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Background
The advances in single-cell RNA sequencing (scRNA-seq) technologies allow the meas-
urement of global gene expression profiles of individual cells, enabling the dissection 
of heterogeneous cell populations in complex samples that were inaccessible in bulk 
sequencing data [1]. The large number of genes measured by scRNA-seq technologies 
results in high-feature-dimensionality and high-feature-redundancy where a large pro-
portion of genes are not informative and therefore may not aid downstream data analy-
ses and interpretation [2]. To this end, various feature selection techniques have been 
developed and applied for selecting informative genes while filtering those that are 
uninformative for downstream analyses such as gene marker identification and cell type 
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classification [3]. Among these methods, statistical models that detect the difference in 
gene expression among cell types are the most frequently applied for feature selection in 
scRNA-seq data analysis [4, 5]. Compared to these traditional differential distribution-
based methods, which are typically referred to as parametric given their reliance on vari-
ous statistical model assumptions [6], the recent development of deep learning-based 
feature selection methods alleviates much of model assumptions and thus provides an 
alternative approach towards dimension reduction and gene selection from scRNA-seq 
data.

Traditionally, feature selection methods are classified into filters, wrappers, and 
embedded approaches. Most recently developed deep learning-based feature selection 
methods belong to the embedded category where various techniques have been pro-
posed for extracting feature importance from neural network models trained on the 
high-feature-dimensionality data. Based on the feature importance extraction tech-
niques, deep learning-based feature selection methods can be broadly categorized into 
those based on feature perturbation and those based on gradient back-propagation [7]. 
In perturbation-based methods, the utility or importance of a feature is determined by 
perturbing the feature and evaluating its impact on the loss function of the neural net-
works [8]. Popular methods in this category include local interpretable model-agnostic 
explanations (LIME) [9] which permutes features of the input samples, FeatureAblation 
[7], and Occlusion [10] which block each feature or multiple features from the input 
samples, respectively. In gradient-based methods, this is determined by the change of 
the gradient from the neural networks [11]. Key examples in this category are layer-wise 
relevance propagation (LayerRelProp) [12] which determines “weights” of features by 
sequentially back-propagating gradients across neural network layers, GradientShap [13] 
which computes the changes of the gradients from the input and a randomly sampled 
baseline, and deep learning important features (DeepLIFT) [11] which decompose the 
output from a neural network on features by backpropagating the gradients.

In this work, we applied the above-mentioned six deep learning feature selection 
methods from the two categories for selecting genes from scRNA-seq data and com-
pared their performance with the differential distribution-based feature selection meth-
ods typically used for this task, including DESeq2 [14], Limma-voom [15], scDD [4], and 
Wilcoxon rank-sum test. In addition, RandomForest [16], an embedded feature selection 
method, and RelieF [17] a filter method, were included as two other popular methods 
for feature selection from the machine learning literature. To test these feature selection 
methods on scRNA-seq datasets with a range of data properties, we leveraged the Tab-
ula Muris [18] and Tabula Sapiens [19] atlases to create datasets with varying numbers 
of cell types, numbers of cells per cell type, and also ratios of cells from the major and 
minor cell types. We assessed the performance of each feature selection method on clas-
sifying cell types in various scenarios and assessed the impact of different data properties 
on their performance. We next evaluated the reproducibility of each feature selection 
method and the concordance across methods. These analyses allow us to identify that 
genes with diverse expression profiles were selected by deep learning-based methods 
whereas those selected by DESeq2 and Limma-voom are more similar in their expres-
sion profiles. In addition, we benchmarked the computational time used by each feature 
selection method on datasets with different numbers of cells and number of cell types. 
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These results highlight the extremely fast speed of deep learning-based feature selection 
methods especially when dealing with large scRNA-seq datasets. Lastly, we evaluated 
the feature selection methods on a large collection of scRNA-seq datasets generated 
from human colon tissues for their ability to perform granular cell type and disease sta-
tus classification across independent samples [20]. Together, this work demonstrates the 
applicability and utility of deep learning-based feature selection methods for scRNA-seq 
data analysis and establishes a reference for the future development and application of 
these methods in single-cell omics studies.

Results
Sampling from single‑cell atlases to create scRNA‑seq datasets for feature selection 

methods evaluation

To evaluate feature selection methods on scRNA-seq data analysis and assess the 
impacts of various data characteristics on their performance, we leveraged the Tabula 
Muris and Tabula Sapiens single-cell atlases to create scRNA-seq datasets with a range 
of properties with the aim of dissecting their effects on the performance of each feature 
selection method. The evaluation workflow is summarized in Fig.  1. In particular, we 
randomly sampled from the two single-cell atlases (Fig.  1a) to create datasets with (i) 
varying numbers of cell types from 5, 10, 15, to 20 with each containing 200 cells; (ii) 
varying numbers of cells in each cell type from 50, 100, 150, 200, to 250 with the num-
bers of cell types set as 10 or 20; and (iii) varying the ratios of cells from the major and 
minor cell types from 2:1, 4:1, to 10:1 with the numbers of cell types set as 10 or 20 and 
half as major and the other half as minor cell types (Fig. 1b) (see the “Methods” section 
for details).

Among the feature selection methods (Fig. 1c), we implemented three popular pertur-
bation-based methods including LIME, FeatureAblation, and Occlusion, and also three 

Fig. 1 Schematic summaries of the workflow used in this study. a Filtering of Tabula Muris and Tabula 
Sapiens atlases to retain cell types with ≥ 300 cells for subsequent data sampling. b Sampling from Tabula 
Muris and Tabula Sapiens atlases for creating scRNA-seq datasets with varying number of cell types; 
number of cells in each cell type; and ratios of cells in the major and minor cell types. c Deep learning 
feature selection methods applied for scRNA-seq data analysis in this study were grouped by their category 
as either perturbation-based and gradient-based methods. Popular differential distribution-based and 
machine-learning-based methods were included for comparison. d Genes selected by each feature selection 
method were evaluated for their utility in cell type classification. Reproducibility of feature selection results 
and computational time were also assessed for each feature selection method
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popular gradient-based methods including LayerRelProp, GradientShap, and DeepLIFT. 
In particular, we used a multilayer perceptron neural network for these methods (see 
the “Methods” section for details). For comparison to deep learning-based feature selec-
tion methods, differential distribution-based methods of DESeq2, Limma-voom, scDD, 
and Wilcoxon rank-sum test and traditional machine learning-based methods including 
RandomForest, an embedded feature selection method, and RelieF, a filter method for 
feature selection, were included in the evaluation. To assess the performance of feature 
selection methods, we computed (i) the utility of top genes selected by each method (top 
5, 10, and 20 genes) on classifying cell types using a K-nearest neighbor (KNN) classifier 
and a Support Vector Machine (SVM) classifier and recorded their sensitivity, specificity, 
and F1 score; (ii) reproducibility of gene ranks based on the correlation of their impor-
tance scores (e.g., weight, statistics, see Methods for details) by subsampling of datasets; 
and (iii) computational time used by each method with respect to increasing number of 
cells and cell types in the datasets. The above-created data characteristics and evalua-
tion metrics provide a multifaceted framework for assessing the performance of feature 
selection methods for scRNA-seq data analysis.

Performance of feature selection methods on cell type classification and impact of number 

of cell types

We first evaluated the utility of the genes selected by each feature selection method for 
cell type classification by varying the number of cell types in the datasets. As expected, 
the overall F1 scores of both KNN and SVM classifiers reduced when the number of 
cell types increased in the datasets sampled from Tabula Muris atlas presumably due 
to the increasing difficulty in the classification tasks (Fig. 2a and Additional file 1: Fig. 
S1a). Notably, the difference in performance among deep learning-based feature selec-
tion methods and traditional methods is more apparent with deep learning-based meth-
ods performing better when the datasets contain larger numbers of cell types (e.g., 15 
and 20) and hence more difficult to classify. In particular, we found that in most cases 
DeepLIFT, GradientShap, LayerRelProp, and FeatureAblation have higher F1 scores 
compared to other methods. Further breakdown of the classification performance of 
selected features by each method into sensitivity and specificity reveals that features 
selected from most methods led to generally high specificity whereas the sensitivity var-
ies more among methods and dropped considerably with the increasing number of cell 
types in the datasets (Fig. 2b and Additional file 1: Fig. S1b). The high specificity is likely 
due to the use of the “one versus all” approach for quantifying classification performance 
(see the “Methods” section) where the precision is high when a cell is classified to a cell 
type, yet discriminating all cells of a cell type from the rest of the cell types is challeng-
ing, leading to varying sensitivity and F1 scores that distinguish the performance of each 
method. Similar results were observed from datasets sampled from Tabula Sapiens atlas 
(Additional file 1: Fig. S2a, b) and the ranks of methods by their median F1 scores fur-
ther demonstrate the high concordance of results from the two single-cell atlases for 
most methods except scDD, which performed better for data sampled from Tabula Sapi-
ens atlas, and to a lesser degree LIME, which performed better for data sampled from 
Tabula Muris atlas (Fig. 2c). While the above results were from using the union of top-10 
genes selected from each cell type in a dataset, we also varied the number of top genes 
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used to top-5 and top-20 (Additional file 1: Fig. S3a, b). Again, we found similar results 
from using both KNN and SVM classifiers on both atlases suggesting that the three 
gradient-based deep learning feature selection methods, DeepLIFT, GradientShap, and 
LayerRelProp, and FeatureAblation, a perturbation-based deep learning feature selec-
tion method, are among the best-performing ones in feature selection from scRNA-seq 
data for cell type classification.

To further investigate the decrease in cell type classification accuracy for each fea-
ture selection method when the number of cell types increases in the datasets, we fitted 
a least squares line to the F1 scores across the number of cell types for each method 
(Fig. 2d) and extracted the coefficient of the slope (Fig. 2e). The analysis of the coeffi-
cients suggests that all feature selection methods show a significant reduction in clas-
sification accuracy against the increasing number of cell types in the datasets. Notably, 

Fig. 2 Performance of feature selection methods and impact of cell type numbers on gene selection for 
classifying cell type using Tabula Muris atlas. a F1 scores calculated from a k-nearest neighbor classifier 
(KNN; k = 7) using the union of top-10 cell type marker genes selected by each feature selection method 
for classifying cell types. Higher F1 scores indicate more accurate cell type classification. The number of 
cell types varies from 5, 10, 15 to 20 in the datasets and cell type classification was repeated 10 times, by 
random sampling from Tabula Muris altas, for each feature selection method in each setting to capture the 
classification variability. Statistical significance (* p < 0.05 based on Wilcox rank sum tests) was denoted if 
every deep learning-based method outperformed every traditional method. b Similar to a but quantifying 
KNN cell type classification performance by sensitivity and specificity. c For numbers of cell types set at 5, 10, 
15, and 20, balloon plots summarizing the ranks of median F1 scores from KNN on datasets sampled from 
Tabula Muris and Tabula Sapiens atlases. The size of the balloon represents the rank of the method, the larger 
the better its performance. d mean F1 scores from a plotted against the increasing number of cell types, and 
e coefficients of slopes from least squares fitted lines to F1 scores in d 
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the three differential distribution-based methods (i.e., scDD, Limma-voom, DESeq2) 
are more affected by the increasing number of cell types in the datasets with steeper 
decrease in F1 scores in cell type classification compared to deep learning-based meth-
ods. Together, these results demonstrate the high performance of a subset of deep 
learning-based feature selection methods (i.e., DeepLIFT, GradientShap, LayerRelProp, 
FeatureAblation) for cell type classification, especially when dealing with datasets with 
large numbers of cell types.

The effect of number of cells on feature selection methods

Besides the change in the number of cell types, the number of cells can change dramati-
cally in scRNA-seq datasets depending on the sample size and the depth of profiling. 
To this end, we evaluated the impact of the number of cells on gene selection results 
for cell type classification by varying the number of cells from 50 to 250 while holding 
the number of cell types at 10 and 20, respectively. For most feature selection methods, 
we found that the presence of more cells of each cell type in the datasets led to a clear 
increase in F1 scores for both data sampled from Tabula Muris (Fig. 3a) and Tabula Sapi-
ens (Additional file 1: Fig. S4a) atlases. The coefficient analysis of the least squares fitted 
line to the F1 scores suggests that increasing the number of cells in the datasets has a 
greater impact on the F1 scores when the number of cell types is larger (i.e., 20 versus 
10) (Fig. 3b and Additional file 1: Fig. S4b).

While the above analyses reveal the impact of the number of cells on feature selection 
methods, the ranking of their performance in terms of F1 scores demonstrates that deep 
learning-based methods in most cases outperform traditional methods, and the results 
are largely independent of the classification models and the number of cells included 
in the datasets (Fig. 3c and Additional file 1: Fig. S4c). Further dissection of the classi-
fication performance to sensitivity and specificity suggests again that specificity of cell 
type classification is high across all methods and data settings and sensitivity of cell type 

Fig. 3 Impact of number of cells on cell type classification using the union of top-10 cell type marker genes 
selected by each feature selection method. a Mean F1 scores of KNN classification of 10 or 20 cell types 
(sampled from Tabula Muris atlas) each with number of cells set as 50, 100, 150, 200, and 250. b Coefficients 
of slopes from least squares fitted lines to F1 scores in a across the number of cells. c For numbers of cells 
set as 50, 100, 150, 200, and 250 and number of cell types fixed at 20, balloon plots summarizing the ranks of 
median F1 scores from KNN on datasets sampled from Tabula Muris and Tabula Sapiens atlases. The size of 
the balloon represents the rank of the method, the larger the better its performance
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classification is the main driver in the difference of performance among methods (Addi-
tional file 1: Fig. S5a, b). These results together unveil the effect of the number of cells 
on feature selection methods and highlight the robustness of superior performance we 
observed from deep learning-based methods over traditional methods.

Imbalance ratio of number of cells from major and minor cell types affects the performance 

of feature selection methods

Since it is common for a scRNA-seq dataset to contain both major and minor cell types, 
we set out to evaluate the impact of imbalance ratios of number of cells from major and 
minor cell types on the performance of feature selection methods. By subsampling from 
Tabula Muris and Tabula Sapiens atlases, we created datasets with major and minor cell 
types with imbalance ratios of 2:1, 4:1, and 10:1 (see the “Methods” section for details). 
As expected, F1 scores from using the union of top-10 genes selected from each cell type 
show a clear reduction in performance on KNN classification of minor cell types when 
the imbalance ratio increases using both data sampled from Tabula Muris (Fig. 4a) and 
Tabula Sapiens (Additional file 1: Fig. S6) atlases. Presumably, this is due to increased 
difficulties in classifying minor cell types when the imbalance ratio increases. Further 
breakdown of the cell type classification performance visualizes the similar trend of 

Fig. 4 Impact of the number of imbalance ratios on selected genes for cell type classification. a F1 scores 
from KNN classification of minor cell types on datasets with imbalance ratios of number of cells from major 
and minor cell type set as 2:1, 4:1, and 10:1, and numbers of cell types set as 10 and 20. Each setting was 
repeated 10 times by random sampling from Tabula Muris atlas for evaluating variability in performance. b 
Performance breakdown of a to sensitivity and specificity. F1 scores are included for reference
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decreasing sensitivity and F1 score across the increasing imbalance ratios while the spec-
ificity remains high for all methods (Fig. 4b). We also assessed the performance of KNN 
and SVM by varying the number of top-ranked genes used for classifying cells from 5 
to 10 and then to 20 (Additional file 1: Fig. S7a, b). These assessments further confirm 
that DeepLIFT, GradientShap, LayerRelProp, and FeatureAblation are among the top-
performing feature selection methods across most datasets and support that the ranking 
of the classification results from each feature selection methods is largely invariant in 
terms of the numbers of features used, data sources, and the imbalance ratios.

Feature selection reproducibility within and across feature selection methods

Feature selection reproducibility is another critical consideration especially in scRNA-
seq data analysis where the selected genes are frequently interpreted as cell type mark-
ers. To evaluate the reproducibility within each feature selection method, we sampled 
from the two atlases 10 cell types and repeatedly sampled 200 cells for each cell type 10 
times. The pairwise Pearson’s correlations of the statistics reported from each feature 
selection method on the 10 repetitions were used to quantify the reproducibility of the 
method. As expected, differential distribution-based methods show very high reproduc-
ibility in their reported feature statistics in both atlases (Fig. 5a, b). In comparison, we 
found that, except LIME, the other five deep learning-based feature selection methods 
also had relatively high reproducibility in their feature importance scores, albeit lower 
than DESeq2 and Limma-voom (Fig. 5a, b). Notably, LIME and RelieF had relatively low 

Fig. 5 Reproducibility of gene selection results. Reproducibility of gene selection results from each feature 
selection method on repeatedly sampled datasets (see the “Methods” section) from a Tabula Muris and b 
Tabula Sapiens are quantified using Pearson’s correlation coefficient. c, d Pairwise overlaps of top-500 and 
top-1000 genes selected by each method for Astrocyte as quantified by Jaccard index
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reproducibility in their feature selection results. The low reproducibility of RelieF was 
reported previously and is probably due to the nearest neighbor selection procedure 
employed by the algorithm [21].

We next wondered if similar sets of genes were selected by different feature selection 
methods, that is, if the selected genes are reproducible across different feature selection 
methods. To answer this question, we quantified the overlaps of the top-ranked 500 and 
1000 genes from each pair of methods and in different cell types (Fig. 5c, d and Addi-
tional file 1: Fig. S8). We found that DeepLIFT, GradientShap, LayerRelProp, and Fea-
tureAblation selected genes show very high overlaps whereas the genes selected by other 
methods had only moderate overlaps. Interestingly, genes selected by Wilcoxon rank-
sum test and scDD overlapped quite well with the four other deep learning-based meth-
ods but can be variable in different cell types (Additional file 1: Fig. S8). Given that large 
proportions of top-ranked genes from deep learning-based methods and those from 
DESeq2 and limma-voom are different, we investigated the expression profiles of the 
top-ranked genes from these methods. As representative examples, we found that genes 
selected by deep learning-based methods such as DeepLIFT (Additional file 1: Fig. S9a) 
and Occlusion (Additional file 1: Fig. S9b) show both specificity to their respective cell 
type and diversity in expression patterns. Whereas the top-ranked genes from DESeq2 
(Additional file  1: Fig. S9c) and Limma-voom (Additional file  1: Fig. S9d) show only 
specificity to the cell type but very little diversity in their expression patterns. Together, 
these results demonstrate the high within and across method reproducibility of a subset 
of deep learning-based feature selection methods including DeepLIFT, GradientShap, 
LayerRelProp, and FeatureAblation.

Computational time of each feature selection method

We benchmarked the computational time used by each feature selection method in the 
settings (i) varying numbers of cell types and (ii) varying numbers of cells (Fig.  6 and 
Additional file 1: Fig. S10). Among all methods, DESeq2 was the slowest in most cases 
and scaled poorly especially with the number of cell types (Fig. 6a). Wilcoxon rank-sum 
test was also one of the slowest methods especially on datasets with a large number of 
cells and cell types. Like DESeq2, limma-voom uses only 1 CPU core at a time, and there-
fore both methods scale linearly with respect to the number of cells. Nevertheless, it was 
much faster than DESeq2 and scDD which uses multiple CPU cores (24 cores were used 
in this study). For the two machine learning-based methods, while RandomForest is one 
of the fastest methods, RelieF appears to be significantly slower in comparison. Com-
pared to traditional methods, except LIME, other deep learning-based feature selection 
methods are extremely fast when applied using GPUs. Specifically, perturbation-based 
methods scaled well with respect to the number of cells in the datasets, and mostly nota-
bly, gradient-based methods are orders of magnitude faster than other methods, ranking 
features for each of all cell types in less than 40 s for datasets containing 20 cell types and 
5000 cells (Fig. 6a, b). When applied to CPUs, gradient-based methods remain fast while 
perturbation-based methods become significantly slower. These results demonstrate the 
significant advantage in terms of computational time for deep learning-based feature 
selection methods over traditional methods especially when dealing with large scRNA-
seq datasets with many cell types and large number of cells in each cell type.
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Characteristics of selected genes and further evaluation on scRNA‑seq data with granular 

cell types and across samples

We next explored the characteristics of the genes selected by different feature selection 
methods. We found that genes selected by deep learning-based feature selection meth-
ods show relatively low to moderate expression levels especially when compared to scDD 
and to a lesser degree RelieF (Additional file 1: Fig. S11a), and have comparable numbers 
of overlaps with a list of variably expressed transcription factors (VETFs) as defined in 
[22] for their utility in marking cell types (Additional file 1: Fig. S11b). Lastly, we also 
evaluated the feature selection methods on another large collection of scRNA-seq data 
generated from profiling human tissues from healthy individuals and ulcerative colitis 
patients, and with cell type grouped into three main categories (i.e., stromal, immune, 
and epithelial cells) each with more granular cell type annotations. We first evaluated the 
performance of feature selection methods on discriminating granular cell types using 
samples from healthy individuals. Given that these samples were obtained from mul-
tiple individuals, we used a subset of them for feature selection and the rest were used 
for evaluation (see the “Methods” section), allowing the utility of selected genes to be 
assessed across independent samples. Consistent with the results from Tabula Muris 
and Tabula Sapiens atlases, we found that in most cases, deep learning-based feature 

Fig. 6 Computational time of feature selection methods. a Running time of each feature selection 
method on datasets sampled from Tabula Muris with the number of cell types increases from 5 to 20 with 
an increment of 5 and the number of cells in each cell type held as 200. b Running time of each feature 
selection method on datasets with the number of cells increases from 50 to 250 with an increment of 50 
and the number of cell types held as 20. Deep learning-based methods were applied with GPU and CPU 
configurations, respectively
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selection methods led to better cell type classification across independent samples com-
pared to traditional methods (Additional file 1: Fig. S12a). We also tested the utility of 
selected genes for classifying healthy samples and those from ulcerative colitis patients 
(Additional file 1: Fig. S12b). While the performance of genes selected by different meth-
ods is similar to each other, our results demonstrate that these selected genes indeed can 
also discriminate samples based on their disease status. Together, these results provide 
additional views of selected genes and their utility in scRNA-seq data analysis.

Discussion
Feature selection methods have been demonstrated to be effective in analyzing scRNA-
seq data [3] such as improving cell type classification (Additional file 1: Fig. S13). Most 
traditional differential distribution-based methods are known as filter methods in feature 
selection literature and calculate statistics for each gene individually and for each cell 
type sequentially [3]. In comparison, the deep learning-based feature selection methods 
employed in this study are classified as embedded methods and evaluate groups of genes 
for all cell types at the same time using the neural network models. The computational 
speed advantage of ranking all genes for all cell types simultaneously is clearly seen in 
Fig. 6 and Additional file 1: Fig. S10. The other advantage of such embedded approaches 
using deep learning-based feature selection methods is the lower redundancy of select 
features as genes with diverse expression profiles that together lead to better cell type 
separation can be captured by the model. This is reflected as the diversity of the expres-
sion profiles of the selected genes (Additional file 1: Fig. S9). The inclusion of genes with 
low diversity in expression patterns, as those selected by DESeq2 and Limma-voom 
(Additional file 1: Fig. S9), may introduce high redundancy and therefore may not facili-
tate additional gain in cell type discrimination. These findings argue for the application 
of deep learning-based feature selection methods especially when dealing with large-
scale scRNA-seq data and the selection of a diverse panel of genes for accurate cell type 
classification is a key aim.

Deep learning-based feature selection by embedded approaches relies on various 
methods to extract feature importance from a neural network model that intrinsically 
learns the informativeness of genes in scRNA-seq data. This may contribute to the 
high overlap of selected genes among deep learning-based methods implemented in 
this study (Fig. 5 and Additional file 1: Fig. S8). While wrapper methods [3] can also be 
employed with deep learning models for feature selection, these approaches are much 
less scalable in dealing with high-feature-dimensionality and therefore may not be suited 
for gene selection from high-dimensional scRNA-seq data. It is also useful to note that 
both the deep learning-based feature selection methods and other alternative methods 
(e.g., differential distribution-based methods) included in this work rely on cell type 
labels. The recent development of unsupervised deep learning-based feature selection 
techniques (e.g., [23, 24]) provides an alternative approach when such information is not 
available.

We found that the cell type classification accuracy in terms of F1 score (Fig. 4a) and 
sensitivity (Fig.  4b) on minor cell types decreased significantly under high imbalance 
ratio settings (i.e., 10:1). The drop in performance was most prominent for traditional 
differential distribution-based methods albeit significant decrease was also observed for 
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deep learning-based methods. These findings highlight the need for methods that could 
account for and/or alleviate the imbalance of number of cells among major and minor 
cell types [25]. We also found a slightly lower feature selection reproducibility for most 
deep learning-based methods (except LIME, which has much lower feature selection 
reproducibility) compared to DESeq2 and Limma-voom (Fig. 5a, b). This is not unex-
pected given the significantly higher flexibility and hence variability in the deep learning 
models compared to traditional statistical models. One potential approach for improv-
ing reproducibility in deep learning models is to perform ensemble learning with deep 
learning models [26], in which the increased model stability from ensemble learning can 
produce more reproducible feature ranking. Future research is required to design and 
assess the performance of such ensemble deep learning feature selection methods.

Given the underlying hypothesis testing framework used by most differential distribu-
tion-based methods, one advantage of these methods is their ability to directly estimate 
uncertainties of selected genes for controlling false discovery rate (FDR). Nevertheless, 
deep learning-based feature selection methods can also provide FDR estimation using 
permutation approaches such as computing importance scores of genes from datasets 
with the original cell type annotation perturbed randomly. This is a typical procedure 
also used by various differential distribution-based method especially when the data dis-
tribution does not fit the model assumption (e.g., normally distributed).

Finally, most traditional differential distribution-based methods (except Wilcoxon 
rank-sum test included in the evaluation) are referred to as parametric models in that 
they require the data distribution to largely fit the assumption made by the statistical 
model [27]. Compared to traditional parametric models, deep learning-based methods 
are “non-parametric” and do not make specific assumptions on the data distribution. 
Hence, deep learning-based feature selection methods are more flexible to accommodate 
data with different distributions and could be applied to selecting features from other 
data modalities generated from various single-cell omics technologies, such as scATAC-
seq data [28] and single-cell multimodal omics data [29], with minimum changes in 
these models. We therefore anticipate further development and increasing application of 
deep learning-based feature selection methods to other types of single-cell omics data.

Conclusions
Feature selection is an essential technique for scRNA-seq data analysis, especially for 
downstream biomarker identification and cell type classification. Recent develop-
ments in deep learning methods have provided new approaches for feature selection. 
Yet, the utility of deep learning-based feature selection techniques for scRNA-seq data 
analysis has not been systematically evaluated. In this study, we have performed a com-
prehensive evaluation study on six deep learning-based feature selection methods for 
scRNA-seq data analysis, including tasks such as cell type classification, feature selection 
reproducibility and diversity, and computational efficiency using datasets with various 
characteristics. Compared to traditional feature selection methods, we found that deep 
learning-based feature selection methods are suitable for large-scale scRNA-seq data, 
given their abilities to simultaneously evaluate and select a panel of genes for cell type 
classification, which give them the advantages compared to the methods that evaluate 
genes individually and separate from tasks such as cell type classification. Our results 
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highlight the utility of deep learning-based feature selection methods for scRNA-seq 
data and identify possible direction for their future development.

Methods
Preprocessing of Tabula Muris and Tabula Sapiens atlases

Tabula Muris and Tabula Sapiens atlases contain high-coverage of various cell types from 
mouse and human, respectively, and high-quality annotation of cells to their respec-
tive cell types [18, 19] and were used for creating datasets with cell type ground truth 
and pre-defined characteristics in this study. Specifically, data generated by FACS sort-
ing and Smart-seq2 protocol were obtained from the atlases’ website. For Tabula Muris 
atlas, it contains 53,760 cells from 81 cell types and 20 organs of 7 mice. For Tabula 
Sapiens, the atlas contains 58,870 cells from 133 cell types and 24 organs of 13 donors. 
A preprocessing step was applied to the two atlases. This includes removing cells that 
have zero expression of all genes and genes that have zero expression in all cells followed 
by excluding cell types that have less than 300 cells. This resulted in a count matrix of 
23,043 genes and 39,712 cells with 38 cell types from Tabula Muris atlas and a count 
matrix of 56,119 genes and 27,051 cells with 30 cell types from the Tabula Sapiens atlas.

Sampling from Tabula Muris and Tabula Sapiens atlases

We performed various random sampling procedures to create datasets with cell type 
ground truth and pre-defined characteristics. First, to test the impact of the number of 
cell types on the feature selection methods, for each atlas, we randomly selected from 
all cell types 5 to 20 cell types passed the preprocessing (with an increment of 5) and 
for each selected cell type we randomly sampled 200 cells. This procedure was repeated 
10 times with random seedings to evaluate the variability in performance and together 
resulted in a total of 80 datasets.

Second, to evaluate the impact of the number of cells on feature selection methods, 
we created datasets with the number of cell types fixed at 10 or 20 by randomly selecting 
from all available cell types for each atlas. For each selected cell type, we next randomly 
sampled the cells to create varying numbers of cells from 50 to 250 with an increment 
of 50. This process was repeated 10 times with random seedings and resulted in 200 
datasets.

Lastly, we tested the effect of imbalance ratios of cells between major and minor cell 
types. Similar to the above settings, for each atlas, we started by randomly selecting 10 
or 20 cell types from all cell types passed the preprocessing. For these selected cell types, 
half were treated as major cell types and the other half as minor cell types, where we ran-
domly sampled 200 cells for each major cell type. Next, different imbalance ratios of cells 
between major and minor were created by randomly sampling 100 (2:1), 50 (4:1), and 20 
(10:1) cells for each of the minor cell types. Again, this procedure was repeated 10 times 
with random seedings and resulted in 120 datasets.

The count data of each above-created dataset was then normalized into log count 
data using the “LogNormCount” function from R package scater [30]. Filtering of lowly 
expressed genes were then applied to each dataset before performing feature selection. 
Specifically, for each dataset, we filtered out genes that are expressed in less than 1% of 
cells in each of all cell types.
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Reproducibility assessment by random sampling of cells

To assess the reproducibility of feature selection results for each method, for each 
atlas, we first randomly selected 10 cell types from all cell types and then randomly 
sampled 200 cells for each cell type. This process was repeated 10 times with different 
random seedings for sampling cells while keeping the same selected 10 cell types. This 
resulted in 10 datasets containing the same cell types, but different sets of cells sam-
pled from each atlas. To ensure the feature dimensions are consistent across the 10 
sampled datasets for each atlas, only log count normalization was performed whereas 
the filtering step for genes was excluded.

Colon tissue profiling scRNA‑seq data collection

A collection of scRNA-seq data profiling colon tissues from healthy individuals and 
ulcerative colitis patients [20] with granular cell type annotation from the three 
cell type categories, stromal, immune, and epithelial cells, was included for evalua-
tion. Cells that have zero expression of all genes and genes that are expressed in less 
than 1% of cells in each of all cell types were filtered. The count data of each dataset 
was then normalized into log count data using the “LogNormCount” function from 
R package scater [30]. This resulted in three count matrices of 17,486 genes × 8219 
cells with 10 cell types, 18,717 genes × 49,973 cells with 14 cell types, and 18,253 
genes × 49,664 cells with 12 cell types, respectively.

Deep learning‑based feature selection methods

Three gradient-based feature selection methods, LayerRelProp, DeepLIFT, and Gra-
dientShap, and three perturbation-based feature selection methods, Occlusion, Fea-
tureAblation, and LIME, are included in this study.

LayerRelProp

LayerRelProp uses back-propagation to recursively propagate the importance scores 
from the output layer to the input layer [12]. LayerRelProp follows the conservation 
of total relevance in each layer as follows:

where Rl
i is the importance score for neuron i at the lth layer, f  is the classifier, x is the 

input, and each importance score is defined as the sum of incoming messages:

where k is the neuron in the (l + 1)th layer and i is the input for neuron k . As Layer-
RelProp performs back-propagation recursively from one layer to its previous layer, it 
generates an importance score for each input feature.

f (x) = · · · =

i

Rl+1
i =

i

Rl
i = · · · =

i

R1
i ,

Rl
i =

∑
k
Rl,l+1

i←k
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DeepLIFT

DeepLIFT decomposes the output prediction of a neural network on a specific input 
by back-propagating the contributions of all neurons to each input feature [11]. First, 
given a reference input x0 with the network score t0 and an input vector x with net-
work output score t , DeepLIFT defines their difference as:

Then, DeepLIFT assigns the importance scores to each layer according to the fol-
lowing summation-to-delta:

Where xi represents the neurons that are necessary and sufficient to compute 
t,R�xi�t represents the amount of difference-from-reference in t that is attributed 
to the difference-from-reference of xi . In order to compute the importance scores, 
DeepLIFT defines a multiplier based on a chain rule:

where m�x�t represents the contribution of �x to �t divided by �x and m�xi�t is the 
quantity computed by the chain rule.

GradientShap

GradientShap leverages “Shapley” values from cooperative game theory with a gra-
dient approach to calculate feature importance score [13]. First, Gaussian noise was 
added to each input sample k times to generate k examples:

where xi represents the ith sample, nj is jth noise and j ∈ {1, 2, . . . , k} , n ∼ N (0, 1) . In this 
work, we use the default value of k = 5.

Then for each input, GradientShap generates a random baseline and chooses a ran-
dom point along the path between the random baseline and the input to compute the 
gradient of outputs with respect to the random point.

Where x0 is the random baseline, t is the output, and α ∈ (0, 1) decides the location 
of the random point. The importance scores for the ith sample are calculated as:

�x = x − x0,

�t = t − t0,

∑
i
R�xi�t = �t,

m�x�t =
R�x�t

�x
,m�xi�t =

∑
j
m�xi�zjm�zi�t ,

xi,j = xi + nj ,

�i,j =
∂t

∂(α(xi,j − x0))
,

Ri =
1

k

∑
j
(�i,j(xi,j − x0))
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and the final importance scores for features are the sum of the importance scores across 
all samples.

Occlusion

Occlusion is a perturbation-based approach for computing feature importance and 
involves replacing a contiguous sliding region of the input layer of the neural network 
with some baseline values and comparing the difference with the output of the original 
model [10]. In our implementation, we define the size of the sliding region of the input 
layer as three and the baseline value for the sliding region as 0.

FeatureAblation

Instead of defining a sliding region of the input layer as in Occlusion, FeatureAblation 
computes the feature importance by replacing each input feature with a given baseline 
and computing the difference in the output [7]. We leveraged the default settings that 
each scalar value within each input tensor is taken as a feature and replaced indepen-
dently, and the baseline value of 0 was used.

LIME

LIME is a model-agnostic approach and can be applied to various machine learning 
models [9]. Similar to other perturbation-based methods, LIME first perturbates a single 
sample by randomly masking the feature values, where each feature under evaluation 
is set to the original input while others are set to 0. Then, LIME trains an interpretable 
surrogate model (e.g., linear model) by sampling points with the feature under evalua-
tion around a specified input example. In our implementation, the number of sampling 
points was set to 500. The coefficients of the trained surrogate model represent the 
importance of the feature under evaluation.

Setup of deep learning‑based feature selection workflow

To enable comparison and minimize the network architecture-specific effect on the 
above deep learning-based feature selection methods, the same neural network model 
was used for all deep learning-based feature selection methods. Specifically, the model 
consists of three fully connected layers, with the input dimension as the number of genes 
from the input datasets and the output dimension as the number of cell types. The num-
bers of neurons in the two hidden layers were set to be 1024 and 512, and the activa-
tion functions set as LeakyReLU [31] and ReLU [32] respectively. For LayerRelProp, 
both activation functions were set as ReLU [32] as it has not yet supported LeakyReLU 
[31]. The output of the neural network model is a probability vector of cell type pre-
diction through SoftMax activation function. During the training process, we used 
cross-entropy loss for the neural network with a batch size and epochs set as 64 and 20, 
respectively. After the neural networks were trained on classifying cell types in the train-
ing scRNA-seq data, we applied the above six feature selection techniques for each cell 
type, generating importance scores for each gene within every cell. Next, by aggregating 
the importance scores across all cells associated with a specific cell type, we obtained the 
overall importance score for each gene within a particular cell type. Subsequently, the 
genes were ranked based on their cumulative importance scores, giving higher ranks to 
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those that better distinguish and characterize their respective cell types. This workflow 
allows us to identify the critical genes that play a pivotal role in the classification of dis-
tinct cell types and capture the underlying biological variation.

Differential distribution‑based and machine learning‑based feature selection methods

For differential distribution-based methods, two most popular differential expres-
sion methods, DESeq2 [14] and Limma-voom [15], a recent method that is specifically 
designed for scRNA-seq data, scDD [4], and the Wilcoxon rank-sum test were included 
for comparison in this study. To select genes specific to each cell type, the expression of 
a gene in a cell type was compared to its expression in other cell types. For DESeq2 and 
Limma-voom, genes were ranked and selected by “stats” and “t” statistics, respectively. 
For scDD, only p-values were reported from the package and we used the -log10 of the 
p-value and the sign of the log2 fold change of the gene expression to rank and select 
genes. For machine learning-based methods, we included RandomForest [16], a popu-
lar embedded feature selection method, and RelieF [17], a filter-based feature selection 
method. Both methods produce ranking of genes for their utility/importance in discrim-
inating cell types.

Performance evaluation

Cell type classification evaluation metrics

For each of all datasets sampled from the two atlases, we split 50% of a dataset into 
training data and the rest as test data. We applied different feature selection methods 
on training data to select marker genes of each cell type and then took the union of the 
top-5, 10, and 20 marker genes from each of all cell types for cell type classification on 
the test data using standard KNN (k = 7) and SVM classifiers. For the colon tissue data-
sets, samples from healthy individuals were randomly split into training and test sets. 
Feature selections were conducted on training data and the union of the top-10 marker 
genes from each of all cell types was used for cell type classification on test sets using a 
standard KNN (k = 7) classifier. Specifically, we used a “one versus all” approach by clas-
sifying cells from each cell type against cells from other cell types and calculating true 
positive (TP), false positive (FP), true negative (TN), and false negative (FN) for each cell 
type. These four quantities allowed us to compute F1 score, sensitivity, and specificity as 
follows

Lastly, we evaluated the performance of each classification model by calculating the 
mean F1 score, sensitivity, and specificity as the sum of each metric across all cell types 
divided by the number of cell types in a dataset.

Reproducibility evaluation metric

To quantify the reproducibility of a feature selection method, for each feature selec-
tion method, we calculated the pairwise Pearson’s correlation coefficient of gene ranks 
from datasets containing the same cell types but randomly sampled cells (see the 

F1 score = 2TP/(2TP + FP + FN )

Sensitivity = TP/(TP + FN )

Specificity = TN/(TN + FP)
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“Reproducibility assessment by random sampling of cells” section for details on data 
sampling). To assess the reproducibility across different feature selection methods, we 
took either top-500 or top-1000 highly ranked genes from each method and quantified 
the degrees of overlaps of these top-ranked genes using Jaccard index.

Evaluation on tissue condition classification

The colon tissue profiling datasets were used for evaluating the utility of selected genes 
on classifying tissue conditions. For each of the three datasets that contain stromal, 
immune, and epithelial cells from all healthy individuals, we applied different feature 
selection methods to select marker genes. Next, following the design in a previous study 
on disease outcome prediction using scRNA-seq data [33], for each cell type, we cre-
ated pseudo-bulk expression matrix based on their tissue conditions (i.e., healthy and 
inflamed) and evaluated the top-10 marker genes on classifying tissue condition using 
a standard KNN (k = 7) classifier and a fivefold cross-validation procedure to split the 
pseudo-bulk samples and reported the mean F1 scores.

Hardware specification for computational time

The computational time of differential distribution-based and machine-learning-based 
feature selection methods was recorded on an Oracle cloud instance with AMD OCPU 
(32 cores) and 512 GB RAM. In particular, RelieF, Wilcoxon, DESeq2, and Limma-voom 
only use one CPU whereas scDD and RandomForest which perform multi-threading 
were set to use 24 cores. Since deep learning-based feature selection algorithms largely 
rely on GPU in their computing, we recorded computational time for these methods 
on a locally configured machine with an RTX3090 GPU and an AMD Ryzen 5950x (16 
cores) and 128 GB RAM. To test deep learning-based methods without GPU, we also 
recorded computational time for these methods on the same Oracle cloud instance that 
performed distribution-based and machine-learning-based feature selection methods. 
For all methods, time used for loading data was included. For deep learning-based meth-
ods, time for training the neural network model was also included.
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