
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate‑
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo‑
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Manzano‑Morales et al. Genome Biology          (2023) 24:250  
https://doi.org/10.1186/s13059‑023‑03089‑3

Genome Biology

Comparison of gene clustering criteria 
reveals intrinsic uncertainty in pangenome 
analyses
Saioa Manzano‑Morales1,2†, Yang Liu1,3†, Sara González‑Bodí1, Jaime Huerta‑Cepas1* and Jaime Iranzo1,4*   

Abstract 

Background: A key step for comparative genomics is to group open reading frames 
into functionally and evolutionarily meaningful gene clusters. Gene clustering is com‑
plicated by intraspecific duplications and horizontal gene transfers that are frequent 
in prokaryotes. In consequence, gene clustering methods must deal with a trade‑off 
between identifying vertically transmitted representatives of multicopy gene families, 
which are recognizable by synteny conservation, and retrieving complete sets of spe‑
cies‑level orthologs. We studied the implications of adopting homology, orthology, 
or synteny conservation as formal criteria for gene clustering by performing compara‑
tive analyses of 125 prokaryotic pangenomes.

Results: Clustering criteria affect pangenome functional characterization, core 
genome inference, and reconstruction of ancestral gene content to different extents. 
Species‑wise estimates of pangenome and core genome sizes change by the same fac‑
tor when using different clustering criteria, allowing robust cross‑species comparisons 
regardless of the clustering criterion. However, cross‑species comparisons of genome 
plasticity and functional profiles are substantially affected by inconsistencies 
among clustering criteria. Such inconsistencies are driven not only by mobile genetic 
elements, but also by genes involved in defense, secondary metabolism, and other 
accessory functions. In some pangenome features, the variability attributed to meth‑
odological inconsistencies can even exceed the effect sizes of ecological and phyloge‑
netic variables.

Conclusions: Choosing an appropriate criterion for gene clustering is critical to con‑
duct unbiased pangenome analyses. We provide practical guidelines to choose 
the right method depending on the research goals and the quality of genome 
assemblies, and a benchmarking dataset to assess the robustness and reproducibility 
of future comparative studies.
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Background
Recent advances in sequencing have revolutionized the study of microbial ecology and 
evolution by providing access to thousands of high-quality genomic sequences. A major 
consequence of the surge in microbial genomic data has been the introduction of the 
concept of pangenome, that is, the set of all genes found in the genomes of a taxonomic 
group [1, 2]. Pangenomes have quickly gained importance in eco-evolutionary research 
because they provide valuable information about the functional capabilities accessible to 
the strains of the same species and their propensity to gain and lose genes [3]. Therefore, 
the study of pangenomes can shed light on the interactions among genome plasticity, 
niche diversity, and adaptability to environmental changes [4–7]. Moreover, identifying 
the set of genes present in all the genomes of a species (the core genes) has proved help-
ful to define core functions and build high-resolution species trees [8–10].

To study the pangenome of a species, researchers first collect all available high-quality 
genomes and run gene prediction tools to identify open reading frames (ORF). The ORF 
are then clustered into groups of “equivalent” genes that serve as the basis for subsequent 
cross-genome comparisons. To obtain meaningful results, it is critical that gene clusters 
represent coherent units, both from functional and evolutionary perspectives. The sim-
plest conceptual approach to gene clustering is based on homology. Two sequences are 
homologous if they derive from a common ancestral sequence. Beyond this qualitative 
definition, different types of homology can be established based on the evolutionary his-
tory of each gene. Because most gene families have experienced duplications through-
out evolution, it is usual to find homologous genes with multiple representatives per 
genome, termed paralogs. Paralogs often display functional divergence and accelerated 
evolutionary rates [11, 12]. As a result, homology alone does not guarantee functional 
and evolutionary homogeneity of gene clusters. Instead, for most purposes, it is desirable 
to subdivide homologs into higher-resolution and more homogeneous clusters encom-
passing orthologous sequences [13, 14]. Orthologs are genes that share a single common 
ancestor at the time of speciation [13, 15]. Accordingly, the orthology criterion discrimi-
nates paralogs that duplicated before the last speciation event (Fig. 1). Because of the 
connection between orthology and speciation, orthology is the most natural grouping 
criterion for cross-strain comparative genomics and phylogenomic analyses. In practice, 
it is challenging to apply a strict orthology criterion to pangenome studies due to the 
lack of accurate reference species trees and the high computational burden of building 
thousands of single-gene trees, one for each group of homologs. To circumvent these 
difficulties, heuristic algorithms and reference databases of orthologous genes have been 
developed over the last decade [16–18]. Together with homology and orthology, a third 
criterion to further refine equivalence among genes is synteny conservation. Accord-
ing to the synteny criterion, two genes (typically orthologs) are grouped together if they 
share the same gene neighborhood in different genomes. Notably, synteny conservation 
can help discriminate between vertically and horizontally transmitted copies of a gene, 
or between multiple orthologs resulting from within-species gene expansions (Fig. 1).

It is widely accepted that the quantitative results of single-species pangenome analyses 
depend on the method (and parameters) used to build the pangenome. Such depend-
ency can be traced back to the strategy adopted to identify gene clusters. As intuitively 
expected, the size of the pangenome (that is, the number of clusters) increases and the 
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size of the core genome decreases as the sequence similarity threshold used to define 
homology becomes more and more stringent [19–21]. However, comparative studies 
implicitly assume that qualitative trends and order relationships are robust with respect 
to the choice of a particular criterion. The existence of such qualitative robustness merits 
a critical evaluation, given the deep conceptual differences among homology, orthology, 
and synteny conservation, the heterogeneity of evolutionary rates across genes and spe-
cies, and the high rates of horizontal gene transfer (HGT) observed in some genomes 
[22–24].

The possibility that homology, orthology, and synteny-based gene clustering produce 
incongruent results in comparative pangenome studies is not just a technical caveat. 
Instead, intraspecific HGT and gene duplications raise the fundamental question of what 
equivalence class (homology, orthology, synteny, or something else) best captures the 
essentially dynamic nature of pangenome evolution [25]. This conceptual conundrum is 
especially clear in what concerns the splitting of multicopy orthologs based on their gene 
neighborhoods. Let us consider, for example, a gene that has experienced recent dupli-
cations or intraspecific HGT. For what purposes should all copies be included in the 
same group, following the standard orthology criterion? For what other purposes should 
the duplicated or horizontally transferred copy be assigned to a new cluster, based on 
synteny considerations? The orthology criterion appears better to assess pangenome 

Fig. 1 Homology, species‑level orthology, and synteny conservation. The phylogeny of a gene family that 
has experienced intra‑species HGT (*) and inter‑species HGT (**) is superimposed on a species tree (colored 
ribbons). In the species tree, speciation is followed by diversification into two strains (blue), and a sister 
species is represented in green. Gene neighborhoods are displayed at the leaves of the gene tree, with the 
gene of interest in the middle (labeled A–D, larger size, and red border). All sequences (A–D) are homologs. 
However, only A, B, and C are species‑level orthologs, because they descend from the same ancestral 
sequence at the time of speciation. Of those, A and C were vertically transmitted and share conserved gene 
neighborhoods (synteny). Sequences B and C are in‑paralogs, whereas C and D are out‑paralogs
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diversity, for which it is not desirable to count a recently duplicated gene twice [26], or to 
study gene duplication and intraspecific HGT, which first requires classifying multicopy 
genes as members of the same group [27]. In contrast, the synteny criterion would be 
more appropriate to select marker genes for phylogenomic analyses or identify vertically 
transmitted members of mobile gene families.

In this study, we show that the choice of a particular clustering criterion can have 
notable consequences on downstream comparative analyses. To stress the fact that the 
optimal criterion is somewhat arbitrary and dependent on the main research goal, we 
adopt the method-agnostic term Operational Gene Cluster (OGC) as an umbrella that 
includes homologs, classical orthologs (possibly inferred through different methods), 
and vertically transmitted subsets of orthologs with conserved synteny. Depending on 
the particular choice, OGC may imply different degrees of functional equivalence and 
shared ancestry.

State-of-the-art methods for OGC construction implement different strategies to deal 
with sensitivity-vs-specificity trade-offs at manageable computational cost. The simplest 
approaches (e.g., CD-HIT [28] and MMseqs2 [29]), build groups of homologous genes 
by applying a predefined similarity threshold to the amino acid sequences encoded by 
a set of ORF. More sophisticated tools include additional steps to discriminate true 
orthology from other ways of homology. Such discrimination can be attained through 
two major strategies: (a) by building gene-level phylogenetic trees or sequence similar-
ity networks, on which some heuristic rules are applied to resolve subsets of genes with 
shared ancestry [30]; and (b) by subclustering homologous groups based on their gene 
neighborhoods, under the assumption that synteny is locally conserved at the evolution-
ary timescales that are relevant to within-species diversification. By design, the former 
approach, which is adopted by reference databases like COG [16] and eggNOG [18], the 
orthology detection tool OrthoFinder [31], and the pangenome analysis suite panX [32], 
is better suited to assess true orthology in gene families affected by intraspecific duplica-
tions and HGT. However, its high computational burden makes it inefficient to deal with 
large genomic datasets. On the other side, synteny-based approaches (such as the one 
implemented by the popular pangenome analysis tools Roary [33] and PanOCT [34]) 
are faster and less resource intensive, although their results may deviate from the clas-
sical concept of orthology (by missing true orthologs) when applied to highly dynami-
cal genomes or regions of the genome with poor synteny conservation. Phylogeny-aware 
and synteny-based methods are not mutually exclusive [35], although they are rarely 
performed together due to computational constraints. A summary of these and other 
popular tools for OGC construction and their application to pangenome analysis is pro-
vided in Additional file 1: Table S1 [36–41].

Despite their distinct conceptual underpinnings, different types of OGC are some-
times just viewed as exchangeable heuristic approaches that approximate the concept 
of orthology in a computationally tractable manner. We tested to what extent such an 
assumption is true and found that some properties of the pangenome, mostly concern-
ing its size and the identity of the core genome, are indeed robust. However, pangenome 
properties that are related to its fluidity (that is, the genomic variability among strains) 
can be greatly affected, leading to relatively poor correlation in the results of comparative 
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genomic analyses conducted with different methods. Interestingly, this does not only 
affect mobile genetic elements, but also genes involved in non-selfish functions.

Results
Method‑dependent variation and intrinsic uncertainty in pangenome size and diversity

We investigated 5 major methods for de novo species-wise OGC construction that qual-
itatively differ in the strategies for gene clustering and paralog discrimination (Table 1). 
All de novo methods start from a collection of open reading frames (ORF) and cluster 
them according to a predefined identity threshold that can be set to include more or less 
distant homologs. The resulting clusters are then processed to split paralogs into sepa-
rate OGC. The methods included in this study represent three alternative approaches 
implemented by some of the most popular tools for pangenome analysis: orthology-
based clustering (implemented by panX and OrthoFinder), synteny-based clustering 
(implemented by Roary), and homology-based clustering (implemented by CD-HIT and 
MMseqs2, which is the OGC construction module used by PanACoTA [42] and PPanG-
GOLiN [43]. In the case of Roary, CD-HIT, and MMseqs2, we also explored the effect 
of introducing two different identity thresholds for the initial clustering step (by design, 
panX and OrthoFinder do not filter gene clusters based on sequence identity but on 
their e-value). The optional settings used with each tool are detailed in the Methods sec-
tion and summarized in Additional file 2: Table S2.

In addition, we considered a fast orthology prediction method (eggNOG-mapper) that 
maps ORF to a reference database of orthologous groups. This reference-based method 
was not originally intended for pangenome analysis and has some important limitations. 
First, because the eggNOG database was built using only one representative genome 
per species, it does not account for variability across strains. Second, because ortholo-
gous groups in the eggNOG database were required to contain sequences from at least 
3 species, mapping ORF to eggNOG automatically excludes sequences without known 
homologs and sets a hard limit for OGC taxonomic resolution at the genus level. Still, 
reference-based orthology assignments are nowadays highly efficient and scalable to 
large (meta)genomic datasets. Therefore, we included eggNOG-mapper in this study to 
assess its performance compared to sensu stricto pangenome reconstruction methods.

By applying these methods, we obtained 9 alternative sets of species-wise OGC for 
124 bacterial and 1 archaeal species (https:// dx. doi. org/ 10. 5281/ zenodo. 70930 13). These 
species, defined according to the phylogenetically consistent classification scheme estab-
lished by the Genome Taxonomy Database (GTDB) [45], were selected to cover every 

Table 1 OGC generation strategies and tools used in this study

Clustering Paralog splitting Identity threshold Software Ref

De novo Orthology‑based None (e‑val < 0.001) panX [33]

De novo Orthology‑based None (e‑val < 0.001) OrthoFinder [32]

De novo Synteny‑based 80%, 95% Roary [34]

De novo None 50%, 80% MMseqs2, PanACoTA [29, 30]

De novo None 50%, 80% CD‑HIT [28]

Reference db n.a None (e‑val < 0.001) eggNOG‑mapper [44]

https://dx.doi.org/10.5281/zenodo.7093013
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genus in the GTDB, with the condition that there were at least 15 high-quality genomes 
available per species. We quantified the discordance between the OGC produced by each 
pair of methods by means of the normalized variation of information (NVI), a measure 
that takes values between 0, if the two sets of OGC display a one-to-one correspond-
ence, and 1, if they are completely independent. The hierarchical clustering of methods 
based on this measure reveals that the discordances, although small, are reproducible 
across species (Fig. 2a). The most notable differences arise between reference-based and 
de novo OGC. Among the latter, the strategy for paralog discrimination determines the 
resulting OGC to a greater extent than the particular tools and identity thresholds, at 
least for the relatively permissive thresholds implemented in the study.

Fig. 2 Method‑dependent variation and uncertainty in pangenome features. a Consensus similarity tree of 
OGC building methods based on the species‑wise normalized variation of information for the assignation 
of ORF to OGC. Labels indicate the number of species (out of 125) that support each branch. b Consensus 
similarity tree of different pangenome features based on pairwise, unsigned correlations. Labels indicate the 
number of OGC building methods (out of 4) that support each branch (values < 3 are not shown). In all cases 
when the support is not complete, reference database mapping is the method that disagrees. c Quantitative 
comparison of pangenome estimates among methods. Left: relative differences in pangenome estimates; 
right: relative contribution of methodological choices to between‑species variance. Note the different color 
scale for Proteobacteria. Highlighted cells correspond to the features shown in d. d Species‑wise comparison 
of selected pangenome features (pangenome size, number of single‑copy core OGC, fluidity, and nucleotide 
sequence diversity in core genes) inferred from orthology‑ and synteny‑based OGC. Black lines show the 
orthogonal least squares fit; gray lines indicate the 1:1 trend. Each point corresponds to the pangenome of 
one species, colored according to its phylum
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Based on the previous finding, we restricted our analysis to a single identity threshold 
(80%) and one tool of each class. We chose MMseqs2, panX, and Roary because they 
were primarily designed to study pangenomes or are at the core of popular workflows 
for pangenome analysis. Then, we investigated how paralog discrimination affects the 
properties of the inferred prokaryotic pangenomes. To that end, we selected 10 non-
redundant quantitative features that represent different aspects of pangenome size and 
diversity. All de novo methods supported clustering these features in 4 groups (Fig. 2b) 
that can be interpreted in terms of (i) pangenome size, (ii) genome (and core genome) 
size, (iii) gene content diversity, and (iv) nucleotide diversity (evaluated in the core 
genes). As expected, reference-based OGC systematically produced the smallest esti-
mates of pangenome size and gene content diversity (around 30% lower than orthology-
based OGC), whereas de novo synteny- and homology-based OGC produced the largest 
estimates for those traits (20–35% higher than orthology-based OGC, see Fig. 2c).

Although the differences in some estimates (especially those involving singletons) are 
substantial, their practical impact on comparative analyses does not so much depend on 
their median magnitude, but on the extent to which they generate unexplained variation 
across species. More precisely, method-dependent variation appears if the choice of a 
particular set of OGC over another does not affect all species by the same factor. Because 
there is no ground truth for the “correct” set of OGC, method-dependent between-spe-
cies variation constitutes an unavoidable source of uncertainty in comparative pange-
nome analyses that only becomes visible when considering multiple OGC construction 
methods. We assessed such uncertainty for 10 selected pangenome features by pairing 
sets of OGC (corresponding to different strategies for paralog discrimination) and quan-
tifying the fraction of the total variance obtained with one set that remains unexplained 
after controlling for the values obtained with the other set. This measure also serves as 
a proxy for the methodological inconsistency in the estimation of pangenome proper-
ties. As shown in Fig. 2c,d (see also Additional file 3: Fig S1 and S2), core genome and 
pangenome sizes are generally consistent across methods; that is, using one method or 
another affects all species by the same factor. In consequence, methodological choices 
do not affect relative comparisons of core genome and pangenome sizes across species. 
In contrast, estimates of gene content diversity display higher levels of inconsistency, 
with method-dependent uncertainty accounting for roughly 20% of the total between-
species variance (and up to 40% if using reference-based OGC). The inconsistencies in 
genome fluidity are especially high in the case of Proteobacteria, reaching around 50% of 
the total between-species variance.

Despite the known fact that sample size affects the estimation of pangenome prop-
erties, two lines of evidence prove that cross-method inconsistencies are independent 
of the number of genomes used to build the pangenome, at least within the range of 
15–100 genomes explored in this study. First, the same trends are detected in gross and 
size-corrected features (for example, the total pangenome size and its average over sub-
sets of 14 genomes). Second, cross-method scatter plots, like those of Fig. 2d, show no 
correlation between the number of genomes per species and the relative deviation of 
each species with respect to the regression line (Pearson’s correlation, |R|≤ 0.16 and 
q > 0.05 for all features and OGC criteria included in Fig. 2c). Such lack of correlation 
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indicates that method-dependent variation is equally likely to affect species with many 
or just a few available genomes.

A major limitation of reference-based approaches to OGC construction is that they 
are constrained by the limited diversity of the reference database. Indeed, in most spe-
cies, 5–10% of the ORF could not be mapped to the eggNOG database and therefore 
were not assigned to any reference-based OGC (Additional file 3: Fig. S3). The fraction 
of missing ORF is larger in some taxa that are underrepresented or absent from the ref-
erence database. The most extreme case, with > 30% unmapped genes, corresponds to B. 
burgdorferi, the causal agent of Lyme’s disease. The poor performance of reference data-
base mapping in B. burgdorferi is explained by the unique structure of its genome, which 
consists of a linear chromosome and > 20 linear and circular plasmids without homologs 
in other species [46, 47]. Despite these limitations, reference-based OGC provide rea-
sonably good estimates for the number of core genes per genome and allow retrieving 
85–90% of the single-copy core gene families identified by de novo approaches.

Within‑species paralogy and inference of core genomes

Among the pangenome features considered in this work, the size of the core genome is 
the least affected by the gene clustering criterion. However, a closer inspection of core 
gene families (defined in a strict sense, given the high completeness of the genomes 
included in the study) reveals differences in the mean copy number across methods 
(Fig. 3a). The fraction of core gene families that appear as single-copy ranges from 80% 
in reference-based to > 99% in synteny-based OGC. In the case of reference-based and 
de novo homology-based OGC, the distribution of the mean copy number per core gene 
family per genome displays clear peaks at integer values, indicating the existence of com-
plete sets of duplicated paralogs that were not resolved by these methods.

We next focused on single-copy core genes, which are of greater practical interest as 
they are often used to infer high-resolution phylogenies. Synteny-based methods sys-
tematically produce 5–10% more single-copy core OGC than orthology-based methods 
(Fig.  3b). Typically, such synteny-supported single-copy core genes belong to ortholo-
gous OGC that are core but not necessarily single-copy (Fig. 3c). Therefore, it appears 
that synteny criteria are effective in resolving single-copy representatives of core gene 
families affected by within-species duplications or HGT. On the other side, single-copy 
core OGC that are orthologous but not supported by synteny tend to either contain 
incomplete ORFs (that could not be processed by the synteny-based workflow) or split 
among 2 or more synteny-supported accessory OGC (Fig. 3d). Such lack of synteny con-
servation could be a sign of non-vertical transmission in single-copy core genes exclu-
sively detected through orthology criteria. However, given the small fraction of these 
OGC in most species (< 1% of all orthology-based single-copy core OGC), the overall 
effect of such potential non-vertical contamination in downstream analyses is possibly 
modest. The only exception occurs in Mycoplasmatales, in which the relative contribu-
tion of non-synteny-supported OGC is amplified by their small genome sizes.

Single-copy core genes supported by a single criterion (either synteny or orthol-
ogy) are significantly less conserved in terms of their average identity than those 
detected by both criteria (Fig.  3e; Kruskal–Wallis omnibus test p <  10−20). Among 
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the single-copy core genes that are method-exclusive, those based on orthology are 
significantly less conserved than those based on synteny (p <  10−8 for all Mann–
Whitney post hoc tests with Tuckey’s HSD correction). There are also significant 
differences in the functional profiles of single-copy core genes that are supported by 
only one or both criteria (Fig. 3f ), with overrepresentation of genes associated with 
mobile genetic elements, cell motility, and secondary metabolism, and underrepre-
sentation of genes involved in translation among method-exclusive single-copy core 
genes (linear mixed effects model for isometric log ratios; F(2,248) > 190, q <  10−20 in 
all cases).

Fig. 3 Comparison of core gene sets obtained from different OGC building methods. a Distribution of 
the mean copy number per core OGC per genome. b Fraction of all single‑copy core (scc) gene families 
that are exclusively recovered through orthology‑ or synteny‑based paralog splitting. c Distribution of 
synteny‑exclusive, single‑copy core OGC among orthology‑based OGC. The large bar at “1” implies that most 
synteny‑exclusive single‑copy core OGC are subsets of larger orthology‑based OGC that are core but not 
single‑copy. d Distribution of orthology‑exclusive, single‑core OGC among synteny‑based OGC. Most of 
the single‑copy core OGC exclusively supported by orthology combine 2 accessory synteny‑based OGC. In 
c and d, gray bars denote method‑exclusive single‑copy core OGC that include sequences that could not 
be processed by the other method. e Nucleotide sequence divergence in single‑copy core OGC exclusively 
supported by orthology, synteny, or both criteria. To account for between‑species differences in evolutionary 
rates and phylogenetic tree spans, values were normalized by the species‑level mean divergence (calculated 
from all single‑copy core OGC that were supported by both synteny and orthology). Vertical lines indicate 
the distribution means for each group of single‑copy core OGC. f Functional differences among single‑copy 
core OGC supported by different criteria. Each set of box plots represents the balance (measured as the 
isometric log ratio) between the relative frequencies of a given functional category (x‑axis) and the remaining 
categories not considered in previous sets (e.g., the second set of box plots corresponds to the balance 
between functional category N and all the rest except X). The figure shows the 4 ILR balances with the 
greatest variation across methods. Abbreviations of functional categories, X: mobilome; N: cell motility; Q: 
biosynthesis, transport, and catabolism of 2º metabolites; J: translation, ribosomal structure and biogenesis. 
In b and f, each data point corresponds to one species; boxes span the 25–75 percentiles; the central line 
indicates the median; whiskers extend to the most extreme data points that are not outliers; isolated points 
denote outliers; notches (only in f) show the 95% confidence interval of the median
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Systematic and species‑specific biases in functional profiles

Estimates of genome content diversity are strongly affected by the choice of orthol-
ogy- or synteny-based strategies to discriminate paralogs when building de novo 
OGC. To better understand the causes and implications of these differences, we clas-
sified ORF and OGC into 21 coarse-grained functional categories that are representa-
tive of the main molecular and cellular processes that take place in prokaryotic cells. 
For each functional category, we studied the agreement between orthology- and syn-
teny-based OGC by calculating the normalized variation of information, the fraction 
of fully equivalent OGC (that is, OGC that contain exactly the same ORF regardless 
of the strategy for paralog discrimination), and the fraction of ORF assigned to fully 
equivalent OGC (Fig. 4a and Additional file 3: Fig. S4). By far, the highest inconsist-
ency occurs for mobile genetic elements, for which only 25% of the OGC (encom-
passing 25% of the ORF) are equivalent. Besides mobile genetic elements, moderate 
degrees of inconsistency are observed for defense systems, intracellular trafficking/
secretion, and replication/recombination/repair. On the other end, central cellular 
functions, such as translation, transcription, nucleotide metabolism, and coenzyme 
metabolism show the highest agreement, with 64–70% of the OGC (encompassing 
77–84% of the ORF) being fully equivalent. These trends are also manifested when 
looking at the absolute and relative numbers of OGC per category (Fig. 4b), with syn-
teny-based paralog discrimination producing a disproportional excess of OGC asso-
ciated with the mobilome. The fraction of OGC that contain ORF from more than 
one functional category is consistently larger in the case of orthology-based OGC, 
although the absolute differences are modest (around 0.5–1% in most categories; 
Additional file 3: Fig S4). Functionally heterogeneous OGC are most often associated 
with signal transduction, cell cycle control/cell division, mobile genetic elements, and 
unknown or poorly characterized functions.

Compositional analysis of functional profiles controlling for between-species varia-
bility confirms that synteny-based paralog discrimination leads to a significant excess 
of OGC associated with mobile genetic elements (Fig. 4c; linear mixed effects model 
for isometric log ratios; ILR-balance difference = 0.49, F(2,124) = 189, q <  10−20). 
Functional profiles derived from synteny and orthology-based OGC also differ in 
the balance between central cellular functions (transcription, translation, cell cycle, 
nucleotide and coenzyme metabolism) and other functional categories (ILR-balance 
difference =  − 0.11, F(2,124) = 132, q <  10−20); and between a set of functions includ-
ing secondary metabolism, carbohydrate metabolism, secretion, defense and recom-
bination, and the remaining functional categories (ILR-balance difference = 0.08, 
F(2,124) = 62, q <  10−10). Apart from these general trends, other significant differences 
between synteny- and orthology-based functional profiles are restricted to specific 
categories in one or a few particular species (Fig. 4d), such as defense in Legionella 
pneumophila (Z = 5.9, q <  10−5), Borreliella burgdorferi (Z = 5.4, q = 5 ×  10−5) and 
Bordetella pertussis (Z = 4.4, q = 0.002), secondary metabolism in Bacillus anthracis 
(Z = 4.0, q = 0.008), and signal transduction in Brachyspira hyodysenteriae (Z = 3.8, 
q = 0.019).
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Variability of gene flux estimates

To assess whether method-dependent variation in pangenome composition propa-
gates to downstream analyses, we investigated the effect of synteny- and orthology-
based paralog discrimination on a quantitative study of genome dynamics. To that 
purpose, we used the software Gloome that infers events of gene gain and loss along 
a lineage taking as inputs the strain-level phylogenetic tree and a binary matrix with 
the presence and absence profiles of each OGC. As shown in Fig. 5a, using synteny-
based instead of orthology-based OGC leads to a 60% increase in the estimated num-
ber of gene gains and losses per lineage. Genome vs gene change ratios, measured as 

Fig. 4 Systematic and specific biases in functional profiles associated with paralog splitting criteria. a 
Inconsistency of ORF assignations into OGC (normalized variation of information, top), and fraction of OGC 
that exactly contain the same ORFs (bottom) under synteny and orthology splitting criteria, stratified by 
functional category. b Absolute number (top) and relative fraction (bottom) of synteny‑ and orthology‑based 
OGC associated with each functional category. c Balances (quantified as isometric log ratios) for the 
functional categories that show the greatest systematic variation between paralog splitting criteria. Each 
set of boxplots represents the balance between the relative abundances of a group of functional categories 
(shown below) and all the remaining categories not considered in previous sets. Each data point corresponds 
to the pangenome of one species; boxes span the 25–75 percentiles; the central line indicates the median; 
whiskers extend to the most extreme data points that are not outliers; isolated points denote outliers. d 
Standardized residuals (Z‑scores) of the linear mixed effects model used to infer the systematic differences 
shown in c. Each row corresponds to the pangenome of one species, sorted according to the GDTB 
species tree [48] (phyla colored as in Fig. 1). Colored cells indicate a significant excess of synteny‑ (green) 
or orthology‑based (purple) OGC from a given category in a specific pangenome that is not explained 
by the general trends in c. Abbreviations of functional categories, C: energy production and conversion; 
D: cell cycle control, cell division, chromosome partitioning; E: amino acid transport and metabolism; F: 
nucleotide transport and metabolism; G: carbohydrate transport and metabolism; H: coenzyme transport 
and metabolism; I: lipid transport and metabolism; J: translation, ribosomal structure and biogenesis; K: 
transcription; L: replication, recombination and repair; M: cell wall/membrane/envelope biogenesis; N: cell 
motility; O: posttranslational modification, protein turnover, chaperones; P: inorganic ion transport and 
metabolism; Q: biosynthesis, transport, and catabolism of 2º metabolites; R: general function prediction only; 
S: function unknown; T: signal transduction mechanisms; U: intracellular trafficking, secretion, and vesicular 
transport; V: defense mechanisms; X: mobilome: prophages, transposons
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the number of expected gains and losses per gene per core nucleotide substitution 
are also higher (40% increase) when using synteny-based OGC. In contrast, the ratio 
between gene gains and losses that determines the short-term dynamics of genome 
size [49] displays a more complex response, with synteny-based OGC producing 
lower or higher estimates than those obtained with orthology-based OGC depending 
on whether a species is dominated by gains or losses. Method-dependent uncertain-
ties account for 15, 18, and 30% of the between-species variability in the total flux, 
the genome vs gene change ratio, and the gain vs loss ratio, respectively. These results 
indicate that comparative analyses of short-term genome dynamics are highly sensi-
tive to methodological choices for paralog discrimination, especially when it comes to 
evaluate the balance between gene gain and loss.

A deeper analysis of gene flux by functional categories reveals that inconsistencies 
between gene clustering criteria (quantified as one minus the squared rank corre-
lation of species-wise estimates to account for the numerous outliers) are stronger 
among mobile genetic elements and genes involved in secondary metabolism and 
inorganic ion transport (Fig. 4b). Although high inconsistencies are also observed in 
central functional categories, such as translation, the practical relevance of those is 
lesser due to the relatively low fluxes associated with those categories. If all species 
are jointly considered by calculating their median, flux estimates obtained from syn-
teny OGC display a systematic deviation of > 1 additional event per gene in all func-
tional categories, which is evenly distributed between gains and losses (Fig. 4c).

Fig. 5 Effect of paralog splitting criteria on the inference of gene flux. a Species‑wise comparison of the 
total gene flux (gains and losses along the species tree, left), the ratio between gene turnover and gene 
sequence evolution (middle), and total gain vs loss ratio (right) inferred from synteny‑ and orthology‑based 
OGC. The method‑dependent uncertainty is equal to 1 −  R2. b Flux per gene per functional category inferred 
from orthology‑ (top) and synteny‑based (middle) OGC. Each data point corresponds to one species; boxes 
span the 25–75 percentiles; the central line indicates the median; whiskers extend to the most extreme 
data points that are not outliers; isolated points denote outliers. The bar plot at the bottom shows the 
inconsistency between methods, quantified as one minus the squared rank correlation. Abbreviations of 
functional categories as in Fig. 4. c Median flux per gene per category, calculated over all the species, for 
orthology‑based (x‑axis) and synteny‑based (y‑axis) OGC. Similar trends are observed for gains, losses, and the 
combination of both
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Estimation of pangenome properties from medium‑ and low‑quality genome assemblies

Pangenomes built from high-quality, nearly complete genomes represent an appropri-
ate benchmark to compare gene clustering criteria without the confounding effects of 
genome incompleteness and contamination. However, complete genomes are relatively 
rare and unevenly distributed among taxonomic groups. Given those limitations, incom-
plete genomes, often assembled from metagenomes, constitute the only available choice 
to study the pangenomes of many bacteria and archaea. To evaluate the performance of 
different gene clustering criteria in such suboptimal scenarios, we built 96 alternative 
pangenomes by replacing some of the complete genomes by an increasing proportion 
of medium- and low-quality genomes assembled from metagenomes (MAG). To keep 
the computational cost manageable, we focused on 4 species belonging to the phyla Pro-
teobacteria, Actinobacteria, Firmicutes, and Bacteroidota that cover a broad range of 
pangenome sizes and gene content diversity. For each pangenome feature, we quantified 
the uncertainty introduced by MAG as the relative amount of variation in the alternative 
pangenomes that could not be predicted from the original high-quality pangenomes. 
Values greater than 1 (that correspond to  R2 < 0) imply that pangenomes that include 
MAG follow qualitatively different trends than those built from complete genomes. In 
those cases, the inclusion of MAG leads not only to loss of precision, but to systematic 
biases.

Estimates of pangenome size are relatively unaffected by the inclusion of medium- 
and low-quality MAG, especially if pangenome size is calculated by averaging over 
multiple subsamples (Fig.  6a, top; Additional file  3: Fig. S5a). By using reference, 
homology, or synteny OGC, the unexplained variance in pangenome size can be kept 
below 10% even if half of the genomes are incomplete. In contrast, estimates of gene 
content diversity are much more sensitive to genome incompleteness (Fig. 6a, mid-
dle; Additional file 3: Fig. S5a and S6), with systematic deviations in fluidity appear-
ing with only a 5% of MAG. As expected, incomplete genomes severely impair the 
direct detection of core genes (Additional file  3: Fig. S7), although consistent esti-
mates of the core genome size (with up to 50% medium- and low-quality MAG) 
can be obtained with mOTUpan [50], a specialized tool that uses Bayesian infer-
ence techniques to predict core genes while accounting for genome incompleteness 
(Fig. 6a, bottom; Additional file 3: Fig. S5a).

Inspired by the good performance of mOTUpan, we explored the potential of Bayes-
ian approaches to produce more robust measures of gene content diversity. Thus, we 
recalculated the fraction of accessory genes per genome by combining mOTUpan pre-
dictions for the number of core genes and the mean genome size (see Methods). The 
new metrics is more consistent than fluidity, although still far from reaching the high 
robustness of pangenome size estimates (Additional file 3: Fig. S6). Taken together, the 
higher performance of mOTUpan for the estimation of core genes and this “mOTUpan-
based” metrics for gene content diversity illustrates how a probabilistic framework can 
help overcoming some of the limitations imposed by incomplete and poorly assembled 
genomes.

To better understand variations in performance across methods, we looked at 
genes from complete genomes and studied whether the inclusion of MAG leads 
to their being reassigned to different clusters (Fig.  6b; Additional file  3: Fig. S5b). 
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Because reference-based methods operate gene by gene, the addition of new 
genomes does not have any effect on how a given gene is clustered. Such “structural” 
robustness explains why reference-based OGC provide the most consistent esti-
mates in the presence of MAG. In stark contrast, clustering based on synteny and 
orthology is substantially affected by the addition of incomplete or poorly assembled 
genomes (the within-method NVI after adding 5% of MAG becomes as large as the 
cross-method NVI in high-quality pangenomes, shown in Fig. 4a). The fact that this 
phenomenon is not observed for homology-based OGC indicates that the paralog 
discrimination algorithms used by synteny- and orthology-based methods are prone 
to misclassify genes from high-quality genomes if the dataset also includes lower-
quality genomes.

Fig. 6 Estimation of pangenome properties from incomplete genomes. a Comparison between pangenome 
properties inferred from high‑quality genomes (x‑axis) and mixtures of medium‑quality MAG and 
high‑quality genomes (y‑axis). From left to right, the scatter plots correspond to pangenomes with 5, 20, 50, 
and 100% of MAG. Each point in the scatter plots corresponds to one pangenome, with different symbols 
and colors used to distinguish among species and OGC generation methods, respectively. Each scatter plot 
combines data from 4 species, 6 gene clustering methods, and 3 random subsamples. The bar plots on the 
right summarize the observed inconsistencies, with color intensities representing the fraction of MAG. Note 
that panX fails to produce results in pangenomes that contain > 5% of MAG (purple asterisks). b Sensitivity of 
gene clustering methods to the addition of MAGs, calculated by comparing the cluster assignations of genes 
from high‑quality genomes before and after adding MAG. NVI: normalized variation of information. Different 
OGC generation methods are color coded, with color intensities indicating the fraction of MAG. Note that 
reference‑database mapping methods produce an NVI equal to zero (double asterisk)
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Discussion
Orthology is generally considered the optimal criterion for clustering gene sequences 
for comparative genomics [14]. Because orthologs tend to conserve their function and 
evolve consistently with speciation patterns, they are, at least in theory, the most fitting 
choice for functional and phylogenomic studies. In practice, however, the use of orthol-
ogy as a gold standard for pangenome analysis faces technical and conceptual challenges. 
On the technical side, distinguishing orthologs from paralogs is computationally costly. 
Therefore, to deal with large (meta)genomic datasets, orthology prediction tools often 
resort to heuristic algorithms that risk missing true orthologs or including out-paralogs 
(paralogs that duplicated before the last common ancestor of the clade of interest). On 
the conceptual side, intra-species gene duplication and horizontal gene transfer generate 
multicopy gene lineages that, despite not violating the orthology criterion at the species 
level, may confound downstream analyses that assume vertical transmission. In those 
cases, a stricter criterion that only clusters together vertically transmitted members of a 
gene family may be more desirable.

Motivated by these caveats, we assessed how three major clustering criteria (homol-
ogy, orthology, and synteny) implemented by five popular pangenome analysis tools 
affect pangenome reconstructions and downstream phylogenomic analyses. Although 
we only tested a limited number of tools and parameter settings, our results suggest that 
the underlying formal criterion for paralog discrimination (shared ancestry at speciation 
for orthology, conserved gene neighborhood for synteny), rather than the actual imple-
mentation, is what drives qualitative differences across methods.

Previous works had pointed out that single-species estimates of pangenome size and 
diversity strongly depend on the method used to cluster genes [19–21]. We confirmed 
such observations and expanded on the implications for comparative pangenome analy-
ses. When conducting comparative studies, inconsistencies in relative differences and 
cross-species trends are of much greater concern than absolute differences in single-
species estimates. In that regard, trends involving pangenome and core genome sizes 
are generally robust across methods. More precisely, choosing one or another method 
affects all species-wise size estimates by the same constant multiplicative factor. In 
contrast, cross-species comparisons of genome plasticity and pangenome diversity 
are highly sensitive with respect to the clustering criterion, in a way that cannot be 
explained by any linear or nonlinear data transformation. Such inconsistencies in pange-
nome diversity, that reach up to 50% of the total between-species variance in Proteobac-
teria, should be a major source of concern for studies aimed at understanding the forces 
that shape microbial pangenomes. For comparison, it has been estimated that habitat 
and phylogeny contribute to explain approximately 20% of the between-species variance 
in pangenome diversity [6]. That said, regardless of the method used to discriminate 
paralogs, the lowest rates of gain and loss are always observed in genes associated with 
central cell functions, whereas the highest rates correspond to mobile genetic elements 
and defense systems. Therefore, the inverse association between gene flux and essenti-
ality described by previous studies [22, 51–53] appears as a robust feature of genome 
plasticity.

The contribution of a particular gene clustering method to pangenome variability can 
only be assessed by comparison with other methods, which is often unfeasible in large 
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datasets. As a result, methodological “noise” remains unnoticed, potentially contributing 
a relevant fraction of the unexplained variance or, in the worst-case scenario, acting as 
a confounding factor if methodological biases correlate with the biological variables of 
interest.

Technical choices during genome assembly and ORF prediction can also cause biases 
that propagate downstream affecting pangenome analyses [35]. For example, varia-
tions in assembly completeness and contamination will have a direct repercussion on 
the fraction of core genes and genes with no homologs in the pangenome. By studying 
the interplay between assembly quality and gene clustering criteria, we found that ref-
erence-based clustering produces the most robust estimates of pangenome properties 
in pangenomes that include incomplete and poorly assembled genomes. On the other 
side, orthology-based methods often lead to inconsistent results even with relatively low 
proportions of medium-quality assemblies. The most likely cause for such poor perfor-
mance is that incomplete genomes interfere with the construction of the strain-level 
reference trees that serve as guides for the identification of orthologs. For example, the 
default for panX is to build guide trees from strict core genes, so that the method fails if 
no core genes are found (which typically occurs if > 5% of all genomes are incomplete). 
More permissive methods that take into account the “soft” core, such as OrthoFinder 
or panX with customized core thresholds, can handle higher proportions of incomplete 
genomes. However, their accuracy will still be compromised if the guide tree is incorrect.

Practical guidelines

Our findings stress that, as long as choosing an operational definition of gene cluster 
remains arbitrary, pangenome properties affected by method-dependent variability will 
be subject to intrinsic uncertainty. To minimize such uncertainty, the selection of tools 
for gene clustering should be primarily guided by the nature of the research goals, rather 
than by computational considerations such as runtime and memory usage. In the next 
paragraphs, we provide some practical guidelines to help selecting optimal clustering 
criteria for different purposes. A summary of those guidelines can be found in Table 2.

The identification of single-copy core genes is one of the main outcomes of pange-
nome reconstruction [54]. Single-copy core genes allow building high-resolution strain 
trees that can be very robust to the effects of unbiased homologous recombination [55]. 
However, to obtain accurate trees, it is fundamental that the OGC that correspond 
to single-copy core genes are not contaminated by HGT [10]. As expected, synteny is 
the most sensitive criterion to discriminate single-copy representatives among gene 
families affected by paralogy and intra-species duplications. Nevertheless, de novo 
homology- and orthology-based methods retrieve most (90–95%) synteny-supported 
single-copy core OGC with low (< 1%) potential contamination, which makes them 
good alternatives for many practical applications. Regardless of the criterion used to 
obtain the OGC, if the pangenome includes incomplete genomes, inference of core 
genes can be notably improved by applying probabilistic approaches, such as those 
implemented by mOTUpan [50].

Synteny-based gene clusters display substantial fragmentation of non-core gene 
families, that affects not only mobile genetic elements but also genes involved in 
defense, secondary metabolism, signal transduction, and secretion, among others. 
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Because such fragmentation is not homogeneous across taxa and functional catego-
ries, synteny-based clustering can introduce biases in comparative studies of pange-
nome function and dynamics. Functional profiles based on orthology (rather than 
synteny) are better choices, as they are more robust with respect to the amplification 
of mobile genetic elements and other accessory gene families that are characteristic of 
some species [22, 56, 57]. Likewise, inference of gene fluxes within and across pange-
nomes with tools that account for gene copy number (e.g., the phylogenomic software 
COUNT [27]) should be performed with orthology-based gene clusters. In turn, anal-
yses of genome plasticity based on binary (presence or absence) phyletic profiles may 
be more accurate if using synteny-based gene clusters, because they better capture 
the contribution of intra-species paralogs to the total gene flux. Future studies aimed 
at exploring the role of adaptive and non-adaptive processes in pangenome evolution 
should explicitly discuss how methodological choices affect the interpretation of their 
results. For example, choosing synteny over classical orthology as the clustering crite-
rion may inflate the proportion of mobile genetic elements in the pangenome, altering 
the balance between selfish and potentially beneficial accessory genes. Estimates of 
gene content diversity are extremely sensitive to the presence of incomplete genomes, 
even if they only constitute a small fraction of the whole pangenome. Therefore, to 
study pangenome plasticity, it is preferable to work with a reduced set of high-qual-
ity genomes than with a larger set of lower-quality genomes. If incomplete genomes 
cannot be avoided, we recommend using reference-based OGC and measuring gene 

Table 2 Practical guidelines to select optimal gene clustering criteria for pangenome analysis

OGC Strengths Limitations Recommended use

Ref‑db ‑ Annotation and classification 
at once
‑ The most robust method in 
pangenomes with incomplete 
genomes

‑ Loss of all gene families that 
are not represented in the 
reference database
‑ Discrimination of paralogs 
is limited by the taxonomic 
resolution of the reference 
database

‑ Functional profiling and detec‑
tion of single‑copy core genes (if 
missing taxon‑specific genes is 
not a problem)
‑ Analysis of pangenomes with 
a large fraction of incomplete 
genomes
‑ Cross‑species tracking of 
pangenome contents

Homology ‑ Faster than any other method ‑ Setting a hard similarity 
threshold can lead to merging 
paralogs and/or missing distant 
orthologs

‑ Quick detection of single‑copy 
core genes
‑ Fast de novo clustering of 
sequences without homologs in 
reference databases
‑ Analysis of very large pange‑
nomes

Orthology ‑ Evolutionary consistent clus‑
tering of mobile gene families
‑ Discrimination of in‑ and out‑
paralogs

‑ Computationally costly (panX 
becomes prohibitive with > 200 
genomes)
‑ Poor performance if the 
pangenome contains incom‑
plete genomes

‑ Unbiased functional profiling
‑ Study of genome plasticity 
and gene flux in high‑quality 
pangenomes
‑ Assessment of within‑species 
gene expansions

Synteny ‑ Accurate discrimination of 
vertically transmitted gene 
families
‑ The most sensitive method 
for single‑copy core genes

‑ The fragmentation of mobile 
gene families in multiple OGC 
can bias functional profiles 
and quantitative estimates of 
genome plasticity

‑ Identification of vertically trans‑
mitted orthologs
‑ Generation of high‑resolution 
phylogenetic trees
‑ Analysis of pangenomes 
with up to 20% of incomplete 
genomes
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content diversity as the predicted (rather than observed) percentage of accessory 
genes per genome.

As a fast alternative to de novo clustering methods, we evaluated the performance 
of OGC built by annotating gene sequences with the eggNOG reference database. 
Although reference-based OGC deviate from de novo OGC in many aspects, they are a 
reasonable option to identify single-copy core genes and generate functional profiles in 
well-studied genera, especially if paralogs and rare genes can be disregarded. Reference-
based OGC are also the most robust option to deal with pangenomes that contain a large 
fraction of incomplete or poorly assembled genomes. On the other side, eggNOG-based 
OGC can miss a significant portion of species-specific core genes in poorly sampled 
taxa, do not discriminate paralogs below the genus level, and filter out gene families with 
narrow taxonomic distribution. Accordingly, pangenome analyses using reference-based 
OGC should justify their conclusions accounting for these limitations. Possibly, the most 
interesting application of reference-based OGC is found in large-scale comparative stud-
ies that require tracking OGC across species. That can be achieved thanks to the hier-
archical structure of the eggNOG database that allows annotating orthologs at multiple 
taxonomic levels without additional computational cost.

Conclusions
There is no “one size fits all” gene clustering method for pangenome analyses. Such lack 
of a universal method does not only reflect the practical limitations of current algo-
rithms, but a deeper conceptual trade-off. For applications that involve tracking ver-
tically transmitted genes, the best OGC are those that effectively discriminate among 
in-paralogs, which is generally achieved by applying synteny criteria. However, those 
same OGC are not optimal to study within-species expansions and contractions of 
accessory gene families. (For that purpose, OGC should keep in-paralogs together, as 
dictated by classical orthology.) In practice, the best choice also depends on the qual-
ity of the genomic assemblies, with homology and reference-based OGC producing the 
most robust results in medium- and low-quality pangenomes.

Reusability and meta-analysis of pangenome datasets is currently hindered by the 
incompatibility of OGC obtained by different methods. To address that limitation and 
foster future research, it is critical to come to a consensus on a set of methods that cover 
the most relevant criteria for paralog discrimination. To maximize consistency and reus-
ability, an optimal solution should leverage the hierarchical nature of gene clustering 
criteria, with synteny OGC nested within orthology OGC, and the latter nested within 
homology OGC. Such multi-level scheme would facilitate selecting the best set of OGC 
for each purpose and assessing the robustness of pangenome properties in the face of 
methodological uncertainty. We expect that the multi-method dataset generated in this 
study (publicly available in https:// dx. doi. org/ 10. 5281/ zenodo. 70930 13), though not 
strictly nested, will constitute a first step in that direction.

Methods
High‑quality genomic sequences

We parsed the metadata files of the Genome Taxonomy Database (GTDB) release 95 
[58] to identify all the species (sensu GTDB) for which there were at least 15 high-quality 

https://dx.doi.org/10.5281/zenodo.7093013


Page 19 of 27Manzano‑Morales et al. Genome Biology          (2023) 24:250  

available genomes. High-quality genomes were defined according to the MIMAG cri-
teria [59] plus the following more stringent filters: completeness > 99% and contamina-
tion < 1%, both assessed through CheckM [60], mean contig length > 5  kb, and contig 
count < 500. Metagenome-assembled genomes (MAG) and single-amplified genomes 
(SAG) were not included in the analysis. After applying these filters, we recovered 321 
bacterial and 1 archaeal species, belonging to 125 different genera (sensu GTDB). To 
minimize possible taxonomical biases, only one representative species per genus was 
selected for subsequent analyses. For those genera with more than 1 suitable species, we 
kept the species with the highest number of high-quality genomes, as they presumably 
were the most informative for pangenome studies.

To keep our analyses within a manageable computational cost, species with > 100 high-
quality genomes were subsampled to keep at most 100 genomes per species. To that end, 
we separately aligned the amino acid sequences of 120 nearly universal marker genes 
employed by the GTDB with MAFFT [61], concatenated the alignments, and ran IQ-
Tree [62] to obtain phylogenetic trees including all the strains of the same species. Then, 
we applied a heuristic subsampling strategy that maximized the diversity of the subsam-
pled genomes while accurately reflecting the topology of the strain trees.

The final dataset comprised 6796 bacterial genomes belonging to 124 species and 55 
archaeal genomes belonging to 1 species. The genomes were downloaded from the NCBI 
FTP site. Open reading frames (ORF) were predicted with Prodigal v2.6.3 [63], using the 
“single” mode that is recommended for finished genomes and quality draft genomes. All 
runs used the bacterial, archaeal, and plant plastid code 11 (https:// www. ncbi. nlm. nih. 
gov/ Taxon omy/ Utils/ wprin tgc. cgi), which maps UAA, UGA, and UAG to stop codons, 
except for Mycoplasmopsis bovis PG45 (GCF_000183385.1) and Mycoplasma pneumo-
niae FH (GCF_001272835.1), which used code 4 and translate UGA to tryptophan.

Metagenome‑assembled genomes

Medium- and low-quality MAG for Escherichia coli, Cutibacterium acnes, Bacteroides 
uniformis, and Staphylococcus epidermidis were downloaded from the Global Microbial 
Genomic Bins database (GMBC 1.0) [64], and their ORF were predicted with Prodigal 
using the same options as with high-quality genomes.

For each species, we built 24 mixed pangenomes organized in two series, one for 
low-quality MAG and the other for medium-quality MAG. Each series consists of 12 
pangenomes, with 5, 20, 50, and 100% MAG (the rest being high-quality genomes), and 
three random replicates for each composition. To build each pangenome, we randomly 
sampled the required number of genomes from the collection of MAG and high-quality 
genomes. All pangenomes contained a total of 100 genomes, except for Bacteroides uni-
formis, for which only 65 high-quality genomes were available.

De novo OGC construction

We generated eight sets of de novo species-level OGC, each one representing an alter-
native approach to identify homologous genes and discriminate within-species paralogs 
(Table 1). To facilitate comparison among methods, we started in all cases from the same 
predicted ORF previously obtained with Prodigal, overriding any optional ORF predic-
tion step provided by the OGC construction software.

https://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi
https://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi
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Four sets of homology-based OGC were built with the sequence clustering tools 
MMseqs2 [29] and CD-HIT [28], setting the minimum identity threshold to 50 and 80%. 
MMseqs2 was run with the options “easy-cluster” for cascaded clustering and “cluster-
mode 1” to define clusters based on connected components. The options for CD-HIT 
were set so that sequence homology was calculated locally, the alignments covered > 80% 
of the longest sequence, and sequences were assigned to the best-matching cluster (-G 
0 -aL 0.8 -g 1 -M 8000). The word size for CD-HIT (option -n) was set to 5 for mini-
mum identity 80% and 3 for minimum identity 50%, as recommended by the developers. 
MMseqs2 and CD-HIT do not perform any kind of paralog splitting; therefore, the reso-
lution of the resulting OGC only depends on the similarity threshold used for clustering.

Two sets of synteny-based OGC were built with the software Roary [33], setting the 
minimum identity threshold to 80 and 95%. The Roary algorithm starts by pre-cluster-
ing highly similar protein sequences with CD-HIT [28] to obtain a smaller set of repre-
sentative sequences. Roary then conducts an all-against-all comparison with BLAST and 
filters the hits based on the user-provided identity threshold. Based on the network of 
hits, representative sequences are clustered with MCL [65] and the resulting clusters are 
merged with the pre-clusters. As a final step, Roary uses conserved gene neighborhood 
information to split homologous groups containing paralogs into groups of synteny-sup-
ported OGC.

Two sets of orthology-based OGC were built with the software panX [32] and 
OrthoFinder [31]. Both algorithms initially cluster sequences in orthologous groups 
by performing an all-against-all similarity search with DIAMOND [44] and posterior 
clustering with MCL. The hits retrieved by DIAMOND are filtered only in terms of sta-
tistical significance, regardless of sequence identity, which allows recovering relatively 
divergent homologs. In the panX algorithm, the sequences of these initial clusters are 
aligned with MAFFT [61] and cluster-level phylogenetic trees are built with FastTree 
[66]. Finally, panX obtains orthology-supported OGC by examining the resulting trees 
and applying a set of heuristic rules to split paralogs from true species-level orthologs. 
OrthoFinder directly builds phylogenetic trees from the DIAMOND scores, infers the 
root based on gene duplication patterns, and generates OGC that are compatible with 
the rooted trees.

OGC construction by reference database mapping

Reference-based OGC were built by mapping translated ORF to the eggNOG (evolu-
tionary genealogy of genes: Non-supervised Orthologous Groups) database version 5.0 
[67]. For that purpose, we ran eggNOG-mapper v2 [68] with command line options “-m 
diamond –tax_scope_mode narrowest” to search queries against eggNOG sequences 
with DIAMOND and transfer orthologous group annotations at the highest possible 
taxonomic resolution (which typically corresponds to the genus level).

Pangenome features

OGC presence-absence matrices (sometimes known as phyletic profiles) and gene-to-
OGC relationships were used to estimate a set of pangenome features that intend to cap-
ture both the size and the diversity of the pangenome.
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Pangenome size was calculated as the total number of OGC retrieved for each species. 
Because this measure is positively correlated with the number of genomes sampled, an 
unbiased estimate was obtained by randomly subsampling sets of 14 genomes and taking 
the average over 100 realizations (we refer to this and other pangenome features 
obtained with the same procedure as “14-mean”). To ensure that the results obtained 
with these two measures were sufficiently representative, we calculated three additional 
measures of pangenome size: Chao’s lower bound [69]; the normalized pangenome size, 
obtained by dividing the pangenome size ( Ptot ) by the sum of the harmonic series of the 
number of genomes ( n ), such that Pnorm =

Ptot
∑n−1

i=1
1/i

 [70]; and the pangenome size of the 

15 most dissimilar genomes in terms of genome content. After verifying that all those 
metrics were highly correlated across species (R > 0.95), we proceeded with the uncor-
rected and 14-mean pangenome sizes, which are simpler and more easily interpretable.

We defined the core genome as the set of OGC contained in all the genomes of a spe-
cies. This strict definition is appropriate given the almost full (> 99%) completeness fil-
ter imposed on high-quality genomes. Pangenomes were also characterized in terms of 
the absolute number of single-copy core OGC, accessory OGC (those that are not core), 
and singleton OGC (those encompassing a single ORF). As measures of genome content 
diversity, we computed the mean percentage of OGC that are accessory and singleton 
with respect to all the OGC present in each genome, averaged over 100 random sub-
samples of 14 genomes per species. In addition, a measure of genomic fluidity that quan-
tifies the average dissimilarity in gene content of randomly sampled pairs of genomes 
[71] was obtained with the “fluidity” function of the R package micropan [72]. To ensure 
that variations in fluidity were not simply due to the randomness of the subsampling 
procedure, we conducted a series of preliminary tests to determine the minimum num-
ber of sampled pairs required for convergence in fluidity estimates. We found that using 
500 random pairs (instead of only 10 pairs that is the default in micropan) reduced the 
relative variability across repeated estimates below 0.5%. Therefore, we set the option 
“n.sim = 500” for all fluidity calculations.

The species-wise core gene alignment similarity (CGAS) was calculated using ORFs 
that belong to single-copy core OGC. Pairwise global alignments of all the ORFs 
assigned to the same OGC were performed with the Needleman-Wunsch algorithm 
as implemented by the needleall program of the EMBOSS suite [73]. After removing 
all self-alignments (alignments of ORFs with themselves), the average identity of each 
pair of genomes was calculated as mi/ Li where mi and Li represent the number 
of matches and total alignment length for the pair of sequences from the ith OGC and 
the sum extends over all single-copy core OGC. The species-wise CGAS was obtained 
as the average over all pairs of genomes of the same species. The nucleotide sequence 
divergence in single-copy core genes was defined as one minus the species-wise CGAS. 
Given the high computational cost of this procedure, calculation of CGAS and core gene 
divergences was restricted to reference-, synteny-, and orthology-based OGC.

High‑resolution species trees and inference of gene gains and losses

High-resolution trees were obtained for each species using concatenated alignments 
of all single-copy core OGC obtained by Roary. Amino acid sequences for each single-
copy core OGC were aligned with mafft-linsi (L-INS-I Algorithm, default options) [61] 
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and back-translated to nucleotide alignments with the program pal2nal.pl using codon 
table 11 (except for species of the order Mycoplasmatales, which use codon table 4) [74]. 
The nucleotide alignments were concatenated and used as input for the tree construc-
tion program FastTree (command line options -gtr -nt -gamma -nosupport -mlacc 2 
-slownni) [66]. The preliminary tree produced by FastTree was subsequently provided to 
RAxML for branch length optimization (options -f e -c 25 -m GTRGAMMA) [75]. The 
package ETE3 [76] was used for mid-point rooting and visualization.

Gene gains and losses along each species tree were inferred with the phylogenomic 
reconstruction software Gloome [77]. As the input for Gloome, we used the phyletic 
profiles for the presence or absence of each OGC and the high-resolution species trees; 
options were set to optimize the tree branch lengths under a genome evolution model 
with 4 categories of gamma-distributed gain and loss rates and stationary frequencies 
at the root. To compare among OGC generation methods, we varied the input phyletic 
profiles according to the desired method while keeping the species trees unchanged. The 
Gloome optimization algorithm did not converge for Enterobacter himalayensis and 
Chlamydia muridarum; therefore, those species were excluded from all the analyses 
involving gene gains and losses.

Functional annotation and statistical analysis of functional profiles

Functional annotation at the gene level was done by mapping individual genes to cus-
tom-made HMM profiles of the 2020 release of the COG database [78]. Functional 
annotation at the OGC level was done by applying the majority rule to gene-level anno-
tations. Coarse-grained pangenome functional profiles were built by counting the num-
ber of OGC assigned to each of the 21 major prokaryotic functional categories defined 
in the COG database.

The statistical analysis of functional profiles was conducted by applying the phylofac-
torization framework [79]. First, to account for the constant-sum constraint that com-
plicates the statistical analysis of compositional data, we applied the isometric log ratio 
(ILR) transform to the species-wise functional profiles. Informative ILR balances were 
defined following a guide tree that was obtained by calculating the mean differences 
between synteny and orthology OGC for each functional category and performing hier-
archical clustering of the functional categories based on such differences. Then, linear 
mixed effects models were set out for each of the 20 ILR balances, with OGC clustering 
criteria as fixed effects and species as random effects. Model fitting was performed with 
the R package lmerTest [80], and contrasts among balances were conducted with the 
R package phylofactor (https:// github. com/ repta lex/ phylo factor), which ranks the bal-
ances based on the fraction of the total variance that is explained by the model. Statisti-
cal significance was calculated by using Satterthwaite’s approach to estimate the degrees 
of freedom of the F-statistic and applying Bonferroni correction to account for multiple 
comparisons.

Comparison of high‑quality and MAG‑derived pangenomes

To quantify the inconsistency between pangenomes built from high-quality genomes 
and pangenomes built from mixtures of MAG and high-quality genomes, we calculated 
the fraction of unexplained variance in the latter that cannot be explained by the former. 

https://github.com/reptalex/phylofactor
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If the value of a given pangenome feature in a given species is represented as a pair (x, y) , 
where x and y represent, respectively, the value in high-quality and mixed pangenomes, 
then the fraction of unexplained variance is equal to 

∑
(

y− x
)2
/
∑

(

y− y
)2 , where the 

sum extends to all species and replicates and y is the mean of y . Formally, this value is 
related to the coefficient of determination of a 1:1 fit as 1− R2 . Therefore, inconsisten-
cies greater than 1 are equivalent to R2 < 0 , implying that the (x, y) pairs strongly deviate 
from a 1:1 trend (more precisely, the y-values are better predicted by their mean than by 
the x-values).

A robust estimate of the core genome size in mixed pangenomes was obtained with 
the software mOTUpan [50], using as inputs the OGC presence-absence matrices (option 
‘-c’) and the completeness and contamination values reported in the GTDB and GMBC 
metadata files (option ‘-k’). Moreover, mOTUpan estimates of the mean genome size and 
the core genome size were used to derive an alternative measure of gene content diver-
sity that accounts for genome incompleteness. Given a predicted core genome with size 
C and mean predicted genome size G , the gene content diversity measure is obtained as 
1− C/G . Assuming that the true genome sizes are similar among strains of the same spe-
cies, this value is approximately equal to the proportion of genes within a genome that are 
accessory. Ready-to-use code to calculate the predicted percentage of accessory genes per 
genome from the output of mOTUpan is provided in Additional file 4.
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The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s13059‑ 023‑ 03089‑3.

Additional file 1: Table S1. Popular tools for gene clustering and their application to pangenome analysis.

Additional file 2: Table S2. Parameters and options used in this study.

Additional file 3: Figure S1. Species‑wise comparison of pangenome features inferred from different sets of OGC. 
Dashed lines show the best orthogonal least‑squares fit; solid lines indicate the 1:1 trend. Each point corresponds 
to the pangenome of one species, colored according to its phylum (see Figure 2 in the main text and Suppl. Fig. S3 
for color‑phyla mapping). For computational reasons, the core nucleotide diversity was not calculated for homology 
OGC. Figure S2. Species‑wise comparison of pangenome features inferred from different sets of OGC. Dashed lines 
show the best orthogonal least‑squares fit; solid lines indicate the 1:1 trend. Figure S3. Fraction of ORFs per species 
that could not be classified into OGC by mapping to the eggNOG database. Species are grouped by phylum based 
on GTDB taxonomy. Figure S4. (a) Gene‑level agreement between synteny‑ and orthology‑based OGC, measured 
as the fraction of ORFs assigned to identical OGC and stratified by functional category. Identical OGC are those that 
contain exactly the same ORFs in both methods. (b) Functional heterogeneity in orthology‑ and synteny‑based 
OGC. An OGC is considered functionally heterogeneous if it contains genes from >1 functional category (based on 
COG2020 functional annotation scheme). Abbreviations of functional categories, C: energy production and conver‑
sion; D: cell cycle control, cell division, chromosome partitioning; E: amino acid transport and metabolism; F: nucleo‑
tide transport and metabolism; G: carbohydrate transport and metabolism; H: coenzyme transport and metabolism; 
I: lipid transport and metabolism; J: translation, ribosomal structure and biogenesis; K: transcription; L: replica‑
tion, recombination and repair; M: cell wall/membrane/envelope biogenesis; N: cell motility; O: posttranslational 
modification, protein turnover, chaperones; P: inorganic ion transport and metabolism; Q: secondary metabolites 
biosynthesis, transport and catabolism; R: general function prediction only; S: function unknown; T: signal transduc‑
tion mechanisms; U: intracellular trafficking, secretion, and vesicular transport; V: defense mechanisms; X: mobilome. 
Figure S5. Comparison between pangenome properties inferred from high‑quality genomes (x‑axis) and mixtures 
of low‑quality MAG and high‑quality genomes (y‑axis). From left to right, the scatter plots correspond to pange‑
nomes with 5%, 20%, 50% and 100% of MAG. Each point in the scatter plots corresponds to one pangenome, with 
different symbols and colors used to distinguish among species and OGC generation methods, respectively. Each 
scatter plot combines data from 4 species, 6 gene clustering methods, and 3 random subsamples. The bar plots on 
the right summarize the observed inconsistencies, with color intensities representing the fraction of MAG. Note that 
panX fails to produce results in pangenomes that contain >5‑10% of MAG (pink and purple asterisks). (b) Sensitivity 
of gene clustering methods to the addition of MAGs, calculated by comparing the cluster assignations of genes from 
high‑quality genomes before and after adding MAG. NVI: normalized variation of information. Different OGC genera‑
tion methods are color coded, with color intensities indicating the fraction of MAG. Note that reference‑database 
mapping methods produce an NVI equal to zero (double asterisk). Figure S6. Consistency of different metrics of 
gene content diversity inferred from incomplete genomes. Each scatter plot compares the values obtained from 
high‑quality genomes (x‑axis) and mixtures of medium‑quality MAG and high‑quality genomes (y‑axis). From left to 

https://doi.org/10.1186/s13059-023-03089-3
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right, the scatter plots correspond to pangenomes with 5%, 20%, 50% and 100% of MAG. Each point in the scatter 
plots corresponds to one pangenome, with different symbols and colors used to distinguish among species and 
OGC generation methods, respectively. Each scatter plot combines data from 4 species, 6 gene clustering methods, 
and 3 random subsamples. The bar plots on the right summarize the observed inconsistencies, with color intensities 
representing the fraction of MAG. Note that panX fails to produce results in pangenomes that contain >5% of MAG 
(purple asterisks). The panels for fluidity (middle row) are the same as those in Figure 6 and are reproduced here to 
facilitate comparison with other metrics. Figure S7. Consistency of different metrics of core genome size inferred 
from incomplete genomes. Each scatter plot compares the values obtained from high‑quality genomes (x‑axis) 
and mixtures of medium‑quality MAG and high‑quality genomes (y‑axis). From left to right, the scatter plots cor‑
respond to pangenomes with 5%, 20%, 50% and 100% of MAG. Each point in the scatter plots corresponds to one 
pangenome, with different symbols and colors used to distinguish among species and OGC generation methods, 
respectively. Each scatter plot combines data from 4 species, 6 gene clustering methods, and 3 random subsamples.

Additional file 4. Ready‑to‑use code to calculate the predicted percentage of accessory genes per genome from 
the output of mOTUpan.

Additional file 5. Review history.
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