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Abstract 

Background: Common diseases manifest differentially between patients, 
but the genetic origin of this variation remains unclear. To explore possible involve-
ment of gene transcriptional-variation, we produce a DNA methylation-oriented, 
driver-gene-wide dataset of regulatory elements in human glioblastomas and study 
their effect on inter-patient gene expression variation.

Results: In 175 of 177 analyzed gene regulatory domains, transcriptional enhancers 
and silencers are intermixed. Under experimental conditions, DNA methylation induces 
enhancers to alter their enhancing effects or convert into silencers, while silencers are 
affected inversely. High-resolution mapping of the association between DNA methyla-
tion and gene expression in intact genomes reveals methylation-related regulatory 
units (average size = 915.1 base-pairs). Upon increased methylation of these units, their 
target-genes either increased or decreased in expression. Gene-enhancing and silenc-
ing units constitute cis-regulatory networks of genes. Mathematical modeling 
of the networks highlights indicative methylation sites, which signified the effect of key 
regulatory units, and add up to make the overall transcriptional effect of the network. 
Methylation variation in these sites effectively describe inter-patient expression vari-
ation and, compared with DNA sequence-alterations, appears as a major contributor 
of gene-expression variation among glioblastoma patients.

Conclusions: We describe complex cis-regulatory networks, which determine gene 
expression by summing the effects of positive and negative transcriptional inputs. 
In these networks, DNA methylation induces both enhancing and silencing effects, 
depending on the context. The revealed mechanism sheds light on the regulatory role 
of DNA methylation, explains inter-individual gene-expression variation, and opens 
the way for monitoring the driving forces behind deferential courses of cancer 
and other diseases.
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Background
Many diseases display large between-patient heterogeneity in their time of onset, course 
of development, symptoms, severity, and treatment response. Understanding and con-
trol the genetic and environmental factors that generate these differences are crucial for 
the development of personalized medicine and may largely improve diagnosis, progno-
sis, and treatment protocols. Variation in the regulatory sequences of disease genes were 
shown to be involved in the generation of inter-patient, gene-expression variation [1–7], 
but sequence mutations alone were failed to explain the range of observed variations 
[8, 9]. Likewise, studies of regulatory epigenetic mutations revealed significant contribu-
tions to variation in gene expression, but descriptions of the full range of variation were 
seldom attained [10].

Whereas transcriptional enhancers were intensively studied [11], less is known about 
the mechanism of transcriptional silencing, its interaction with enhancers, and its pos-
sible effect on gene expression-variation. Transcriptional silencers are DNA sequences 
that upon binding of repressors or co-repressors reduce the transcription potential of 
linked promoters [12–17]. Interestingly, gene silencing is not the obligatory functioning 
of these loci. Rather, they may swap between silencing and enhancing effects in alter-
nate cellular contexts [18–23]. Indeed, both enhancer and silencer loci were associated 
with variable chromatin states and bound activators and repressors, over alternate cel-
lular conditions [24–30]. However, the molecular mechanisms that control the switching 
between silencer and enhancer functionalities were not defined. Moreover, while silenc-
ers and enhancers were showed to cooperate in the regulation of gene transcription [25], 
their participation in the producing of inter-individual expression variation remained 
unclear.

Here, we explored methylation-related variation in the mode-of-action and activity 
level of gene-associated silencers and enhancers, under controlled conditions as well as 
in intact cancer genomes. Based on this, we described an essential mechanism which 
drives differences in harmful gene activities among glioblastoma patients.

Results
High‑resolution mapping of regulatory methylation sites

We applied a methylation-orientated strategy to explored gene-associated, cis-regulatory 
elements. Our design allows for interrogation of methylation sites with the potential to 
affect the regulation of targeted genes, at single-site resolution and precise methylation-
level assessment. While the method is applicable to various genes and diseases, here, we 
focused on 125 pan-cancer or glioblastoma (GBM) driver genes and 52 reference genes 
(Additional file 1: Table S1). We performed the analysis in windows of two million base-
pairs (bp) centered at the promoters of the genes, thus ensuring equal assessments of the 
studied genes, whether or not the boundaries of their topologically associated domains 
are known (Additional file  2: Fig. S1). Within these windows, we located chromatin 
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regions that carry the general marker of distal regulatory elements, histone 3 mono-
methylated lysine 4 (H3K4me1). To focus on inter-patient regulatory variation, we have 
further located, within the H3K4me1-marked chromatin, regions in which the activ-
ity marker histone 3 acetylated lysine 27 (H3K27ac) present in some, but not all, of the 
subjected glioblastoma tumors (Methods). An initial analysis confirmed that H3K4me1 
indeed marks sites that display both negative and positive associations of DNA meth-
ylation with gene expression, in various cancer types (Additional file 2: Fig. S2). Analy-
sis of DNaseI-hypersensitivity further confirmed the general regulatory potential of the 
selected chromatin regions (Additional file 1: Table S2).

We then targeted the CpG methylation sites within these regions (n = 140,494), 
using a gene-enrichment assay with custom-designed targeting probes (size = 120  bp, 
n = 38,050) (Additional file  1: Tables S3 and S4). By applying the probes to tumors of 
GBM patients presenting the typical ranges of ages, genders, and subtypes character-
istic of the disease (Additional file 1: Table S5), we obtained libraries of captured DNA 
segments (median size = 224 bp) (Additional file 1: Table S6). These captured segments 
carried a diversity of sequence and methylation variation presenting in the tumors. We 
assessed the regulatory potential of the captured segments, and the effects of sequence 
and methylation alternations, under experimental and native conditions (Fig.  1, Addi-
tional file 2: Fig. S3).

Functional annotation of isolated regulatory segments

Initially, we sought to understand the core functionalities of the captured DNA seg-
ments, without the effects of chromatin factors and interactions with other regulatory 
elements. For this experiment, we arbitrarily selected a representative library of captured 
DNA segments (library #100, Additional file 2: Fig. S3). Following stripping of chroma-
tin layers and methylation marks, the entire set of captured DNA segments were cloned 
into gene-reporter vectors, downstream to minimal promoters (Fig. 1b). The obtained 
expression vectors were inserted into GBM cells and allowed to produce RNAs. The 
transcriptional effect of each segment was then examined, using a massively paralleled 
self-transcribing assay, adapted for detection of silencers and enhancers (Methods). For 
segments in windows of 500 bp, we calculated a transcriptional activity score (TAS), rep-
resenting the level of produced RNAs, relative to the copy numbers of vector DNAs, 
and to the overall RNA to DNA ratio (Fig. 2a and Additional file 2: Fig. S4). Of 42,182 
examined DNA segments, 26,152 revealed significant (q < 0.05) effect on transcrip-
tion; of them, 9204 silence the basal expression level of the vectors, and 16,948 enhance 
(Fig.  2b, Additional file  1: Table  S7). Additional 16,030 segments with non-significant 
effects were excluded from latter analyses. In most (176 of 177) of the analyzed gene 
domains, we observed multiple (11–693) functional elements (Fig.  2c). Of these, 175 
domains contained both enhancers and silencers. Noticeably, annotated silencers and 
enhancers shared the characteristics of general regulatory chromatin and bound both 
activators and repressors in various cell types (Fig. 2d, e), suggesting that GBM silenc-
ers and enhancers may adapt different functionalities across cell types. We concluded 
that along gene regulatory domains, regulatory elements with core-GBM enhancer and 
silencer functionalities are similarly distributed.
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DNA methylation modifies the core functionalities of regulatory elements

We next compared the functionalities of the captured segments under whole-meth-
ylation versus de-methylation conditions. Of the 26,152 annotated segments, 10,998 
displayed TAS differences of at least one and a half fold between methylated and un-
methylated states (Fig. 2f, Additional file 2: Fig. S5a, Additional file 1: Table S7). The 
remaining 15,154 sites were not classified and may be insensitive to methylation or 
affected below the detection threshold of the assay. Both methylation-sensitive and 
methylation-insensitive sites display the characteristics of general regulatory chroma-
tin across cell types (Additional file 2: Fig. S5b), suggesting that a more specific mech-
anism (e.g., cell-type-specific binding of methylation-sensitive transcription factors) 
underlays their differential response to methylation.

Fig. 1 Methylation-oriented interrogation of regulatory gene-domains. a Library construction: Regulatory 
chromatin blocks were identified among glioblastoma (GBM) tumors in two megabases windows 
surrounding 125 driver and 52 reference cancer genes. The fractions of tumors carrying the general marker 
of regulatory chromatin H3K4Me1, or the marker of active chromatin H3K27ac, are schematically outlined 
in purple. Following random segmentation of tumor DNAs, the segments encompassing CpG methylation 
sites were captured using biotinylated RNA probes (blue dots). The obtained target-enriched libraries, 
representing the spectrum of methylation and sequence variations of the targeted regions, were used 
for following stages. b Experimental assessments of regulatory functions: a representative tumor library 
were cloned into gene-reporter vectors, downstream to minimal promoters, and assessed for enhancing 
or silencing of the vector’s basal transcription level, before or after DNA methylation. c Mapping of gene 
regulatory circuits: Methylation levels of the captured sites were assessed, and associated with expression 
levels of the studied genes, across the tumors. Schematic positive and negative circuits of a representative 
gene are shown. d Integration of the regulatory principles learned from the experimental assay, with actual 
gene-regulatory data, allows disclosing of cis-regulatory networks which govern inter-patient heterogeneity 
in the expression level of cancer driver genes
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Of the methylation-sensitive elements, the majority (83.7%) reduced their original 
activity, or shifted to the opposite functionality (i.e., enhancers became weaker or turned 
silencers, and vice versa), upon methylation (groups I and IV in Fig. 2g, Additional file 2: 
Fig. S5c, Additional file 1: Table S7). The rest 16.3% increased their activity upon DNA 
methylation (groups II and III Fig. 2g). We concluded that under controlled conditions, 

Fig. 2 DNA methylation modify the transcriptional effect of enhancers and silencers. a Method: Putative 
regulatory DNA segments were captured from GBM tumors and allowed to drive self-transcription in T98G 
GBM cells, following complete de-methylation or in vitro re-methylation of the expression vectors. Local 
DNA to RNA ratios, relative to the total DNA to RNA ratio, denote transcriptional activity score (TAS) of 
the evaluated DNA segments. b Fractions of silencers (TAS < 0) or enhancers (TAS > 0) along the studied 
gene domains. c Distributions of regulatory elements, or of the elements that were annotated as silencers 
or enhancers, along the studied gene domains. d Regulatory chromatin characteristics of enhancer and 
silencer loci, across a variety of different cell types (ENCOD data). Level of transcription factors binding (TFB), 
factor variety (breadth), and DNase I hyper-sensitivity are shown. e Fractions of regulatory elements that are 
functioning as silencers or enhancers in GBM cells, which bind transcriptional repressors, activators, or both 
across a variety of different cell types (ENCOD data). f Fractions of regulatory elements which altered their 
functions upon DNA methylation. g Patterns of methylation effects on methylation-sensitive silencers and 
enhancers
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DNA methylation retunes the activity level and induces functionally switching of many 
regulatory elements.

Mapping methylation‑related regulatory circuits in intact GBM genomes

While the above experiments revealed the principles of methylation effects on enhancers 
and silencers, actual chromatin and methylation conditions are essentially differing from 
the experimental assays. We next studied the relationships between DNA methylation 
and gene expression variation in intact GBM genomes, applying an established method 
to locate regulatory methylation sites of particular genes [31, 32] (Figs. 1c, and 3a). Uti-
lizing deep methylation-sequencing data of 24 capturing libraries (Additional file  1: 
Table S1), we analyzed the association between methylation levels of the captured sites 
and expression levels of the targeted genes, across GBM tumors. These interactions were 
evaluated for each of the measured methylation sites, versus any one of the genes, within 
the 2  MB intervals. To avoid possible indirect effects, gene-body and promoter sites, 
which may display methylation-expression associations due to secondary interactions, 
were excluded from the analysis (n = 232, Additional file 2: Fig. S6). The analysis revealed 
cis-regulatory circuits (n = 1154; q < 0.05; R2 > 0.3) between certain methylation sites and 
controlled genes (Fig. 3b, Additional file 1: Table S8). Most (78%) of the genes had mul-
tiple (2–68) circuits, averaging 8.3 circuits per gene; of them, 3.5 circuits in average were 
positive (expression raised with methylation) and 4.8 negative (Fig. 3c, Additional file 1: 
Table S9).

Matching between experimental and genomic analyses

We compared the maps of regulatory sites that have been obtained under experimen-
tal or natural conditions. Of the 26,152 functional elements identified by the reporter 
assay, 15,304 (58.5%) were matched with a gene-associated methylation site, located up 
to 500 bp of the elements (Additional file 2: Fig. S7a). The non-matched elements may be 
regulatory elements that are non-functional in GBM chromatin or reflect the limitations 
of the experimental assay. To discern between the possibilities, we analyzed whether 
gene-associated sites matched with functional segment. Indeed, 95.7% of the 1154 gene-
associated methylation sites matched with a nearby element found by the experimental 
assay (Additional file 2: Fig. S7b), suggesting that GBM regulatory sites were effectively 
detected by the experimental assay. TAS analyses of the gene-associated sites revealed 
patterns of methylation effects similar to the patterns found in the experimentally 
defined elements (Additional file 2: Fig. S7c). We concluded that in spite of the essential 
differences between the simplified and actual conditions, the basic roles deduced from 
the experimental assay are relevant to GBM genomes.

Clusters of gene‑associated sites form cis‑regulatory units

We explored the organization of gene-associated sites along gene domains. The analy-
sis revealed clusters (average size = 915 bp, average number of methylation sites = 4.9), 
spreading across the gene domains (Additional file  1: Table  S10). In each cluster, all 
methylation sites display the same (positive or negative) effect on the expression of an 
associated gene. We termed these clusters methylation-related regulatory units. Most 
(55%) of the genes were associated with multiple (2–9) units. The average number of 
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Fig. 3 Mapping of cis-regulatory circuits, units, and networks in tumor chromatin. a Method: Each of the 
sequenced methylation sites was assessed for association with the expression of the targeted genes across 
the tumor libraries. Theoretical positive and negative regulatory circuits are shown. b Fractions of the 
mapped positive or negative regulatory circuits. c Distributions of all, negative, or positive circuits per genes. 
d Distributions of all, negative, or positive units per gene. e A schematic map of regulatory sites and units that 
were associated with expression of the SMO driver-gene. f levels of SMO expression in GBM cells, following 
genomic deletion of unit “A” (an inferred enhancer) or of unit “D” (an inferred silencer), versus mock genomic 
targeting by scrambled targeting guides. g Levels of SMO expression in GBM cells lacking unit “D,” following 
genomic deletion of unit “A,” or mock targeting of unit “A,’ versus untreated cells
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units per gene was 2.5, of them 1.1 units in average mediate positive effect on expression 
and 1.4 negative (Fig. 3d, Additional file 1: Table S10).

Gene expression level is derived from the sum effects of positive and negative units

We explored the interactions between the regulatory units of a gene. As a case study, 
we analyzed unit interaction in the smoothened, frizzled class receptor (SMO) driver-
gene. Expression variation of this gene was associated with methylation variations in 
three negative units and two positive units (Fig. 3e). TAS analyses of these units sug-
gested that the negative units served as enhancers in GBM cells, and the positive units 
served as silencers (Additional file 2: Fig. S8a). Indeed, deletion of unit “A” (an inferred 
enhancer) from GBM cells reduced the expression level of SMO relative to mock-
treated cells, whereas deletion of unit “D” (an inferred silencer) gained its expression 
(Fig. 3f and Additional file 2: Fig. S8b-d). A control deletion of a neutral (non-regula-
tory) segment located between the units yielded no effect (Additional file 2: Fig. S9). We 
then analyzed the effect of co-deletions. Markedly, the enhancer unit “A” maintained its 
effect (30–50% of SMO expression), regardless of the silencer (Fig. 3g, Additional file 2: 
Fig. S8). Hence, enhancer and silencer units provided independent, additive effects on 
expression.

We further study between-unit interactions on the large scale, by analyzing coordina-
tion of methylation levels across gene domains. As expected, direct correlations were 
observed among the methylation sites of given units, thus revealing their coordinated 
effects on gene expression (Fig. 4, Additional file 2: Fig. S10a, Additional file 3). We then 
analyzed the interactions between different units. Units with same (positive or nega-
tive) effects, i.e., units A, B, and C or units D and E of the SMO gene, were tended to 
show direct correlations. However, positive and negative units were reversely correlated 
(Fig. 4, Additional file 2: Fig. S10a, Additional file 3). To better understand the biologi-
cal meaning of these interactions, we analyzed their effect on gene expression. Clearly, 
tumors with unmethylated silencers and methylated enhancers display the lowest levels 
of gene expression, tumors with methylated silencers and unmethylated enhancers dis-
played the highest, and mid-methylated enhancers and silencers associated with inter-
mediate expression. These trends observed between GBM subtypes, which differentially 
expressed the genes, and to some extent also within the subtypes (Fig.  5, Additional 
file 2: Fig. S10b).

Taken together, the genetic-manipulation experiments and the analyses of intact 
tumors suggest that the mapped regulatory units provide complement, positive, and 
negative effects on expression. The sum of these effects describes the observed level of 
gene expression. We termed these cooperating regulatory units the methylation-related, 
cis-regulatory networks of genes.

Genes in overlapping regulatory domains have independent regulatory networks

We further analyzed the relationships between networks of neighboring genes. Interest-
ingly, units of given genes maintain their inter-network coordination, while showing no 
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interactions with the activity of the other gene’s units within same regulatory domains 
(Additional file  2: Fig. S11, Additional file  4). Thus, genes with shared regulatory 
domains may collect their own transcriptional inputs from units that spread over the 

Fig. 4 Between-unit interactions. a Top: Map of the methylation sites (listed 1–45) and the five regulatory 
units (listed A–E) that associated with SMO expression variation. Blue: negative associations, red: positive 
associations. Bottom: Matrix of the correlations between the methylation levels of SMO-associated sites. Each 
square in the matrix shows the methylation-versus-methylation correlation (R) between two of the associated 
sites. Genomic coordinates of the sites are indicated to the left. Bold coordinates indicate the sites that 
consist the SMO expression model (see Fig. 6). The analyses of the other studied genes are given in Additional 
file 3. b Correlations within the entire list of methylation sites that assessed in the SMO domain. The sites and 
units that presented in a are indicated
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entire domain. These structures of spatially intermixed, gene-specific networks allow to 
neighboring gens to maintain independent expression profiles.

Key methylation sites signify the overall effect of cis‑regulatory networks

To gain insight to the mechanism of methylation-related networks, we examined the 
contribution of particular networked sites to the overall effect of the network: given a 
certain effect of a regulatory site on expression of an associated gene, we asked which 
other sites may improve the description of the gene expression variation across the 
tumors. Hence, redundant regulatory sites should provide no improvement, whereas 
antagonists or synergistic sites are expected to improve the descriptions provided by 
each of the sites alone. For this analysis, we focused on the major groups of enhancers 
and silencers (groups I and IV in Fig. 2g), by omitting 254 (22%) of the circuits, which 
according to the reporter assays may not belong to these groups. Using stepwise analy-
ses, we identified the best models out of the possible combinations of one to four sites 
(Fig.  6a). For example, the gene TNFAIP3 was associated with eighteen methylation 
sites. When individually assessed the methylation variations of these sites described the 
expression variation of TNFAIP3 with R-values ranging between − 0.72 and 0.71 (Addi-
tional file 1: Table S9). However, a specific combination of four of these sites, out of 4029 
possible combinations of one to four sites, provides R = 0.9 at p = 1.41E − 06 (Fig. 6b). 
Similarly, the model of the SMO expression, out of 17,875 possible combinations, was 
based on sites with individual R values between − 0.64 and 0.75 (Additional file 2: Fig. 
S8a), which together provide R = 0.8 at p = 0.00027. Noticeably, these best models rely 
on a single methylation site per unit to represent the effect of the entire unit. However, 
both positive and negative units were required in order to described the expression vari-
ations of the genes.

Fig. 5 SMO expression level versus the methylation levels of SMO-associated sites and units. Tumor samples 
and subtypes are as described in Additional file 1: Table S5. Associated sites and units are as described in 
Fig. 4a. White cells signify unavailable data
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Fig. 6 Key methylation sites describe inter-patient expression variation. a Development of 
methylation-based models of gene expression variation. b Example models of gene expression variations. 
Left: Methylation versus expression of the sites consisting the best model of the TNFAIP3 gene. Right: 
Predicted versus observed expression levels of the TNFAIP3 or the SMO genes across the tumors. SMO model 
was based on the four sites shown in Fig. S8a. c Fractions of gene-expression models which incorporate 
methylation data from, positive, negative, or both positive and negative units. d Assessing the prediction 
power of gene-expression models. Left: Developing of a prediction model for each of the 24 GBM tumors, 
based on the other 23 tumors. Middle: Example distribution of predicted versus observed expression levels of 
cancer genes. The full list of distributions is given in Additional file 5. Right: Distributions of predicted versus 
observed expression levels of driver genes across the 24 tumors. Log 2 of the differences between predicted 
and observed gene expression levels for driver genes with developed models are shown. Box plots describe 
the distributions of prediction errors in 24 independent tests
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Overall, significant models of inter-patient’s expression variation were developed for 
81 of the genes (58 drivers and 23 reference genes). Out of these, the expression of 58 
genes (39 drivers and 19 reference genes) were best described by synergic combinations 
of sites that together provide better description than each of the sites alone. Of these 
synergic models, 23 used sites from both negative and positive sites (Fig. 6c, Additional 
file 1: Table S9). Note that the models were free to employ any associated site. Therefore, 
the fact that sites from both positive and negative units were often selected further high-
lighted the complementary role of positive and negative effects on gene expression.

We further controlled for possible bias due to the limit of up to four associated sites in 
the models, by re-developing the models using a least absolute shrinkage and selection 
operator (LASSO) approach [33], in which no limitation on the number of participating 
sites was applied. This independent analysis yielded very similar results, with an average 
of 3.8 contributing sites per gene-model across all genes. We concluded that methyla-
tion variation at relatively small number of indicative methylation sites may effectively 
describe gene expression variation.

Prediction quality

Aside from understanding the mechanism of expression variation, we also sought to 
evaluate the possible usefulness of methylation-based models in predicting gene expres-
sion levels, e.g., when RNA biopsies are not available. Hence, we tested the ability of 
the developed models to predict gene expression levels in GBM tumors which was not 
assessed during model development. For each of the genes, we repeated the model-
development procedure 24 times, each time using another combination of 23 samples, 
and analyzed the prediction errors in the left-out samples (Fig. 6d, Additional file 2: Fig. 
S12-13, Additional file 5). Then, we tested the ability to predict gene-expression altera-
tions by identifying the cases (n = 868) in which the left-out tumor displayed irregular 
expression level (> 1SD) of a targeted gene. In 646 (74.4%) of these abnormalities, the 
models accurately predicted the expression level of the gene (prediction error within 
twofold of gene expression-level) (the “Methods” section, Additional file 1: Table S11), 
suggesting that further development of methylation-based models may be of practical 
value.

Relative effects of methylation and sequence alternations

Finally, we compared relative contributions of sequence and methylation alternations 
to gene variation. In nearly half (45.8%) of the tumors, fewer than five driver genes were 
affected by nonsynonymous or copy number mutations (Table 1), in line with previous 
analyses of this cancer [34, 35]. This is in spite to the minimum of five to eight mutated 
driver genes that was suggested as the smallest number of mutations that enables the 
development of a tumor, suggesting that coding-mutation alone cannot account to many 
GBM tumors [36]. Further deep sequencing of silencer and enhancer sites in eight of the 
tumors (Additional file 1: Table S5) revealed only one regulatory sequence mutation that 
may possibly affect expression (Additional file 2: Supplemental Note S1). In contrast, all 
tumors included more than nine cancer-driving genes, which were abnormally expressed 
in the tumors compared with normal brains, and their inter-patient expression variation 
explained by methylation variation (Table 1). In many of these transformed driver genes, 
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alternate methylation was the only type of mutation that associated with their malfunc-
tion (Table 2). These abnormally expressed, methylation-related genes involved in a range 
of cancer-initiation and progression processes, which may support the development of 
the previously unexplained tumors (Additional file 2: Fig. S14).

Discussion
Whereas the general structure of gene regulatory domains was comprehensively 
described [37], their internal organization are less understood. Particularly, the opera-
tional sites and units within these domains, the interaction between them, and the 
genetic and epigenetic mechanisms that organize their effects on genes were not well 

Table 2 Mutations of abnormally expressed driver genes

a Two-fold or more expression differences from normal brain samples
b Have a verified methylation-based model of expression variation

Mutation type Driver gene Fraction (%) 
of tumors 
with coding 
mutations

Fraction (%) of 
tumors with 
abnormal 
 expressiona

Expression 
variation 
 explainedb

Methylation‑
expression 
associations

Regulatory FBXW7 0 100 Yes Negative

SMO 0 95.8 Yes Both

SOX9 0 79.2 Yes Positive

FGFR2 0 79.2 Yes Negative

CASP8 0 70.8 Yes Positive

TNFAIP3 0 70.8 Yes Both

AR 0 70.8 Yes Negative

CHEK2 0 66.7 Yes Negative

H3F3A 0 54.2 Yes Both

ABL1 0 45.8 Yes Both

DAXX 0 29.2 Yes Both

MSH6 0 29.2 Yes MSH6

ZIC2 0 12.5 Yes Negative

JAK1 0 8.3 Yes Both

U2AF1 0 8.3 Yes Positive

CTNNB1 0 8.3 Yes Negative

MLH1 0 8.3 Yes Negative

SOCS1 0 4.2 Yes Both

SRSF2 0 4.2 Yes Both

SMAD2 0 4.2 Yes Negative

VHL 0 4.2 Yes Negative

Regulatory and 
coding

CDKN2C 5.3 100 Yes Negative

BRCA1 21.1 83.3 Yes Both

TRAF7 5.3 41.7 Yes Positive

AKT1 5.3 20.8 Yes Positive

PBRM1 5.3 12.5 Yes Both

MSH2 10.5 8.3 Yes Both

FUBP1 5.3 8.3 Yes Negative

MEN1 5.3 4.2 Yes Both

CREBBP 10.5 4.2 Yes Positive

PRDM1 10.5 0.8 Yes Both

Coding TP53 47.0 100 No -



Page 15 of 32Edrei et al. Genome Biology          (2023) 24:264  

mapped and explained. Due to this lack of knowledge, the origin of variable expression 
levels of disease genes remained unclear. Here, we presented a practical way to decipher 
the internal structure of large regulatory domains, by mapping and annotation of cis-
regulatory methylation schemes. Utilizing this approach, we revealed a main source of 
gene variation among glioblastoma patients. Furthermore, our study shed light on the 
mechanism of gene regulation and explains some long-standing wonderings regarding 
the effect of epigenetic mutations.

Our results suggest that DNA methylation either directly affects, or is a very close 
bystander, of the binding profiles of transcriptional activators and repressors to regu-
latory DNA sites. In turn, the binding of these factors determined the transcriptional 
activity of genes, which involve in cancer initiation and progression pathways (Addi-
tional file  2: Fig. S14). We further showed that the methylation profiles at key regula-
tory sites efficiently predict the variation in the activity level of these genes among GBM 
patients (Fig. 6). While the experimental assay supports a direct, causative role for meth-
ylation in the setting of these expression profiles (Fig. 2), we cannot exclude a more com-
plex mechanism in actual chromatin.

We initially choose to focus on DNA methylation due to its unique efficacy as a sensi-
tive and quantitative indicator of cis-regulatory activity [31, 38]. However, the regulatory 
effect of DNA methylation was unclear: whereas methylation of gene promoters was 
almost exclusively associated with transcriptional repression [39], positive and negative 
effects on gene expression were described in non-promoter sites [40–42]. The reason for 
this duality was not explained. Moreover, while evidence for direct effects of DNA meth-
ylation on transcriptional enhancers has been presented [43, 44], its effect on silencers 
and on the interaction between silencers and enhancers remains unknown. Due to these 
inconsistencies, interpretation of methylation data was highly complex. We showed that 
this complexity may be deciphered by considering specific effects of methylation in par-
ticular regulatory contexts.

A key feature of our design is the ability to co-explore enhancers and silencers. This 
was achieved by adaption of a commonly used reporter assay [45], so that its intrinsic 
bias toward enhancers [24] was removed. Utilizing this assay, we showed that under 
experimental conditions, DNA methylation can enforce regulatory elements to switch 
their mode-of-action between enhancer and silencer functionalities (Fig. 2).

It was previously shown that silencers are relatively enriched by sequence bind-
ing motifs of transcriptional repressors [17]. Our analysis showed a weak tendency of 
the positive sites towered repressor binding motifs, including EZH2 and REST motifs; 
however, both positive and negative sites encompass binding motifs of repressors and 
activators, and no significant difference was revealed. Moreover, positive and negative 
sites bind both activators and repressors, over a range of tissues and cell types (Fig. 2e). 
These findings are in line with the previously shown ability of regulatory sites to bind 
activators and repressors over alternate cellular conditions [24–30] and to swap between 
silencing and enhancing effects in alternate cellular contexts [18–23]. The mechanism of 
transition between silencing and enhancing effects of regulatory sequences is not well 
understood. It was recently observed that regulatory elements that switch functional-
ity during T cell development contain binding sites of opposing functions within same 
region, suggesting the use of different transcription factors for establishing activating 
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and repressive functions, but the mechanism that govern this transition was not defined 
[23]. We showed that regulatory sites may swap between enhancing and silencing func-
tioning even within a given cell type, when no developmental process occurred. There-
fore, alternation in the expression of activators and repressors may not be necessary for 
functional switching. Rather, we showed that DNA methylation is both required and suf-
ficient to induce functionality switching, at least under experimental conditions. Moreo-
ver, methylation not only directs functionality switching but may also tune the degree 
of regulatory effects, ranging from low to high gene enhancing or silencing (Fig. 2g and 
Additional file 2: Fig. S5c). Whether these features defined a unique class of methylation-
depended regulatory sites, or also applies to other sites, remained to be determined.

Our results also hint at the mechanism of methylation-mediated switching and retun-
ing of regulatory elements. First, the finding that many enhancers and silencers loose 
or reduce their activity upon methylation (Fig. S5c) suggests a similarity with promoter 
methylation, in which DNA methylation eliminates the binding of transcriptional activa-
tors [39]. However, we also showed that in non-promoter regulatory elements, meth-
ylation can decrease or increase regulatory activities. Taken together with the former 
observations of dual-functional binding sequences in altering regulatory elements, these 
observations fit with methylation-mediated retuning of the balance between bound 
activators and repressors. Indeed, a wide repertoire of gene activators and repressors 
bind the mapped enhancer and silencer elements (Fig. 2e). The identity of the transcrip-
tion factors that bind to the described sites upon acting as enhancers or silencers, and 
whether they binding affinities are methylation-dependent, remained to be studied. 
Considering that many activators and repressors are sensitive to methylation of their 
binding sites [46], this is a feasible scenario.

Our study applied both experimental and in  vivo analyses to explore methylation-
related regulatory structures. The experimental gene-reporter assay allowed for the 
evaluation of methylation effects under controlled conditions, while other influences 
were neutralized. This assay was apparently effective in the revealing of net methylation 
effects and was crucial for the detection of methylation roles in enhancers and silencers 
(Fig. 2). However, its simplified structure is essentially different from the actual tumor 
conditions and ignored the important effects of chromatin states, long-distance interac-
tions, and partial methylation conditions. The profiles of expressed transcription factors 
may be also differing between the experimental assay and actual tumors. Therefore, the 
effect of methylation in particular regulatory sites should be learned in genuine tumors. 
Nevertheless, the experimental assay revealed general principles of methylation effects 
and facilitate their following detection in actual tumors. Specifically, the participation of 
multiple elements in the regulation of particular genes, the cooperative positive and neg-
ative effects on gene expressions that provided by these elements, and the involvement 
of DNA methylation with these opposing effects were first learned in the experimental 
assay and subsequently described in the tumors.

Based on these understandings, we gained insight to the organization of gene regu-
latory domains in actual tumors. We showed that regulatory domains comprise gene-
specific networks, each of them spreading over large (typically hundreds of kilobases) 
genomic spans, which may overlap with networks of other genes. These cis-regulatory 
networks are composed of discrete, spatially separated regulatory units. Each of these 
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units mediate a defined, silencing or enhancing effect on the expression of the target 
genes. The combined effects of the units describe the observed level of gene expression 
(Figs. 3 and 6). In line with the excess of functional enhancers (Fig. 2b), negative associa-
tions, both on the level of single sites and site units, were more abundant than positive, 
possibly due to an access of bound gene activators over gene repressors (Figs. 4 and 5,  
Additional file 1: Tables S9 and S10). Nevertheless, the expression models of many gene 
relay on both positive and negative associations (Fig. 6c), suggesting that gene regulation 
often required the both. Variation in the activity levels of the networked units, as indi-
cated by their level of DNA methylation, conveys gene expression variation (Figs. 4 and 5 
and Additional file 2: Fig. S8-S10). The typical span of the units, as appeared from meth-
ylation-based analyses, is several hundred bp (average size = 915.1 bp, Additional file 1: 
Table  S10). Under controlled conditions, DNA methylation determines the mode and 
the level of the transcriptional effects carried by these units (Fig. 2). In actual tumors, 
it closely reports these effects, although its causative role in real chromatin conditions 
remained to be determined.

Our analyses further reveal how differential expression profiles are enabled for genes 
in shared regulatory domains. Apparently, gene-specific territories [47] are not essen-
tially required. Rather, we showed that gene-specific networks may use overlapping 
genomic spans (Additional file 2: Fig. S11, Additional file 4). This structure may cause 
spatial interfering when units of overlapping networks converge with their target pro-
moters, unless if the network convergences occur within short, differential time-win-
dows. A recent analysis of DNA looping dynamics [48] support this view.

Our mapping approach provided unique coverage and resolution of the explored 
domains, which are not achievable by other methylation-mapping approaches including 
whole-genome bisulfite sequencing and commercial microarrays. Yet, some functional 
sites and units might be missed in our maps. Particularly, the filtering of possible gene-
body [49, 50] or secondary effects (Additional file 2: Fig. S6) may abolish some actual 
sites. In addition, units with low number of methylation sites may escape our mapping. 
Additional limitations of our mapping criteria include the constant 2 Mbp windows that 
we applied to all genes and the specific chromatin regions that we targeted. Since TADs 
were not defined for about a third of our genes of interest, we choose to apply equal 
analysis-windows to all genes. This provided full coverage of > 80% of the mapped TADs 
while allowing unbiased analyses of the genes. However, we cannot eliminate the possi-
bility that more relevant sites may reside outside of the analyzed domains. Within these 
domains, we focused on methylation sites within H3K4me1-marked and H3K27ac-var-
iable chromatin blocks. As shown, these targeting criteria are relevant to a large bulk of 
glioblastoma silencers and enhancers. Nevertheless, additional regulatory elements may 
reside in areas that has not been covered.

Knowing the level of DNA methylation at key sites within the mapped units, in 
bona fide cancer tumors, was sufficient to obtain effective description of gene expres-
sion variations, across patients (Fig.  6). Moreover, DNA sequencing of these sites 
revealed no sequence alternations that may account for the observed variations (Addi-
tional file 2: Supplemental Note S1). In 20 of the genes, methylation variation alone is 
accountable for > 80% of the observed expression variations (R =  > 0.9, Additional file 1: 
Table  S9), thus leaving little space for other genetic or environmental factors. Hence, 



Page 18 of 32Edrei et al. Genome Biology          (2023) 24:264 

methylation variation appeared as a prime indicator of inter-patient expression varia-
tion. Whether it may also explain the transformation of normal cells into cancer remains 
unknown. The observation of driver genes which are abnormally expressed in the cancer, 
and have models of expression variation but no coding or regulatory sequence muta-
tions (at least in their known cis-elements) (Table 2), may support this possibility. How-
ever, more research is needed to established a gene-transformation effect.

The general nature of our findings suggests relevance to other cancers and diseases 
besides glioblastoma; however, further study is needed to establish this possibility. Inter-
estingly, same methylation sites can switch between positive and negative effects on gene 
expression, between cancers (Additional file 2: Fig. S2b). Hence, while the general struc-
ture of cis-regulatory networks may be conserved over cancers, their particular sites and 
units may be disease-specific.

The origin of inter-patient methylation variation remains unknown. Global and local 
epigenetic schemes, including DNA methylation blueprints, are often disrupted dur-
ing the development of cancers [51–58]. Several mechanisms may cause methylation 
alternations and may account for the methylation-alternation that observed in this 
study. These include loss or gain of methylation or demethylation factors, errors in the 
replication of methylation signals during cell divisions, and remote effects of sequence 
alternations [59]. However, elucidation the cause of particular alternations during the 
development of the tumors required additional research.

The role of methylation alternation in gene regulation and inter-patient variation was 
not fully explained. Our findings call for a new evaluation of these roles. It was some-
times deduced that the overall effect of methylation is limited, as global de-methylation 
of the genome yields little effect on the expression of the most of the genes [60, 61]. Re-
analyses of global de-methylation experiments, in light of our findings, may reveal that 
these seemingly insensitive genes are actually protected from the otherwise harsh effect 
of global methylation failures, by balanced numbers of positive and negative sites in their 
cis-regulatory networks. Yet, they may be strongly affected by site-specific methylation 
alternations. Therefore, the number of genes that was controlled by DNA methylation 
may be significantly greater than already known.

Conclusions
Utilizing high-coverage, high-resolution mapping of regulatory methylation sites, we 
shed light on the internal organizations of gene regulatory domains as well as on the reg-
ulatory role of DNA methylation. We found that cis-regulatory domains are composed of 
spatially overlapped, gene-specific regulatory networks. These networks comprised mul-
tiple regulatory units; each of them provides a define, positive, or negative effect on the 
expression of the targeted genes. Under control conditions, DNA methylation dictates 
the mode and the level of these effects. The sum effects of methylation variation in a 
small number of key methylation sites, located in positive and negative units, effectively 
describe the variation in the expression of cancer genes among glioblastoma patients. 
The revealed mechanism shed light on a long-standing enigma regarding the regula-
tory role of DNA methylation, explains inter-individual gene-expression variation, and 
flags particular methylation sites as candidates for RNA-free monitoring of inter-patient 
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expression variation. Whether genetic or epigenetic editing of these sites will improve 
GBM phenotypes, and the relevance for other illnesses, remains to be determined.

Methods
Input materials

Input materials for target enrichment library were provided by the German Cancer 
Research Center (DKFZ), Heidelberg, Germany. Four main GBM subgroups, as defined 
based on sequence and methylation profiling [62], were included. Equivalent subgroup 
representation was given (Additional file 1: Table S5).

The Cancer Genome Atlas (TCGA)

Gene expression (RNAseqV2 normalized RSEM) and DNA methylation data (Human-
Methylation450) were downloaded in May 2019 using TCGAbiolinks [63–65] for the 
following cancer types: BRCA (778 genomes), CESC, (304), COAD (306), ESCA (161), 
GBM (50), KICH (65), KIRC (320), KIRP (273), LIHC (371), LUAD (463), PAAD (177), 
SKCM (103), THYM (119).

NIH Roadmap Epigenomic Project [66] 

H3K4me1 broad peaks of corresponded TCGA tumor types and DNaseI cell-specific 
narrow peaks of normal brain (E081 and E082) were obtained.

Encyclopedia of DNA Elements (ENCODE) [67]

DNaseI hypersensitivity peak clusters (wgEncodeRegDnaseClusteredV3.bed.gz) and 
transcription factor ChIP-seq clusters (wgEncodeRegTfbsClusteredWithCellsV3.bed.
gz) and DNase brain tumor data (Gliobla and SK-N-SH) were obtained. The ENCODE 
transcription factor binding (TFB) scores presented in Fig.  2 represent the peaks of 
transcription factor occupancy from uniform processing of ENCODE ChIP-seq data 
by the ENCODE Analysis Working Group. Scores were assigned to peaks by multiply-
ing the input signal values by a normalization factor calculated as the ratio of the maxi-
mum score value (1000) to the signal value at one standard deviation from the mean, 
with values exceeding 1000 capped at 1000. Peaks for 161 transcription factors in 91 cell 
types are combined here into clusters to produce a summary display showing occupancy 
regions for each factor and motif sites within the regions when identified. One-letter 
code for the different cell lines is given in https:// hgdow nload. cse. ucsc. edu/ golde npath/ 
hg19/ encod eDCC/ wgEnc odeRe gTfbs Clust ered/ wgEnc odeRe gTfbs Clust eredV3. bed. gz.

Additional public data

HiC Data for TADs were downloaded from https:// wangf tp. wustl. edu/ hubs/ johns ton_ 
gallo/ [68].

Cell lines

Human GBM T98G cells were purchased from the ATCC collection (ATCC® CRL-
1690™) and cultured in minimum essential medium-Eagle (Biological Industries), 
supplemented with 10% heat-inactivated FBS #04-127-1A (Biological Industries), 
1% penicillin/streptomycin P/S # 03-031-1B (Biological Industries), 1% L-glutamine 

https://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeRegTfbsClustered/wgEncodeRegTfbsClusteredV3.bed.gz
https://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeRegTfbsClustered/wgEncodeRegTfbsClusteredV3.bed.gz
https://wangftp.wustl.edu/hubs/johnston_gallo/
https://wangftp.wustl.edu/hubs/johnston_gallo/


Page 20 of 32Edrei et al. Genome Biology          (2023) 24:264 

#03-020-1C (Biological Industries;), 1% non-essential amino acids, #01-340-1B (Biologi-
cal Industries), and 1% sodium pyruvate #03-042-1B (Biological Industries), at 37 °C and 
5%  CO2.

Genes

Genes analyzed in the study included the pan-cancer driver genes listed by Vogelstein 
et al. [36] including the GBM driver genes listed by Kandoth et al. [35], but excluding the 
HIST1, H3B, and CRLF2 genes due to missing expression data, and the AMER1 gene for 
which probe design failed. Cancer type-specific genes (n = 23) were selected from a pub-
lished list of 840 genes [69]. Non-driver candidate GBM genes (n = 14) were suggested 
by BR. Non-driver variable genes (n = 22) were defined as those showing top expression 
variation among the 70 analyzed GBM samples for which we found at least two correla-
tive sites in the TCGA-GBM dataset. We used the genomic coordinates for gene features 
from the hg19 refGene table of the UCSC Genome Browser [70]

Target enrichment assays

Variable regulatory regions were defined as the regions carrying H3K4me1 marks in all 
tumors, and also H3K27ac in at least 25% of the tumors, but not in at least other 25% 
of the tumors. RNA probes were designed to target all methylation sites within these 
regions, utilizing the SureDesign tool (https:// earray. chem. agile nt. com/ sured esign/). 
Probe duplication was applied in cases (n = 8652) of > 5 CpG sites within the 120 bp span 
of the probes. Repetitive regions were identified by BLAT [71] and excluded from the 
design. Custom-designed biotinylated RNA probes were ordered from Agilent Technol-
ogies (https:// www. agile nt. com).

Genomic tumor DNAs were arbitrarily sheared using a sonication device into collec-
tions of DNA fragments of various sizes. These DNA segments were then allowed to 
attach the probes which fully or partially overlapped their span. The resulting collection 
of captured DNA segments (median size = 224 bp) was integrated into gene-reporting 
vectors or underwent sequencing.

Enrichment libraries of GBM-targeted regulatory DNA segments were constructed 
using the SureSelect protocol #G9611A (Agilent) for Illumina multiplexed sequencing, 
which used 200 nanograms genomic DNA per reaction, or the SureSelect Methyl-Seq 
protocol #G9651A using 1  μg genomic DNA per reaction. Quality and size distribu-
tion of the captured genomic segments were verified by TapStation nucleic acids system 
(Agilent) assessments of regular or bisulfite-converted libraries. Target enrichment effi-
ciency and coverage was evaluated via sequencing.

Massively paralleled reporter assay

Massively parallel functional assays were performed as described by Arnold et al. [72], 
with the following modifications.

Reporter backbone

The pGL3-promoter vector (Promega, GenBank accession number U47298) was modi-
fied as described in Additional file 2: Fig. S15.

https://earray.chem.agilent.com/suredesign/
https://www.agilent.com
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Genomic inputs

Plasmid libraries were constructed using a target-enriched library as input material: 
1  μL of adaptor-ligated DNA fragments from the AK100 target enrichment library 
was amplified in eight independent PCR reactions, using KAPA Hifi Hot Start Ready 
Mix #KK2601 (KAPA Biosystems). Reaction conditions included 45 s (s) at 95 °C, 10 
cycles of 15 s at 98 °C, 30 s at 65 °C, 30 s at 72 °C, and 2 min final extension at 72 °C, 
applying the forward Illumina universal primer: 5′-TAG AGC ATG CAC CGG TAA TGA 
TAC GGC GAC CAC CGA GATCT-3′ and reverse Indexed Illumina primer: 5′-GGC 
CGA ATT CGT CGA CCA AGC AGA AGA CGG CAT ACG AGAT-3′, containing Illumina 
adapter sequences. A specific 15-nt extension was added to each adapter as homol-
ogy arms for directional cloning. PCR reactions were pooled and purified on Nucle-
oSpin Gel and PCR Clean-up #740609 columns (Macherey–Nagel). The screening 
vector was linearized with AgeI-HF and SalI-HF restriction enzymes (NEB) and puri-
fied through electrophoresis and gel extraction. Purified PCR products were cloned 
into the linearized vector by recombination with the adapter-ligated homology arms 
in 12 reactions of 10 μL each, applying the In-Fusion HD #639649 kit (Clontech). The 
reactions were then pooled and purified with 1x Agencourt AMPureXP DNA beads 
#A63881 (Beckman Coulter) and eluted in 24 μL nuclease-free water.

Library propagation

Aliquots (n = 12, 20 μL each) of MegaX DH10B T1 Electrocomp Bacteria #C640003 
(Invitrogen) were transformed with 2 μL of the plasmid DNA library, according to the 
manufacturer’s protocol, except for the electroporation step, which was performed 
using the Nucleofactor 2b platform (Lonza) Bacteria program 2. Every three trans-
formation reactions were pooled (total of 4 reactions) for a 1-h recovery at 37 °C, in 
SOC medium, while shaking at 225 rpm, after which each reaction was transferred to 
500 ml LB AMP (Luria Broth Ampicillin) for overnight 37 °C incubation, while shak-
ing at 225  rpm. Propagated plasmid libraries were extracted using the NucleoBond 
Xtra Maxi Plus Kit (#740416) (Macherey–Nagel). To verify unbiased amplification of 
the targeted genomic segments, the size distribution and coverage of the library were 
analyzed before and after the propagation step (Additional file 2: Fig. S16).

In vitro methylation assay

Complete de-methylation stages were achieved by propagation of the libraries in bac-
teria following PCR amplification stages. In  vitro methylation of the de-methylated 
plasmid DNA was performed using the New England Biolabs CpG Methyltransferase 
M.SssI #M0226M according to the manufacturer’s instructions. Efficient methyla-
tion level was confirmed by using a DNA protection assay against FastDigest HpaII 
#FD0514 (Thermo Scientific) digestion (Additional file 2: Fig. S17).

Transfection to GBM cells

Twenty micrograms of DNA were transfected into 2 ×  106 T98G and U87 cells at 
70–80% confluence, using the Lipofectamine 3000 transfection kit #L3000-015 
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(Invitrogen), according to the manufacturer’s protocol. In each experiment, 5 ×  107 
cells were transfected and incubated at 37 °C, for 24 h.

Isolation of plasmid DNA and RNA from GBM cells

Plasmid DNA was extracted from 2.5 ×  107 cells, 24  h post-transfection. Cells were 
rinsed twice with PBS pH 7.4, using the NucleoSpin Plasmid EasyPure kit #740727250 
(Macherey–Nagel), according to the manufacturer’s protocol. Total RNA was extracted 
from 2.5 ×  107 cells 24  h post-transfection using GENEZOL reagent # GZR200 
(Geneaid), according to the manufacturer’s protocol. The polyA + RNA fraction was 
isolated using Dynabeads Oligo-(dT)25 #61002 (Thermo scientific), scaling up the man-
ufacturer’s protocol 5-fold per tube, and treated with 10 U turboDNase #AM2238 (Invit-
rogen) at 20 ng/μL 37 °C, for 1 h. Two reactions of 50 μL each were pooled and subjected 
to RNeasy MinElute clean up kit #74204 reaction (Qiagen) to inactivate turbo DNase 
and concentrate the polyA + RNA.

Reverse transcription

First-strand cDNA synthesis was performed with 1–1.5  μg polyA + RNA in a total of 
four reactions, 20 μL each, using the Verso cDNA Synthesis Kit #AB1453B (Thermo Sci-
entific) according to the manufacturer’s protocol, with a reporter-RNA specific primer 
(5′-CAA ACT CAT CAA TGT ATC TTA TCA TG-3′). cDNA (50 ng) was first amplified by 
PCR, at 98 °C for 3 min, followed by 15 cycles at 95 °C for 20 s each, 65 °C for 15 s, and 
72  °C for 30  s. Final extension was performed at 72  °C for 2  min, using the Hifi Hot 
Start Ready Mix (KAPA), with reporter-specific primers. Forward primer: 5′-GGG CCA 
GCT GTT GGG GTG *T*C*C*A*C-3′ which spans the splice junction of the synthetic 
intron, and reverse primer: 5′-CTT ATC ATG TCT GCT CGA *A*G*C-3′, where “*” indi-
cates phosphorothioate bonds. In total, 16–20 reactions were performed. The amplified 
products were purified with 0.8 × Agencourt AMPureXP DNA beads and eluted in 20 
μL nuclease-free water. The resultant purified products served as a template for a sec-
ond PCR performed under the following conditions: 95 °C for 3 min, 12 cycles of 98 °C 
for 15 s, 65 °C for 30 s, 72 °C for 30 s. Final extension was performed at 72 °C for 2 min, 
with forward Illumina universal primer: 5′-TAG AGC ATG CAC CGG TAA TGA TAC GGC 
GAC CAC CGA GATCT-3′ and reverse indexed Illumina primer: 5′-GGC CGA ATT CGT 
CGA CCA AGC AGA AGA CGG CAT ACG AGAT-3′. PCR products were purified with 0.8 
x Agencourt AMPureXP DNA beads, eluted in 10 μL nuclease-free water, and pooled.

Transcriptional activity analysis

Quality and size distribution of extracted plasmid DNAs and RNAs were verified using 
TapeStation (Additional file 2: Fig. S18). DNA and cDNA samples were sequenced using 
the HiSeq2500 device (Illumina), as per the 125-bp paired-end protocol. Alignment with 
the hg19 reference genome was performed on the first 40 bp from both sides of the DNA 
segments, using Bowtie2 [73]. Reads with mapping quality value above 40 aligned with 
the probe targets were considered for further analyses. Each of the captured genomic 
segments was given a unique ID according to genomic location and indicated the total 
number of DNA and RNA reads. Only on-target segments with at least one RNA read 
(n = 623,223 pre-methylation; 304,998 post-methylation) were included. > 99% of the 
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targeted regions were presented following the propagation in bacteria and re-extraction 
from T98 cells (Additional file 1: Table S12). Technical and biological replications per-
formed using Illumina MiSeq sequencing.

Transcriptional activity score (TAS) was calculated as follows:

where j is a genomic element and  RNAtotal or  DNAtotal is the sum of all segment reads.
For the analyses of isolated regulatory elements, TAS was determined in 500 bp, 50% 

overlapping windows, across the genome, based on the DNA and RNA reads of seg-
ments overlapping with the given window. TAS significance was tested by chi-square 
against total RNA to DNA. Multiple comparisons were corrected. Functional regula-
tory elements were defined as elements with FDR q value < 0.05 and minimum 100 
RNA reads, where positive TASs were defined as enhancers and negative as silencers. 
The methylation effect was analyzed by calculating TAS difference between treatments, 
where regulatory elements with a difference of ≥ 1.5-fold activity were counted.

Inferring cis‑regulatory circuits

Methylation sequencing

Methyl-seq-captured libraries were sequenced using a Hiseq2500 device (Illumina), 
by applying paired-end 125 bp reads. Sequence alignment and DNA methylation call-
ing were performed using the Bismark V0.15.0 software [74] against the hg19 refer-
ence genome. The sequencing yielded 52–149 million reads per sample, at an average 
mapping efficiency of 78.1%, average bisulfite efficiency of 97.6%, and 99.4% on target 
average. Overall, a mean coverage of 916 reads per site was obtained, and 86% of the tar-
geted sites were covered by at least 100 reads. Sites that appeared in less than eight of the 
tumors were excluded from the analyses.

Circuit annotation

Correlation between the expression level of each targeted gene and the DNA methyla-
tion level of targeted CpG sites in a 2-Mbp region flanking its transcription start site 
(TSS) was assessed by applying pairwise Spearman’s rank correlation coefficient with 
Benjamini–Hochberg correction for multiple-hypothesis testing at FDR < 5%. Circuits 
with R2 > 0.3 were included. Sites that correlated (R2 > 0.1) with expression of the PTPRC 
(CD45) pan-blood cells marker were considered a possible result of blood contamination 
and were eliminated from later analyses, as described [75]. Potential secondary effects 
were considered in two cases: (1) the correlated site was included within the prescribed 
portion (the gene body, excluding the first 5 Kbp) of another gene, and (2) the correlated 
site was located within the promoter (from TSS-1500 bp to TSS + 2500 bp) of another 
gene. For these cases, a correlation between the expression level of the genes was tested, 
and circuits with R2 > 0.1 that fit one of the scenarios described in Additional file 2: Fig. 
S7 were excluded. For model developing, we excluded circuits which mismatched the 
report assay: circuits with methylation sensitive TAS (which were calculated for the 
DNA segments overlapping the given site and were changed by × 1.5 fold by methyla-
tion) which mismatched the canonical mode (i.e., groups I and II in Fig. 2g).

TAS = log2((RNAj/DNAj)/(RNAtotal/DNAtotal)),
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Methylation‑based prediction of gene expression

For each gene, we performed two methods: (1) multiple linear regression and (2) lasso 
regression. (1) In multiple linear regression, we should reduce the number of variables 
since we have only 24 samples. Thus, we tested all the possible combinations of one to 
four associated sites. For each combination with full data in at least 12 tumors, we gen-
erated a predictive model of expression level based on multiple linear regression of the 
sites’ methylation levels. A significant model (q value < 0.05) was evaluated by ANOVA 
for linear model fit and corrected for the number of possible models per gene by FDR. 
A gene was considered to have a synergic model if the predictive value of the model was 
better than each of the involved sites alone.

Validation of methylation-based predictions was performed using the leave-one-out 
cross validation approach for assessing the generalization to an independent dataset. 
One round of cross-validation involves 23 datasets (called training set) in which per-
forming all the analysis and one sample for validating the analysis (called testing set). 
The cross-validation was performed 24 times. For each training dataset, cis-regulatory 
circuits were generated (as described in the “Circuit annotation” section), and possible 
predictive models were developed for the targeted genes. Prediction quality of each gene 
was then tested in the 24 rounds, by comparing predicted versus observed expression 
level. Difference up to 2-fold was considered as a success. The ability to accurately pre-
dict the expression level of a gene was considered verified if it has good prediction qual-
ity in at least 20 of the 24 rounds.

The ability to predict gene expression alterations was performed by analyzing the genes 
with irregular expression levels in certain tumors. Out of 4248 analysis sets (177 genes 
in 24 left-out tumors), 2652 were for genes with prediction models. Of them, 868 were 
for genes with irregular expression (expression level in the left-out tumor was > 1SD of 
the gene expression levels across the tumors). Predictions in which the prediction errors 
were within twofold of the observed expression-level were considered accurate.

Analysis of coding sequence variations

VCF files describing single nucleotide variations (SNV) were provided by the DKFZ. 
Synonymous SNV, SNVs overlapping with published SNPs (COMMON), or SNVs with 
a less than 25-read coverage or bcftools-QUAL score > 20 were excluded. Copy number 
variations (CNV) were analyzed by whole-genome sequencing (WGS) data provided 
by the DKFZ. Association between gene expression and copy number was evaluated by 
Pearson or Spearman’s correlations. p-values were adjusted for multiple-hypothesis test-
ing using the Benjamini–Hochberg method, with FDR < 5%.

Analysis of regulatory sequence variations

Pre‑alignment processing

GBM tumors (n = 8) were sequenced using the paired-end 250- or 300-bp read protocol 
in Illumina MiSeq V2 or V3 devices. FASTQ files were filtered, and sequence edges of 
Phred score quality > 20 were trimmed up to 13 bp of Illumina adapter applying Trim 
Galore (http:// www. bioin forma tics. babra ham. ac. uk/ proje cts/ trim_ galore/). Reads that 
were shortened to 20 bp or less were discarded, along with their paired read. Exclusion 

http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
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of both reads was implemented after verifying that retention of unpaired reads did not 
significantly increase high-quality alignment coverage. Quality control of the original 
and filtered FASTQ files was performed with FastQC (http:// www. bioin forma tics. babra 
ham. ac. uk/ proje cts/ fastqc), deployed to verify the reduction in adapter content and the 
increase in base quality following the filtering stage. Duplicates were removed at the 
pre-alignment stage with FastUniq [76]. Duplicate pair-ends were removed by compar-
ing sequences rather than post-aligned coordinates, allowing preservation of variant 
information.

Sequence alignment

Sequences were aligned to GRCh37/hg19 assembly of the human genome apply-
ing paired-reads Bowtie 2 [73]. Discordant pairs or constructed fragments larger than 
1000 bp were discarded, thereby improving mapping quality by allowing both reads to 
support mapping decisions. Default values (Bowtie 2 sensitive mode) were applied to 
end-to-end algorithm parameters, seed parameters, and bonus and penalty figures. Out-
putted SAM and BAM alignment files were examined using the Picard CollectInsert-
SizeMetrics utility to verify correctness of final insert-size distribution (http:// broad insti 
tute. github. io/ picard; version 1.119).

Variation calling

A BCF pileup file was generated from each BAM file using the samtools [77] mpileup 
function, set to consider bases of minimal Phred quality of 30 and minimal mapping 
quality of 30. Variant calling performed using bcftools was initially set to output SNPs 
only to create SNP VCF files, according to the recommended setting for cancer [78]. 
The VCF files were filtered by applying depth of coverage (DP) above 40 and statistical 
quality (QUAL) above 10. DP filtering in this context refers to DP/INFO in the VCF file, 
which is a raw count of bases.

Variant post‑processing

Post-processing of VCF SNPs included additional filtering, variant frequency calcu-
lation, mapping variants to probes, and mapping variants to public databases, per-
formed with a custom-written Python script. Additional depth coverage filtering of 20 
was applied on the high-quality bases, which were selected by bcftools as appropriate 
for allelic counts. Frequency calculations were based on high-quality allelic depth (ratio 
of each allelic depth to sum of all allelic depths). SNPs were mapped to the following 
dbSNP [79] and ClinVar [80] databases: dbSNP/common version 20170710, dbSNP/All 
version 20170710, and clinvar_20170905.vcf. A match was determined when the posi-
tion, reference, and variant were all in agreement. In our analysis, we refer to de novo 
variations (not in COMMON and not in ALL) which were detected in at least one sam-
ple (of eight). For each targeted gene, we counted the number of de-novo variations that 
were at a distance of ± 500 bp from its correlated sites.

Regulatory CNVs

Non-coding CNVs were detected from WGS of 5 Kbp sliding blocks in 2-Mbp region 
flanking gene TSSs, with a 50% overlap. Correlation of the total copy number (TCN) of 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://broadinstitute.github.io/picard
http://broadinstitute.github.io/picard
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each block with the gene expression level was assessed (at least six samples with avail-
able TCN data, Pearson and Spearman correlation). Correlation p values were adjusted 
for multiple-hypothesis testing using the Benjamini–Hochberg method.

Genome editing

Design and cloning of sgRNA

Guides to perturb SMO regulatory units were designed using the ChopChop, E-CRISP, 
and CRISPOR software; 20-bp sgRNA sequences followed by the PAM “NGG” for each 
unit were identified and synthesized. For the SMO regulatory unit at chr7:128,507,000–
128,513,000 designated unit “A,” 4 guides were cloned into a backbone vector bear-
ing puromycin resistance (addgene, 51,133), using the Golden Gate assembly kit 
(NEB® Golden Gate Assembly Kit #E1601). Each guide sequence was cloned with its 
own U6 promoter and was followed by a sgRNA scaffold. For the regulatory unit at 
chr7:129,384,500–129,389,500, designated unit “D,” two guides were cloned into the 
same backbone plasmid using the same method (Additional file 2: Fig. S7).

Transfection/CRISPR–Cas9‑mediated deletion

After validating the sgRNA sequences by Sanger sequencing, T98G or T98GdeltaSMO-
D cells were co-transfected with a Cas9-bearing plasmid (addgene, 48138) and either the 
plasmid bearing the guides targeting SMO A, the plasmid with bearing the guides tar-
geting SMO D, or the same plasmid harboring a non-targeting gRNA sequence (scram-
ble) as a negative control. The molar ratio between the transfected guide plasmid and 
the Cas9 plasmid was 1:3, in favor of the plasmid not carrying the antibiotic resistance. 
1.5–3 ×  105 cells/ml, > 90% viable, were plated 1 day prior to transfection in a 6-well dish. 
On the transfection day, each well received 3 μL Lipofectamine® 3000 Reagent, 5 μg total 
plasmid DNA, and 10 μL of Lipofectamine® 3000 Reagent (2:1 ratio). Puromycin (3 μg/
μL) was added to the cells 1 day after transfection. After 72 h, the antibiotic was washed, 
and the cells were left to expand. The cells were harvested 8–21 days post-transfection, 
and genomic DNA and RNA were immediately collected (Qiagen; DNeasy #69504 and 
RNeasy #74106, respectively).

Genotyping of mutant populations

Genomic DNA was subjected to genotyping PCR (primers listed in table). Deletion or 
partial deletion was confirmed by gel electrophoresis or TapeStation, by Sanger sequenc-
ing, and by Illumina MiSeq sequencing (150  bp paired-end). Sanger sequencing ana-
lyzed using BLAST® and sequence logo was generated using by ggseqlogo R package 
[81]. RNA extracted from populations of cells bearing such mutations was then checked 
for an effect on SMO transcription level, using qPCR (QuantStudio 3 cycler, Applied 
Biosystems, Thermo Fisher Scientific, Waltham, MA, USA).

Single‑cell dilution to obtain CRISPR‑targeted cell clones

Puromycin-selected cells were isolated by trypsinization, counted and diluted to a 
concentration of 20 cells/100 μL. Diluted cells (200 μL) were then serially diluted, to 
ensure single-cell occupancy of rows 6–8 (eight dilution series). By calibrating the 
number of cells in the first row, we ensured that single cells could be isolated from 
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the sixth to eighth rows onwards. Cells were incubated until the low-density wells 
were confluent enough to be transferred to 24-, 12-, and finally to 6-well plates. 
Selected clones were tested for a stable DNA profile and for SMO transcription 
level by genotyping PCR (primers listed in table), followed by gel electrophoresis or 
TapeStation and qPCR analysis, respectively.

RT‑qPCR

Each isolated mRNA (500 ng) was transcribed to cDNA using the Verso cDNA Syn-
thesis Kit (#AB-1453/A, Thermo Fisher Scientific, Waltham, MA, USA) according 
to provided instructions, using the oligo dT primer. qPCR was performed using the 
Fast SYBR™ Green Master Mix (#AB-4385612, Thermo Fisher Scientific, Waltham, 
MA, USA) and qPCR primers for SMO and reference genes HPRT and TBP (see 
table), on a QuantStudio 3 cycler (Applied Biosystems, Thermo Fisher Scientific, 
Waltham, MA, USA). The reaction was conducted in triplicates, and 20 ng of tem-
plate was placed in each well. For each primer set, a no-template control (NTC) was 
also run, to check for possible contamination. QuantStudio Design & Analysis Soft-
ware v1.4.3 (Applied Biosystems, Thermo Fisher Scientific, Waltham, MA, USA) was 
used for analysis. All presented data were based on three or more biological replica-
tions of the genome editing experiments, each with three technical repeats of the 
DNA and RNA.

Guide list

A1 ACC CTG CGC GCC GAG GTA TC

A2 GCG ACC TGG GAG CCG CCG CC

A3 ACC GCC GGT GCC GAC CTT TG

A4 GCG TGG TAG TCC TTC TCC GG

D1 GTC CTG CTC TAT CTT GTC GT

D2 CAC ATG TAG GTC TTT CTG AC

N1 CCG GCT CTG GGA CTT ACA CCA ATG 

N2 CCG GAC GGT GGA TCT TCT TTA GTT 

N3 CCG GTC CAC CTT TTT GTT TCC TCT 

N4 CCG GAA GAT GGA TGT CCC AGC ACC 

Primer list

Genotyping SMO A (F) 1066F GCA GTG CGC TCA CTT CAA A

Genotyping SMO A (R) 1066R CTC CTG GGG CGA GAT CAA AG

Genotyping SMO D (F) 1069F CAT GGT CCC GGT TCC CAT TTGG 

Genotyping SMO D (R) 955R GCC CTC CAC AGA CCA AAC AGC 

Genotyping SMO NULL (F) 1120F GCT CAG TCT CAG TGT GGG AG

Genotyping SMO NULL (R) 1120R GGC GTT TCC ACA AGA GAT GAGC 

qPCR SMO F 950F TGC TCA TCG TGG GAG GCT ACTT 

qPCR SMO R 950R ATC TTG CTG GCA GCC TTC TCAC 

qPCR HPRT F 442F TGA CAC TGG CAA AAC AAT GCA 

qPCR HPRT R 442R GGT CCT TTT CAC CAG CAA GCT 

qPCR TBP F 850F TGC ACA GGA GCC AAG AGT GAA 

qPCR TBP R 850R CAC ATC ACA GCT CCC CAC CA
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Statistics and data visualization

All analyses were performed using both public and custom scripts written in R (http:// 
www.R- proje ct. org) and MATLAB (The Mathworks, Inc.). Plots were generated using 
plotting functionalities in base R and using ggplot2 package (https:// ggplo t2. tidyv 
erse. org) and corrplot package (https:// github. com/ taiyun/ corrp lot). Sequence logos 
were generated using the ggseqlogo package [81]. Heatmaps were produced using the 
ComplexHeatmap package [82]. Lasso regression was performed using the default 
parameters of gmlnet package [83].
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