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Abstract 

Recently, many analysis tools have been devised to offer insights into data gen-
erated via cytometry by time-of-flight (CyTOF). However, objective evaluations 
of these methods remain absent as most evaluations are conducted against real data 
where the ground truth is generally unknown. In this paper, we develop Cytomulate, 
a reproducible and accurate simulation algorithm of CyTOF data, which could serve 
as a foundation for future method development and evaluation. We demonstrate 
that Cytomulate can capture various characteristics of CyTOF data and is superior 
in learning overall data distributions than single-cell RNA-seq-oriented methods such 
as scDesign2, Splatter, and generative models like LAMBDA.
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Background
Recent years have seen exponential growth in applications of mass cytometry (CyTOF) 
which characterizes proteomics profiles of tens of thousands or millions of heteroge-
neous single cells on 30–40 protein channels with minimal spill-over effects [1–3]. As 
the technique of CyTOF matures, many data analysis methods have been proposed to 
offer insights into various aspects of single-cell experiments [4]. For example, in [5], the 
authors have observed that the signal intensity of a CyTOF experiment would vary over 
time due to changes in instrument performance. Their proposed method is currently the 
dominant tool to alleviate the temporal effect using polystyrene beads embedded with 
metal lanthanides. On the other hand, methods such as CytofRUV [6] and Cytonorm [7] 
aim at getting rid of batch effects to facilitate comparisons across different CyTOF exper-
iments. Deep learning algorithms such as residual networks (ResNet) [8] and genera-
tive adversarial networks (GAN) [9, 10] were also adopted to resolve the same problem. 
While some software such as FlowSOM [11], LAMBDA [12], and Bayesian trees [13] 
focus on automatic cell type identification, others like CytoTree [14] attempt to explore 
the trajectories along which cells differentiate into other cells. Various data visualiza-
tion and dimension reduction algorithms have also been applied to CyTOF [15]. Typical 
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examples include t-SNE [16], UMAP [17], MDS [18], SAUCIE [19], and scvis [20]. As the 
output of a CyTOF acquisition software is in Flow Cytometry Standard (FCS) format, 
packages such as flowCore [21] and Seurat [22] have incorporated standardized and effi-
cient pipelines to read, write, and preprocess CyTOF data.

Despite the vast array of methods applicable to CyTOF, most of the CyTOF analysis 
methods developed by researchers are often evaluated against real data. Without a gold 
standard and known truth, such as labels and actual distributions, performance assess-
ment becomes somewhat subjective while also blurring the line between method valida-
tion and result discovery. The few studies with simulated datasets are highly specialized 
and workflow-dependent. For example, CytoGLMM [23] focuses on a single cell type 
for the purpose of differential expression analysis. In [24], the authors further used the 
simulated datasets in [23] to evaluate performance on various differential expression 
detection methods. Mitra et al. [25] proposed a Bayesian hierarchical model based on 
Gaussian distributions to study the difference in the protein functional network of a 
single cell type under two experimental conditions. In [26] the simulation was done by 
manually splitting a real dataset into two overlapping subsets. These simulation proce-
dures are not specifically designed for general-purpose simulations of CyTOF samples 
with many cell types, trajectories, batches, etc.

Simulated datasets, albeit being synthetic, contain ground truth against which meth-
ods and algorithms can be reliably tested. Instead of ad hoc simulation in each study 
mentioned above, a formal simulation tool naturally provides a framework for a sys-
tematic evaluation for new methodological research in the field. By varying parameters 
and settings of key factors, researchers can easily generate an unbiased coverage of the 
system under study in a straightforward manner. On the other hand, real experiments 
require detailed prior planning, precise executions, and potentially abundant resources. 
The flexibility along with cost and time benefits makes simulation a vital tool for the field. 
However, the lack of a rigorous, reliable simulation algorithm calls for the development 
of such a tool for validating other CyTOF data analysis tools and future developments.

By contrast, various methods have been developed for simulating single-cell RNA-
sequencing (scRNA-seq) data, such as Simple [27], Lun [28], BASICS [29], scDesign2 
[30], ZINB-WaVE [31], and Splatter [32], among which Splatter enjoys the highest pop-
ularity while scDesign2 excels in simulation performance [33, 34]. Since both scRNA-
seq and CyTOF are single-cell sequencing techniques, it might be tempting to tweak 
scRNA-seq simulation tools such as Splatter and scDesign2 and apply them to CyTOF. 
However, such a process can be highly nontrivial and the end results may be unsatisfac-
tory if only small adjustments are sought after. First of all, these two techniques are of 
different biological nature. scRNA-seq examines the expression of thousands of RNAs of 
several thousand cells, whereas CyTOF captures information on typically 30–40 proteins 
for tens of thousands or even millions of cells. Therefore, compared with scRNA-seq, 
CyTOF is more closely related to clinical phenotypes and is more likely to identify rare 
cell populations. Furthermore, while dropout is a common issue in scRNA-seq data, it 
is a much less encountered problem in CyTOF experiments. The expressions in scRNA-
seq are integer-valued “counts,” in contrast to real-valued data that even have nega-
tive values in CyTOF expression matrices due to several built-in processing steps in a 
CyTOF system such as data randomization and transformation. Consequently, applying 
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simulation tools like Splatter and scDesign2 will almost inevitably require a sequence 
of nonlinear transformations to artificially construct count data, which will yield biased 
results. Finally, the expression levels of various protein channels in CyTOF are naturally 
dependent. Extending a complex discrete random variable model such as the Poisson-
Gamma mixture model adopted by Splatter to capture the dependency structures pre-
sent in CyTOF may not be a trivial task. In addition, methods for simulating multivariate 
discrete data such as the ones devised in [35, 36] are not suitable for CyTOF data that are 
real-valued. The same logic applies to other generic simulation algorithms that are not 
designed with CyTOF in mind.

To bridge this gap in literature, we developed Cytomulate, the first formal simulation 
tool that is capable of generating simulated datasets that capture various characteristics 
of CyTOF data. Our framework combines the flexibility of generating complex, realistic 
data with efficiency and usability, allowing researchers to acquire data at scale and prac-
titioners to easily simulate datasets for their workflows.

Results
Characteristics of CyTOF data

Currently, most CyTOF data are available in the FCS format for analysis purposes, con-
taining real-valued protein expression levels rather than counts. This is due to several 
built-in data processing steps in a CyTOF system (e.g., Helios, latest CyTOF XT): (i) The 
system applies regression to recover peak counts lost because of overlapping peaks at 
high intensities, resulting in non-integer count estimates. (ii) To avoid binning effects 
caused by integers near zero, the system applies randomization (i.e., adding uniform or 
Gaussian noise to counts). (iii) Bead normalization is applied to remove temporal effects 
due to changes in instrument performance over time. (iv) The inverse hyperbolic sine 
function, referred to as arcsinh transformation, is applied to alleviate the coupling of 
mean and variance and “gaussianize” the data [37]. Although the system allows users to 
turn on and off each of (ii)-(iv), often one or more such options were implemented for 
nearly all existing CyTOF data, leading to real-valued expressions.

To motivate the design choices of Cytomulate, we explored prominent character-
istics of CyTOF by analyzing various public and in-house datasets (e.g., Finck [5], 
Levine_13dim [38], Levine_32dim [38], CytoNorm [7], CyAnno [39], Covid [15]; Table 
S1). In this section, we mainly use protein expressions from the Levine_13dim dataset as 
an example to demonstrate such features. On a broader scale, similar phenomena have 
been observed across numerous CyTOF datasets. The Levine_13dim dataset is publicly 
available via the R package HDCytoData [40]. As the protein expressions have already 
been pre-processed to correct unwanted artifacts, such as temporal effects, only arcsinh 
transformation was applied.

High volume, high dimension, and heterogeneity

The expression matrix associated with a typical CyTOF experiment usually contains 
tens of thousands or even millions of cell events (rows), 30–40 protein channels (col-
umns), from a pool of cells of 10–30 cell types. For example, the data of the first patient 
in Levine_13dim has 167,044 cell events, 13 protein channels, and 14 cell types manually 
gated by the authors. With a varying number of protein channels, the heterogeneous 
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nature of different cells is captured by CyTOF via cell types and differentiation stages. 
Any potential simulation method developed for CyTOF needs to not only handle the 
throughput with adequate efficiency but also the heterogeneity of cell events.

Zero‑inflation

The protein expression matrix observed in a CyTOF experiment often contains features 
with either zeros or values close to zero. These features biologically correspond to sur-
face proteins that are too scarce to be detected by the machine. In addition, because of 
data randomization, one of the standard options in the CyTOF system, many datasets 
have near-zero or even negative values rather than zeros. Take, for example the CD4 T 
cells in the dataset, we see in Fig. 1a and b that the majority of the protein channels (8 
out of 13) contain a high proportion of values close to zero.

Correlation in the protein–protein expression

In Fig. 1c, we calculated the correlation matrix among all the protein channels using the 
data of Naive CD4 + T cells. Clearly, markers such as CD44 and CD45 are correlated, 
implying that the independence assumption between columns might be too restrictive. 
This suggests modeling the data jointly instead of marginally.

Fig. 1  Characteristics of a typical CyTOF dataset. All four panels are from the Levine_13dim as an example. 
a Heatmap of channel expression for all naive CD4 + T cells. b Density plot of all channel expressions from 
naive CD4 + T cells. c Correlation matrix of all channels as computed with Pearson correlation coefficients. d 
Scatter plot of all cells using the first two principal components and colored with provided cell types
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Near‑normality

To explore the distributional characteristics of arcsinh-transformed protein expressions, 
we first examined the marginal density estimates of each protein marker for different 
cell types. In Fig.  1b, we plotted these empirical densities for all markers using Naive 
CD4 + T cells, where expressed markers (i.e., those with relatively high expression lev-
els) possess “bell”-shaped curves and other markers exhibit two or more modes that 
can be approximated by Gaussian mixture models (GMMs). To further get a sense of 
the joint distribution, we performed dimension reduction using principal component 
analysis (PCA). All cell populations resemble roughly elliptic shapes (Fig. 1d), suggest-
ing that there is no gross violation to the joint normality, according to the assumptions 
of PCA. It may be tempting to use a multivariate normal (MVN) distribution for each 
cell type. However, protein markers’ distributions depend on user-provided cell types 
and so MVNs may not be adequate, particularly in cases where the cell typing is coarse 
or inaccurate. Given that GMMs are known as a universal approximator of densities 
[41], combined with the near-normality of CyTOF data described above, it is a sensible 
choice to use GMMs with Gaussian distributions as basic building blocks of a simulation 
model. Finally, this key characteristic also differentiates CyTOF from scRNA-seq, which 
is typically modeled with counts. As explored in the comparison study later in this paper, 
adapting a model for discrete counts for CyTOF does not work well.

Temporal effect

As illustrated in [5], the signals of a single CyTOF experiment would typically vary over 
time due to changes in instrument performance. Since Cytomulate aims at modeling 
arcsinh-transformed protein expressions, unlike in [5], we chose to demonstrate the sig-
nal drift by transforming the peripheral blood mononuclear cell (PBMC) data from the 
Finck dataset (Fig. S1a). As a first attempt to model the signal drift, we centered each sig-
nal, fitted a smoothing spline against one of them, and subtracted the fitted value from 
each signal. In Fig. S1b, we see that the adjusted signals overlap and are roughly homo-
scedastic, suggesting that the overall shape of the signal drift (temporal effect) may be 
shared by all cell types within a single batch and that we could model the effect using an 
additive model.

Batch effect

Apart from the temporal effect, many researchers also reported the presence of batch 
effects across multiple CyTOF experiments due to sample collection, stimulation, stain-
ing, etc. [42]. In [7] they reported that not only are the batch effects cell-type specific, 
they also vary depending on protein channels. In Fig. S1c, we illustrated this phenom-
enon by an interaction plot using the mean expressions of the protein channels of CD4 
T cells and CD8 T cells measured on two patients in the Levine_32dim dataset [40]. We 
see that not only do expression levels differ between two batches, the differences also 
vary by cell types and protein channels. This implies that in addition to the main batch 
effect, we should also take into consideration the interaction effects.
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Cellular trajectory

A common task is to study cellular trajectory where the expressions of an individual 
cell are assumed to vary according to some continuous path that connects one cell type 
to another. In the context of scRNA-seq, lots of methods have been developed to align 
cells on continuous paths with typical examples Slingshot and Monocle [43–45]. To our 
knowledge, CytoTree [14] is the only available method of trajectory inference designed 
for CyTOF. It is further questionable whether trajectory inference methods are inter-
changeable between these two technologies. For the purpose of demonstration, we 
showed an example of the cellular trajectories following CytoTree’s online tutorial with a 
real Bone Marrow dataset in Fig. S1d.

Cytomulate framework

In light of the previous exploratory data analysis, we propose Cytomulate, an accu-
rate and efficient simulation algorithm of CyTOF data based on Gaussian Mixture 
Models (GMM) [46], with add-on features to mimic various patterns/effects existing 
in real data. More specifically, Cytomulate achieves the task of accurate simulation 
via two modes selectable by users: emulation mode and creation mode, both offer-
ing transparency with known ground truth. Emulation mode is designed for a user to 
simulate data that aims to capture major characteristics of a specific CyTOF dataset 
under study. As this mode learns meaningful parameters from real data, it enables 
interpretation of real data such as locations, variations of protein expressions, pro-
tein–protein correlations, and heterogeneity among various cell types, while generat-
ing synthetic data to test different hypotheses. Creation mode is purely model-based 
in which synthetic data are generated from user-specified settings and parameters. 
This mode caters to two main user groups. Firstly, it serves users who wish to have 
access to a wide range of CyTOF datasets, encompassing varying numbers of cells, 
protein markers, experimental designs, tissue types, diseases, and conditions. These 
users aim to simulate multiple datasets with diverse characteristics to facilitate com-
prehensive testing and benchmarking. Secondly, creation mode is also designed to 
assist new researchers in the field who may not have a real CyTOF dataset at hand. By 
utilizing this mode, they can generate synthetic data immediately, providing an acces-
sible starting point for their own experiments and studies.

In both simulation modes, users are allowed to vary cell abundances, noise levels, 
batch effects, temporal effects, and cellular trajectories to capture the complex needs 
of methodological developments for CyTOF data. The simulated batch effects, tempo-
ral effects, cellular trajectories, and the noise are then added once we sample from the 
GMMs. The following sections elaborate on each mode with greater details as the foun-
dation to the comparison study that follows.

Creation mode aims at quickly generating synthetic datasets that capture aforemen-
tioned characteristics of CyTOF data such as zero-inflation, correlation in protein–
protein expressions, and near-normality. Users specify the volume, dimension, and the 
degrees of heterogeneity. Temporal effect, cellular trajectory, and batch effect can be 
added as part of complex simulations. As this mode does not intend to extract the data 
distribution of some specific dataset as a reference, it is particularly useful for testing 
analysis methods on a large scale. For example, in [15], Wang et al. used this mode of 
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Cytomulate to evaluate the performance of 20 dimension reduction methods from vari-
ous aspects such as local and global structure preservation on 425 simulated datasets 
with different attributes (e.g., different numbers of cell types and numbers of differentia-
tion paths). This mode allows practitioners to precisely define each simulated dataset as 
they wish, which is not often or at all possible with real data.

Specifically, the creation mode randomly generates average cell expressions and then 
utilizes GMMs from which to sample cell expressions. Users also have the options to 
enable complex simulations by simply specifying the necessary parameters, such as the 
number of trees for cell differentiation trajectories. The details of complex simulation 
will be discussed later. With users having full control of their simulated dataset, the crea-
tion mode is untethered by existing—yet oftentimes implicit—conditions of real data-
sets, such as the exact cell types, circumstances of the patient, and the physical machine. 
By eliminating these factors, Cytomulate allows researchers to develop and test methods 
based on unbiased results that are generalizable to wide ranging real datasets. Further, 
it can also serve as a pedagogical tool for researchers to explore the characteristics of 
CyTOF datasets easily.

Emulation mode, on the other hand, is designed to learn the distribution of some real 
CyTOF data. To ensure compatibility, Cytomulate assumes that the reference dataset 
provided by the user has already undergone bead normalization and arcsinh-transfor-
mation (with a cofactor of 5), both of which are standard options in the CyTOF system. 
Instead of approximating the entire dataset as a whole, which is challenging, Cytomulate 
leverages the prior knowledge of cell type information. As a result, it requires not only 
the expression matrix of one particular CyTOF dataset to mimic but also the cell type 
label associated with each cell as inputs. Although Cytomulate can potentially perform 
cell type identification or clustering using common algorithms of the likes of K-means, 
we leave the choice of such algorithm for cell typing to our users as a design choice for 
the following two reasons: (i) According to [47] and [48], the K-means algorithm and 
GMM-based model (SWIFT) are often not the optimal choice for clustering CyTOF 
data; (ii) There are already plenty of well-established cell identification algorithms and 
automatic gating techniques such as FlowSOM [11], Bayesian Tree [13], ACDC [49], and 
SCINA [50], all of which have similar goals but slightly different design considerations. 
For example, using FlowSOM requires minimal prior knowledge on the cell population 
other than some crude idea on the number of cell types. On the other hand, Bayesian 
Tree and ACDC use a template as an input to facilitate the automatic gating process. 
Since we expect the users of the emulation mode to be somewhat experienced in the 
field, we think it would be better to let the users choose and apply their own cell identifi-
cation algorithms that suit their situations the best. The resulting expression matrices of 
this mode are thus expected to be a closer approximation to the real data, as opposed to 
those generated by the creation mode.

To dive into the details, Cytomulate, at its core, uses a GMM with truncation below 
0 to approximate and generate the probability density of a given cell type. The Bayesian 
Information Criterion (BIC) [51] is adopted for model selection. Although the explora-
tory data analysis in the previous section shows that a MVN might be a good candidate 
for modeling a specific cell type in a CyTOF experiment, this should be taken with a 
grain of salt because the cell-typing procedure can vary across datasets and cohorts. For 
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example, the Levine_32dim dataset provides labels for the following subtypes of B cells: 
mature B cells, plasma B cells, pre-B cells, and pro-B cells. In practice, however, subsets 
of major cell types are not available in certain datasets. We thus should allow flexibility 
in the model to account for cell-type procedures with different resolutions. If the users 
are interested in subtypes of B cells, a single MVN would be inadequate in describing the 
data generating mechanism (see the comparison study in the next section for details). 
Therefore, we chose GMMs as the base for its flexibility and its mathematical tractability.

In Fig.  2a, we outlined the overall framework of Cytomulate with input and output 
examples, model specification, and possible workflows for downstream analyses. Further 
details on the two simulation modes and the probabilistic model can be found in the 
“Materials and methods” section.

We also modularized all the aforementioned functionalities so that each of them can 
be easily fine-tuned or turned off with a simple interface, according to a user’s specific 
need. Cytomulate returns the final expression matrices, the cell type labels associated 
with the expression matrices, as well as cellular trajectory information for each cell 

Fig. 2  Overview of Cytomulate model and software pipeline. a The model structure and input and output 
pipelines of Cytomulate. The input stage demonstrates the parameters and reference data needed for each 
mode, and Cytomulate uses the provided information accordingly for estimation and simulation. The outputs 
are in the forms of expression matrices and their associated cell types for additional downstream analyses. 
b The software pipeline of Cytomulate. The flowchart showcases Cytomulate’s role and integration with 
industry standard tools in every step of the research and development process
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event. Optionally, users can also choose PyCytoData as the output option for down-
stream analyses compatibility (Fig. 2b). In the following sections, we conduct some com-
parison studies and demonstrate the usage of Cytomulate through examples.

Simulation comparison study

Although Cytomulate is the first-of-its-kind simulation tool designed specifically for 
CyTOF experiments, we will be remiss not to include benchmarks since it is a com-
mon practice in the field to adopt similar technologies from other fields to CyTOF. 
To showcase the superior statistical and computational properties of Cytomulate, we 
performed a series of empirical experiments using the emulation mode. In this simu-
lation setting, the real benchmark datasets provide a gold standard for assessing the 
accuracy of each simulation method and the overall validity of the underlying model. 
More specifically, we focused on whether each model is capable of capturing the fea-
tures of CyTOF datasets and the overall distributions and relationships between all 
protein channels.

For the comparison study, we included the following models from within Cytomulate 
and other fields:

(1)	 Cytomulate with full covariance and model selection via Bayesian Information Cri-
terion (BIC) from GMMs with components varying from 1 to 9 (Cytomulate)

(2)	 Cytomulate constrained to one Gaussian component with full covariance per cell 
type (Dependent Gaussian or simply DG)

(3)	 Cytomulate constrained to one Gaussian component with diagonal covariance per 
cell type (Independent Gaussian or simply IG)

(4)	 Splatter [32]
(5)	 Latent Allocation Model with Bayesian Data Analysis (LAMBDA) [12]
(6)	 scDesign2 [30]

As discussed in the “Characteristics of CyTOF data” section, the correlation of pro-
tein–protein expressions is an important feature of CyTOF datasets. We thus included 
two reduced versions of Cytomulate, namely IG and DG, both featuring only one 
multivariate normal component per cell type. The IG model focuses on the diagonal 
covariance matrix to investigate the effect of omitting the covariance structure seen in 
Fig. 1c. The DG model serves as a direct comparison against IG by considering the lin-
ear dependencies among protein channels. Finally, our core model, Cytomulate, aims 
to showcase the advantages of modeling non-normality through multiple normal com-
ponents per cell type, in contrast to DG. The inclusion of these progressively complex 
models will not only demonstrate the flexibility of the Cytomulate framework, but it will 
also validate the characteristics of CyTOF, as shown in the exploratory data analysis, by 
using actual benchmarks.

Beyond Cytomulate and its variants, we also included Splatter, LAMBDA, and scDe-
sign2, which are not designed for CyTOF simulation. Below we give a brief description 
of each followed by the rationale for their inclusion in our comparison study.

Splatter, or specifically Splat, is originally designed for simulating scRNA-seq data. Its 
core model uses a Gamma-Poisson mixture to simulate counts observed in scRNA-seq 
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experiments. The authors also take into consideration outliers, library size, mean–vari-
ance trend, and technical dropout. As Splatter expects integers as inputs, to simulate 
CyTOF data which usually have been transformed into a numeric scale using the arcs-
inh transformation, we can carry out its inverse transformation, round up the results to 
the nearest integer [37], apply Splatter to simulate counts, and transform the simulated 
expressions back into the numeric scale. We included Splatter to demonstrate the con-
sequences of adapting scRNA-seq simulation methods to CyTOF, which outweigh the 
tempting benefit of convenience for any rigorous CyTOF studies.

LAMBDA is a Bayesian hierarchical model designed for automatic cell identification in 
CyTOF data. The model assumes that given a cell type, the cell expressions follow a zero-
inflated multivariate Gaussian distribution. The cell types, on the other hand, are gener-
ated from a Categorical distribution whose parameters are controlled by some clinical 
information. Parameter estimation is accomplished by a stochastic EM algorithm. It is 
worth pointing out that LAMBDA is not a simulation tool and its simulation function-
ality is only a byproduct of LAMBDA. More critically, LAMBDA cannot generate new 
datasets without using reference datasets. Thus, for those who are interested in the Cre-
ation Mode or those who do not have access to any previous samples (e.g., CyTOF for 
some rare diseases), this is not a suitable method at all. We included the method in our 
study because of its rigorous parameter estimation procedure, which would provide us 
with a yardstick against which we can evaluate the quality of the simulated datasets in 
terms of the first and second moments.

scDesign2 is an scRNA-seq simulation algorithm designed to address the shortcom-
ings of other methods in the field, including Splatter. This algorithm first fits one of four 
discrete distributions (zero-inflated negative binomial, negative binomial, zero-inflated 
Poisson, or Poisson) to each gene’s marginal distribution. Then, it employs a Gaussian 
copula for each cell type to achieve joint modeling, retaining the gene expressions from 
the real data while also capturing the correlation structure within each cell type. The key 
difference between scDesign2 and Cytomulate is that scDesign2 is specifically designed 
for discrete data, which presents similar challenges to the application of Splatter for 
CyTOF data.

To demonstrate the versatility of Cytomulate, six publicly available datasets from dif-
ferent species and diverse anatomic sites are collected: Levine_32dim [38], Levine_13dim 
[38], Samusik [52], CyAnno [39], Covid [15], and LG [53]. If multiple samples exist for 
one dataset, the first sample is used. See Table S1 for details. All of these datasets have 
been bead-normalized and transformed by using the arcsinh transformation. Cell type 
information is also publicly available for the first four datasets. Cell types in Covid and 
LG were identified via FlowSOM and manual gating [15].

Cytomulate well approximates real data

In this comparison study, we make use of all six datasets and include the aforementioned 
six models as candidates. Four metrics are adopted to quantify the quality of the sim-
ulated datasets: (1)  L2 distance between the simulated mean and the observed mean; 
(2) Frobenius distance between the simulated covariance and observed covariance; (3) 
Kullback–Leibler (KL) divergence [54] between the simulated and observed channel 
expressions; (4) Propensity Mean Squared Error (pMSE) [55] between the simulated 
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and observed data. The L2 distance and the Frobenius distance are defined at the cluster 
level, whereas the KL divergence and pMSE are computed at the single-cell level for each 
cell type without using summary statistics. For pMSE, we report the relative efficiency 
(RE) of each competing method over Cytomulate, defined as the ratio of the pMSE value 
of Cytomulate vs. that of the other method. Here, for any specific method, a RE value 
larger than one indicates this method is more efficient than Cytomulate in terms of 
pMSE and by definition, the RE value for Cytomulate is always one. We also ranked the 
six methods based on raw values of each metric, where the best methods received an 
order of 6 with the worst being 1. See the “Materials and methods” section for further 
details. For each dataset, the process is repeated 50 times for 50 simulated datasets.

Using the Levine_32dim dataset, detailed comparisons show that Cytomulate out-
performed all other methods benchmarked in this study in the categories of KL diver-
gence and pMSE (Fig. 3a). As the KL divergence is a measure of similarity between two 
distributions, Cytomulate’s resounding lead is a testament to its ability to yield a better 
approximation to the real data compared with other methods. Cytomulate’s advantage 
in distributional properties logically explains its lead in pMSE, which measures whether 
simulated datasets are distinct from real ones. Overall, for mean estimation, all methods 
except Splatter and scDesign2 work well (Fig. 3b,c), with LAMBDA achieving the small-
est mean square error (MSE) in some datasets, closely followed by Cytomulate. Even 
though LAMBDA’s estimation procedure should theoretically yield decent results for the 
first two moments, Cytomulate still outperformed LAMBDA in estimating the covari-
ance structure in some datasets (Fig. 3b). This result also empirically demonstrated that 
potential improvements can be made if only the first two moments are considered, but 
this improvement—if having any practical significance at all—may come at the cost of 
worse KL Divergence and computational efficiency. Splatter, due to the usage of nonlin-
ear transformations and marginal modeling, performs the worst in all benchmarks by an 
overwhelmingly wide margin, demonstrating that Splatter is suboptimal when simulat-
ing CyTOF data. Although scDesign2 performs joint modeling, which contributes to its 
superior performance against Splatter, the discrete nature of its model makes it a poor 
choice overall.

Aggregating results from all six datasets using all four metrics, the overall trend 
observed previously holds for Cytomulate (Fig. 3c). By using GMMs to fit and sample 
from each cell type, Cytomulate gives the best approximation to the real data as meas-
ured by the KL divergence and pMSE. Averaging the orders in Fig. 3b across six data-
sets further highlights Cytomulate’s advantages (Fig.  3d). As expected, by formally 
deriving a rigorous estimation procedure, LAMBDA is able to achieve the best average 
MSE in terms of mean while its covariance estimation lags slightly behind. However, 
as we have seen previously, the sufficiency of only considering the first two moments 
highly depends on the data and the coarseness of the cell type labels. It is also evident 
that Splatter always gives the worst performance due to the bias introduced by nonlin-
ear transformations. Even working with the simple IG would yield a performance boost. 
scDesign2 outperforms Splatter on all metrics, but it still falls behind Cytomulate vari-
ants and LAMBDA.

To visually validate the performance of each method, we applied UMAP [17] to illus-
trate the resulting expression matrices of each method (Fig. S2). Due to the granularity 
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of the cell type labels included in the dataset, at the first glance, all methods except for 
Splatter produce reasonable simulations. Splatter produces a concerning embedding 
with cells splattered around the clusters and cell types indistinguishable. For all other 
methods, a closer examination reveals that only Cytomulate is able to preserve granular 
details in the simulation while other methods present only the big clusters. The preser-
vation of detailed characteristics provides an advantage not only in preserving rare cell 
types and their unique phenotypes, but also in situations where cell-type resolution is 
low, which motivates our investigation in the following section.

Fig. 3  Detailed results on simulation performance benchmarks. a The performance of all methods in the 
Levine_32dim dataset. The four panels correspond to MSE in mean (smaller is better), MSE in covariance 
(smaller is better), KL Divergence (smaller is better), and relative efficiency in pMSE (larger is better). The 
relative efficiency is measured using Cytomulate’s pMSE: values smaller than 1 indicate worse performance 
than Cytomulate. b Orders of each method across all datasets and all metrics. Orders are based on values 
from the metrics, and a higher order indicates superior performance in the given metric. c The average 
performance of methods averaged across all datasets. Orange colors indicate superior performance, whereas 
blue colors represent worse performance. The interpretations are the same as a. d Orders of all methods 
averaged across all datasets. Higher bars represent a higher average order for a given metric and method. 
Colors represent different simulation methods
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Cytomulate is robust against cell‑type resolution

Although cell type labels are required inputs for the emulation mode, Cytomulate does 
not demand highly granular labels, meaning that it is not necessary to identify all sub-
types of a given cell type as a prerequisite for the simulation. In fact, different datasets 
and analyses call for different cell-typing approaches: a large dataset with only B cells 
may warrant more detailed cell types to reveal their differentiation stages, whereas small 
whole blood samples may not afford the same resolution with reasonable cluster sizes. 
To account for these two situations, we conducted two separate benchmarks regarding 
cell typing. We first focused on a dataset with many cell types and then zeroed in on B 
cells to investigate the effects of subtypes.

In real data, the presence of unidentified or unassigned cells due to factors like noise, 
specific algorithms, and instrument panels is common, making it important to address 
such scenarios for reasonable results. To simulate this situation, we randomly masked 
some cell types in the Levine_32dim dataset and assessed the KL divergence between 
the simulated and original datasets. Specifically, we conducted a benchmark with three 
settings, randomly selecting and treating 2, 5, or 10 cell types as the same type, reflecting 
cases in which these cells are not properly identified despite potentially distinct proper-
ties. Our results show that Cytomulate is unequivocally the best performer among the 
six methods tested (Fig.  4). As expected, when cells are unmasked (i.e., cell labels are 
correctly specified), the KL divergence is smaller, but the procedure of masking cells 
only yields a small increase in KL divergence for Cytomulate (Fig. 4). As the number of 
masked cell types increases, Cytomulate’s advantage is further accentuated as compared 
to LAMBDA and scDesign2’s declining performance (Fig.  4b,c). In contrast, Splatter 
consistently performs poorly, and the issue is further amplified when masking cell types 
(Fig. 4).

We have shown Cytomulate’s advantage when potentially dissimilar cell types are 
masked. Now we proceed to investigate the effect of masking similar subtypes. As we 
mentioned previously, there are 4 subtypes of B cells in Levine_32dim dataset: mature 
B cells, plasma B cells, pre-B cells, and pro-B cells. In this benchmark, we first pro-
vided every method with these detailed subtype labels, and then amalgamated all the 
labels into “B cells,” masking the subtype details. To quantify the differences observed 

Fig. 4  Performance of simulation methods against random masking of cell subtypes. For all three panels, 
randomly cell types of the Levin_32dim were masked and performance of each method was measured 
using log KL divergence plus 1. Blue bars represent the masked datasets, and yellow bars represent matched, 
unmasked controls (N = 20). The whisker on top of the bars indicates the variance. a Two cell types are 
randomly masked in each replicate. b Five cell types are randomly masked in each replicate. c 10 cell types 
are randomly masked in each replicate
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across the methods, we repeated the process 20 times and computed the KL divergence 
[54] between the simulated and real datasets under the two settings (Fig. 5). Although 
the overall performance is consistently improved in the unmasked setting with more 
detailed cell subtypes, Cytomulate appears to be the most robust among all methods. 
In fact, both settings of Cytomulate outperformed all other methods regardless of cell-
typing details.

To gain further insights into the advantages of Cytomulate, we used UMAP for visual 
comparison among the different methods under the two settings. Although most meth-
ods except for Splatter yielded acceptable approximations to the real data when sub-
types are given (Fig. 5), only Cytomulate was able to differentiate the underlying clusters 
with minimal distortion to their original shapes, even in the absence of detailed subtype 
information. Notably, LAMBDA suffered a severe loss of detail, approximating the entire 
dataset with a single Gaussian distribution centered between the two separated major 
clusters, where the actual density is low. Although scDesign2’s simulation came some-
what close to capturing the two major modes, noticeable distortion within each cluster 
remains. Given that KL divergence is a measure of distributional differences, our quan-
titative assessment, combined with the visual inspection, clearly shows Cytomulate’s 
advantage in effectively modeling heterogeneous data.

The robustness of Cytomulate makes it an appealing choice for practitioners, espe-
cially those who work with public datasets with existing cell types, since Cytomulate 

Fig. 5  Additional results on performance with different cell subtypes. All parts of the figure utilizes 
the Levine_32dim dataset with B cells only. a UMAP embedding of the original B cells present in the 
Levine_32dim dataset overlaid with B cell subtype labels as well as a density estimation. b Masked and 
unmasked performance of all methods measured by log KL divergence plus 1. Color blue represents 
masked datasets while yellow stands for unmasked datasets. The error bars show the variance. c–h UMAP 
embeddings of the following simulation methods with and without B cell subtype labels: Cytomulate, DG, 
LAMBDA, IG, scDesign2, and Splatter
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offers the greatest flexibility in terms of input. With reasonable cell types, Cytomulate 
can accurately capture the prominent characteristics of the data.

Cytomulate is efficient

As a single CyTOF experiment could contain tens of thousands or millions of cell events 
along with 30–40 protein channels, computational efficiency including estimation and 
simulation is a significant issue. In fact, we initially included ZINB-WaVE [31], one of 
the top-performing scRNA-seq techniques in our comparison studies. However, it was 
excluded as it would take hours to simulate one moderately sized dataset that contains 
around 50,000 cells. Specifically, we measured the estimation time (time required to 
construct the model and estimate the parameters) and simulation time (time needed to 
generate data from the estimated model) as our metrics for algorithm efficiency as all 
methods benchmarked involve these two steps. We conducted an analysis on the run-
ning time of each method by varying the number of cells and the number of markers 
using the CD8 + Naive T cells in the CyAnno dataset, which contains 8414 cell events 
and 39 protein channels. To be more specific, while evaluating the impact of sample size, 
we used all 39 protein channels and applied bootstrap sampling to generate expression 
matrices containing various numbers of cell events. On the other hand, we fixed the 
number of cell events to 8414 and sampled the columns to be included when investigat-
ing the effect of the number of markers on processing time. Besides including the six 
models previously described and benchmarked for accuracy, we also included Cytomu-
late with 5-component GMMs (Restricted Cytomulate) to gauge the impact of model 
selection on efficiency.

Overall, both estimation time and simulation time for all methods under consideration 
appear to be polynomial with respect to the number of cells and the number of protein 
channels (Fig. S3). Cytomulate is consistently faster than LAMBDA in all situations. For 
a moderate-size dataset containing 100,000 cells, even Cytomulate with model selection 
from 9 models takes around only 2 min (Fig. S3a). If restrictions are imposed, the esti-
mation can be done within seconds. On the other hand, LAMBDA, due to the usage of 
a stochastic EM algorithm for the model estimation, is twice as slow, while scDesign2 
is also among the slowest methods tested. When sample size reaches one million cells, 
both LAMBDA and scDesign2’s estimation times exceed 1 h, which makes them not via-
ble for large-scale simulations. Surprisingly, LAMBDA and scDesign2 both suffer from 
poor scalability with regard to the number of markers as compared with other methods 
(Fig. S3b and d).

In terms of simulation time (Fig. S3c-d), all methods are relatively efficient as com-
pared to estimation time. Despite the efficiency of all methods here, Cytomulate is 
always best with or without model selection, while Splatter is the least efficient. This 
characteristic allows Cytomulate to quickly generate many replicates using a single 
dataset as a reference, which is a common task. As a unique advantage to the Emula-
tion mode, Cytomulate can perform parameter estimation using a small sample and then 
scale up by simulating a much larger sample. This further improves the scalability of 
Cytomulate given its efficiency in terms of simulation time. With the increasing capabil-
ity of CyTOF to produce larger datasets and more channels, Cytomulate is fully capable 
of handling large datasets.
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Complex simulations

The core model of Cytomulate accounts for the expressions of each cell type as an 
essential part for simulation. Beyond the core model and unlike LAMBDA, Cytomu-
late can easily be extended to incorporate more complex effects commonly encoun-
tered in CyTOF experiments such as batch effects, temporal effects, as well as cell 
differentiations. While some of these effects are oftentimes considered nuisances with 
corrections desired, the ability to approximate them is crucial for methodological 
developments in the field of normalization or other preprocessing techniques. Also, 
the rising potential of trajectory inference with CyTOF datasets instead of scRNA-seq 
calls for a more thorough consideration of this topic. This section details the overall 
design and implementation of these complex simulation scenarios.

Temporal effects

As discussed in [5], due to cell debris, etc., the sensitivity of a CyTOF machine may vary 
over time during data generation, causing signals for cells from one batch to fluctuate. In 
Cytomulate, we assume that the temporal effect for each batch is generated by a function 
defined on the unit interval such that the value at time zero is always zero, represent-
ing that there is no temporal effect at the beginning. We provide users with 3 options to 
simulate a temporal effect, each with a different level of control over the overall shape of 
the temporal effect:

(1)	 Brownian Bridge [56]: The shape of the entire trajectory is randomly generated 
from a Brownian Bridge where the ending value is randomly sampled from a nor-
mal distribution. To evaluate the function on the unit interval, the Akima spline 
[57] is used for interpolation. This option gives the users minimal control over the 
evolution of the temporal effects.

(2)	 Polynomial: This option allows the user to specify the rough shape of the trajectory 
via the coefficients of a polynomial. A linear transformation will be used to make 
sure the resulting temporal effect starts at 0 and ends at a value randomly generated 
from a normal distribution.

(3)	 Spline: During the preprocessing steps, it is possible that the users can extract the 
temporal effect component. The spline option permits the users to add the original 
temporal effect back to the simulated dataset via a smoothing spline. Since the size 
of the simulated dataset might differ from that of the original dataset, Cytomulate 
will automatically rescale the time interval so that the entire trajectory could be 
retained in the simulated dataset (Fig. 6a).

Batch effects

Previous research in the field [7] has indicated that the batch effects in CyTOF experi-
ments vary not only by batches but also by cell types and protein channels. To simulate 
batch effects, we decompose the effects into global batch effects which assume differ-
ent values for different batches and local batch effects which vary depending on the cell 
types and protein channels in a similar fashion to the way we decompose effects into 
main effects and interactions in analysis of variance (ANOVA). Further details can be 
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found in the “Materials and methods” section. As a demonstration, we simulated two 
batches with 3 cell types using the creation mode of Cytomulate (Fig. 6b).

Cellular trajectories

To simulate cellular trajectories, Cytomulate adopts a two-step procedure. In the first 
step, Cytomulate simulates the underlying graph of the cellular trajectories. Given the 
simulated graph, the actual protein expressions are then sampled in the second step.

Specifically, in the first step, a polytree (a directed acyclic graph whose underlying 
undirected graph is a tree) or a polyforest (a collection of nonoverlapping polytrees) is 
generated [58]. A tree represents a single trajectory, where edges connect different cell 
types, allowing cells to differentiate along defined paths. In the Creation Mode, this is 
done by first randomly grouping the cell types and applying Kruskal’s algorithm [59] 
with random weights to sketch the underlying tree or forest. In the Emulation Mode, 
this is accomplished by the Clauset-Newman-Moore greedy modularity maximization 
algorithm [60, 61]    followed by the Kruskal’s algorithm with the L2 distances among 
observed average cell means as weights. In both circumstances the root node represents 
the starting point of differentiation, where its child nodes inherit certain channels that 
define the entire lineage. To find the root node and convert the graph to a directed acy-
clic graph (DAG), a depth-first search with a randomly selected node as the root on each 
graph component is performed.

In the second step, Cytomulate starts the differentiation process. For selected channels 
that change between each pair of nodes, a Brownian Bridge combined with interpolat-
ing splines is used to generate the actual protein expressions along the polytree or the 
polyforest in a fashion similar to how Splatter [32] simulates paths. The time param-
eter of differentiation is determined by a Beta distribution. This scheme allows smooth 
transitions between cell types while also ensuring incremental changes along the tree 
(i.e., each tree contains a family of cell types with gradual changes). Further details can 
be found in the “Materials and methods” section. For illustration, we used the creation 
mode of Cytomulate to generate 5 cell types aligned on one polytree (Fig. 6c).

Fig. 6  Examples of effects addressed in complex simulations. a Example temporal effects generated using 
the three methods: Brownian Bridge, Polynomial, and Spline. b Example of a simulated sample batch effect. 
Color difference represents batches, and point shape indicates cell types. c Example of the cell differentiation 
trajectory generated by Cytomulate. The trajectories are noted with light blue arrows
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Applications of Cytomulate within a unified framework

Framework overview

To ensure the interoperability of Cytomulate with downstream analyses and related 
workflows, we designed our software package using open standards in the field. Namely, 
our framework is expression matrix-driven with the optional support for PyCytoData—
an easy-to-use interface for CyTOF and downstream analyses (Fig. 2b). Aside from two 
simulation modes, we support two main usage modes of Cytomulate. For users who pre-
fer batch processing and working with servers, we recommend our command-line inter-
face (CLI). Using a single command with the appropriate arguments and flags, users can 
generate their desired dataset and save it to disk in the format of their choice. Further, 
the CLI ensures scalability and interoperability by allowing users to utilize shell scripts 
and seamlessly integrate their results with other up- or downstream software. Alter-
natively, our interactive Python mode is designed for those who primarily work within 
Python and would benefit from the most flexibility. This interface supports fine-tuning 
of details while allowing users to explore the datasets interactively: from simulation to 
dimension reduction (DR) and plotting, a few lines of readable code are all they need.

With the wide adoption of CyTOF and the subsequent proliferation of analysis meth-
ods, a unified framework is increasingly important. While few methods, except ubiqui-
tous tools such as PCA, have become virtually platform- and language-agnostic, many 
otherwise good software suffers from poor usability and extensibility. For example, in 
the process of evaluating Cytomulate, we found that LAMBDA falls far short of hav-
ing a user-friendly interface: in fact, we spent a significant amount of time adapting the 
algorithm to our workflow for it to be viably assessed. To address these issues, we first 
developed the two usage modes as previously mentioned. The CLI uses the operating 
system’s shell as a common denominator to work with other parts of the workflow as 
necessary, whereas the interactive mode supports outputting a PyCytoData object. The 
latter brings the benefit of a suite of integrated downstream analysis tools and utility 
functions, including built-in normalization and CytofDR for DR evaluation [15]. Beyond 
the software itself, our continuous integration and development workflows along with 
detailed documentation (https://​cytom​ulate.​readt​hedocs.​io) ensure that Cytomulate is 
well maintained and easy for any user to adopt with minimal to no learning curve.

To demonstrate the usability and applicability of Cytomulate in CyTOF research, we 
hereby showcase three benchmark studies conducted using both Creation and Emula-
tion modes. We also would like to emphasize the fact that Cytomulate’s potential goes 
much beyond the particular methods and benchmarks conducted in this section. With 
the flexibility of our framework and the open source initiative, other researchers can 
effortlessly extend the functionalities by simply using the PyCytoData object with their 
own workflows. A crucial advantage of employing Cytomulate instead of relying solely 
on real datasets is that users can specify characteristics of each sample, a task hardly 
achievable in real datasets without artificially subsampling and manipulations. Indeed, 
a proper benchmark requires the detailed controls necessary to distinguish between 
various effects, such as cell abundance and differentiation paths. Cytomulate not only 
supports all these configurations with both of our interfaces but also produces sensible 
results for practitioners as seen in the following benchmarks.

https://cytomulate.readthedocs.io
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Benchmarking DR using Cytomulate

As a practical application of Cytomulate, a previous DR benchmark study [15] included 
extensive usage of the creation mode to evaluate DR methods. Specifically, Wang et al. 
simulated 425 CyTOF datasets by specifying and systematically varying key features of 
CyTOF expressions. To further demonstrate the capabilities of Cytomulate for down-
stream analyses, we accessed and analyzed a subset of the results published on Database 
of Actionable Immunology’s (DBAI) [62–64] CytofDR Playground (https://​dbai.​biohpc.​
swmed.​edu/​cytof-​dr-​playg​round/). In particular, we chose samples with 100,000 cells 
and the following parameters: the number of markers {30, 35, 40}, the number of cell dif-
ferentiation paths {2, 3, 5}, and the number of cell types {5, 10, 15, 20, 30}. These criteria 
yield 225 datasets in total with 25 replicates for each configuration. As for DR methods, 
we focused on the top-performing and most popular ones in the field according to the 
benchmarks: MDS [65], t-SNE [16], UMAP [17], PCA [66], and SAUCIE [19].

Using two major categories (Global Structure Preservation and Local Structure Pres-
ervation) and the two subcategories of the Downstream Category, we validated the 
previous results that MDS is superior for structure preservation whereas UMAP and 
SAUCIE are better for clustering-based metrics (Fig. S4). These results are indeed con-
cordant with results obtained from real datasets. Further, Wang et al. [15] demonstrated 
that Cytomulate produced good datasets for both downstream analyses and DR visu-
alizations. While we defer to the original DR paper for those interested in the details of 
DR methods and their performances with regard to simulation settings, we would like 
to emphasize again the unified framework that enables this type of analysis. Users of 
Cytomulate can easily generate datasets and replicate the aforementioned DR results by 
using Cytomulate in conjunction with CytofDR through the PyCytoData framework.

Validating clustering performance using Cytomulate

Clustering is a common and important workflow in the analysis of real CyTOF data 
because of its role in identifying similar cells. Many methods have been developed for 
CyTOF data, such as FlowSOM [11] and flowMeans [67]. Traditional methods, such as 
K-means [46], can in theory be applied to CyTOF data as well, but their performance 
is questionable. Two previous review papers [47, 48] have extensively benchmarked 
popular clustering methods, and FlowSOM and flowMeans have in general been recom-
mended. However, neither paper included simulation data as part of their workflows. 
To fill in the gap by incorporating Cytomulate as part of this analysis, we conducted a 
benchmark of three popular clustering methods to validate conclusions from the previ-
ous review papers.

In both Creation and Emulation modes, the ground truth labels are known, thus ren-
dering Cytomulate a gold standard to assess whether clustering algorithms can correctly 
group the same cells in the same cluster. To demonstrate Cytomulate’s advantage, we 
simulated 20 datasets from the Levine_32dim dataset [40]. Under the default setting 
with fixed probability of cell abundance (Fig. S5a), we found that flowMeans performs 
the best out of the three methods, achieving the highest Adjusted Rand Index (ARI) [68]. 
FlowSOM follows closely behind flowMeans, whereas K-means lagged severely behind. 
To account for various cell abundances in real datasets, we also tested a setting by 

https://dbai.biohpc.swmed.edu/cytof-dr-playground/
https://dbai.biohpc.swmed.edu/cytof-dr-playground/
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randomly varying the cell abundance probabilities generated from a Dirichlet distribu-
tion with parameters being a 14-dimensional vector of 0.1. While the order of the three 
methods remained the same, K-means’ suboptimal characteristics for CyTOF data are 
exacerbated. Our results not only agree with the numerical analyses on Levine_32dim 
by Liu et al. [47], but they also highlight the usefulness of Cytomulate to simulate user-
controlled characteristics of CyTOF, such as cell type abundances.

Comparing batch normalization methods using Cytomulate

As part of Cytomulate’s complex simulation, users can easily simulate multiple batches 
of CyTOF datasets by adding batch effects. This procedure is designed to mimic the 
real situation in which practitioners have to account for systematic differences across 
multiple batches. With the development of many batch correction methods in the field, 
including ComBat [69], CytoNorm [7], and Harmony [70], it is important to assess how 
well each performs. Cytomulate’s complex simulation provides a good basis for such a 
benchmark. We thus selected the aforementioned three methods and compared their 
performances using 10 paired simulated samples based on the Samusik [52] dataset. 
Within each sample, an “anchor” sample that is free of batch effect was first generated. A 
“replicate” sample was then generated with simulated batch effects.

To assess the extent to which batch effect is corrected, we computed the Earth Mover’s 
Distance (EMD) [71] between corrected batches, and smaller distance corresponds to a 
more effective batch normalization. Further, we created two scenarios: “High Variance” 
and “Low Variance” to represent two levels of potential amount of batch variation from 
sample to sample. In the case of “High Variance”, the batch effects were simulated from a 
normal distribution with zero mean and unit standard deviation. The standard deviation 
was set to 0.1 in the case of “Low Variance”. Across both high and low variance settings, 
CytoNorm is the best for CyTOF data, while Harmony is the worst. Also, the low vari-
ance setting yields overall smaller EMD as we expect (Fig. S5b). This benchmark shows 
again that methods designed specifically for CyTOF tend to outperform others, such as 
Harmony for scRNA-seq and ComBat for RNA-seq.

Discussion and conclusions
Simulation is a powerful, flexible, and cost-effective tool for performance evaluation, 
which plays a vital role in methodological development. A common way to test analysis 
methods is to conduct simulation studies, where generating multiple datasets, with dif-
ferent parameters or assumptions, can be quickly accomplished with minimal cost. The 
lack of a formal method for accurately synthesizing CyTOF data warrants a dedicated 
statistical tool with careful considerations of CyTOF’s unique characteristics, such as its 
throughput and the correlation between protein channel expressions.

In this paper, we filled in the aforementioned void by introducing Cytomulate, a tool for 
simulating CyTOF data accurately and efficiently. It builds on Gaussian Mixture Models 
(GMM) with a fast and robust estimation procedure and appealing mathematical proper-
ties to approximate the real densities of CyTOF channels. Furthermore, Cytomulate fea-
tures a well-defined probabilistic model to capture prominent aspects of CyTOF data while 
also incorporating two simulation modes: creation mode and emulation mode to cater to 
the needs of various researchers. By thoroughly benchmarking Cytomulate’s estimation 
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and simulation efficiency, resemblance to real data, and robustness again prior cell-type 
resolution on six publicly available datasets, we demonstrated that Cytomulate is superior 
in approximating the overall data distributions regardless of the granularity of the input. 
Our algorithm further has the versatility of simulating more complicated phenomena com-
monly encountered in a CyTOF experiment such as signal drifts (temporal effects), batch 
effects, and cellular trajectories, which are partially or totally unsupported by other tools. 
Finally, we showcased Cytomulate’s integration with PyCytoData as an open standard for 
CyTOF data processing in Python while also highlighting Cytomulate’s usage in a series of 
benchmark studies involving several DR methods [15], clustering algorithms, and batch 
correction tools. By integrating the philosophy of user-centric software and the superior 
performance of our probabilistic model, Cytomulate offers a practical step towards address-
ing the usability problem in the field [15, 45].

Potential limitations of this study involve the estimation procedure we chose for the 
emulation mode. Since the parameters are estimated for each cell type separately, in the 
presence of high-dimensional data, the usage of the EM algorithm could render the per-
formance of a GMM unsatisfactory when the number of cell events is low. A potential 
remedy for rare cell types would be to borrow “strength” from other cell types to stabilize 
the parameter estimation via a Bayesian hierarchical setup. What is more, as a trade-off 
for efficiency, various aspects of CyTOF data such as means, covariances, and cell differ-
entiations are captured in a sequential manner instead of being modeled jointly. Conse-
quently, although the GMMs provide a reasonable approximation to the data distribution 
of CyTOF due to its universal approximation to densities [41], the estimated parameters 
are likely biased. Due to the sheer number of cells typically encountered in CyTOF and the 
complexity of the model, traditional inference methods such as Markov Chain Monte Carlo 
(MCMC) might not ameliorate this situation. Fortunately, tremendous progress has been 
made in the field of deep generative models, which has been successfully applied to tasks 
such as estimating densities and synthesizing realistic-looking images on large datasets [72, 
73]. Some typical examples include normalizing flow [74], variational auto-encoder [75], 
and generative adversarial networks [76]. Exploiting said methods to gain deeper insights 
into CyTOF datasets thus could be a possible future direction.

Another future direction constitutes the modeling of clinical phenotypes based on sim-
ulated CyTOF datasets. Namely, suppose we denote y as the phenotype and x as CyTOF 
data, and an interesting direction is to simulate y from p(y|x) . Currently, Cytomulate has 
the ability to generate CyTOF datasets from p(x) . Adding the connection between simu-
lated datasets and phenotypes will increase the applicability and practicality of Cytomulate 
in real settings. We are optimistic that our simulation framework as a first in the field will 
spark further interests in these exciting directions, and our model will serve as a reference 
for future works.

Materials and methods
Probabilistic model of Cytomulate

The probabilistic model of Cytomulate is intended to model the arcsinh(./5)-trans-
formed CyTOF data. In this section, we will gradually build up towards the final model 
aided by what we observed in the section on characteristics of CyTOF data.
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Basic model

We will start with the simplest scenario where we only have one batch, n = 1, · · · ,N  cell 
events on only one cell type with measurements on m = 1, · · · ,M protein channels.

We start with a continuous latent variable for the protein expressions:

where f (µ,�) denotes some distribution with an M-by-1 matrix of mean µ , and an M
-by-M matrix of variance–covariance matrix � . Given the near-Gaussianity nature 
of CyTOF data, we use a Gaussian Mixture Model to approximate this distribution in 
Cytomulate.

Since protein expressions should be non-negative, we further truncate the variable below 
zero. Mathematically, this can be accomplished by.

where ◦ is the Hadamard product, I is an indicator function, and ≻ is a component-wise 
inequality.

Finally, we incorporate the machine noise into the final protein expressions resulting in 
the basic model of Cytomulate:

where En ∼ L and L is some error distribution.

Core model

The core model of Cytomulate is only a slight generalization upon the basic model by con-
sidering p = 1, · · · ,P cell types in one batch.

We denote the probability of observing the p th cell type by πp . Then, for the n th cell 
event, we assume that the cell type is sampled from.

where π = [π1, · · · ,πP] is a P-by-1 probability vector.
Suppose the cell type for the n th cell event is p . We then update the notation for the 

latent variables accordingly:

where f p(µp,�p) denotes some distribution with mean µp , and variance–covariance 
matrix �p.

The computation of the final protein expressions remains unchanged:

where En ∼ L and L is some error distribution.

Xn ∼ f (µ,�)

I(Xn ≻ 0) ◦ Xn

Yn = I(Xn ≻ 0) ◦ Xn + En

�n ∼ Categorical(π)

Xn ∼ f p(µp
,�p)

Yn = I(Xn ≻ 0) ◦ Xn + En
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Complex simulations

Batch effects

To add batch effects, suppose we have b = 1, · · · ,B batches, m = 1, · · · ,M protein chan-
nels, and p = 1, · · · ,P cell types. For the b th batch, we have n = 1, · · · ,Nb cell events.

Similar to the setup in the core model, we assume that the cell type of the n th cell event in 
the b th batch is sampled from.

where π = [πb
1 , · · · ,π

b
P ] is a P-by-1 probability vector. The corresponding latent variable 

is then denoted by Xb
n ∼ f p(µp,�p) . Note that while we allow the cell abundances to 

vary among batches, we only use one distribution for one cell type.
With this setup, we introduce a set of random vectors, each representing the batch effect 

on the p th cell type in the b th batch:

Where

Represents the center around which the batch effects on the cell types and protein chan-
nels in the b th batch vary. We further add two sets of constraints to ensure the identifi-
ability of the parameters:

Temporal effects

Suppose we have b = 1, · · · ,B batches, and m = 1, · · · ,M protein channels. For the b th 
batch, we have n = 1, · · · ,Nb cell events. To add temporal effects to the n th cell event in 
the b th batch, we assume that there is a stochastic process:

Such that Hb(0) = 0 . This reflects our belief that there should be no temporal effects 
at the beginning of an experiment. Denote the realization of Hb by �b , then the temporal 
effect on the n th cell event is calculated as:

�b
n ∼ Categorical(πb)

�b,p ∼ N (ψb
1M×1, σ

2IM×M)

ψb ∼ N (0, σ 2
ψ)

B

b=1
ψb = 0

∑P

p=1
�b,p

m =
∑M

m=1
�b,p

m = 0

Hb : [0, 1]M �→ RM

�b
( n

Nb

)
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Cellular trajectories

The setup of simulating cellular trajectories is a little more involved. Again, we assume 
that we have b = 1, · · · ,B batches, m = 1, · · · ,M protein channels, and p = 1, · · · ,P cell 
types. For the b th batch, we have n = 1, · · · ,Nb cell events.

To get started, we first fix cell type p . We suppose that it differentiates into zp “chil-
dren” denoted by.

In Cytomulate, we ensure that the collection of “parent-children” relationships form a 
polytree (a directed acyclic graph whose underlying undirected graph is a tree) or a poly-
forest (a collection of nonoverlapping polytrees) [58].

To accomplish this, a weighted complete undirected graph with cell types as nodes is 
constructed. In the Creation Mode, the weights on the edges are randomly assigned. In 
the Emulation Mode, the L2 distances among observed average protein expressions of all 
cell types are used as weights.

Next, we carve out a spanning tree or a spanning forest via the Clauset-Newman-Moore 
greedy modularity maximization algorithm [60, 61] followed by Kruskal’s algorithm [59]. 
Finally, to convert the graph to a directed acyclic graph (DAG), a depth-first search with a 
randomly selected node as the root on each graph component is performed.

Now fix the “child” cell type pc . We construct the corresponding cellular trajectory 
from cell type p to cell type pc in a similar fashion to how we construct temporal effects. 
We start with a stochastic process.

Such that the m th component satisfies

where µp
m and µpc

m are the mean expression levels of the m th protein channel of cell 
type p and cell type pc , respectively. Given these two constraints, a Brownian Bridge 
becomes an intuitive choice for the task of trajectory generation since it is a Brown-
ian Motion with an extra condition on where the position of the process should be 
at time 1. To simulate such a stochastic process that starts at 0 and ends at µpc

m − µ
p
m , 

we utilize a standard Brownian Motion Bt as the basic building block and simply let 
G

p→pc

m (t) = t(µ
pc

m − µ
p
m)+ Bt − tB1 . This stochastic process is also adopted by Splatter 

[32] in generating the actual realizations of cellular trajectories denoted here by gp→pc . 
When generating the final protein expressions for the n th cell event in the b th batch 
whose cell type is p , we first sample the “child” cell type pc from

where ωp = [ω
p
1 , · · · ,ω

p
zp ] is a zp-by-1 probability vector. Notice that the parameters of 

the distribution only vary with cell types.
We then sample its m th component of the actual position tbn on the cellular trajectory 

gp→pc

pc1 , · · · , pczp

Gp→pc : [0, 1]M �→ RM

Gp→pc

m (0) = 0, and Gp→pc

m (1) = µpc

m − µp
m

�b,p
n ∼ Categorical(ωp)



Page 25 of 29Yang et al. Genome Biology          (2023) 24:262 	

Final model

With these setups, the final protein expressions for the n th cell event in the b th batch 
whose cell type is p and who is differentiating into cell type pc can be simulated via the 
following two steps:

where Eb
n ∼ L and L is some error distribution.

Estimation procedure for the emulation mode

Given the expression matrix along with the cell type label for each cell event, Cytomulate 
first groups the observations by cell types and associates with each type a GMM whose 
parameters are then estimated via the EM algorithm adopted by the scikit-learn Python 
package [77]. To further improve the approximation of a GMM to CyTOF data, for each 
cell type, we match the probability of obtaining a near-zero value estimated by the model 
with the actual frequency observed in the data. This is done by randomly zeroing out 
simulated values with probabilities inversely proportional to their magnitudes.

Evaluation metrics

In this section, we elaborate on the metrics we used in the comparison studies. Sup-
pose in the simulated batch we have p = 1, · · · ,P cell types. Then, for the p th cell type, 
we calculate the sample mean mp and the sample covariance as cp . We carry out the 
same procedure on the observed dataset to the corresponding mr

p and crp . The L2 dis-
tance between the simulated and observed means is found via dmp = ||mp −mr

p||2 . The 
Frobenius distance [78] between the simulated and observed covariances is calculated 
as dcp = ||cp − crp||F . The KL divergence dkp is estimated using the method proposed in 
[54]; the pMSE pmsep is calculated using the R package synthpop [55]. Finally, the dis-
crepancy measures for all the cell types are aggregated using a weighted average where 
the weights are determined by the cell abundances.

Software implementation details

All analyses, plotting, and benchmarks were performed using the R (4.0.2) and Python 
(3.8.8) programming environments in MacOS 12.4. All default settings were used for 
Cytomulate, Splatter, and scDesign2. For LAMBDA, we skipped the multinomial sam-
pling process given that all cell types were known.

Cytomulate is implemented and supported in Python (v3.5 or later), and the CLI is 
available on all platforms and systems where a compatible python interpreter is present 
with the proper package installations. The detailed documentation and tutorials are 
freely available and hosted on the cloud using ReadTheDocs (https://​cytom​ulate.​readt​
hedocs.​io). All software features have been thoroughly tested with the pytest framework.

Tb
n,m ∼ Beta(αb

,βb)

Zb
n = Xb

n + gp→pc (Tp
n )+�b,p +�b

Y b
n = I(Zb

n ≻ 0) ◦ Zb
n + Eb

n

https://cytomulate.readthedocs.io
https://cytomulate.readthedocs.io
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For the efficiency benchmarks, we carried out the experiment on a MacBook Pro with 
a 2.9 GHz Quad-Core Intel Core i7 processor running MacOS 13.0.1. Since Cytomulate 
is implemented in Python while Splatter, LAMBDA, and scDesign2 are R packages, we 
used Python’s time module to measure the performance of Cytomulate-related meth-
ods and Sys.time function in R to time Splatter, LAMBDA, and scDesign2. All times are 
reported in seconds.

Statistical analyses

We employed Pearson correlation coefficients for all correlation matrices and plots. 
For all order-based metrics, higher orders represent better performance. In cases 
where ties occurred, we used the average order of tied values. For all boxplots appear-
ing in this study, box boundaries represent interquartile ranges, whiskers extend to 
the most extreme data point which is no more than 1.5 times the interquartile range, 
and the line in the middle of the box represents the median. All barplots showing dis-
crepancies among all methods under comparison on various evaluation metrics were 
plotted on the logarithm scale. To increase visual clarity, we added one to all the data 
points before plotting so that the results would all be positive. Error bars with width 
being two standard deviations were also added to further facilitate comparison.
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