ranges.

Attention matrices extracted from the model imply not only the interactions between 
cCREs and genes, but also relationships between cCRE-cCRE pairs. To examine if the 
attention matrix reflects contact frequency between elements, we aggregated the atten-
tion matrix at 10  kb resolution for each gene in K562 and compared the results to a 
high-resolution Hi-C study [10]. In addition to observing similar checkerboard patterns 
between the attention matrix and Hi-C (Fig. 3a), we systematically evaluated the con-
sistency between the attention matrix and topologically associating domains (TADs) by 
analyzing insulation scores (see the “Methods” section). We calculated insulation scores 
from the attention matrix over 12,584 K562 TAD boundaries defined in a recent study 
[43]. The average score across the genome shows a clear insulation pattern on bounda-
ries, similar to that calculated from the Hi-C experiment (Fig. 3b). Meanwhile, no signif-
icant decrease over GM12878-specific TAD boundaries [43] is observed with insulation 

Fig. 3 CREaTor captures hierarchically higher-order genome organizations. a Example genomic regions 
showing the similarity between attention matrix (above the diagonal) and Hi-C contact matrix (below the 
diagonal). Orange boxes indicate TAD domains. b Average insulation scores across the K562 genome at 10-kb 
resolution calculated from attention matrix and Hi-C. Blue line and left y-axis: insulation scores of attention 
matrix. Pink line and right y-axis: the insulation scores of Hi-C. Solid lines indicate insulation scores over K562 
TAD boundaries and dashed lines indicate insulation scores over GM12878 boundaries. The x-axis is centered 
on TAD boundaries. c Upper panel: Statistics of attention weights between CTCF-bound element pairs 
with different topological relationships. Center line, median; box limits, upper and lower quartiles; whiskers, 
1.5 × interquartile range. Lower panel: illustration of CTCF-bound element pairs used for the analysis. The 
red triangle represents TAD domains called from the Hi-C matrix (blue). d Average attention scores between 
elements without normalization. p-value is calculated with Mann–Whitney U test
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scores calculated from either K562 attention matrix or K562 Hi-C (Fig. 3b), demonstrat-
ing that CREaTor captures K562-specific TAD boundaries. Together, the results show 
that CREaTor can infer cell type-specific topological structures of genomes in cells 
unseen by the model.

We reason that CREaTor infers genome structures by learning the insulating behaviors 
of CTCF-bound elements. Consistently, we found that paired CTCF-bound insulators 
flanking the same TAD domain showed significantly larger attention scores compared 
to either unmatched insulator pairs spanning multiple TADs, or pairs involving non-
insulator CTCF-bound elements (Fig. 3c). Thus, CREaTor may predict gene expression 
and capture cCRE-gene regulation efficiently by modeling topological patterns of the 
genome.

CREaTor implies directional regulation between cCREs

It is long proposed that enhancers form hierarchical relationships with each other, yet 
the relationship is challenging to be disentangled with biological experiments. For exam-
ple, Carleton et al. developed an enhancer interference technique (Enhancer-i) to study 
the combinational effects of distal regulatory regions on genes [44]. They showed the 
interdependence between CISH-1 and CISH-2, two estrogen receptor α-bound enhanc-
ers of the cytokine signaling suppressor gene CISH. However, the detailed mechanism 
between interactions of CISH-1 and CISH-2 could not be elucidated. Here, we examined 
attention scores between cCREs within CISH-1 and CISH-2 regions (denoted as Cr1 
and Cr2 respectively) and found that the attention from Cr1 to Cr2 is significantly larger 
than the other way around (Fig. 3f ). To rule out potential distance bias, we examined 
attention score distribution of 5773 genes whose cCRE-gene distances were similar to 
Cr1-CISH and Cr2-CISH (denoted as SDaCr1 and SdaCr2). Remarkably, no directional 
preference between SDaCr2 and SDaCr2 was observed (Fig. 3f ). Therefore, our results 
indicate that there could be a directional relationship between CISH-1 and CISH-2, 
which is driven by hierarchical regulation of enhancers. We thus believe that with fur-
ther development, CREaTor has the potential to become a powerful tool for understand-
ing the causal relationships within enhancer networks.

cCRE representations learned by CREaTor suggest a new role of CTCF‑bound elements

To investigate how CREaTor perceives cCREs and their roles during gene regulation, we 
clustered cCREs by the 256-dimensional cCRE representations extracted from CREaTor 
and examined features enriched in each group.

While different cCRE types are enriched in different clusters (Fig. 4a, b), cCRE repre-
sentations learned by our model better capture functional variations of elements com-
pared to the classification of ENCODE. For instance, while cCREs are aggregated into 
6 clusters, both cluster 0 and cluster 1 are enriched with proximal enhancer-like ele-
ments, cCREs that show enhancer-like signatures falling within 200 bp of an annotated 
transcript start site (TSS) [16]. However, proximal enhancer-like elements in cluster 0 
are enriched for RNA polymerase II (Pol II) signals (Additional file 1: Fig. S10), markers 
of active transcription events, compared to those in cluster 1. Since promoter-like ele-
ments are also enriched in cluster 0 and enhancers are believed to be able to contribute 
to promoter activities [45], we reason that CREaTor learns the discrepancies between 
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enhancer-like elements of different roles and therefore associates a subgroup of proxi-
mal enhancer-like elements with promoters. Meanwhile, the fuzzy boundaries between 
clusters may indicate the adaptable functions of elements for gene regulation captured 
by our model.

CTCF-only cCREs, which lack both enhancer-like signatures and promoter-like sig-
natures, are more isolated from other elements, consistent with their insulator and 
looping functions (Fig.  4a). However, CTCF-only cCREs are clustered into 2 separate 
groups, while a subgroup of CTCF-only cCREs is aggregated with distal enhancer-like 
elements in cluster 5 (Fig. 4b). Compared to other clusters, cluster 5 shows a significant 
enrichment of H3K36me3 peaks (Fig. 4c), a histone modification associated with diverse 
functions in conjugation with different types of epigenetic markers [42, 46–50], indi-
cating a higher chromatin activity of these elements. Consistent with the result, genes 
close to CTCF-only cCREs in cluster 5 (denoted as CTCF-H3K36me3 elements) show 

Fig. 4 cCRE representations learned by CREaTor suggest a new role of CTCF-bound elements. a Uniform 
Manifold Approximation and Projection (UMAP) of cCRE embeddings in K562. Upper: colored and numbered 
as clusters grouped by the Leiden algorithm. Bottom: colored and labeled by element type. b Composition 
of different element types in each cluster by percentage. Proximal elements: elements falling within 200 bp 
of an annotated TSS. Distal elements: elements more than 200 bp from any annotated TSS. Promoter-like: 
elements with high DNase and H3K4me3 signals. Enhancer-like: elements with high DNase and H3K27ac 
signals. CTCF-only: elements with high DNase and CTCF signals, as well as low H3K4me3 and H3K27ac 
signals. c Fold change of histone marker peaks of given types of cCREs in cluster 5 with respect to those in 
other clusters. Top: all cCREs. Middle: distal enhancer-like elements. Bottom: CTCF-only elements. d Expression 
value (log1p) distribution of genes within 10 kb of different types of CTCF-bound elements. e Average signals 
of H3K36me3, H3K79me2, H4K20me1, H2AFZ, H3K4me1, and H3K27me3 on different types of CTCF-bound 
elements. f Illustration for the proposed model of CTCF-H3K36me3 elements promoting transcription 
elongation
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higher expression values compared to those close to low H3K36me3 CTCF-only ele-
ments (Fig. 4d), suggesting a more active role in gene transcription of CTCF-H3K36me3 
elements.

Depletion of repressive histone modification H3K27me3 also supports the greater 
activity of CTCF-H3K36me3 elements (Fig.  4e). Other from H3K36me3, CTCF-
H3K36me3 elements are enriched with H3K79me2 and H4K20me1 (Fig. 4e), a pattern 
that has been previously reported to be associated with active transcription and splic-
ing of exons [46]. Meanwhile, CTCF-H3K36me3 elements show increased H3K4me1 
and H2AFZ signals (Fig. 4e), both of which are associated with enhanced transcription 
elongation [51, 52]. Considering a majority of CTCF-H3K36me3 elements are located 
outside exon regions, we propose that CTCF-H3K36me3 elements promote transcrip-
tion elongation by serving as binding hubs for various cis- and trans-regulatory elements 
(Fig. 4f ), which are captured by CREaTor for cross-cell type gene regulation modeling.

Discussion
While profiling gene expressions and epigenetic modifications in various cell types is 
feasible, systematical approaches profiling cell type-specific cis-regulatory patterns are 
currently not achievable. As a result, deep learning techniques, despite greatly advancing 
our understanding of gene regulation in many areas, face challenges in this area due to 
the lack of training data. To overcome this challenge, we introduce the CREaTor frame-
work. By strategically selecting training tasks and incorporating attention mechanism, 
CREaTor enables zero-shot cis-regulatory pattern modeling and cCRE-gene interaction 
prediction at ultra-long range. In addition, it can generalize to new cell types without 
requiring additional training or relying on 3D genomic data, making CREaTor versatile 
and applicable to a wide variety of cell types.

Comprehensive validation and benchmark experiments show that our model outper-
forms alternative methods in modeling cCRE-gene interactions. Additionally, attention 
analysis shows that CREaTor learns cell type-specific 3D genome interactions and insu-
lation behaviors, which play crucial roles in gene regulation, during gene expression pre-
diction. These results indicate that our model is able to capture the underlying principles 
that guide cCRE-gene interactions across different types of cells, utilizing 1D features 
such as histone modifications on the genome. Further experiments showcase that CREa-
Tor captures regulatory mechanisms at multiple levels. Aside from cCREs, CREaTor also 
learns gene interpretations during modeling. Our model stratifies genes into distinct 
groups enriched with different biological processes and molecular functions (Additional 
file 1: Fig. S11), indicating that CREaTor has captured active pathways mediated by dif-
ferent transcription factor programs, which allow cell type-specific gene regulation by 
binding to cCREs. These analyses may explain how our model captures cis-regulatory 
patterns from a range of cross-cell type gene expression predictions.

Apart from modeling cross-cell type cis-regulatory patterns, the adoption of trans-
former architecture has allowed for greater flexibility in various applications. For 
instance, the element module in CREaTor can handle candidate regulators of differ-
ent lengths. Also, the regulation module allows the modeling of gene context with 
varying numbers of cCREs spanning varying genomic ranges. In contrast, convo-
lutional neural network-based approaches [53, 54], despite possessing potential for 
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zero-shot modeling capabilities through feature attribution methods, encounter con-
straints in terms of adaptability. In addition, even though 17 types of input features 
are employed for training, our model maintains the ability to predict gene expres-
sion and infer cCRE-gene interactions in the absence of some features, albeit with the 
possibility of reduced performance (Fig. 5a). Overall, this flexibility renders CREaTor 
more amendable to different scenarios compared to alternative approaches.

In order to assess the impact of each input feature on predicting gene expression 
and modeling cis-regulatory patterns, we conducted an ablation study by excluding 
individual feature types from the model’s training. Our results revealed inconsistent 
performance between different tasks—while genome sequence information is dis-
pensable for successful cell type-specific gene expression prediction, it has a moder-
ate impact on the accuracy of CRE-gene interaction inference (Fig. 5b). Likely due to 
complementary relationships between different feature types, no single feature was 
found to play a dominant role in CRE-gene interactions. However, the exclusion of any 
feature type leads to decreased performance for CRE-gene interaction inference, and 
the model trained with a full collection of features performs significantly better on 
the cCRE-gene interaction classification task compared to all other settings (Fig. 5b), 
suggesting that utilization of multiple types of features guarantees our model’s per-
formance across cell types and CREaTor may have learned synergistic relationships 
between features for accurate cis-regulatory pattern modeling. Among all, features 
that are known to be crucial for gene regulation, such as CTCF, DNase, H3K4me3, 
H3K27ac, H3K9ac, and EP300, show greater importance. Pol II with enriched phos-
phorylated Ser5 in CTD is more important for gene expression prediction and cCRE-
gene interaction inference than its unphosphorylated form. This could be explained 
by the active involvement of phosphorylated CTD in binding trans- and cis-regula-
tory elements for dynamic transcription regulation. Evaluating the impact of different 
Pol II phosphorylation states on gene regulation modeling in the future might give 
additional insight into their roles. Interestingly, the results imply a paradoxical role of 

Fig. 5 Feature ablation study demonstrates the importance of feature integration for modeling. a auROC 
and auPRC of 4 different models on cCRE-gene pair classification. Large (red): the model trained with 17 types 
of features. Medium (yellow): the model trained with 8 types of features (genomic sequence, DNase, CTCF, 
H3K27ac, H3K4me3, H3K9ac, EP300, and POLR2AphosphoS5). Small (blue): the model trained with 5 types 
of features (genomic sequence, DNase, CTCF, H3K27ac, and H3K4me3). b Large model trained with 17 types 
of features outperforms other models on cCRE-gene interaction classification tasks. Minus signs indicate 
the following type of feature is removed during model training. Labels (positive/negative) of cCRE-gene 
pairs were from the same source as Fig. 2. The colors of dots indicate the Pearson r between observed and 
predicted expression of K562-specific genes
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H3K36me3 in gene regulation. This may be due to the fact that the gene sets regulated 
by H3K36me3 are not included in the CRISPR perturbation experiments.

It is worth pointing out that our model’s performance is constrained by the limited 
accessibility of functional genomic data, regardless of the features employed. Although 
the ENCODE project provides various high-quality functional genomic data of many cell 
types, the coverage is still limited due to the vast number of cell types, histone modifica-
tions, and proteins binding to the genome. For example, cohesin, which regulates chro-
matin structure by participating in the loop extrusion process, was not included in our 
model data at the time of modeling due to the lack of data in most cell types. We believe 
that incorporating such data would further improve the generalizability of our method.

Compared to previous approaches, CREaTor is able to capture distal cis-regulatory 
patterns and infer cCRE-gene interactions spanning ultra-long distances. We believe 
that one reason for this improvement is the fact that our model was trained using only 
cCREs. However, it is also important to note that this approach may lead to bias and 
neglect of atypical regulators, such as non-canonical enhancers and other low-H3K27ac 
regulatory elements without typical enhancer chromatin features [55, 56]. We expect 
that an end-to-end setting incorporating a deep learning module calling CREs directly 
from the genome will alleviate the issue of bias and allow for a more comprehensive 
understanding of cis-regulatory elements.

Finally, in the interest of simplicity and consistency with previous studies, we have 
chosen to utilize reference genomes during the training process. However, it is impor-
tant to note that functional genomic data on ENCODE might have originated from cells 
with different genomes. Specifically, cell lines may exhibit different nucleotide polymor-
phisms, structural variations, and karyotypes. As previous studies have demonstrated 
the predictive capability of genomic sequences in various tasks [26, 27, 53, 54] and we 
have shown that the absence of sequences negatively impacts the performance of cCRE-
gene interaction inference (Fig. 5), we anticipate that improved model performance will 
be garnered by considering the diverse variations and associated consequences of dif-
ferent cell types in future work. Despite these limitations, we believe that CREaTor can 
serve as a powerful tool for studying cell type-specific cis-regulatory patterns and gene 
regulation networks, with further improvements to be made in the future.

Conclusion
In this study, we have demonstrated that a hierarchical attention-based deep neural 
network, CREaTor, can effectively model cis-regulatory patterns and cCRE-gene inter-
actions with improved accuracy in new cell types without the need for fine-tuning or 
retraining. Remarkably, CREaTor is capable of predicting cCRE activities up to 2  Mb 
from target genes using only 1D functional genomics data, without prior knowledge of 
cCRE-gene interactions or 3D genomic data. This significantly broadens its applicability. 
Our extensive evaluations reveal that CREaTor outperforms existing methods in captur-
ing cCRE-gene interactions across various distance ranges in a held-out cell type. Fur-
ther analysis indicates that the superior performance of CREaTor can be attributed to its 
ability to model regulatory interactions at multiple levels. This includes the higher-order 
genome organizations that govern cCRE activities, as well as cCRE-gene interactions. 
Taken together, our findings underscore the potential of CREaTor as a powerful tool for 
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systematically investigating cis-regulatory programs across different cell types, in both 
normal developmental processes and disease-associated context.

Methods
Model

Model architecture

The backbone of CREaTor is composed of two modules: (1) an element module to 
extract features of cCREs and (2) a regulation module to model the regulations between 
cCRE and genes.

CREaTor takes 200 cCREs from up- and down-stream of target gene TSS respectively 
as input. (Note: we have also tried taking cCREs within the ± 1 Mb range of a gene TSS 
for training. The outcomes of both strategies are comparable.) Each element is repre-
sented by its DNA in the form of one-hot encoding (A = [1, 0, 0, 0, 0], T = [0, 1, 0, 0, 0], 
C = [0, 0, 1, 0, 0], G = [0, 0, 0, 1, 0], N = [0, 0, 0, 0, 1]) and ChIP-seq/DNase-seq with read-
depth normalized signal or fold change over control, although the absence of ChIP-seqs 
can be tolerated by our proposed framework. We map the input DNA and ChIP-seq/
DNase-seq to DNA embedding and ChIP-seq embedding through a linear projection 
to 256 channels respectively. Then, we organize the feature embedding at each base pair 
( Embbp) as the sum of DNA embedding and ChIP-seq embedding.

The core of the element module is an element encoder based on transformer encoder 
architecture. Each transformer encoder layer consists of a multi-head self-attention sub-
layer and a position-wise fully connected feed-forward network sub-layer30. In the self-
attention sub-layer, scaled dot-product attentions are performed as follows: embeddings 
calculate the query Q ∈ R

n×dk , key K ∈ R
n×dk , and value V ∈ R

n×dv through linear pro-
jection where n is the number of embeddings, dk , dv is the number of channels; the 
attention weight is calculated by softmax(QK

T
√

dk
) representing the attention pairwise; 

lastly, the value representing the semantics of all embeddings is aggregated according to 
the attention weights as shown in the equations below. Feed-forward network sub-layers 
introduce non-linearity and interact channel information. Since the transformer encoder 
is a position-agnostic architecture, we apply a relative positional embedding onto the 
attention weights to introduce positional information. We follow T5 [57] to formulate 
the position embedding θ , where P is the relative position between base pairs within 
elements.

We concatenate a learnable [CLS] token to Embbp in the element encoder. The [CLS] 
token adaptively attends Embbp and we use its output as the representation of elements 
( Embele ). The element encoder consists of 2 transformer encoder layers with 4 heads.

The regulation module comprises a regulation encoder to model the interactions 
between genes and cCREs and a prediction head for gene expression prediction.

Attention(x) = softmax
xWq + bq (xWk + bk)

T

dk
+ θ(P) (xWv + bv)

FFN(x) = max(xW1 + b1, 0)W2 + b2
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Regulation encoder shares a similar architecture with element encoder, but with 4 
transformer encoder layers and 4 attention heads. We concatenate [GENE] tokens and 
the corresponding cCRE embeddings Embele to formulate the input of the regulation 
encoder. To be noted, [GENE] tokens are initialized by shared learnable embeddings 
and different genes are distinguished by their associated TSS positions. Additionally, 
to ensure proper information flow, we mask out the attention weight between genes. 
Accordingly, [GENE] tokens adaptively attend Embele and we use their output as the rep-
resentation of genes ( Embgene ). Relative position P is calculated as the relative genomic 
distances of gene TSS and elements.

At last, we apply a prediction head comprised of a linear projection and a soft plus 
activation to predict the gene expression given gene representations Embgene output 
from the regulation encoder.

Model training

We trained our model with a batch size of 8 for 50,000 steps using AdamW optimizer. 
For training stability, we warmed up the learning rate in the first 5000 steps from 0 to 
1e − 3 and linearly decayed it to 1e − 8. Following previous work [26], we calculated the 
loss between the ground truth and predicted values through a Poisson negative log-like-
lihood function. We also applied a gradient clip by norm with a maximum norm of 1.0 
and a dropout rate of 0.1.

We verified the robustness of our model with 5 random seeds.

Attention score

Attention logit matrices were extracted from each attention layer in the Regulation 
Encoder. Both min-max and softmax normalization were applied based on needs. For 
cCRE-gene interaction modeling, we focused on attention from gene to cCRE only.

Training data

RNA expression, DNase-seq, and ChIP-seq files were downloaded from ENCODE 
(https:// www. encod eproj ect. org/, by October 2021). For better quality control, we used 
experiments included in the reference human epigenomes [29] only (ENCODE-Ref-
erence epigenome matrix). The complete list of data can be found in Additional file 3: 
Table S6-S8.

RNA‑seq processing

Total RNA-seq and polyA plus RNA-seq data in human biosamples were downloaded 
from ENCODE. Released transcript quantifications mapped to the GRCh38 sequences 
and annotated to GENCODE V29 were retained. Gene expression level was calculated 
as the sum of transcript TPM. Log1p normalization was performed.

DNA‑seq and ChIP‑seq processing

DNase-seq, histone ChIP-seq, and TF ChIP-seq files of human biosamples mapped to 
the GRCh38 sequences were downloaded from ENCODE. Archived files were ignored. 
We kept read-depth normalized signal files for DNase-seq and fold change over control 
files for ChIP-seq.

https://www.encodeproject.org/
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cCREs

cCREs for different biosamples were downloaded from SCREEN Registry V3 (https:// 
screen. encod eproj ect. org/, by October 2021). cCRE count for each biosample ranges 
from 85,248 to 138,179 (Additional file 2: Table S1). DNase-only and low-DNase ele-
ments were removed. All elements were padded to 350  bp for the convenience of 
modeling, which is not mandatory.

Cell types

We selected human tissues, primary cells, cell lines, and in vitro differentiated cells 
(1) with RNA-seq, DNase, CTCF ChIP-seq, H3K4me3 ChIP-seq, and H3K27ac ChIP-
seq data available on ENCODE and (2) with complete cCRE information on SCREEN 
Registry V3.

CRE‑gene interaction evaluation

Fulco et al.

We downloaded the enhancer-gene interaction data from Supplementary Table 6a of 
the original study [13]. We converted genomic coordinates of candidate enhancers 
from hg19 to hg38 using the liftover program of the UCSC Genome Browser (https:// 
genome. ucsc. edu/ cgi- bin/ hgLif tOver). Non-autosomal genes were removed.

Gasperini et al.

We downloaded the data from Table S2 of the original study [14]. We converted 
genomic coordinates of candidate enhancers from hg19 to hg38 using the liftover 
program of the UCSC Genome Browser. To generate gene-mapped negative sam-
ples from the Gasperini dataset, we first selected target genes from the identified 664 
enhancer-gene pairs and then picked out candidate enhancers within the 1 Mb region 
of each target gene respectively from all enhancers screened. Non-autosomal genes 
were removed.

Schraivogel et al.

We downloaded the data from Supplementary Tables S2 and S3 of the original study 
[15]. We converted genomic coordinates of candidate enhancers from hg19 to hg38 
using the liftover program of the UCSC Genome Browser. To generate gene-mapped 
negative samples from the Schraivogel dataset, we first selected target genes from the 
identified 41 enhancer-gene pairs and then picked out candidate enhancers within the 
1 Mb region of each target gene respectively from all enhancers screened.

ChIA‑PET

We obtained the ChIA-PET data of K562 from the ENCODE portal (ENCSR880DSH). 
To evaluate the model’s performance, for each gene, we used a total of 400 regulators 
upstream and downstream as the evaluation dataset. To calculate the cCRE-gene or 
cCRE-CRE interaction, for each pair of interacting sequences, we calculated whether 
the reads pair intersected the gene and CRE, respectively. The gene was considered to 

https://screen.encodeproject.org/
https://screen.encodeproject.org/
https://genome.ucsc.edu/cgi-bin/hgLiftOver
https://genome.ucsc.edu/cgi-bin/hgLiftOver
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interact with the cCRE and regarded as a positive sample if crossed and as a negative 
sample otherwise.

ABC score

ABC score was adapted from Fulco et  al. [13]. To be more specific, we collected the 
bigWig files of H3K27ac and DNase from ENCODE’s ENCFF977KGH and ENCF-
F414OGC, respectively, and converted them to bedGraph files with the UCSC tool big-
WigTobedGraph. For each cCRE, we determined its signal by calculating the sum of the 
signals intersecting with it. Accordingly, we calculated the ABC score as the geometric 
mean of the H3K27ac and DNase signals multiplied by the reciprocal of the distance 
between the cCRE and the TSS [27].

Classification of cCRE‑gene interaction by distance groups

For each gene, the cCREs are divided into 4 groups (0–5  kb, 5–50  kb, 50–1000  kb, 
1000 kb +) according to their distances to gene TSS. Groups with less than 10 gene-CREs 
pairs were filtered. auPRC and auROC for each group of each gene were calculated. For 
specificity and precision, we used mean values as the cutoff for the classification of posi-
tive and negative regulators.

Enformer [27]

Pre-trained Enformer model was downloaded from https:// github. com/ deepm ind/ 
deepm ind- resea rch/ tree/ master/ enfor mer. Genomic sequences flanking genes of inter-
est were prepared following the original study’s instructions. Gradient × input of candi-
date enhancers was calculated following the original study’s instructions. To be pointed 
out, to simulate prediction tasks in new cell types, we used the cell-type-agnostic setting 
during the analysis. More specifically, the gradient was calculated and aggregated from 
all human tracks of the model.

GraphReg [28]

Epi-GraphReg model was downloaded from https:// github. com/ karba laygh areh/ Graph 
Reg. Genomic sequences and DNase-seq, H3K27ac, and H3K4me3 were prepared fol-
lowing the original study’s instructions. For a fair comparison, we incorporated histone 
modifications and transcription factor (TF) binding profiles used for CREaTor training 
as well (see Additional file 3: Table S6-S8 for a full list). For training, we sourced chro-
mosomes from cell lines including GM12878, B cells, HeLa-S3, MCF-7, fibroblast of der-
mis, CD14 positive monocyte, H1, HepG2, and keratinocyte (Additional file 3: Table S8), 
deliberately excluding chromosomes chr8, chr9, and chr16. The CAGE data for these cell 
lines were downloaded from ENCODE, as detailed in Additional file  3: Table  S8. We 
replaced the 3D genomic data with the reciprocal of the genomic distances between the 
cCRE and the TSS. For cCRE-gene interaction classification, we calculated saliency and 
integrated gradients for candidate enhancers following the original study’s instructions. 
The feature attribution type led to the best performance was used for comparison.

https://github.com/deepmind/deepmind-research/tree/master/enformer
https://github.com/deepmind/deepmind-research/tree/master/enformer
https://github.com/karbalayghareh/GraphReg
https://github.com/karbalayghareh/GraphReg
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TAD prediction

Hi‑C data processing

We obtained the long-range chromatin interactions of K562 Hi-C data from ENCODE 
(ENCSR545YBD). To estimate the interaction matrix with each cCRE as a bin, the 
Hi-C pairs that intersected with each cCRE pair were added together.

Calculation of insulation score

We calculated the sum of the interactions in each bin within 10 kb as the Hi-C inter-
action matrix for 10-kb resolution. A similar operation was applied to the attention 
matrix. We summed the min-max-normalized attention matrix within 10-kb win-
dows as the attention matrix at 10-kb resolution. We obtained the location of the 
TAD boundary on K562 and GM12878 from the previous study [43]. The interactions 
of the 3 × 3 matrix were summarized at one bin from the diagonal [58] to represent 
the insulation score for each TAD boundary. GM12878-specific TAD boundaries are 
genomics regions called in GM12878 boundary file exclusively.

Grouping of CTCF‑bound elements

For all cCREs showing positive CTCF binding patterns, we determined whether they 
intersected with the TAD boundary from a previous study [43]. We considered the 
intersecting cCREs as anchors of the TAD boundaries, and others as non-anchors. We 
extracted the attention scores between these CTCF-bound cCREs and then divided 
the weights into various groups. Scores for anchor cCRE pairs on the same TAD 
boundary were classified as “anchor-to-anchor”; scores between anchor cCRE and 
non-anchor cCRE within the same TAD were classified as “anchor-to-non-anchor”; 
scores for anchor cCREs on adjacent TADs were classified as “anchor-to-anchor in 
adjacent TADs”; and scores for anchor cCREs more than one TAD apart were classi-
fied as “anchor-to-anchor in remote TADs”.

Mapping of CISH enhancers

First, we obtained the two regulatory loci Cr1 and Cr2 of CISH from the previous 
study [44] and converted their genomic coordinates from hg19 to hg38 using the lifto-
ver program of the UCSC Genome Browser. Then, for all cCREs of CISH genes in 
K562, we determined which cCREs intersected with Cr1 and Cr2, representing Cr1 
and Cr2 respectively. Finally, we calculated the attention scores from Cr1 to Cr2 in 
K562 cell line to determine the effect of Cr1 on Cr2 and from Cr2 to Cr1 to determine 
the effect of Cr2 on Cr1. The control background (SDaCr1 and SDaCr2) consisted of 
interactions between cCREs with the same distance from Cr1 and Cr2 to CISH to all 
protein-coding genes except CISH.

K562‑specific genes

We obtained the expression data of each cell line’s gene from ENCODE (Additional 
file 3: Table S6). Using the expression data of K562 as a control, we extracted the count 
matrix of each other cell line by the function rsem-generate-data-matrix of RSEM. 
These count matrices were then used to calculate differentially expressed genes using 
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the function rsem-run-ebseq. After that, we screened the genes with PPDE (posterior 
probability that a gene/transcript is differentially expressed) greater than 95% as dif-
ferentially expressed genes for K562 versus each cell line. Finally, the intersection of 
these differential genes was considered K562-specific genes.

Representation clustering and visualization

First, we reduced the dimensionality of the 256-dimensional representations learned by 
our model with scanpy.tl.pca (default parameters). After a neighborhood graph is calcu-
lated (scanpy.pp.neighbors, n_neighbors = 20, n_pcs = 50), we clustered reduced repre-
sentations with Leiden graph-clustering method (scanpy.tl.leiden, resolution = 0.5). The 
neighborhood graph and clusters were then visualized using Uniform Manifold Approx-
imation and Projection (UMAP).
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