
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo-
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

METHOD

Yang et al. Genome Biology (2023) 24:262
https://doi.org/10.1186/s13059-023-03099-1

Genome Biology

Cytomulate: accurate and efficient
simulation of CyTOF data
Yuqiu Yang1,2, Kaiwen Wang1, Zeyu Lu1,2, Tao Wang2,3* and Xinlei Wang1,4,5*    

Abstract 

Recently, many analysis tools have been devised to offer insights into data gen-
erated via cytometry by time-of-flight (CyTOF). However, objective evaluations
of these methods remain absent as most evaluations are conducted against real data
where the ground truth is generally unknown. In this paper, we develop Cytomulate,
a reproducible and accurate simulation algorithm of CyTOF data, which could serve
as a foundation for future method development and evaluation. We demonstrate
that Cytomulate can capture various characteristics of CyTOF data and is superior
in learning overall data distributions than single-cell RNA-seq-oriented methods such
as scDesign2, Splatter, and generative models like LAMBDA.

Keywords:  CyTOF, Simulation, Proteomics

Background
Recent years have seen exponential growth in applications of mass cytometry (CyTOF)
which characterizes proteomics profiles of tens of thousands or millions of heteroge-
neous single cells on 30–40 protein channels with minimal spill-over effects [1–3]. As
the technique of CyTOF matures, many data analysis methods have been proposed to
offer insights into various aspects of single-cell experiments [4]. For example, in [5], the
authors have observed that the signal intensity of a CyTOF experiment would vary over
time due to changes in instrument performance. Their proposed method is currently the
dominant tool to alleviate the temporal effect using polystyrene beads embedded with
metal lanthanides. On the other hand, methods such as CytofRUV [6] and Cytonorm [7]
aim at getting rid of batch effects to facilitate comparisons across different CyTOF exper-
iments. Deep learning algorithms such as residual networks (ResNet) [8] and genera-
tive adversarial networks (GAN) [9, 10] were also adopted to resolve the same problem.
While some software such as FlowSOM [11], LAMBDA [12], and Bayesian trees [13]
focus on automatic cell type identification, others like CytoTree [14] attempt to explore
the trajectories along which cells differentiate into other cells. Various data visualiza-
tion and dimension reduction algorithms have also been applied to CyTOF [15]. Typical

*Correspondence:
tao.wang@utsouthwestern.edu;
xinlei.wang@uta.edu

1 Department of Statistics
and Data Science, Southern
Methodist University, Dallas, TX
75275, USA
2 Quantitative Biomedical
Research Center, Peter O’Donnell
Jr. School of Public Health,
University of Texas Southwestern
Medical Center, Dallas, TX 75390,
USA
3 Center for the Genetics of Host
Defense, University of Texas
Southwestern Medical Center,
Dallas, TX 75390, USA
4 Department of Mathematics,
University of Texas at Arlington,
Arlington 76019, USA
5 Center for Data Science
Research and Education, College
of Science, University of Texas
at Arlington, Arlington 76019,
USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-023-03099-1&domain=pdf
http://orcid.org/0000-0002-8561-6511

Page 2 of 29Yang et al. Genome Biology (2023) 24:262

examples include t-SNE [16], UMAP [17], MDS [18], SAUCIE [19], and scvis [20]. As the
output of a CyTOF acquisition software is in Flow Cytometry Standard (FCS) format,
packages such as flowCore [21] and Seurat [22] have incorporated standardized and effi-
cient pipelines to read, write, and preprocess CyTOF data.

Despite the vast array of methods applicable to CyTOF, most of the CyTOF analysis
methods developed by researchers are often evaluated against real data. Without a gold
standard and known truth, such as labels and actual distributions, performance assess-
ment becomes somewhat subjective while also blurring the line between method valida-
tion and result discovery. The few studies with simulated datasets are highly specialized
and workflow-dependent. For example, CytoGLMM [23] focuses on a single cell type
for the purpose of differential expression analysis. In [24], the authors further used the
simulated datasets in [23] to evaluate performance on various differential expression
detection methods. Mitra et al. [25] proposed a Bayesian hierarchical model based on
Gaussian distributions to study the difference in the protein functional network of a
single cell type under two experimental conditions. In [26] the simulation was done by
manually splitting a real dataset into two overlapping subsets. These simulation proce-
dures are not specifically designed for general-purpose simulations of CyTOF samples
with many cell types, trajectories, batches, etc.

Simulated datasets, albeit being synthetic, contain ground truth against which meth-
ods and algorithms can be reliably tested. Instead of ad hoc simulation in each study
mentioned above, a formal simulation tool naturally provides a framework for a sys-
tematic evaluation for new methodological research in the field. By varying parameters
and settings of key factors, researchers can easily generate an unbiased coverage of the
system under study in a straightforward manner. On the other hand, real experiments
require detailed prior planning, precise executions, and potentially abundant resources.
The flexibility along with cost and time benefits makes simulation a vital tool for the field.
However, the lack of a rigorous, reliable simulation algorithm calls for the development
of such a tool for validating other CyTOF data analysis tools and future developments.

By contrast, various methods have been developed for simulating single-cell RNA-
sequencing (scRNA-seq) data, such as Simple [27], Lun [28], BASICS [29], scDesign2
[30], ZINB-WaVE [31], and Splatter [32], among which Splatter enjoys the highest pop-
ularity while scDesign2 excels in simulation performance [33, 34]. Since both scRNA-
seq and CyTOF are single-cell sequencing techniques, it might be tempting to tweak
scRNA-seq simulation tools such as Splatter and scDesign2 and apply them to CyTOF.
However, such a process can be highly nontrivial and the end results may be unsatisfac-
tory if only small adjustments are sought after. First of all, these two techniques are of
different biological nature. scRNA-seq examines the expression of thousands of RNAs of
several thousand cells, whereas CyTOF captures information on typically 30–40 proteins
for tens of thousands or even millions of cells. Therefore, compared with scRNA-seq,
CyTOF is more closely related to clinical phenotypes and is more likely to identify rare
cell populations. Furthermore, while dropout is a common issue in scRNA-seq data, it
is a much less encountered problem in CyTOF experiments. The expressions in scRNA-
seq are integer-valued “counts,” in contrast to real-valued data that even have nega-
tive values in CyTOF expression matrices due to several built-in processing steps in a
CyTOF system such as data randomization and transformation. Consequently, applying

Page 3 of 29Yang et al. Genome Biology (2023) 24:262 	

simulation tools like Splatter and scDesign2 will almost inevitably require a sequence
of nonlinear transformations to artificially construct count data, which will yield biased
results. Finally, the expression levels of various protein channels in CyTOF are naturally
dependent. Extending a complex discrete random variable model such as the Poisson-
Gamma mixture model adopted by Splatter to capture the dependency structures pre-
sent in CyTOF may not be a trivial task. In addition, methods for simulating multivariate
discrete data such as the ones devised in [35, 36] are not suitable for CyTOF data that are
real-valued. The same logic applies to other generic simulation algorithms that are not
designed with CyTOF in mind.

To bridge this gap in literature, we developed Cytomulate, the first formal simulation
tool that is capable of generating simulated datasets that capture various characteristics
of CyTOF data. Our framework combines the flexibility of generating complex, realistic
data with efficiency and usability, allowing researchers to acquire data at scale and prac-
titioners to easily simulate datasets for their workflows.

Results
Characteristics of CyTOF data

Currently, most CyTOF data are available in the FCS format for analysis purposes, con-
taining real-valued protein expression levels rather than counts. This is due to several
built-in data processing steps in a CyTOF system (e.g., Helios, latest CyTOF XT): (i) The
system applies regression to recover peak counts lost because of overlapping peaks at
high intensities, resulting in non-integer count estimates. (ii) To avoid binning effects
caused by integers near zero, the system applies randomization (i.e., adding uniform or
Gaussian noise to counts). (iii) Bead normalization is applied to remove temporal effects
due to changes in instrument performance over time. (iv) The inverse hyperbolic sine
function, referred to as arcsinh transformation, is applied to alleviate the coupling of
mean and variance and “gaussianize” the data [37]. Although the system allows users to
turn on and off each of (ii)-(iv), often one or more such options were implemented for
nearly all existing CyTOF data, leading to real-valued expressions.

To motivate the design choices of Cytomulate, we explored prominent character-
istics of CyTOF by analyzing various public and in-house datasets (e.g., Finck [5],
Levine_13dim [38], Levine_32dim [38], CytoNorm [7], CyAnno [39], Covid [15]; Table
S1). In this section, we mainly use protein expressions from the Levine_13dim dataset as
an example to demonstrate such features. On a broader scale, similar phenomena have
been observed across numerous CyTOF datasets. The Levine_13dim dataset is publicly
available via the R package HDCytoData [40]. As the protein expressions have already
been pre-processed to correct unwanted artifacts, such as temporal effects, only arcsinh
transformation was applied.

High volume, high dimension, and heterogeneity

The expression matrix associated with a typical CyTOF experiment usually contains
tens of thousands or even millions of cell events (rows), 30–40 protein channels (col-
umns), from a pool of cells of 10–30 cell types. For example, the data of the first patient
in Levine_13dim has 167,044 cell events, 13 protein channels, and 14 cell types manually
gated by the authors. With a varying number of protein channels, the heterogeneous

Page 4 of 29Yang et al. Genome Biology (2023) 24:262

nature of different cells is captured by CyTOF via cell types and differentiation stages.
Any potential simulation method developed for CyTOF needs to not only handle the
throughput with adequate efficiency but also the heterogeneity of cell events.

Zero‑inflation

The protein expression matrix observed in a CyTOF experiment often contains features
with either zeros or values close to zero. These features biologically correspond to sur-
face proteins that are too scarce to be detected by the machine. In addition, because of
data randomization, one of the standard options in the CyTOF system, many datasets
have near-zero or even negative values rather than zeros. Take, for example the CD4 T
cells in the dataset, we see in Fig. 1a and b that the majority of the protein channels (8
out of 13) contain a high proportion of values close to zero.

Correlation in the protein–protein expression

In Fig. 1c, we calculated the correlation matrix among all the protein channels using the
data of Naive CD4 + T cells. Clearly, markers such as CD44 and CD45 are correlated,
implying that the independence assumption between columns might be too restrictive.
This suggests modeling the data jointly instead of marginally.

Fig. 1  Characteristics of a typical CyTOF dataset. All four panels are from the Levine_13dim as an example.
a Heatmap of channel expression for all naive CD4 + T cells. b Density plot of all channel expressions from
naive CD4 + T cells. c Correlation matrix of all channels as computed with Pearson correlation coefficients. d
Scatter plot of all cells using the first two principal components and colored with provided cell types

Page 5 of 29Yang et al. Genome Biology (2023) 24:262 	

Near‑normality

To explore the distributional characteristics of arcsinh-transformed protein expressions,
we first examined the marginal density estimates of each protein marker for different
cell types. In Fig. 1b, we plotted these empirical densities for all markers using Naive
CD4 + T cells, where expressed markers (i.e., those with relatively high expression lev-
els) possess “bell”-shaped curves and other markers exhibit two or more modes that
can be approximated by Gaussian mixture models (GMMs). To further get a sense of
the joint distribution, we performed dimension reduction using principal component
analysis (PCA). All cell populations resemble roughly elliptic shapes (Fig. 1d), suggest-
ing that there is no gross violation to the joint normality, according to the assumptions
of PCA. It may be tempting to use a multivariate normal (MVN) distribution for each
cell type. However, protein markers’ distributions depend on user-provided cell types
and so MVNs may not be adequate, particularly in cases where the cell typing is coarse
or inaccurate. Given that GMMs are known as a universal approximator of densities
[41], combined with the near-normality of CyTOF data described above, it is a sensible
choice to use GMMs with Gaussian distributions as basic building blocks of a simulation
model. Finally, this key characteristic also differentiates CyTOF from scRNA-seq, which
is typically modeled with counts. As explored in the comparison study later in this paper,
adapting a model for discrete counts for CyTOF does not work well.

Temporal effect

As illustrated in [5], the signals of a single CyTOF experiment would typically vary over
time due to changes in instrument performance. Since Cytomulate aims at modeling
arcsinh-transformed protein expressions, unlike in [5], we chose to demonstrate the sig-
nal drift by transforming the peripheral blood mononuclear cell (PBMC) data from the
Finck dataset (Fig. S1a). As a first attempt to model the signal drift, we centered each sig-
nal, fitted a smoothing spline against one of them, and subtracted the fitted value from
each signal. In Fig. S1b, we see that the adjusted signals overlap and are roughly homo-
scedastic, suggesting that the overall shape of the signal drift (temporal effect) may be
shared by all cell types within a single batch and that we could model the effect using an
additive model.

Batch effect

Apart from the temporal effect, many researchers also reported the presence of batch
effects across multiple CyTOF experiments due to sample collection, stimulation, stain-
ing, etc. [42]. In [7] they reported that not only are the batch effects cell-type specific,
they also vary depending on protein channels. In Fig. S1c, we illustrated this phenom-
enon by an interaction plot using the mean expressions of the protein channels of CD4
T cells and CD8 T cells measured on two patients in the Levine_32dim dataset [40]. We
see that not only do expression levels differ between two batches, the differences also
vary by cell types and protein channels. This implies that in addition to the main batch
effect, we should also take into consideration the interaction effects.

Page 6 of 29Yang et al. Genome Biology (2023) 24:262

Cellular trajectory

A common task is to study cellular trajectory where the expressions of an individual
cell are assumed to vary according to some continuous path that connects one cell type
to another. In the context of scRNA-seq, lots of methods have been developed to align
cells on continuous paths with typical examples Slingshot and Monocle [43–45]. To our
knowledge, CytoTree [14] is the only available method of trajectory inference designed
for CyTOF. It is further questionable whether trajectory inference methods are inter-
changeable between these two technologies. For the purpose of demonstration, we
showed an example of the cellular trajectories following CytoTree’s online tutorial with a
real Bone Marrow dataset in Fig. S1d.

Cytomulate framework

In light of the previous exploratory data analysis, we propose Cytomulate, an accu-
rate and efficient simulation algorithm of CyTOF data based on Gaussian Mixture
Models (GMM) [46], with add-on features to mimic various patterns/effects existing
in real data. More specifically, Cytomulate achieves the task of accurate simulation
via two modes selectable by users: emulation mode and creation mode, both offer-
ing transparency with known ground truth. Emulation mode is designed for a user to
simulate data that aims to capture major characteristics of a specific CyTOF dataset
under study. As this mode learns meaningful parameters from real data, it enables
interpretation of real data such as locations, variations of protein expressions, pro-
tein–protein correlations, and heterogeneity among various cell types, while generat-
ing synthetic data to test different hypotheses. Creation mode is purely model-based
in which synthetic data are generated from user-specified settings and parameters.
This mode caters to two main user groups. Firstly, it serves users who wish to have
access to a wide range of CyTOF datasets, encompassing varying numbers of cells,
protein markers, experimental designs, tissue types, diseases, and conditions. These
users aim to simulate multiple datasets with diverse characteristics to facilitate com-
prehensive testing and benchmarking. Secondly, creation mode is also designed to
assist new researchers in the field who may not have a real CyTOF dataset at hand. By
utilizing this mode, they can generate synthetic data immediately, providing an acces-
sible starting point for their own experiments and studies.

In both simulation modes, users are allowed to vary cell abundances, noise levels,
batch effects, temporal effects, and cellular trajectories to capture the complex needs
of methodological developments for CyTOF data. The simulated batch effects, tempo-
ral effects, cellular trajectories, and the noise are then added once we sample from the
GMMs. The following sections elaborate on each mode with greater details as the foun-
dation to the comparison study that follows.

Creation mode aims at quickly generating synthetic datasets that capture aforemen-
tioned characteristics of CyTOF data such as zero-inflation, correlation in protein–
protein expressions, and near-normality. Users specify the volume, dimension, and the
degrees of heterogeneity. Temporal effect, cellular trajectory, and batch effect can be
added as part of complex simulations. As this mode does not intend to extract the data
distribution of some specific dataset as a reference, it is particularly useful for testing
analysis methods on a large scale. For example, in [15], Wang et al. used this mode of

Page 7 of 29Yang et al. Genome Biology (2023) 24:262 	

Cytomulate to evaluate the performance of 20 dimension reduction methods from vari-
ous aspects such as local and global structure preservation on 425 simulated datasets
with different attributes (e.g., different numbers of cell types and numbers of differentia-
tion paths). This mode allows practitioners to precisely define each simulated dataset as
they wish, which is not often or at all possible with real data.

Specifically, the creation mode randomly generates average cell expressions and then
utilizes GMMs from which to sample cell expressions. Users also have the options to
enable complex simulations by simply specifying the necessary parameters, such as the
number of trees for cell differentiation trajectories. The details of complex simulation
will be discussed later. With users having full control of their simulated dataset, the crea-
tion mode is untethered by existing—yet oftentimes implicit—conditions of real data-
sets, such as the exact cell types, circumstances of the patient, and the physical machine.
By eliminating these factors, Cytomulate allows researchers to develop and test methods
based on unbiased results that are generalizable to wide ranging real datasets. Further,
it can also serve as a pedagogical tool for researchers to explore the characteristics of
CyTOF datasets easily.

Emulation mode, on the other hand, is designed to learn the distribution of some real
CyTOF data. To ensure compatibility, Cytomulate assumes that the reference dataset
provided by the user has already undergone bead normalization and arcsinh-transfor-
mation (with a cofactor of 5), both of which are standard options in the CyTOF system.
Instead of approximating the entire dataset as a whole, which is challenging, Cytomulate
leverages the prior knowledge of cell type information. As a result, it requires not only
the expression matrix of one particular CyTOF dataset to mimic but also the cell type
label associated with each cell as inputs. Although Cytomulate can potentially perform
cell type identification or clustering using common algorithms of the likes of K-means,
we leave the choice of such algorithm for cell typing to our users as a design choice for
the following two reasons: (i) According to [47] and [48], the K-means algorithm and
GMM-based model (SWIFT) are often not the optimal choice for clustering CyTOF
data; (ii) There are already plenty of well-established cell identification algorithms and
automatic gating techniques such as FlowSOM [11], Bayesian Tree [13], ACDC [49], and
SCINA [50], all of which have similar goals but slightly different design considerations.
For example, using FlowSOM requires minimal prior knowledge on the cell population
other than some crude idea on the number of cell types. On the other hand, Bayesian
Tree and ACDC use a template as an input to facilitate the automatic gating process.
Since we expect the users of the emulation mode to be somewhat experienced in the
field, we think it would be better to let the users choose and apply their own cell identifi-
cation algorithms that suit their situations the best. The resulting expression matrices of
this mode are thus expected to be a closer approximation to the real data, as opposed to
those generated by the creation mode.

To dive into the details, Cytomulate, at its core, uses a GMM with truncation below
0 to approximate and generate the probability density of a given cell type. The Bayesian
Information Criterion (BIC) [51] is adopted for model selection. Although the explora-
tory data analysis in the previous section shows that a MVN might be a good candidate
for modeling a specific cell type in a CyTOF experiment, this should be taken with a
grain of salt because the cell-typing procedure can vary across datasets and cohorts. For

Page 8 of 29Yang et al. Genome Biology (2023) 24:262

example, the Levine_32dim dataset provides labels for the following subtypes of B cells:
mature B cells, plasma B cells, pre-B cells, and pro-B cells. In practice, however, subsets
of major cell types are not available in certain datasets. We thus should allow flexibility
in the model to account for cell-type procedures with different resolutions. If the users
are interested in subtypes of B cells, a single MVN would be inadequate in describing the
data generating mechanism (see the comparison study in the next section for details).
Therefore, we chose GMMs as the base for its flexibility and its mathematical tractability.

In Fig. 2a, we outlined the overall framework of Cytomulate with input and output
examples, model specification, and possible workflows for downstream analyses. Further
details on the two simulation modes and the probabilistic model can be found in the
“Materials and methods” section.

We also modularized all the aforementioned functionalities so that each of them can
be easily fine-tuned or turned off with a simple interface, according to a user’s specific
need. Cytomulate returns the final expression matrices, the cell type labels associated
with the expression matrices, as well as cellular trajectory information for each cell

Fig. 2  Overview of Cytomulate model and software pipeline. a The model structure and input and output
pipelines of Cytomulate. The input stage demonstrates the parameters and reference data needed for each
mode, and Cytomulate uses the provided information accordingly for estimation and simulation. The outputs
are in the forms of expression matrices and their associated cell types for additional downstream analyses.
b The software pipeline of Cytomulate. The flowchart showcases Cytomulate’s role and integration with
industry standard tools in every step of the research and development process

Page 9 of 29Yang et al. Genome Biology (2023) 24:262 	

event. Optionally, users can also choose PyCytoData as the output option for down-
stream analyses compatibility (Fig. 2b). In the following sections, we conduct some com-
parison studies and demonstrate the usage of Cytomulate through examples.

Simulation comparison study

Although Cytomulate is the first-of-its-kind simulation tool designed specifically for
CyTOF experiments, we will be remiss not to include benchmarks since it is a com-
mon practice in the field to adopt similar technologies from other fields to CyTOF.
To showcase the superior statistical and computational properties of Cytomulate, we
performed a series of empirical experiments using the emulation mode. In this simu-
lation setting, the real benchmark datasets provide a gold standard for assessing the
accuracy of each simulation method and the overall validity of the underlying model.
More specifically, we focused on whether each model is capable of capturing the fea-
tures of CyTOF datasets and the overall distributions and relationships between all
protein channels.

For the comparison study, we included the following models from within Cytomulate
and other fields:

(1)	 Cytomulate with full covariance and model selection via Bayesian Information Cri-
terion (BIC) from GMMs with components varying from 1 to 9 (Cytomulate)

(2)	 Cytomulate constrained to one Gaussian component with full covariance per cell
type (Dependent Gaussian or simply DG)

(3)	 Cytomulate constrained to one Gaussian component with diagonal covariance per
cell type (Independent Gaussian or simply IG)

(4)	 Splatter [32]
(5)	 Latent Allocation Model with Bayesian Data Analysis (LAMBDA) [12]
(6)	 scDesign2 [30]

As discussed in the “Characteristics of CyTOF data” section, the correlation of pro-
tein–protein expressions is an important feature of CyTOF datasets. We thus included
two reduced versions of Cytomulate, namely IG and DG, both featuring only one
multivariate normal component per cell type. The IG model focuses on the diagonal
covariance matrix to investigate the effect of omitting the covariance structure seen in
Fig. 1c. The DG model serves as a direct comparison against IG by considering the lin-
ear dependencies among protein channels. Finally, our core model, Cytomulate, aims
to showcase the advantages of modeling non-normality through multiple normal com-
ponents per cell type, in contrast to DG. The inclusion of these progressively complex
models will not only demonstrate the flexibility of the Cytomulate framework, but it will
also validate the characteristics of CyTOF, as shown in the exploratory data analysis, by
using actual benchmarks.

Beyond Cytomulate and its variants, we also included Splatter, LAMBDA, and scDe-
sign2, which are not designed for CyTOF simulation. Below we give a brief description
of each followed by the rationale for their inclusion in our comparison study.

Splatter, or specifically Splat, is originally designed for simulating scRNA-seq data. Its
core model uses a Gamma-Poisson mixture to simulate counts observed in scRNA-seq

Page 10 of 29Yang et al. Genome Biology (2023) 24:262

experiments. The authors also take into consideration outliers, library size, mean–vari-
ance trend, and technical dropout. As Splatter expects integers as inputs, to simulate
CyTOF data which usually have been transformed into a numeric scale using the arcs-
inh transformation, we can carry out its inverse transformation, round up the results to
the nearest integer [37], apply Splatter to simulate counts, and transform the simulated
expressions back into the numeric scale. We included Splatter to demonstrate the con-
sequences of adapting scRNA-seq simulation methods to CyTOF, which outweigh the
tempting benefit of convenience for any rigorous CyTOF studies.

LAMBDA is a Bayesian hierarchical model designed for automatic cell identification in
CyTOF data. The model assumes that given a cell type, the cell expressions follow a zero-
inflated multivariate Gaussian distribution. The cell types, on the other hand, are gener-
ated from a Categorical distribution whose parameters are controlled by some clinical
information. Parameter estimation is accomplished by a stochastic EM algorithm. It is
worth pointing out that LAMBDA is not a simulation tool and its simulation function-
ality is only a byproduct of LAMBDA. More critically, LAMBDA cannot generate new
datasets without using reference datasets. Thus, for those who are interested in the Cre-
ation Mode or those who do not have access to any previous samples (e.g., CyTOF for
some rare diseases), this is not a suitable method at all. We included the method in our
study because of its rigorous parameter estimation procedure, which would provide us
with a yardstick against which we can evaluate the quality of the simulated datasets in
terms of the first and second moments.

scDesign2 is an scRNA-seq simulation algorithm designed to address the shortcom-
ings of other methods in the field, including Splatter. This algorithm first fits one of four
discrete distributions (zero-inflated negative binomial, negative binomial, zero-inflated
Poisson, or Poisson) to each gene’s marginal distribution. Then, it employs a Gaussian
copula for each cell type to achieve joint modeling, retaining the gene expressions from
the real data while also capturing the correlation structure within each cell type. The key
difference between scDesign2 and Cytomulate is that scDesign2 is specifically designed
for discrete data, which presents similar challenges to the application of Splatter for
CyTOF data.

To demonstrate the versatility of Cytomulate, six publicly available datasets from dif-
ferent species and diverse anatomic sites are collected: Levine_32dim [38], Levine_13dim
[38], Samusik [52], CyAnno [39], Covid [15], and LG [53]. If multiple samples exist for
one dataset, the first sample is used. See Table S1 for details. All of these datasets have
been bead-normalized and transformed by using the arcsinh transformation. Cell type
information is also publicly available for the first four datasets. Cell types in Covid and
LG were identified via FlowSOM and manual gating [15].

Cytomulate well approximates real data

In this comparison study, we make use of all six datasets and include the aforementioned
six models as candidates. Four metrics are adopted to quantify the quality of the sim-
ulated datasets: (1) L2 distance between the simulated mean and the observed mean;
(2) Frobenius distance between the simulated covariance and observed covariance; (3)
Kullback–Leibler (KL) divergence [54] between the simulated and observed channel
expressions; (4) Propensity Mean Squared Error (pMSE) [55] between the simulated

Page 11 of 29Yang et al. Genome Biology (2023) 24:262 	

and observed data. The L2 distance and the Frobenius distance are defined at the cluster
level, whereas the KL divergence and pMSE are computed at the single-cell level for each
cell type without using summary statistics. For pMSE, we report the relative efficiency
(RE) of each competing method over Cytomulate, defined as the ratio of the pMSE value
of Cytomulate vs. that of the other method. Here, for any specific method, a RE value
larger than one indicates this method is more efficient than Cytomulate in terms of
pMSE and by definition, the RE value for Cytomulate is always one. We also ranked the
six methods based on raw values of each metric, where the best methods received an
order of 6 with the worst being 1. See the “Materials and methods” section for further
details. For each dataset, the process is repeated 50 times for 50 simulated datasets.

Using the Levine_32dim dataset, detailed comparisons show that Cytomulate out-
performed all other methods benchmarked in this study in the categories of KL diver-
gence and pMSE (Fig. 3a). As the KL divergence is a measure of similarity between two
distributions, Cytomulate’s resounding lead is a testament to its ability to yield a better
approximation to the real data compared with other methods. Cytomulate’s advantage
in distributional properties logically explains its lead in pMSE, which measures whether
simulated datasets are distinct from real ones. Overall, for mean estimation, all methods
except Splatter and scDesign2 work well (Fig. 3b,c), with LAMBDA achieving the small-
est mean square error (MSE) in some datasets, closely followed by Cytomulate. Even
though LAMBDA’s estimation procedure should theoretically yield decent results for the
first two moments, Cytomulate still outperformed LAMBDA in estimating the covari-
ance structure in some datasets (Fig. 3b). This result also empirically demonstrated that
potential improvements can be made if only the first two moments are considered, but
this improvement—if having any practical significance at all—may come at the cost of
worse KL Divergence and computational efficiency. Splatter, due to the usage of nonlin-
ear transformations and marginal modeling, performs the worst in all benchmarks by an
overwhelmingly wide margin, demonstrating that Splatter is suboptimal when simulat-
ing CyTOF data. Although scDesign2 performs joint modeling, which contributes to its
superior performance against Splatter, the discrete nature of its model makes it a poor
choice overall.

Aggregating results from all six datasets using all four metrics, the overall trend
observed previously holds for Cytomulate (Fig. 3c). By using GMMs to fit and sample
from each cell type, Cytomulate gives the best approximation to the real data as meas-
ured by the KL divergence and pMSE. Averaging the orders in Fig. 3b across six data-
sets further highlights Cytomulate’s advantages (Fig. 3d). As expected, by formally
deriving a rigorous estimation procedure, LAMBDA is able to achieve the best average
MSE in terms of mean while its covariance estimation lags slightly behind. However,
as we have seen previously, the sufficiency of only considering the first two moments
highly depends on the data and the coarseness of the cell type labels. It is also evident
that Splatter always gives the worst performance due to the bias introduced by nonlin-
ear transformations. Even working with the simple IG would yield a performance boost.
scDesign2 outperforms Splatter on all metrics, but it still falls behind Cytomulate vari-
ants and LAMBDA.

To visually validate the performance of each method, we applied UMAP [17] to illus-
trate the resulting expression matrices of each method (Fig. S2). Due to the granularity

Page 12 of 29Yang et al. Genome Biology (2023) 24:262

of the cell type labels included in the dataset, at the first glance, all methods except for
Splatter produce reasonable simulations. Splatter produces a concerning embedding
with cells splattered around the clusters and cell types indistinguishable. For all other
methods, a closer examination reveals that only Cytomulate is able to preserve granular
details in the simulation while other methods present only the big clusters. The preser-
vation of detailed characteristics provides an advantage not only in preserving rare cell
types and their unique phenotypes, but also in situations where cell-type resolution is
low, which motivates our investigation in the following section.

Fig. 3  Detailed results on simulation performance benchmarks. a The performance of all methods in the
Levine_32dim dataset. The four panels correspond to MSE in mean (smaller is better), MSE in covariance
(smaller is better), KL Divergence (smaller is better), and relative efficiency in pMSE (larger is better). The
relative efficiency is measured using Cytomulate’s pMSE: values smaller than 1 indicate worse performance
than Cytomulate. b Orders of each method across all datasets and all metrics. Orders are based on values
from the metrics, and a higher order indicates superior performance in the given metric. c The average
performance of methods averaged across all datasets. Orange colors indicate superior performance, whereas
blue colors represent worse performance. The interpretations are the same as a. d Orders of all methods
averaged across all datasets. Higher bars represent a higher average order for a given metric and method.
Colors represent different simulation methods

Page 13 of 29Yang et al. Genome Biology (2023) 24:262 	

Cytomulate is robust against cell‑type resolution

Although cell type labels are required inputs for the emulation mode, Cytomulate does
not demand highly granular labels, meaning that it is not necessary to identify all sub-
types of a given cell type as a prerequisite for the simulation. In fact, different datasets
and analyses call for different cell-typing approaches: a large dataset with only B cells
may warrant more detailed cell types to reveal their differentiation stages, whereas small
whole blood samples may not afford the same resolution with reasonable cluster sizes.
To account for these two situations, we conducted two separate benchmarks regarding
cell typing. We first focused on a dataset with many cell types and then zeroed in on B
cells to investigate the effects of subtypes.

In real data, the presence of unidentified or unassigned cells due to factors like noise,
specific algorithms, and instrument panels is common, making it important to address
such scenarios for reasonable results. To simulate this situation, we randomly masked
some cell types in the Levine_32dim dataset and assessed the KL divergence between
the simulated and original datasets. Specifically, we conducted a benchmark with three
settings, randomly selecting and treating 2, 5, or 10 cell types as the same type, reflecting
cases in which these cells are not properly identified despite potentially distinct proper-
ties. Our results show that Cytomulate is unequivocally the best performer among the
six methods tested (Fig. 4). As expected, when cells are unmasked (i.e., cell labels are
correctly specified), the KL divergence is smaller, but the procedure of masking cells
only yields a small increase in KL divergence for Cytomulate (Fig. 4). As the number of
masked cell types increases, Cytomulate’s advantage is further accentuated as compared
to LAMBDA and scDesign2’s declining performance (Fig. 4b,c). In contrast, Splatter
consistently performs poorly, and the issue is further amplified when masking cell types
(Fig. 4).

We have shown Cytomulate’s advantage when potentially dissimilar cell types are
masked. Now we proceed to investigate the effect of masking similar subtypes. As we
mentioned previously, there are 4 subtypes of B cells in Levine_32dim dataset: mature
B cells, plasma B cells, pre-B cells, and pro-B cells. In this benchmark, we first pro-
vided every method with these detailed subtype labels, and then amalgamated all the
labels into “B cells,” masking the subtype details. To quantify the differences observed

Fig. 4  Performance of simulation methods against random masking of cell subtypes. For all three panels,
randomly cell types of the Levin_32dim were masked and performance of each method was measured
using log KL divergence plus 1. Blue bars represent the masked datasets, and yellow bars represent matched,
unmasked controls (N = 20). The whisker on top of the bars indicates the variance. a Two cell types are
randomly masked in each replicate. b Five cell types are randomly masked in each replicate. c 10 cell types
are randomly masked in each replicate

Page 14 of 29Yang et al. Genome Biology (2023) 24:262

across the methods, we repeated the process 20 times and computed the KL divergence
[54] between the simulated and real datasets under the two settings (Fig. 5). Although
the overall performance is consistently improved in the unmasked setting with more
detailed cell subtypes, Cytomulate appears to be the most robust among all methods.
In fact, both settings of Cytomulate outperformed all other methods regardless of cell-
typing details.

To gain further insights into the advantages of Cytomulate, we used UMAP for visual
comparison among the different methods under the two settings. Although most meth-
ods except for Splatter yielded acceptable approximations to the real data when sub-
types are given (Fig. 5), only Cytomulate was able to differentiate the underlying clusters
with minimal distortion to their original shapes, even in the absence of detailed subtype
information. Notably, LAMBDA suffered a severe loss of detail, approximating the entire
dataset with a single Gaussian distribution centered between the two separated major
clusters, where the actual density is low. Although scDesign2’s simulation came some-
what close to capturing the two major modes, noticeable distortion within each cluster
remains. Given that KL divergence is a measure of distributional differences, our quan-
titative assessment, combined with the visual inspection, clearly shows Cytomulate’s
advantage in effectively modeling heterogeneous data.

The robustness of Cytomulate makes it an appealing choice for practitioners, espe-
cially those who work with public datasets with existing cell types, since Cytomulate

Fig. 5  Additional results on performance with different cell subtypes. All parts of the figure utilizes
the Levine_32dim dataset with B cells only. a UMAP embedding of the original B cells present in the
Levine_32dim dataset overlaid with B cell subtype labels as well as a density estimation. b Masked and
unmasked performance of all methods measured by log KL divergence plus 1. Color blue represents
masked datasets while yellow stands for unmasked datasets. The error bars show the variance. c–h UMAP
embeddings of the following simulation methods with and without B cell subtype labels: Cytomulate, DG,
LAMBDA, IG, scDesign2, and Splatter

Page 15 of 29Yang et al. Genome Biology (2023) 24:262 	

offers the greatest flexibility in terms of input. With reasonable cell types, Cytomulate
can accurately capture the prominent characteristics of the data.

Cytomulate is efficient

As a single CyTOF experiment could contain tens of thousands or millions of cell events
along with 30–40 protein channels, computational efficiency including estimation and
simulation is a significant issue. In fact, we initially included ZINB-WaVE [31], one of
the top-performing scRNA-seq techniques in our comparison studies. However, it was
excluded as it would take hours to simulate one moderately sized dataset that contains
around 50,000 cells. Specifically, we measured the estimation time (time required to
construct the model and estimate the parameters) and simulation time (time needed to
generate data from the estimated model) as our metrics for algorithm efficiency as all
methods benchmarked involve these two steps. We conducted an analysis on the run-
ning time of each method by varying the number of cells and the number of markers
using the CD8 + Naive T cells in the CyAnno dataset, which contains 8414 cell events
and 39 protein channels. To be more specific, while evaluating the impact of sample size,
we used all 39 protein channels and applied bootstrap sampling to generate expression
matrices containing various numbers of cell events. On the other hand, we fixed the
number of cell events to 8414 and sampled the columns to be included when investigat-
ing the effect of the number of markers on processing time. Besides including the six
models previously described and benchmarked for accuracy, we also included Cytomu-
late with 5-component GMMs (Restricted Cytomulate) to gauge the impact of model
selection on efficiency.

Overall, both estimation time and simulation time for all methods under consideration
appear to be polynomial with respect to the number of cells and the number of protein
channels (Fig. S3). Cytomulate is consistently faster than LAMBDA in all situations. For
a moderate-size dataset containing 100,000 cells, even Cytomulate with model selection
from 9 models takes around only 2 min (Fig. S3a). If restrictions are imposed, the esti-
mation can be done within seconds. On the other hand, LAMBDA, due to the usage of
a stochastic EM algorithm for the model estimation, is twice as slow, while scDesign2
is also among the slowest methods tested. When sample size reaches one million cells,
both LAMBDA and scDesign2’s estimation times exceed 1 h, which makes them not via-
ble for large-scale simulations. Surprisingly, LAMBDA and scDesign2 both suffer from
poor scalability with regard to the number of markers as compared with other methods
(Fig. S3b and d).

In terms of simulation time (Fig. S3c-d), all methods are relatively efficient as com-
pared to estimation time. Despite the efficiency of all methods here, Cytomulate is
always best with or without model selection, while Splatter is the least efficient. This
characteristic allows Cytomulate to quickly generate many replicates using a single
dataset as a reference, which is a common task. As a unique advantage to the Emula-
tion mode, Cytomulate can perform parameter estimation using a small sample and then
scale up by simulating a much larger sample. This further improves the scalability of
Cytomulate given its efficiency in terms of simulation time. With the increasing capabil-
ity of CyTOF to produce larger datasets and more channels, Cytomulate is fully capable
of handling large datasets.

Page 16 of 29Yang et al. Genome Biology (2023) 24:262

Complex simulations

The core model of Cytomulate accounts for the expressions of each cell type as an
essential part for simulation. Beyond the core model and unlike LAMBDA, Cytomu-
late can easily be extended to incorporate more complex effects commonly encoun-
tered in CyTOF experiments such as batch effects, temporal effects, as well as cell
differentiations. While some of these effects are oftentimes considered nuisances with
corrections desired, the ability to approximate them is crucial for methodological
developments in the field of normalization or other preprocessing techniques. Also,
the rising potential of trajectory inference with CyTOF datasets instead of scRNA-seq
calls for a more thorough consideration of this topic. This section details the overall
design and implementation of these complex simulation scenarios.

Temporal effects

As discussed in [5], due to cell debris, etc., the sensitivity of a CyTOF machine may vary
over time during data generation, causing signals for cells from one batch to fluctuate. In
Cytomulate, we assume that the temporal effect for each batch is generated by a function
defined on the unit interval such that the value at time zero is always zero, represent-
ing that there is no temporal effect at the beginning. We provide users with 3 options to
simulate a temporal effect, each with a different level of control over the overall shape of
the temporal effect:

(1)	 Brownian Bridge [56]: The shape of the entire trajectory is randomly generated
from a Brownian Bridge where the ending value is randomly sampled from a nor-
mal distribution. To evaluate the function on the unit interval, the Akima spline
[57] is used for interpolation. This option gives the users minimal control over the
evolution of the temporal effects.

(2)	 Polynomial: This option allows the user to specify the rough shape of the trajectory
via the coefficients of a polynomial. A linear transformation will be used to make
sure the resulting temporal effect starts at 0 and ends at a value randomly generated
from a normal distribution.

(3)	 Spline: During the preprocessing steps, it is possible that the users can extract the
temporal effect component. The spline option permits the users to add the original
temporal effect back to the simulated dataset via a smoothing spline. Since the size
of the simulated dataset might differ from that of the original dataset, Cytomulate
will automatically rescale the time interval so that the entire trajectory could be
retained in the simulated dataset (Fig. 6a).

Batch effects

Previous research in the field [7] has indicated that the batch effects in CyTOF experi-
ments vary not only by batches but also by cell types and protein channels. To simulate
batch effects, we decompose the effects into global batch effects which assume differ-
ent values for different batches and local batch effects which vary depending on the cell
types and protein channels in a similar fashion to the way we decompose effects into
main effects and interactions in analysis of variance (ANOVA). Further details can be

Page 17 of 29Yang et al. Genome Biology (2023) 24:262 	

found in the “Materials and methods” section. As a demonstration, we simulated two
batches with 3 cell types using the creation mode of Cytomulate (Fig. 6b).

Cellular trajectories

To simulate cellular trajectories, Cytomulate adopts a two-step procedure. In the first
step, Cytomulate simulates the underlying graph of the cellular trajectories. Given the
simulated graph, the actual protein expressions are then sampled in the second step.

Specifically, in the first step, a polytree (a directed acyclic graph whose underlying
undirected graph is a tree) or a polyforest (a collection of nonoverlapping polytrees) is
generated [58]. A tree represents a single trajectory, where edges connect different cell
types, allowing cells to differentiate along defined paths. In the Creation Mode, this is
done by first randomly grouping the cell types and applying Kruskal’s algorithm [59]
with random weights to sketch the underlying tree or forest. In the Emulation Mode,
this is accomplished by the Clauset-Newman-Moore greedy modularity maximization
algorithm [60, 61] followed by the Kruskal’s algorithm with the L2 distances among
observed average cell means as weights. In both circumstances the root node represents
the starting point of differentiation, where its child nodes inherit certain channels that
define the entire lineage. To find the root node and convert the graph to a directed acy-
clic graph (DAG), a depth-first search with a randomly selected node as the root on each
graph component is performed.

In the second step, Cytomulate starts the differentiation process. For selected channels
that change between each pair of nodes, a Brownian Bridge combined with interpolat-
ing splines is used to generate the actual protein expressions along the polytree or the
polyforest in a fashion similar to how Splatter [32] simulates paths. The time param-
eter of differentiation is determined by a Beta distribution. This scheme allows smooth
transitions between cell types while also ensuring incremental changes along the tree
(i.e., each tree contains a family of cell types with gradual changes). Further details can
be found in the “Materials and methods” section. For illustration, we used the creation
mode of Cytomulate to generate 5 cell types aligned on one polytree (Fig. 6c).

Fig. 6  Examples of effects addressed in complex simulations. a Example temporal effects generated using
the three methods: Brownian Bridge, Polynomial, and Spline. b Example of a simulated sample batch effect.
Color difference represents batches, and point shape indicates cell types. c Example of the cell differentiation
trajectory generated by Cytomulate. The trajectories are noted with light blue arrows

Page 18 of 29Yang et al. Genome Biology (2023) 24:262

Applications of Cytomulate within a unified framework

Framework overview

To ensure the interoperability of Cytomulate with downstream analyses and related
workflows, we designed our software package using open standards in the field. Namely,
our framework is expression matrix-driven with the optional support for PyCytoData—
an easy-to-use interface for CyTOF and downstream analyses (Fig. 2b). Aside from two
simulation modes, we support two main usage modes of Cytomulate. For users who pre-
fer batch processing and working with servers, we recommend our command-line inter-
face (CLI). Using a single command with the appropriate arguments and flags, users can
generate their desired dataset and save it to disk in the format of their choice. Further,
the CLI ensures scalability and interoperability by allowing users to utilize shell scripts
and seamlessly integrate their results with other up- or downstream software. Alter-
natively, our interactive Python mode is designed for those who primarily work within
Python and would benefit from the most flexibility. This interface supports fine-tuning
of details while allowing users to explore the datasets interactively: from simulation to
dimension reduction (DR) and plotting, a few lines of readable code are all they need.

With the wide adoption of CyTOF and the subsequent proliferation of analysis meth-
ods, a unified framework is increasingly important. While few methods, except ubiqui-
tous tools such as PCA, have become virtually platform- and language-agnostic, many
otherwise good software suffers from poor usability and extensibility. For example, in
the process of evaluating Cytomulate, we found that LAMBDA falls far short of hav-
ing a user-friendly interface: in fact, we spent a significant amount of time adapting the
algorithm to our workflow for it to be viably assessed. To address these issues, we first
developed the two usage modes as previously mentioned. The CLI uses the operating
system’s shell as a common denominator to work with other parts of the workflow as
necessary, whereas the interactive mode supports outputting a PyCytoData object. The
latter brings the benefit of a suite of integrated downstream analysis tools and utility
functions, including built-in normalization and CytofDR for DR evaluation [15]. Beyond
the software itself, our continuous integration and development workflows along with
detailed documentation (https://​cytom​ulate.​readt​hedocs.​io) ensure that Cytomulate is
well maintained and easy for any user to adopt with minimal to no learning curve.

To demonstrate the usability and applicability of Cytomulate in CyTOF research, we
hereby showcase three benchmark studies conducted using both Creation and Emula-
tion modes. We also would like to emphasize the fact that Cytomulate’s potential goes
much beyond the particular methods and benchmarks conducted in this section. With
the flexibility of our framework and the open source initiative, other researchers can
effortlessly extend the functionalities by simply using the PyCytoData object with their
own workflows. A crucial advantage of employing Cytomulate instead of relying solely
on real datasets is that users can specify characteristics of each sample, a task hardly
achievable in real datasets without artificially subsampling and manipulations. Indeed,
a proper benchmark requires the detailed controls necessary to distinguish between
various effects, such as cell abundance and differentiation paths. Cytomulate not only
supports all these configurations with both of our interfaces but also produces sensible
results for practitioners as seen in the following benchmarks.

https://cytomulate.readthedocs.io

Page 19 of 29Yang et al. Genome Biology (2023) 24:262 	

Benchmarking DR using Cytomulate

As a practical application of Cytomulate, a previous DR benchmark study [15] included
extensive usage of the creation mode to evaluate DR methods. Specifically, Wang et al.
simulated 425 CyTOF datasets by specifying and systematically varying key features of
CyTOF expressions. To further demonstrate the capabilities of Cytomulate for down-
stream analyses, we accessed and analyzed a subset of the results published on Database
of Actionable Immunology’s (DBAI) [62–64] CytofDR Playground (https://​dbai.​biohpc.​
swmed.​edu/​cytof-​dr-​playg​round/). In particular, we chose samples with 100,000 cells
and the following parameters: the number of markers {30, 35, 40}, the number of cell dif-
ferentiation paths {2, 3, 5}, and the number of cell types {5, 10, 15, 20, 30}. These criteria
yield 225 datasets in total with 25 replicates for each configuration. As for DR methods,
we focused on the top-performing and most popular ones in the field according to the
benchmarks: MDS [65], t-SNE [16], UMAP [17], PCA [66], and SAUCIE [19].

Using two major categories (Global Structure Preservation and Local Structure Pres-
ervation) and the two subcategories of the Downstream Category, we validated the
previous results that MDS is superior for structure preservation whereas UMAP and
SAUCIE are better for clustering-based metrics (Fig. S4). These results are indeed con-
cordant with results obtained from real datasets. Further, Wang et al. [15] demonstrated
that Cytomulate produced good datasets for both downstream analyses and DR visu-
alizations. While we defer to the original DR paper for those interested in the details of
DR methods and their performances with regard to simulation settings, we would like
to emphasize again the unified framework that enables this type of analysis. Users of
Cytomulate can easily generate datasets and replicate the aforementioned DR results by
using Cytomulate in conjunction with CytofDR through the PyCytoData framework.

Validating clustering performance using Cytomulate

Clustering is a common and important workflow in the analysis of real CyTOF data
because of its role in identifying similar cells. Many methods have been developed for
CyTOF data, such as FlowSOM [11] and flowMeans [67]. Traditional methods, such as
K-means [46], can in theory be applied to CyTOF data as well, but their performance
is questionable. Two previous review papers [47, 48] have extensively benchmarked
popular clustering methods, and FlowSOM and flowMeans have in general been recom-
mended. However, neither paper included simulation data as part of their workflows.
To fill in the gap by incorporating Cytomulate as part of this analysis, we conducted a
benchmark of three popular clustering methods to validate conclusions from the previ-
ous review papers.

In both Creation and Emulation modes, the ground truth labels are known, thus ren-
dering Cytomulate a gold standard to assess whether clustering algorithms can correctly
group the same cells in the same cluster. To demonstrate Cytomulate’s advantage, we
simulated 20 datasets from the Levine_32dim dataset [40]. Under the default setting
with fixed probability of cell abundance (Fig. S5a), we found that flowMeans performs
the best out of the three methods, achieving the highest Adjusted Rand Index (ARI) [68].
FlowSOM follows closely behind flowMeans, whereas K-means lagged severely behind.
To account for various cell abundances in real datasets, we also tested a setting by

https://dbai.biohpc.swmed.edu/cytof-dr-playground/
https://dbai.biohpc.swmed.edu/cytof-dr-playground/

Page 20 of 29Yang et al. Genome Biology (2023) 24:262

randomly varying the cell abundance probabilities generated from a Dirichlet distribu-
tion with parameters being a 14-dimensional vector of 0.1. While the order of the three
methods remained the same, K-means’ suboptimal characteristics for CyTOF data are
exacerbated. Our results not only agree with the numerical analyses on Levine_32dim
by Liu et al. [47], but they also highlight the usefulness of Cytomulate to simulate user-
controlled characteristics of CyTOF, such as cell type abundances.

Comparing batch normalization methods using Cytomulate

As part of Cytomulate’s complex simulation, users can easily simulate multiple batches
of CyTOF datasets by adding batch effects. This procedure is designed to mimic the
real situation in which practitioners have to account for systematic differences across
multiple batches. With the development of many batch correction methods in the field,
including ComBat [69], CytoNorm [7], and Harmony [70], it is important to assess how
well each performs. Cytomulate’s complex simulation provides a good basis for such a
benchmark. We thus selected the aforementioned three methods and compared their
performances using 10 paired simulated samples based on the Samusik [52] dataset.
Within each sample, an “anchor” sample that is free of batch effect was first generated. A
“replicate” sample was then generated with simulated batch effects.

To assess the extent to which batch effect is corrected, we computed the Earth Mover’s
Distance (EMD) [71] between corrected batches, and smaller distance corresponds to a
more effective batch normalization. Further, we created two scenarios: “High Variance”
and “Low Variance” to represent two levels of potential amount of batch variation from
sample to sample. In the case of “High Variance”, the batch effects were simulated from a
normal distribution with zero mean and unit standard deviation. The standard deviation
was set to 0.1 in the case of “Low Variance”. Across both high and low variance settings,
CytoNorm is the best for CyTOF data, while Harmony is the worst. Also, the low vari-
ance setting yields overall smaller EMD as we expect (Fig. S5b). This benchmark shows
again that methods designed specifically for CyTOF tend to outperform others, such as
Harmony for scRNA-seq and ComBat for RNA-seq.

Discussion and conclusions
Simulation is a powerful, flexible, and cost-effective tool for performance evaluation,
which plays a vital role in methodological development. A common way to test analysis
methods is to conduct simulation studies, where generating multiple datasets, with dif-
ferent parameters or assumptions, can be quickly accomplished with minimal cost. The
lack of a formal method for accurately synthesizing CyTOF data warrants a dedicated
statistical tool with careful considerations of CyTOF’s unique characteristics, such as its
throughput and the correlation between protein channel expressions.

In this paper, we filled in the aforementioned void by introducing Cytomulate, a tool for
simulating CyTOF data accurately and efficiently. It builds on Gaussian Mixture Models
(GMM) with a fast and robust estimation procedure and appealing mathematical proper-
ties to approximate the real densities of CyTOF channels. Furthermore, Cytomulate fea-
tures a well-defined probabilistic model to capture prominent aspects of CyTOF data while
also incorporating two simulation modes: creation mode and emulation mode to cater to
the needs of various researchers. By thoroughly benchmarking Cytomulate’s estimation

Page 21 of 29Yang et al. Genome Biology (2023) 24:262 	

and simulation efficiency, resemblance to real data, and robustness again prior cell-type
resolution on six publicly available datasets, we demonstrated that Cytomulate is superior
in approximating the overall data distributions regardless of the granularity of the input.
Our algorithm further has the versatility of simulating more complicated phenomena com-
monly encountered in a CyTOF experiment such as signal drifts (temporal effects), batch
effects, and cellular trajectories, which are partially or totally unsupported by other tools.
Finally, we showcased Cytomulate’s integration with PyCytoData as an open standard for
CyTOF data processing in Python while also highlighting Cytomulate’s usage in a series of
benchmark studies involving several DR methods [15], clustering algorithms, and batch
correction tools. By integrating the philosophy of user-centric software and the superior
performance of our probabilistic model, Cytomulate offers a practical step towards address-
ing the usability problem in the field [15, 45].

Potential limitations of this study involve the estimation procedure we chose for the
emulation mode. Since the parameters are estimated for each cell type separately, in the
presence of high-dimensional data, the usage of the EM algorithm could render the per-
formance of a GMM unsatisfactory when the number of cell events is low. A potential
remedy for rare cell types would be to borrow “strength” from other cell types to stabilize
the parameter estimation via a Bayesian hierarchical setup. What is more, as a trade-off
for efficiency, various aspects of CyTOF data such as means, covariances, and cell differ-
entiations are captured in a sequential manner instead of being modeled jointly. Conse-
quently, although the GMMs provide a reasonable approximation to the data distribution
of CyTOF due to its universal approximation to densities [41], the estimated parameters
are likely biased. Due to the sheer number of cells typically encountered in CyTOF and the
complexity of the model, traditional inference methods such as Markov Chain Monte Carlo
(MCMC) might not ameliorate this situation. Fortunately, tremendous progress has been
made in the field of deep generative models, which has been successfully applied to tasks
such as estimating densities and synthesizing realistic-looking images on large datasets [72,
73]. Some typical examples include normalizing flow [74], variational auto-encoder [75],
and generative adversarial networks [76]. Exploiting said methods to gain deeper insights
into CyTOF datasets thus could be a possible future direction.

Another future direction constitutes the modeling of clinical phenotypes based on sim-
ulated CyTOF datasets. Namely, suppose we denote y as the phenotype and x as CyTOF
data, and an interesting direction is to simulate y from p(y|x) . Currently, Cytomulate has
the ability to generate CyTOF datasets from p(x) . Adding the connection between simu-
lated datasets and phenotypes will increase the applicability and practicality of Cytomulate
in real settings. We are optimistic that our simulation framework as a first in the field will
spark further interests in these exciting directions, and our model will serve as a reference
for future works.

Materials and methods
Probabilistic model of Cytomulate

The probabilistic model of Cytomulate is intended to model the arcsinh(./5)-trans-
formed CyTOF data. In this section, we will gradually build up towards the final model
aided by what we observed in the section on characteristics of CyTOF data.

Page 22 of 29Yang et al. Genome Biology (2023) 24:262

Basic model

We will start with the simplest scenario where we only have one batch, n = 1, · · · ,N cell
events on only one cell type with measurements on m = 1, · · · ,M protein channels.

We start with a continuous latent variable for the protein expressions:

where f (µ,�) denotes some distribution with an M-by-1 matrix of mean µ , and an M
-by-M matrix of variance–covariance matrix � . Given the near-Gaussianity nature
of CyTOF data, we use a Gaussian Mixture Model to approximate this distribution in
Cytomulate.

Since protein expressions should be non-negative, we further truncate the variable below
zero. Mathematically, this can be accomplished by.

where ◦ is the Hadamard product, I is an indicator function, and ≻ is a component-wise
inequality.

Finally, we incorporate the machine noise into the final protein expressions resulting in
the basic model of Cytomulate:

where En ∼ L and L is some error distribution.

Core model

The core model of Cytomulate is only a slight generalization upon the basic model by con-
sidering p = 1, · · · ,P cell types in one batch.

We denote the probability of observing the p th cell type by πp . Then, for the n th cell
event, we assume that the cell type is sampled from.

where π = [π1, · · · ,πP] is a P-by-1 probability vector.
Suppose the cell type for the n th cell event is p . We then update the notation for the

latent variables accordingly:

where f p(µp,�p) denotes some distribution with mean µp , and variance–covariance
matrix �p.

The computation of the final protein expressions remains unchanged:

where En ∼ L and L is some error distribution.

Xn ∼ f (µ,�)

I(Xn ≻ 0) ◦ Xn

Yn = I(Xn ≻ 0) ◦ Xn + En

�n ∼ Categorical(π)

Xn ∼ f p(µp
,�p)

Yn = I(Xn ≻ 0) ◦ Xn + En

Page 23 of 29Yang et al. Genome Biology (2023) 24:262 	

Complex simulations

Batch effects

To add batch effects, suppose we have b = 1, · · · ,B batches, m = 1, · · · ,M protein chan-
nels, and p = 1, · · · ,P cell types. For the b th batch, we have n = 1, · · · ,Nb cell events.

Similar to the setup in the core model, we assume that the cell type of the n th cell event in
the b th batch is sampled from.

where π = [πb
1 , · · · ,π

b
P] is a P-by-1 probability vector. The corresponding latent variable

is then denoted by Xb
n ∼ f p(µp,�p) . Note that while we allow the cell abundances to

vary among batches, we only use one distribution for one cell type.
With this setup, we introduce a set of random vectors, each representing the batch effect

on the p th cell type in the b th batch:

Where

Represents the center around which the batch effects on the cell types and protein chan-
nels in the b th batch vary. We further add two sets of constraints to ensure the identifi-
ability of the parameters:

Temporal effects

Suppose we have b = 1, · · · ,B batches, and m = 1, · · · ,M protein channels. For the b th
batch, we have n = 1, · · · ,Nb cell events. To add temporal effects to the n th cell event in
the b th batch, we assume that there is a stochastic process:

Such that Hb(0) = 0 . This reflects our belief that there should be no temporal effects
at the beginning of an experiment. Denote the realization of Hb by �b , then the temporal
effect on the n th cell event is calculated as:

�b
n ∼ Categorical(πb)

�b,p ∼ N (ψb
1M×1, σ

2IM×M)

ψb ∼ N (0, σ 2
ψ)

B

b=1
ψb = 0

∑P

p=1
�b,p

m =
∑M

m=1
�b,p

m = 0

Hb : [0, 1]M �→ RM

�b
(n

Nb

)

Page 24 of 29Yang et al. Genome Biology (2023) 24:262

Cellular trajectories

The setup of simulating cellular trajectories is a little more involved. Again, we assume
that we have b = 1, · · · ,B batches, m = 1, · · · ,M protein channels, and p = 1, · · · ,P cell
types. For the b th batch, we have n = 1, · · · ,Nb cell events.

To get started, we first fix cell type p . We suppose that it differentiates into zp “chil-
dren” denoted by.

In Cytomulate, we ensure that the collection of “parent-children” relationships form a
polytree (a directed acyclic graph whose underlying undirected graph is a tree) or a poly-
forest (a collection of nonoverlapping polytrees) [58].

To accomplish this, a weighted complete undirected graph with cell types as nodes is
constructed. In the Creation Mode, the weights on the edges are randomly assigned. In
the Emulation Mode, the L2 distances among observed average protein expressions of all
cell types are used as weights.

Next, we carve out a spanning tree or a spanning forest via the Clauset-Newman-Moore
greedy modularity maximization algorithm [60, 61] followed by Kruskal’s algorithm [59].
Finally, to convert the graph to a directed acyclic graph (DAG), a depth-first search with a
randomly selected node as the root on each graph component is performed.

Now fix the “child” cell type pc . We construct the corresponding cellular trajectory
from cell type p to cell type pc in a similar fashion to how we construct temporal effects.
We start with a stochastic process.

Such that the m th component satisfies

where µp
m and µpc

m are the mean expression levels of the m th protein channel of cell
type p and cell type pc , respectively. Given these two constraints, a Brownian Bridge
becomes an intuitive choice for the task of trajectory generation since it is a Brown-
ian Motion with an extra condition on where the position of the process should be
at time 1. To simulate such a stochastic process that starts at 0 and ends at µpc

m − µ
p
m ,

we utilize a standard Brownian Motion Bt as the basic building block and simply let
G

p→pc

m (t) = t(µ
pc

m − µ
p
m)+ Bt − tB1 . This stochastic process is also adopted by Splatter

[32] in generating the actual realizations of cellular trajectories denoted here by gp→pc .
When generating the final protein expressions for the n th cell event in the b th batch
whose cell type is p , we first sample the “child” cell type pc from

where ωp = [ω
p
1 , · · · ,ω

p
zp] is a zp-by-1 probability vector. Notice that the parameters of

the distribution only vary with cell types.
We then sample its m th component of the actual position tbn on the cellular trajectory

gp→pc

pc1 , · · · , pczp

Gp→pc : [0, 1]M �→ RM

Gp→pc

m (0) = 0, and Gp→pc

m (1) = µpc

m − µp
m

�b,p
n ∼ Categorical(ωp)

Page 25 of 29Yang et al. Genome Biology (2023) 24:262 	

Final model

With these setups, the final protein expressions for the n th cell event in the b th batch
whose cell type is p and who is differentiating into cell type pc can be simulated via the
following two steps:

where Eb
n ∼ L and L is some error distribution.

Estimation procedure for the emulation mode

Given the expression matrix along with the cell type label for each cell event, Cytomulate
first groups the observations by cell types and associates with each type a GMM whose
parameters are then estimated via the EM algorithm adopted by the scikit-learn Python
package [77]. To further improve the approximation of a GMM to CyTOF data, for each
cell type, we match the probability of obtaining a near-zero value estimated by the model
with the actual frequency observed in the data. This is done by randomly zeroing out
simulated values with probabilities inversely proportional to their magnitudes.

Evaluation metrics

In this section, we elaborate on the metrics we used in the comparison studies. Sup-
pose in the simulated batch we have p = 1, · · · ,P cell types. Then, for the p th cell type,
we calculate the sample mean mp and the sample covariance as cp . We carry out the
same procedure on the observed dataset to the corresponding mr

p and crp . The L2 dis-
tance between the simulated and observed means is found via dmp = ||mp −mr

p||2 . The
Frobenius distance [78] between the simulated and observed covariances is calculated
as dcp = ||cp − crp||F . The KL divergence dkp is estimated using the method proposed in
[54]; the pMSE pmsep is calculated using the R package synthpop [55]. Finally, the dis-
crepancy measures for all the cell types are aggregated using a weighted average where
the weights are determined by the cell abundances.

Software implementation details

All analyses, plotting, and benchmarks were performed using the R (4.0.2) and Python
(3.8.8) programming environments in MacOS 12.4. All default settings were used for
Cytomulate, Splatter, and scDesign2. For LAMBDA, we skipped the multinomial sam-
pling process given that all cell types were known.

Cytomulate is implemented and supported in Python (v3.5 or later), and the CLI is
available on all platforms and systems where a compatible python interpreter is present
with the proper package installations. The detailed documentation and tutorials are
freely available and hosted on the cloud using ReadTheDocs (https://​cytom​ulate.​readt​
hedocs.​io). All software features have been thoroughly tested with the pytest framework.

Tb
n,m ∼ Beta(αb

,βb)

Zb
n = Xb

n + gp→pc (Tp
n)+�b,p +�b

Y b
n = I(Zb

n ≻ 0) ◦ Zb
n + Eb

n

https://cytomulate.readthedocs.io
https://cytomulate.readthedocs.io

Page 26 of 29Yang et al. Genome Biology (2023) 24:262

For the efficiency benchmarks, we carried out the experiment on a MacBook Pro with
a 2.9 GHz Quad-Core Intel Core i7 processor running MacOS 13.0.1. Since Cytomulate
is implemented in Python while Splatter, LAMBDA, and scDesign2 are R packages, we
used Python’s time module to measure the performance of Cytomulate-related meth-
ods and Sys.time function in R to time Splatter, LAMBDA, and scDesign2. All times are
reported in seconds.

Statistical analyses

We employed Pearson correlation coefficients for all correlation matrices and plots.
For all order-based metrics, higher orders represent better performance. In cases
where ties occurred, we used the average order of tied values. For all boxplots appear-
ing in this study, box boundaries represent interquartile ranges, whiskers extend to
the most extreme data point which is no more than 1.5 times the interquartile range,
and the line in the middle of the box represents the median. All barplots showing dis-
crepancies among all methods under comparison on various evaluation metrics were
plotted on the logarithm scale. To increase visual clarity, we added one to all the data
points before plotting so that the results would all be positive. Error bars with width
being two standard deviations were also added to further facilitate comparison.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s13059-​023-​03099-1.

Additional file 1: Table S1. A table that provides the dataset name, species, the anatomic site, and its source for
accession.

Additional file 2: Fig. S1. Examples of complex characteristics observed in real datasets. Fig. S2. Detailed results on
embeddings of the original and simulation datasets. Fig. S3. Runtime benchmarks of all simulation methods in the
study. Fig. S4. Performance of DR methods benchmarked with Cytomulate’s creation mode. Fig. S5. Clustering and
batch correction benchmark results using Cytomulate.

Additional file 3. Peer review history.

Acknowledgements
Not applicable.

Review history
The review history is available as Additional file 3.

Peer review information
 Tim Sands was the primary editor of this article and managed its editorial process and peer review in collaboration with
the rest of the editorial team.

Authors’ contributions
Y.Y. performed all analyses. Y.Y. and K.W. created the Cytomulate Package. Z.L provided analysis pipelines for LAMBDA.
X.W. conceived the study. T.W. and X.W. designed and supervised the whole study. All authors wrote the manuscript.

Funding
This study was supported by the National Institutes of Health (NIH) [NIH 1R01CA258584/TW, XW, U01AI156189/TW],
Cancer Prevention Research Institute of Texas [CPRIT RP230363/TW, RP190208/TW, XW], and Southern Methodist Univer-
sity [Dean’s Research Council Award 2022/XW, TW].

Availability of data and materials
The Levine_32dim, Levine_13dim [38], and Samusik [52] datasets can be accessed from the HDCytoData package in R
(https://​github.​com/​lmweb​er/​HDCyt​oData) [40]. The CyAnno (FlowRepository ID: FR-FCM-Z2V9) [39, 79] and LG (GEO
accession: GSE99093; FlowRepository ID: FR-FCM-ZY4P) [53, 79, 80] can be accessed from their respective publications.
The Covid cohort is hosted on DBAI (https://​dbai.​biohpc.​swmed.​edu/) [62–64] with the following accession codes:
CyTOF_00000000000001 to CyTOF_00000000000012.
The Cytomulate algorithm is available at cytomulate.readthedocs.io and also shared through the Database of Actionable
Immunology (dbai.biohpc.swmed.edu) [62–64]. All the datasets as well as the source code used to generate the findings
are available in Zenodo (https://​doi.​org/​10.​5281/​zenodo.​10005​508) and are released under the MIT license [81].

https://doi.org/10.1186/s13059-023-03099-1
https://github.com/lmweber/HDCytoData
https://dbai.biohpc.swmed.edu/
https://doi.org/10.5281/zenodo.10005508

Page 27 of 29Yang et al. Genome Biology (2023) 24:262 	

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
Dr. Tao Wang is one of the scientific co-founders of NightStar Biotechnologies, Inc. All remaining authors declare that
they have no competing interests.

Received: 5 September 2022 Accepted: 24 October 2023

References
	1.	 Lou X, Zhang G, Herrera I, Kinach R, Ornatsky O, Baranov V, et al. Polymer-based elemental tags for sensitive bioas-

says. Angew Chem Int Ed. 2007;46(32):6111–4.
	2.	 Spitzer MH, Nolan GP. Mass cytometry: single cells, many features. Cell. 2016;165(4):780–91.
	3.	 Bandura DR, Baranov VI, Ornatsky OI, Antonov A, Kinach R, Lou X, et al. Mass cytometry: technique for real time

single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal
Chem. 2009;81(16):6813–22.

	4.	 Chester C, Maecker HT. Algorithmic Tools for Mining High-Dimensional Cytometry Data. J Immunol.
2015;195(3):773–9.

	5.	 Finck R, Simonds EF, Jager A, Krishnaswamy S, Sachs K, Fantl W, et al. Normalization of mass cytometry data with
bead standards. Cytometry A. 2013;83(5):483–94.

	6.	 Trussart M, Teh CE, Tan T, Leong L, Gray DH, Speed TP. Removing unwanted variation with CytofRUV to integrate
multiple CyTOF datasets. Elife. 2020;9:e59630. https://​doi.​org/​10.​7554/​eLife.​59630.

	7.	 Van Gassen S, Gaudilliere B, Angst MS, Saeys Y, Aghaeepour N. Cytonorm: A normalization algorithm for cytometry
data. Cytometry A. 2020;97(3):268–78.

	8.	 Shaham U, Stanton KP, Zhao J, Li H, Raddassi K, Montgomery R, et al. Removal of batch effects using distribution-
matching residual networks. Bioinformatics. 2017;33(16):2539–46.

	9.	 Qian WW, Xia C, Venugopalan S, Narayanaswamy A, Dimon M, Ashdown GW, et al. Batch equalization with a genera-
tive adversarial network. Bioinformatics. 2020;36(Suppl_2):i875-83.

	10.	 Upadhyay U, Jain A. Removal of Batch Effects using Generative Adversarial Networks. arXiv. 2019;
	11.	 Van Gassen S, Callebaut B, Van Helden MJ, Lambrecht BN, Demeester P, Dhaene T, et al. FlowSOM: Using self-organ-

izing maps for visualization and interpretation of cytometry data. Cytometry A. 2015;87(7):636–45.
	12.	 Abe K, Minoura K, Maeda Y, Nishikawa H, Shimamura T. Model-based clustering for flow and mass cytometry data

with clinical information. BMC Bioinformatics. 2020;21(Suppl 13):393.
	13.	 Ji D, Nalisnick E, Qian Y, Scheuermann RH, Smyth P. Bayesian trees for automated cytometry data analysis. BioRxiv.

2018 Sep 19;
	14.	 Dai Y, Xu A, Li J, Wu L, Yu S, Chen J, et al. CytoTree: an R/Bioconductor package for analysis and visualization of flow

and mass cytometry data. BMC Bioinformatics. 2021;22(1):138.
	15.	 Wang K, Yang Y, Wu F, Song B, Wang X, Wang T. Comparative analysis of dimension reduction methods for cytometry

by time-of-flight data. Nat Commun. 2023;14(1):1836.
	16.	 Laurens van der M, Geoffrey H. Visualizing Data using t-SNE. J Mach Learn Res. 2008;
	17.	 Becht E, McInnes L, Healy J, Dutertre C-A, Kwok IWH, Ng LG, et al. Dimensionality reduction for visualizing single-cell

data using UMAP. Nat Biotechnol. 2018;3(37):38–44.
	18.	 Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Sec-

ond Edition. Springer; 2008.
	19.	 Amodio M, Srinivasan K, van Dijk D, Mohsen H, Yim K, Muhle R, et al. Exploring Single-Cell Data with Multitasking

Deep Neural Networks. BioRxiv. 2017 Dec 19;
	20.	 Ding J, Condon A, Shah SP. Interpretable dimensionality reduction of single cell transcriptome data with deep

generative models. Nat Commun. 2018;9(1):2002.
	21.	 Hahne F, LeMeur N, Brinkman RR, Ellis B, Haaland P, Sarkar D, et al. flowCore: a Bioconductor package for high

throughput flow cytometry. BMC Bioinformatics. 2009;9(10):106.
	22.	 Hao Y, Hao S, Andersen-Nissen E, Mauck WM, Zheng S, Butler A, et al. Integrated analysis of multimodal single-cell

data. Cell. 2021;184(13):3573–87.
	23.	 Seiler C, Ferreira A-M, Kronstad LM, Simpson LJ, Le Gars M, Vendrame E, et al. CytoGLMM: conditional differential

analysis for flow and mass cytometry experiments. BMC Bioinformatics. 2021;22(1):137.
	24.	 Arend L, Bernett J, Manz Q, Klug M, Lazareva O, Baumbach J, et al. A systematic comparison of novel and existing dif-

ferential analysis methods for CyTOF data. Brief Bioinformatics. 2022;23(1).
	25.	 Mitra R, Müller P, Qiu P, Ji Y. Bayesian hierarchical models for protein networks in single-cell mass cytometry. Cancer

Inform. 2014;13(Suppl 4):79–89.
	26.	 Abdelaal T, Höllt T, van Unen V, Lelieveldt BPF, Koning F, Reinders MJT, et al. CyTOFmerge: integrating mass cytom-

etry data across multiple panels. Bioinformatics. 2019;35(20):4063–71.
	27.	 Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital

gene expression data. Bioinformatics. 2010;26(1):139–40.

https://doi.org/10.7554/eLife.59630

Page 28 of 29Yang et al. Genome Biology (2023) 24:262

	28.	 Lun ATL, Bach K, Marioni JC. Pooling across cells to normalize single-cell RNA sequencing data with many zero
counts. Genome Biol. 2016;27(17):75.

	29.	 Vallejos CA, Marioni JC, Richardson S. BASiCS: Bayesian Analysis of Single-Cell Sequencing Data. PLoS Comput Biol.
2015;11(6):e1004333.

	30.	 Sun T, Song D, Li WV, Li JJ. scDesign2: a transparent simulator that generates high-fidelity single-cell gene expres-
sion count data with gene correlations captured. Genome Biol. 2021;22(1):163.

	31.	 Risso D, Perraudeau F, Gribkova S, Dudoit S, Vert J-P. A general and flexible method for signal extraction from single-
cell RNA-seq data. Nat Commun. 2018;9(1):284.

	32.	 Zappia L, Phipson B, Oshlack A. Splatter: simulation of single-cell RNA sequencing data. Genome Biol.
2017;18(1):174.

	33.	 Crowell HL, Morillo Leonardo SX, Soneson C, Robinson MD. The shaky foundations of simulating single-cell RNA
sequencing data. Genome Biol. 2023;24(1):62.

	34.	 Cao Y, Yang P, Yang JYH. A benchmark study of simulation methods for single-cell RNA sequencing data. Nat Com-
mun. 2021;12(1):6911.

	35.	 Schissler AG, Bedrick EJ, Knudson AD, Kozubowski TJ, Nguyen T, Panorska AK, et al. Simulating High-Dimensional
Multivariate Data using the bigsimr R Package. arXiv. 2021;

	36.	 Madsen L, Birkes D. Simulating dependent discrete data. J Stat Comput Simul. 2013;83(4):677–91.
	37.	 Data scientist’s primer to analysis of mass cytometry data.. Available from: https://​biosu​rf.​org/​cytof_​data_​scien​tist.​

html. Cited 2022 May 26.
	38.	 Levine JH, Simonds EF, Bendall SC, Davis KL, Amir ED, Tadmor MD, et al. Data-Driven Phenotypic Dissection of AML

Reveals Progenitor-like Cells that Correlate with Prognosis. Cell. 2015;162(1):184–97.
	39.	 Kaushik A, Dunham D, He Z, Manohar M, Desai M, Nadeau KC, et al. CyAnno: a semi-automated approach for cell

type annotation of mass cytometry datasets. Bioinformatics. 2021;37(22):4164–71.
	40.	 Lukas M. CS. HDCytoData. Bioconductor. 2018;
	41.	 Goodfellow I, Bengio Y, Courville A. Deep Learning (Adaptive Computation and Machine Learning series). Illustrated.

Cambridge, Massachusetts: The MIT Press; 2016.
	42.	 Leipold MD, Obermoser G, Fenwick C, Kleinstuber K, Rashidi N, McNevin JP, et al. Comparison of CyTOF assays across

sites: Results of a six-center pilot study. J Immunol Methods. 2018;453:37–43.
	43.	 Street K, Risso D, Fletcher RB, Das D, Ngai J, Yosef N, et al. Slingshot: cell lineage and pseudotime inference for single-

cell transcriptomics. BMC Genomics. 2018;19(1):477.
	44.	 Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, et al. The dynamics and regulators of cell fate deci-

sions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 2014;32(4):381–6.
	45.	 Saelens W, Cannoodt R, Todorov H, Saeys Y. A comparison of single-cell trajectory inference methods. Nat Biotech-

nol. 2019;37(5):547–54.
	46.	 Bishop CM. Pattern Recognition and Machine Learning (Information Science and Statistics). Softcover reprint of the

original 1st ed. 2006. Springer; 2016.
	47.	 Liu X, Song W, Wong BY, Zhang T, Yu S, Lin GN, et al. A comparison framework and guideline of clustering methods

for mass cytometry data. Genome Biol. 2019;20(1):297.
	48.	 Weber LM, Robinson MD. Comparison of clustering methods for high-dimensional single-cell flow and mass cytom-

etry data. Cytometry A. 2016;89(12):1084–96.
	49.	 Lee H-C, Kosoy R, Becker CE, Dudley JT, Kidd BA. Automated cell type discovery and classification through knowl-

edge transfer. Bioinformatics. 2017;33(11):1689–95.
	50.	 Zhang Z, Luo D, Zhong X, Choi JH, Ma Y, Wang S, et al. SCINA: A Semi-Supervised Subtyping Algorithm of Single

Cells and Bulk Samples. Genes (Basel). 2019;10(7).
	51.	 Schwarz G. Estimating the dimension of a model. Ann Statist. 1978;6(2):461–4.
	52.	 Samusik N, Good Z, Spitzer MH, Davis KL, Nolan GP. Automated mapping of phenotype space with single-cell data.

Nat Methods. 2016;13(6):493–6.
	53.	 Hawley D, Ding J, Thotakura S, Haskett S, Aluri H, Kublin C, et al. RNA-Seq and CyTOF immuno-profiling of

regenerating lacrimal glands identifies a novel subset of cells expressing muscle-related proteins. PLoS ONE.
2017;12(6):e0179385.

	54.	 Perez-Cruz F. Kullback-Leibler divergence estimation of continuous distributions. 2008 IEEE International Sympo-
sium on Information Theory. IEEE; 2008. 1666–70

	55.	 Raab GM, Nowok B, Dibben C. Assessing, visualizing and improving the utility of synthetic data. arXiv. 2021;
	56.	 Grimmett GR, Stirzaker DR. Probability and Random Processes. 3rd ed. Oxford: Oxford University Press; 2001.
	57.	 Akima H. A new method of interpolation and smooth curve fitting based on local procedures. J ACM.

1970;17(4):589–602.
	58.	 Dasgupta S. Learning Polytrees. arXiv. 2013;
	59.	 Cormen TH, Leiserson CE, Rivest RL, Stein C. Introduction to Algorithms, 3rd Edition (The MIT Press). 3rd ed. Cam-

bridge, Mass: The MIT Press; 2009.
	60.	 Clauset A, Newman MEJ, Moore C. Finding community structure in very large networks. Phys Rev E. 2004 Dec

6;70(6).
	61.	 Hagberg AA, Schult DA, Swart PJ. Exploring Network Structure, Dynamics, and Function using NetworkX. In:

Varoquaux G, Vaught T, Millman J, editors. Proceedings of the 7th Python in Science conference. SciPy conference
proceedings; 2008. 11–5.

	62.	 Zhu J, Gouru A, Wu F, Berzofsky JA, Xie Y, Wang T. BepiTBR: T-B reciprocity enhances B cell epitope prediction. iSci-
ence. 2022;25(2):103764.

	63.	 Zhang Z, Xiong D, Wang X, Liu H, Wang T. Mapping the functional landscape of T cell receptor repertoires by single-
T cell transcriptomics. Nat Methods. 2021;18(1):92–9.

	64.	 Lu T, Zhang Z, Zhu J, Wang Y, Jiang P, Xiao X, et al. Deep learning-based prediction of the T cell receptor-antigen
binding specificity. Nat Mach Intell. 2021;3(10):864–75.

https://biosurf.org/cytof_data_scientist.html
https://biosurf.org/cytof_data_scientist.html

Page 29 of 29Yang et al. Genome Biology (2023) 24:262 	

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

	65.	 Kruskal JB. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika.
1964;29(1):1–27.

	66.	 Ringnér M. What is principal component analysis? Nat Biotechnol. 2008;26(3):303–4.
	67.	 Aghaeepour N, Nikolic R, Hoos HH, Brinkman RR. Rapid cell population identification in flow cytometry data. Cytom-

etry A. 2011;79(1):6–13.
	68.	 Hubert L, Arabie P. Comparing partitions. J of Classification. 1985;2(1):193–218.
	69.	 Zhang Y, Parmigiani G, Johnson WE. ComBat-seq: batch effect adjustment for RNA-seq count data. NAR Genom

Bioinform. 2020;2(3):lqaa078.
	70.	 Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K, et al. Fast, sensitive and accurate integration of single-

cell data with Harmony. Nat Methods. 2019;16(12):1289–96.
	71.	 Levina E, Bickel P. The Earth Mover’s distance is the Mallows distance: some insights from statistics. Proceedings

Eighth IEEE International Conference on Computer Vision ICCV 2001. IEEE Comput. Soc; 2001. 251–6.
	72.	 Ruthotto L, Haber E. An Introduction to Deep Generative Modeling. arXiv. 2021;
	73.	 Bond-Taylor S, Leach A, Long Y, Willcocks CG. Deep Generative Modelling: A Comparative Review of VAEs, GANs, Nor-

malizing Flows, Energy-Based and Autoregressive Models. arXiv. 2021;
	74.	 Rezende DJ, Mohamed S. Variational Inference with Normalizing Flows. arXiv. 2015;
	75.	 Kingma DP, Welling M. Auto-Encoding Variational Bayes. arXiv. 2013;
	76.	 Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative Adversarial Networks. arXiv.

2014;
	77.	 Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python.

arXiv. 2012;
	78.	 Trefethen LN, David Bau III. Numerical Linear Algebra. 1st ed. Philadelphia: SIAM: Society for Industrial and Applied

Mathematics; 1997.
	79.	 Spidlen J, Breuer K, Rosenberg C, Kotecha N, Brinkman RR. FlowRepository: A resource of annotated flow cytometry

datasets associated with peer-reviewed publications. Cytometry. 2012;81A(9):727–31.
	80.	 Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al. NCBI GEO: archive for functional genomics

data sets--update. Nucleic Acids Res. 2013;41(Database issue):D991-5.
	81.	 Yang Y, Wang K, Lu Z, Wang T, Wang X. Cytomulate: accurate and efficient simulation of cytof data. Zenodo. 2023;

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

	Cytomulate: accurate and efficient simulation of CyTOF data
	Abstract
	Background
	Results
	Characteristics of CyTOF data
	High volume, high dimension, and heterogeneity
	Zero-inflation
	Correlation in the protein–protein expression
	Near-normality
	Temporal effect
	Batch effect
	Cellular trajectory

	Cytomulate framework
	Simulation comparison study
	Cytomulate well approximates real data
	Cytomulate is robust against cell-type resolution
	Cytomulate is efficient

	Complex simulations
	Temporal effects
	Batch effects
	Cellular trajectories

	Applications of Cytomulate within a unified framework
	Framework overview
	Benchmarking DR using Cytomulate
	Validating clustering performance using Cytomulate
	Comparing batch normalization methods using Cytomulate

	Discussion and conclusions
	Materials and methods
	Probabilistic model of Cytomulate
	Basic model
	Core model
	Complex simulations
	Batch effects
	Temporal effects
	Cellular trajectories
	Final model
	Estimation procedure for the emulation mode
	Evaluation metrics
	Software implementation details

	Statistical analyses

	Anchor 41
	Acknowledgements
	References

